
Synopsys
Identify® Microsemi Edition
Instrumentor User Guide

January 2018

LO

Preface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
2 January 2018

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Destination Control Statement
All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys,
as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective
owners.

http://www.synopsys.com/Company/Pages/Trademarks.aspx

Preface

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 3

Third-Party Links
Any links to third-party websites included in this document are for your
convenience only. Synopsys does not endorse and is not responsible for such
websites and their practices, including privacy practices, availability, and
content.

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043
www.synopsys.com

January 2018

LO

Preface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
4 January 2018

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 5

Contents

Chapter 1: Design Setup
Instrumenting and Saving a Design . 7

Chapter 2: IICE Configuration
Multiple IICE Units . 10

Common IICE Parameters . 11

Individual IICE Parameters . 16
IICE Sampler Tab . 17
IICE Clock Tab . 18
IICE Controller Tab . 20
IICE Options Tab . 21
RTD Tab . 22

Chapter 3: Using the Instrumentor
Instrumentor Windows and Views . 23

Control Panel . 24
Search Panel . 24
Hierarchy Browser . 25
RTL Tab . 27
Instrumentation Tab . 27

Commands and Procedures . 29
Opening Designs . 30
Selecting Signals for Data Sampling . 30
Instrumenting Buses . 32
Partial Instrumentation . 35
Multiplexed Groups . 36
Sampling Signals in a Folded Hierarchy . 37
Instrumenting the Verdi Signal Database . 39
Instrumenting Signals Directly in the idc File . 40
Selecting Breakpoints . 42
Selecting Breakpoints Residing in Folded Hierarchy . 42

LO

Contents

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
6 January 2018

Configuring the IICE . 44
Real-time Debugging . 44
Writing the Instrumented Design . 48
Synthesizing Instrumented Designs . 50
Listing Signals . 50
Searching for Design Objects . 51
Capturing Commands from the Tcl Script Window . 52

Chapter 4: HAPS Deep Trace Debug
External Memory Instrumentation and Configuration . 54

DTD Tab . 55

Running Deep Trace Debug with SRAM Memory . 57
SRAM Clocks . 58
Sample Depth Calculation . 58
Sample Clock Calculation . 59

Chapter 5: Support for Instrumenting HDL
VHDL Instrumentation Limitations . 62

Verilog Instrumentation Limitations . 64

SystemVerilog Instrumentation Limitations . 67

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 7

C H A P T E R 1

Design Setup

After your HDL is successfully created, the instrumentor is used to define the
specific signals to be monitored. Saving the instrumented design generates
an instrumentation design constraints (idc) file and adds constraint files to the
HDL source for the instrumented signals and break points. The design is
synthesized and then run through the remainder of the process. After the
device is programmed with the debuggable design, the debugger is launched
to debug the design while it is running in the target system. For information
on using the debugger, see the Debugger User Guide.

The information required to instrument a design includes references to the
HDL design source, the user-selected instrumentation, the settings used to
create the Intelligent In-Circuit Emulator (IICE), and other system settings.
Additionally, you can save the original design in either an encrypted or
non-encrypted format, which is then used to reproduce the exact state of the
design.

Instrumenting and Saving a Design
After setting up the IICE as described in Chapter 2, IICE Configuration and
after defining the instrumentation (selecting the signals for sampling, and
setting breakpoints) as described in Chapter 3, Using the Instrumentor, the
design is instrumented and saved. To save your instrumented design, select
File->Save All from the main menu.

LO

Chapter 1: Design Setup Instrumenting and Saving a Design

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
8 January 2018

Saving a design generates an instrumentation design constraints (idc) file and
adds compiler pragmas in the form of constraint files to the design RTL for
the instrumented signals and break points. This information is then used to
incorporate the instrumentation logic (IICE and COMM blocks) into the
synthesized netlist.

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 9

C H A P T E R 2

IICE Configuration

An important part preparing a design for debugging is setting the parameters
for the Intelligent In-Circuit Emulator or “IICE” in the instrumentor. The IICE
parameters determine the implementation of one or more IICE units and
configure the units so that proper communication can be established with
the debugger. The IICE parameters common to all IICE units are set in the
Instrumentor Preferences dialog box and apply to all IICE units defined for that
design; the IICE parameters unique to each IICE definition in a multi-IICE
configuration are interactively set on the Edit IICE dialog box tabs. Tabs are
available to support real-time debugging with a Mictor card, and the
cross-triggering feature.

• IICE Sampler Tab – includes sample depth selection and defines the
external memory configuration.

• IICE Clock Tab – defines the sample clock and clock edge.

• IICE Controller Tab – includes complex counter trigger width specification
and selection of state machine triggering.

• IICE Options Tab– controls trigger-signal export and cross triggering.

This chapter describes how to configure one or more IICE units.

Note: IICE configurations set in the instrumentor impact the
operations available in the debugger.

LO

Chapter 2: IICE Configuration Multiple IICE Units

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
10 January 2018

Multiple IICE Units
Multiple IICE units allow triggering and sampling of signals from different clock
domains within a design. Each IICE unit is independent and can have unique
IICE parameter settings including sample depth, sampling/triggering options,
and sample clock and clock edge. During the subsequent debugging phase,
individual or multiple IICE units can be armed.

Adding an IICE Unit
The instrumentor graphical window includes an Add IICE icon in the
instrumentor menu bar to define an additional IICE unit for the
current design. You can also select IICE->Add IICE from the Instrumentor
drop-down menu in the main menu bar. Either action opens the Add

IICE dialog box to allow you to define the type and name of the new IICE unit.

When you click OK, the HDL source code in the RTL window is redisplayed
without any signals instrumented, the Instrumentation window is cleared,
and the IICE selection reported in the status panel on the left is updated with
the name of the IICE unit. When creating a new IICE unit:

• Select Regular (the default) to add a normal IICE unit or select RTD to add
a HAPS-based real-time debug IICE unit; see Real-time Debugging, on
page 44.

• Optionally enter a name for the IICE unit in the Name field. By default,
the IICE name is formed by adding an _n suffix to IICE (for example,
IICE_0, IICE_1, etc.).

Common IICE Parameters Chapter 2: IICE Configuration

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 11

Deleting an IICE Unit
To delete an IICE unit from the design, either select Instrumentor->IICE from the
top menu bar and select Delete IICE or click on the Delete IICE icon in the
instrumentor graphics window.

When more than one IICE unit is defined, select the IICE unit in the Control
Panel panel before you select Delete IICE (see Individual IICE Parameters, on
page 16).

Common IICE Parameters
The IICE parameters common to all IICE units in a multi-IICE configuration
include the communication port setting and if the optional skew-free
hardware is to be used. The parameters are set on the Instrumentor Preferences
dialog box (select Instrumentor->Instrumentor Preferences from the top menu bar).

LO

Chapter 2: IICE Configuration Common IICE Parameters

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
12 January 2018

Instrumentation Preferences
The Instrumentation Preferences section includes the following check boxes:

• Save original source in instrumentation directory – Includes the original HDL
source with the exported design files when checked.

• Use Encryption – Encrypts the original source.

• Shrink debugger database – when checked, the design database includes
only instrumented hierarchies; when left unchecked, the full design
database is loaded into the debugger.

Common IICE Parameters Chapter 2: IICE Configuration

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 13

Communication interface
The Communication interface section includes the following parameters and
check boxes:

• Port – specifies the type of connection to be used to communicate with
the on-chip IICE. The connection types available from the drop-down
menu are:

– builtin – indicates that the IICE is connected to the JTAG Tap controller
available on the target device.

UJTAG Wrapper Support for Microsemi FPGA Devices
To debug a design which contains user JTAG interface module, you must use the
UJTAG_WRAPPER module and not the UJTAG module. This is because Identify
debugger also uses JTAG ports, so using the UJTAG module for the user JTAG
interface module will result in conflicts.
To use the UJTAG_WRAPPER module and ensure seamless connection between the
user JTAG and the Identify debugger JTAG:
• Instantiate UJTAG_WRAPPER in the design.
• Make necessary RTL interface connections for TDI, CLK, SHIFT_EN, CAP, RESET,

IR_REG and TDO ports of user's JTAG interface module with UTDI, UDRCK, UDRSH,
UDRCAP, URSTB, UIREG and UTDO ports of UJTAG_WRAPPER respectively.

There are some restrictions for the UREG connection. Two UJTAG OPCODEs,
UIREG[5:1] = 5'b00001 and UIREG[5:1] = 5'b00010 are reserved for use by Identify. Also,
UIREG[6] is used by Identify as an enable signal.
• The ujtag_wrapper.v file is available in the installation folder <synplify_dir>/lib/di/. Add

the file to the Synplify Pro project.
• If you want to instrument the design using Identify, then you must add `define

IDENTIFY_DEBUG_IMPL in the Verilog source file or specify the set_option in
Synplify Pro:

set_option -hdl_define -set IDENTIFY_DEBUG_IMPL
If you do not perform the steps above, the following message is displayed while
saving the instrumentation:
Error: The design contains 1 UJTAG instance (UJTAG_inst), which would clash with the UJTAG instance in
the debug IP core!
To resolve the error:
• Replace UJTAG with UJTAG_WRAPPER.
• Add the file <synplify_dir>/lib/di/ujtag_wrapper.v to your project.
• Type set_option -hdl_define -set IDENTIFY_DEBUG_IMPL at the Synplify Tcl prompt if

you are going to debug your design using Identify.

LO

Chapter 2: IICE Configuration Common IICE Parameters

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
14 January 2018

– soft – indicates that the Synopsys Tap controller is to be used. The
Synopsys FPGA Tap controller is more costly in terms of resources
because it is implemented in user logic and requires four user I/O
pins to connect to the communication cable.

– umrbus – indicates that the IICE is connected to the target device
through the UMRBus.

• Create Skew Free Instrumentation

The Create skew free instrumentation check box, when checked, incorporates
skew-free master/slave hardware to allow the instrumentation logic to
operate without requiring an additional global clock buffer resource for
the JTAG clock.

When no global clock resources are available for the JTAG clock, this
option causes the IICE to be built using skew-free hardware consisting
of master-slave flip-flops on the JTAG chain which prevents clock skew
from affecting the logic. Enabling this option also causes the instru-
mentor to NOT explicitly define the JTAG clock as requiring global clock
resources.

• Insert clock buffer – when using the JTAG interface, enabling the check box
automatically inserts two global clock buffers to the debug ip.

See Chapter 3, Connecting to the Target System in the Debugger User Guide,
for a description of the communication interface.

Common IICE Parameters Chapter 2: IICE Configuration

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 15

General
The General section includes the following parameters and check boxes:

• Startup Controls – a set of start-up radio buttons:

– Ignore no IICE at startup – take no action when opening the instrumentor
and there is no IICE defined

– Warn if no IICE at startup – issue a warning when opening the
instrumentor and there is no IICE defined

– Automatically create IICE at startup if none – create an IICE when opening
the instrumentor and there is no IICE defined

• Display the IICE settings dialog after adding an IICE – after creating an IICE
(either in the Add IICE dialog box or automatically at startup), display the
IICE Settings dialog box.

• Show SRS-only warning at startup – when opening the instrumentor, issue a
warning if only SRS instrumentation is possible.

• Show notification when SRS instrumentation is possible

• Automatically launch Analyst in SRS-only mode – When opening the
instrumentor, automatically launch the HDL Analyst when SRS
instrumentation is possible.

LO

Chapter 2: IICE Configuration Individual IICE Parameters

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
16 January 2018

Individual IICE Parameters
The individual parameters for each IICE are defined on a series of
tabs of the Edit IICE Settings dialog box. Before you display this dialog
box, make sure that the name of the target IICE unit appears in the
Control Panel tab.

With the target IICE selected, either click the Edit IICE icon in the top menu

bar or click the entry for the IICE Type field in the Control Panel to display the
Edit IICE Settings dialog box.

Individual IICE Parameters Chapter 2: IICE Configuration

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 17

IICE Sampler Tab
The IICE Sampler tab shown above is the default tab and defines:

• Buffer type

• Sample depth

• Sampling/triggering options

Buffer Type
The Buffer type parameter specifies the type of RAM to be used to capture the
on-chip signal data. The default value is FPGA Memory; the hapsram setting
configures the IICE to use extended daughter board SRAM memory. For more
information, see Chapter 4, HAPS Deep Trace Debug.

Sample Depth
The Sample depth parameter specifies the amount of data captured for each
sampled signal. Sample depth is limited by the capacity of the FPGAs
implementing the design, but must be at least 8 due to the pipelined
architecture of the IICE.

Sample depth can be maximized by taking into account the amount of RAM
available on the FPGA. As an example, if only a small amount of block RAM is
used in the design, then a large amount of signal data can be captured into
block RAM. If most of the block RAM is used for the design, then only a small
amount is available to be used for signal data. In this case, it may be more
advantageous to use logic RAM. The sample depth increases significantly
with the deep-trace debug feature.

Allow Qualified Sampling
The Allow qualified sampling check box, when checked, causes the instrumentor
to build an IICE block that is capable or performing qualified sampling. When
qualified sampling is enabled, one data value is sampled each time the trigger
condition is true. With qualified sampling, you can follow the operation of the
design over a longer period of time (for example, you can observe the
addresses in a number of bus cycles by sampling only one value for each bus
cycle instead of a full trace). Using qualified sampling includes a minimal
area and clock-speed penalty. For more information on qualified sampling,
see -qualified_sampling 0|1, on page 59.

LO

Chapter 2: IICE Configuration Individual IICE Parameters

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
18 January 2018

Allow Always-Armed Triggering
The Allow always-armed triggering check box, when checked, saves the sample
buffer for the most recent trigger and waits for the next trigger or until
interrupted. When always-armed sampling is enabled, a snapshot is taken
each time the trigger condition becomes true.

With always-armed triggering, you always acquire the data associated with
the last trigger condition prior to the interrupt. This mode is helpful when
analyzing a design that uses a repeated pattern as a trigger (for example, bus
cycles) and then randomly freezes. You can retrieve the data corresponding to
the last time the repeated pattern occurred prior to freezing. Using
always-armed sampling includes a minimal area and clock-speed penalty.

Allow Data Compression
The Allow data compression check box, when checked, adds compression logic to
the IICE to support sample data compression in the debugger (see Sampled
Data Compression, on page 26 in the Debugger User Guide). When unchecked
(the default), compression logic is excluded from the IICE, and data
compression in the debugger is unavailable. Note that there is a logic data
overhead associated with data compression and that the check box should be
left unchecked when sample data compression is not to be used.

IICE Clock Tab
The IICE Clock tab defines the sample clock.

Individual IICE Parameters Chapter 2: IICE Configuration

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 19

Sample Clock
The Sample clock parameter determines when signal data is captured by the
IICE. The sample clock can be any signal in the design that is a single-bit
scalar type. Enter the complete hierarchical path of the signal as the
parameter value.

Care must be taken when selecting a sample clock because signals are
sampled on an edge of the clock. For the sample values to be valid, the
signals being sampled must be stable when the specified edge of the sample
clock occurs. Usually, the sample clock is either the same clock with which
the sampled signals are synchronous or a multiple of that clock; an
asynchronous clock can also be selected as sampling clock. The sample clock
must use a scalar, global clock resource of the chip and should be the highest
clock frequency available in the design. The source of the clock must be the
output from a BUFG/IBUFG device.

You can also select the sample clock from the RTL window by right-clicking
on the watchpoint icon in the source code display and selecting Sample Clock
from the popup menu. The icon for the selected (single-bit) signal changes to
a clock face as shown in the following figure.

Note: The sample clock edge can only be set from the IICE Clock tab.

BUFG
DCM/PLL

Sample Clock
Icon

LO

Chapter 2: IICE Configuration Individual IICE Parameters

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
20 January 2018

Clock Edge
The Clock edge radio buttons determine if samples are taken on the rising
(positive) or falling (negative) edge of the sample clock. The default is the
positive edge.

IICE Controller Tab
The IICE Controller tab selects the IICE controller’s triggering mode. All of these
instrumentation choices have a corresponding effect on the area cost of the
IICE.

Simple Triggering
Simple triggering allows you to combine breakpoints and watchpoints to
create a trigger condition for capturing the sample data.

Complex-Counter Triggering
Complex-counter triggering augments the simple triggering by instrumenting
a variable-width counter that can be used to create a more complex trigger
function. Use the width setting to control the desired width of the counter.

Individual IICE Parameters Chapter 2: IICE Configuration

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 21

State-Machine Triggering
State-machine triggering allows you to pre-instrument a variable-sized state
machine that can be used to specify an ultimately flexible trigger condition.
Use Trigger states to customize how many states are available in the state
machine. Use Trigger condition to control how many independent trigger
conditions can be defined in the state machine. For more information on
state-machine triggering, see State Machine Triggering, on page 63 in the
Debugger User Guide.

IICE Options Tab
The IICE Options tab configures external triggering to allow a trigger from an
external source to be imported and configured as a trigger condition for the
active IICE. The external source can be a second IICE located on a different
device or external logic on the board rather than the result of an
instrumentation.

Import External Trigger Signals
The imported trigger signal includes the same triggering capabilities as the
internal trigger sources used with state machines. The adjacent field selects
the number of external trigger sources with 0, the default, disabling
recognition of any external trigger. Selecting one or more external triggers
automatically enables state-machine triggering.

Note: When using external triggers, the pin assignments for the
corresponding input ports must be defined in the synthesis or
place and route tool.

LO

Chapter 2: IICE Configuration Individual IICE Parameters

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
22 January 2018

Export IICE Trigger Signal
The Export IICE trigger signal check box, when checked, causes the master
trigger signal of the IICE hardware to be exported to the top-level of the
instrumented design.

Allow cross-triggering in IICE
The Allow cross-triggering in IICE check box, when checked, allows this IICE unit
to accept a cross-trigger from another IICE unit. For more information on
cross-triggering, see Cross Triggering, on page 35 in the Debugger User Guide.

RTD Tab
The RTD tab is active when the selected IICE unit is a type real-time debug.
Real-time debugging is a feature that provides scope or logic analyzer access
to instrumented signals directly through a Mictor board interface connector
installed on the HAPS board. For real-time debug configuration and setup
information, see Real-time Debugging, on page 44.

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 23

C H A P T E R 3

Using the Instrumentor

The instrumentor performs the following functions:

• defines the instrumentation for the user’s HDL design

• creates the instrumented HDL design

• creates the associated IICE

The remainder of this chapter describes:

• Instrumentor Windows and Views

• Commands and Procedures

Instrumentor Windows and Views
The Graphical User Interface (GUI) for the instrumentor is divided into five
major areas:

• Control Panel

• Search Panel

• Hierarchy Browser

• RTL Tab

• Instrumentation Tab

LO

Chapter 3: Using the Instrumentor Instrumentor Windows and Views

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
24 January 2018

In this section, each of these areas and their uses is described.

Control Panel
The Control Panel tab describes the current status of the instrumented
design. Note that some entries are dependent on the IICE sampler buffer type
selected.

Search Panel
The Search panel is a general utility to search for signals, breakpoints, and/or
instances. The panel includes an area for specifying the objects to find and an
area for displaying the results of the search For detailed information on using
the Search panel, see Searching for Design Objects, on page 51.

Selected Flow
Board System

Active IICE Unit

IICE Sampler Buffer Type
Sample Clock Signal
Sample Only Bit Count
Trigger Only Bit Count
Sample and Trigger Bit Count

Communication Interface

Instrumentor Windows and Views Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 25

Hierarchy Browser
The hierarchy browser shows a graphical representation of the design
hierarchy. At the top of the browser is the ROOT node. The ROOT node
represents the top-level entity or module of your design. For VHDL designs,
the first level below the ROOT is the architecture of the top-level entity. The
level below the top-level architecture for VHDL designs, or below the ROOT
for Verilog designs, shows the entities or modules instantiated at the top
level.

Double-clicking an entry opens the entity/module instance so that the
hierarchy below that instance can be viewed. Lower levels of the browser
represent instantiations, case statements, if statements, functional operators,
and other statements.

LO

Chapter 3: Using the Instrumentor Instrumentor Windows and Views

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
26 January 2018

Single clicking on any element in the hierarchy browser causes the associ-
ated HDL code to be visible in the RTL tab display.

A popup menu is available in the hierarchy browser to set or clear break-
points or watchpoints at any level of the hierarchy. Positioning the cursor
over an element and clicking the right mouse button displays the following
menu.

The selected operation is applied to all breakpoints or signal watchpoints at
the selected level of hierarchy. You cannot instrument signals when a sample
clock is included in the defined group.

Black-box modules are represented by a black icon, and their contents can
not be instrumented. Also, certain modules cannot be instrumented (see
Chapter 5, Support for Instrumenting HDL, for a specific description).

Instrumentor Windows and Views Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 27

RTL Tab
The RTL tab displays the HDL source code and is the default view when you
launch the instrumentor. The code is annotated with signals that can be
probed and breakpoints that can be selected. Signals that can be selected for
probing by the IICE are underlined, colored in blue, and have small
watchpoint icons next to them. Source lines that can be selected as
breakpoints have small circular icons in the left margin adjacent to the line
number.

Instrumentation Tab
The Instrumentation tab lists the active watchpoint and breakpoint entries that
have been set within the active module or entity. The entries can be modified
by selecting the entry and assigning a new value from the popup menu.

LO

Chapter 3: Using the Instrumentor Instrumentor Windows and Views

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
28 January 2018

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 29

Commands and Procedures
The following sections describe basic instrumentor commands and proce-
dures.

• Opening Designs, on page 30

• Selecting Signals for Data Sampling, on page 30

• Instrumenting Buses, on page 32

• Partial Instrumentation, on page 35

• Multiplexed Groups, on page 36

• Sampling Signals in a Folded Hierarchy, on page 37

• Instrumenting the Verdi Signal Database, on page 39

• Instrumenting Signals Directly in the idc File, on page 40

• Selecting Breakpoints, on page 42

• Selecting Breakpoints Residing in Folded Hierarchy, on page 42

• Configuring the IICE, on page 44

• Real-time Debugging, on page 44

• Writing the Instrumented Design, on page 48

• Synthesizing Instrumented Designs, on page 50

• Listing Signals, on page 50

• Searching for Design Objects, on page 51

• Capturing Commands from the Tcl Script Window, on page 52

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
30 January 2018

Opening Designs
To open the instrumentor from the synthesis tool:

1. Create an Identify implementation by right clicking on an existing
synthesis implementation and selecting New Identify Implementation from
the popup menu.

2. Set/verify any technology, device mapping, or other pertinent options
(see the implementation option descriptions in the Synopsys FPGA
Synthesis) and click OK. A new, Identify implementation is added to the
synthesis tool project view.

Launching the instrumentor displays the design hierarchy and the RTL file
content with all the potential instrumentation marked and available for
selection.

Selecting Signals for Data Sampling
To select a signal to be sampled, simply click on the watchpoint icon
next to the signal name on the RTL tab; a popup menu appears that
allows the signal to be selected for sampling, triggering, or both.

To control the overhead for the trigger logic, always instrument signals that
are not needed for triggering with the Sample only selection (the watchpoint
icon is blue for sample-only signals).

Scalar Signal Popup
Bus Signal Popup

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 31

Qualified clock signals can be specified as the Sample Clock (see Sample
Clock, on page 19) and bus segments can be individually specified (see Instru-
menting Buses, on page 32). In addition, signals specified as Sample and trigger
or Sample only can be included in multiplexed groups as described in Multi-
plexed Groups, on page 36.

When the watchpoint icon is clear (unfilled), the signal has not been
instrumented. The colors of the filled icons are described in the following
table:

The example below shows signal grant1 being enabled for sample and trigger.

The TCL Script window at the bottom displays the Tcl command that imple-
ments the selection (signals add -iice {IICE} -sample -trigger {/beh/arb_inst/grant1} and
the results of executing the command.

Red Signal is enabled for triggering only

Green Signal is enabled for both sampling and triggering

Blue Signal is enabled for sampling only

Signal “grant1” selected

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
32 January 2018

To disable a signal for sampling or triggering, select the signal on the RTL tab
and then select Not instrumented from the popup menu; the watchpoint icon
will again be clear (unfilled).

Note: You can use Find to recursively search for signals and then
instrument selected signals directly from the Find dialog box (see
Searching for Design Objects, on page 51).

Restrictions
Signals include a watchpoint icon adjacent to the signal name in the
instrumentation window to indicate that the signal can be instrumented. The
following input and output buffer signals, however, should never be
instrumented as they cause an error in the synthesis tool during subsequent
mapping:

• Input of IBUF (drives user logic)

• Input of IBUFG (drives user logic)

• Output of OBUF (driven by user logic)

• Output of OBUFT (driven by user logic)

Instrumenting Buses
Entire buses, individual bits, or groups of bits of a bus can be individually
instrumented.

• Instrumenting a Partial Bus, on page 32

• Instrumenting Single Bits of a Bus, on page 34

• Instrumenting Non-Contiguous Bits or Bit Ranges, on page 34

• Changing the Instrumentation Type, on page 34

Instrumenting a Partial Bus
To instrument a sequence (range) of bits of a bus:

1. Place the cursor over a bus that is not fully instrumented and select Add
Partial Instrumentation to display the following dialog box.

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 33

2. In the dialog box, enter the most- and least-significant bits in the MSB
and LSB fields. Note that the bit range specified is contiguous; to
instrument non-contiguous bit ranges, see the section, Instrumenting
Non-Contiguous Bits or Bit Ranges, on page 34.

Note: When specifying the MSB and LSB values, the index order of the
bus must be followed. For example, when defining a partial bus
range for bus [63:0] (or “63 downto 0”), the MSB value must be
greater than the LSB value. Similarly, for bus [0:63] (or “0 upto
63”), the MSB value must be less that the LSB value.

3. Select the type of instrumentation for the specified bit range from the
radio buttons and click OK.

When you click OK, a large letter “P” is displayed to the left of the bus
name in place of the watchpoint icon. The color of this letter indicates if
the partial bus is enabled for triggering only (red), for sampling only
(blue), or for both sampling and triggering (green).

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
34 January 2018

Instrumenting Single Bits of a Bus
To instrument a single bit of a bus, enter the bit value in the MSB field of the
Add partial bus dialog box, leave the LSB field blank, and select the instrumen-
tation type from the drop-down menu as previously described.

Instrumenting Non-Contiguous Bits or Bit Ranges
To instrument non-contiguous bits or bit ranges:

1. Instrument the first bit range or bit as described in one of the two
previous sections.

2. Re-position the cursor over the bus, click the right mouse button, and
again select Add partial instrumentation to redisplay the Add partial bus dialog
box. Note that the previously instrumented bit or bit range is now
displayed.

3. Specify the bit or bit range to be instrumented as previously described,
select the type of instrumentation from the drop-down menu, and click
OK. If the type of instrumentation is different from the existing
instrumentation, the letter “P” will be yellow to indicate a mixture of
instrumentation types.

Note: Bits cannot overlap groups (a bit cannot be instrumented more
than once).

Changing the Instrumentation Type
To change the instrumentation type of a partial bus:

1. Position the cursor over the bus and click the right mouse button.

2. Highlight the bit range or bit to be changed and select the new
instrumentation type from the adjacent menu.

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 35

Note: The above procedure is also used to remove the instrumentation
from a bit or bit range by selecting Not instrumented from the menu.

Partial Instrumentation
Partial instrumentation allows fields within a record or a structure to be
individually instrumented. Selecting a compatible signal for instrumentation,
either on the RTL tab or through the Instrumentor Search dialog box, enables
the partial instrumentation feature and displays a dialog box where the field
name and its type of instrumentation can be entered.

When instrumented, the signal is displayed with a P icon in place of the
watchpoint (glasses) icon to indicate that portions of the record are instru-
mented. The P icon is the same icon that is used to show partial instrumenta-
tion of a bus and uses a similar color coding:

• Green – all fields of the record are instrumented for sample and trigger

• Blue – all fields of the record are instrumented for sample only

• Red – all fields of the record are instrumented for trigger only

• Yellow – not all fields of the record are instrumented the same way

The figure below shows the partial instrumentation icon on signal tt. The
yellow color indicates that the individual fields (tt.r2 and tt.c2) are assigned
different types of instrumentation.

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
36 January 2018

The Search Panel also uses the partial instrumentation icon to show the state
of instrumentation on fields of partially instrumented records (see Searching
for Design Objects, on page 51).

Note: Partial instrumentation can only be added to a field or record one
slice level down in the signal hierarchy.

Multiplexed Groups
Multiplexed groups allow signals to be assigned to logical groups. Using
multiplexed groups can substantially reduce the amount of pattern memory
required during subsequent debugging when all of instrumented signals are
not required to be loaded into memory at the same time.

Only signals or buses that are instrumented as either Sample and Trigger or
Sample only can be added to a multiplexed group. To create multiplexed
groups, right click on each individual instrumented signal or bus and select
Add mux group from the popup menu.

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 37

In the Add mux group dialog box displayed, select a corresponding group by
checking the group number and then click OK to assign to the signal or bus
to that group. A signal can be included in more than one group by checking
additional group numbers before clicking OK.

When assigning instrumented signals to groups:

• A maximum of eight groups can be defined; signals can be included in
more than one group, but only one group can be active in the debugger
at any one time.

• Signals instrumented as Sample Clock or Trigger only cannot be included in
multiplexed groups.

• Partial buses cannot be assigned to multiplexed groups.

• The signals group command can be used to assign groups from the
console window (see signals, on page 75 of the Reference Manual).
Command options allow more than one instrumented signal to be
assigned in a single operation and allow the resultant group assign-
ments to be displayed.

For information on using multiplexed groups in the debugger, see Selecting
Multiplexed Instrumentation Sets, on page 21 in the Debugger User Guide.

Sampling Signals in a Folded Hierarchy
When a design contains entities or modules that are instantiated more than
once, it is termed to have a folded hierarchy (folded hierarchies also occur
when multiple instances are created within a generate loop). By definition,
there will be more than one instance of every signal in a folded entity or
module. To allow you to instrument a particular instance of a folded signal,
the instrumentor automatically recognizes folded hierarchies and presents a
choice of all possible instances of each signal within the hierarchy.

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
38 January 2018

The choices are displayed in terms of an absolute signal path name
originating at the top-level entity or module. The list of choices for a
particular signal is accessed by clicking the watchpoint icon or
corresponding signal.

The example below consists of a top-level entity called two-level and two
instances of the repeated_unit entity. The source code of repeated_unit is
displayed, and the list of instances of the val signal is displayed by clicking
the watchpoint icon or the signal name. Two instances of the signal val are
available for sampling:

/rtl/cnt_inst0/val
/rtl/cnt_inst1/val

Either, or both, of these instances can be selected for sampling by selecting
the signal instance and then sliding the cursor over to select the type of
sampling to be instrumented for that signal instance.

The color of the watchpoint icon is determined as follows:

• If no instances of the signal are selected, the watchpoint icon is clear.

• If some, but not all, instances of the signal are defined for sampling, the
watchpoint icon is yellow.

• If all instances are defined for sampling, the color of the watchpoint icon
is determined by the type of sampling specified (all instances sample
only: blue, all instances trigger only: red, all instances sample and
trigger: green, all instances in any combination: yellow).

The list of instrumentable instances of signal val

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 39

Alternately, any of the instances of a folded signal can be selected or
deselected at the instrumentor console window prompt by using the absolute
path name of the instance. For example,

signals add /rtl/cnt_inst1/val

See the Reference Manual for more information.

To disable an instance of a signal that is currently defined for sampling, click
on the watchpoint icon or signal, select the instance from the list displayed,
and select Not instrumented.

For related information on folded hierarchies in the debugger, see
Activating/Deactivating Folded Instrumentation, on page 22 and Displaying
Data from Folded Signals, on page 31 in the Debugger User Guide.

Instrumenting the Verdi Signal Database
The instrumentor can import signals directly from the Verdi platform. After
performing behavioral analysis and generating the essential signal database
(ESDB), the essential signal list from the Verdi platform is brought directly
into the instrumentor where the signals are instrumented. To bring in the
essential signal list:

1. Load the project into the instrumentor.

2. Parse the essential signal list from the ESDB using the command:

verdi getsignals ESDBpath

In the above syntax, ESDBpath is the location where es.esdb++ is
installed. For example:

verdi getsignals path/es

3. Instrument the essential signal list using the command:

verdi instrument

The signals are automatically instrumented as sample and trigger.

4. Instrument the sample clock (a sample clock is required by the
instrumentor).

5. Configure the IICE and instrument the design.

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
40 January 2018

The instrumented design is then synthesized, placed and routed, and
programmed into the FPGA. The debugger samples the data and generates
the fast signal database (FSDB) which is then displayed in the Verdi nWave
viewer. For more information on the fast signal database and using the Verdi
nWave viewer, see Generating the Fast Signal Database, on page 50 in the
Debugger User Guide.

Instrumenting Signals Directly in the idc File
In addition to the methods described in the previous sections, signals can be
instrumented directly within the HDL Analyst (SRS file) outside of the
instrumentor. This methodology facilitates updates to a previous instrumen-
tation and also allows signals within a parameterized module, which were
previously unavailable for instrumentation, to be successfully instrumented.
This technique is referred to as “post-compile instrumentation.” To instru-
ment a signal using this technique:

1. Save the instrumented design in the synthesis tool to create the IDC file.

2. Open the RTL view (SRS file) by clicking the SRS instrumentation view icon.

3. In the schematic view, highlight the net of the signal to be instrumented.

4. With the net highlighted, click the right mouse button, select Instrumentor
from the popup menu, and select the type of instrumentation to be
applied.

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 41

.

When selected, the instrumentation is automatically applied to the open
instrumentor view.

5. Save the updated instrumentation and rerun compilation.

When you open the debugger, an SRS entry is included in the hierarchy
browser; selecting this entry displays the additional signal or signals added to
the instrumentation. Selecting a signal in the instrumentation window brings
up the Watchpoint Setup dialog box to allow a trigger expression to be assigned
to the defined signal.

Note that trigger expressions on signals added to the instrumentation must
use the VHDL style format.

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
42 January 2018

Selecting Breakpoints
Breakpoints are used to trigger data sampling. Only the breakpoints
that are instrumented in the instrumentor can be enabled as triggers
in the debugger. To instrument a breakpoint in the instrumentor,

simply click on the circular icon to the left of the line number. The color of the
icon changes to green when enabled.

Once a breakpoint is instrumented, the instrumentor creates trigger logic
that becomes active when the code region in which the breakpoint resides is
active.

In the above example, the code region of the instrumented breakpoint is
active if the variable current_state is state zero (s_ZERO) and the signal clr is not
‘0’ when the clock event occurs.

Selecting Breakpoints Residing in Folded Hierarchy
If a design contains entities or modules that are instantiated more than once,
the design is termed to have folded hierarchy. By definition, there will be
more than one instance of every breakpoint in a folded entity or module. To
allow you to instrument a particular instance of a folded breakpoint, the
instrumentor automatically detects folded hierarchy and presents a choice of
all possible instances of each breakpoint.

Breakpoint on line 23 enabled

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 43

The choices are displayed in terms of an absolute breakpoint path name
originating at the top-level entity or module. The list of choices for a
particular breakpoint is accessed by clicking on the breakpoint icon to the left
of the line number.

The example below consists of a top-level entity called top and two instances
of the repeated_unit entity. The source code of repeated_unit is displayed; the list
of instances of the breakpoint on line 100 is displayed by clicking on the
breakpoint icon next to the line number. As shown in the following figure,
three instances of the breakpoint are available for sampling.

Any or all of these breakpoints can be selected by clicking the
corresponding line entry in the list displayed.

The color of the breakpoint icon is determined as follows:

• If no instances of the breakpoint are selected, the icon is clear in color.

• If some, but not all, instances of the breakpoint are selected, the icon is
yellow.

• If all instances are selected, the icon is green.

Alternatively, any of the instances of a folded breakpoint can be selected or
deselected at the instrumentor console window prompt by using the absolute
path name of the instance. For example,

breakpoints add
/rtl/inst0/rtl/process_18/if_20/if_23/repeated_unit.vhd:24

Folded breakpoint on line 100 selected

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
44 January 2018

See the Reference Manual for more information.

The lines in the list of breakpoint instances act to toggle the selection of an
instance of the breakpoint. To disable an instance of a breakpoint that has
been previously selected, simply select the appropriate line in the list box.

Configuring the IICE
If the IICE configuration parameters for the active IICE need to be
changed, use the Edit IICE icon to change them. Chapter 2, IICE
Configuration, discusses how to set these parameters for both single-
and multi-IICE configurations, and Chapter 4, HAPS Deep Trace

Debug describes setting the parameters for the HAPS deep trace debug
feature.

Real-time Debugging
Real-time debugging is a feature that provides scope or logic analyzer access
to instrumented signals directly through a Mictor board interface connector
installed on the HAPS board.

Enabling the Real-time Debugging Feature
To use the real-time debugging feature, a special IICE is defined in either the
user interface or by command entry in the TCL Script shell.

To specify the IICE from the user interface, click the Add IICE icon to display
the following dialog box. Select the RTD radio button and click OK.

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 45

To define the IICE from the TCL Script shell, enter the iice new command:

iice new [iiceID] -type rtd

In the command syntax, iiceID is the name of the new IICE and, if omitted,
defaults to an incremental number (for example, IICE_0).

Either of the above methods creates a new, real-time IICE for the design with
all of the signals “not instrumented.”

Before you can instrument any of the signals, you must configure the Edit IICE
tab as outlined in the next section.

Edit IICE Settings Tab
The Edit IICE Settings tab for the real-time debugging feature includes a
drop-down menu for selecting the Mictor daughter card locations. A
HapsTrak 3-to-HapsTrak II adapter is required.

On the Edit IICE Settings tab:

1. Specify the HapsTrak® 3 connector locations for the Mictor board by
clicking on the connector set.

2. When finished with the above entries, click the OK button at the bottom
of the tab.

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
46 January 2018

Instrumenting the Real-Time Debug Signals
Instrumenting signals for real-time debugging is similar to normal
instrumentation in that signal watchpoints and breakpoints are identified
and activated in the instrumentation window. The exception is that the only
watchpoint selection available from the popup menu for real-time debugging
signals is Sample only.

Viewing the Signal Assignments
Watchpointed signals are automatically assigned to the specified
Mictor daughter board pin locations. These assignments are listed in
the Change RTD Pin Mappings dialog box. To display the dialog box,
click the Edit RTD IICE mappings icon in the top menu bar.

Individual assignments can be changed by:

1. Highlighting the assignment in the left panel (use the Up or Down arrows
if necessary).

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 47

2. Select the new Mictor pin in the right panel (use the vertical scroll bar if
necessary).

3. Click the arrow located between the panels.

Logic Analyzer Interface
The logic analyzer interface at the Mictor connector is configured in the
debugger (see Logic Analyzer Interface Parameters, on page 51 in the
Debugger User Guide).

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
48 January 2018

Writing the Instrumented Design
To create the instrumented design, you must first complete the following
steps:

1. Specify IICE parameters/HAPS settings

2. Select signals to sample

3. Select breakpoints to instrument

4. Optionally include the original HDL source

To include the original HDL source with the exported design files, open the
Instrumentor Preferences dialog box and enable the Save original source in
instrumentation directory check box. If the original source is to be encrypted,
additionally check the Use encryption check box.

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 49

Finally, select File->Save All from the main synthesis tool menu to capture your
instrumentation. Saving a project’s instrumentation generates an
instrumentation design constraints (idc) file and adds compiler pragmas in the
form of constraint files to the design RTL for the instrumented signals and
break points. This information is then used by the synthesis tool to
incorporate the instrumentation logic (IICE and COMM blocks) into the
synthesized netlist. If you are including an encrypted HDL source (Use
encryption box checked), you are first prompted to supply a password for the
encryption.

Including Original HDL Source
Including the original HDL source with the instrumented project simplifies
design transfer when instrumentation and debugging are performed on
separate machines and is especially useful when a design is being debugged
on a system that does not have access to the original sources.

To include the original HDL source, select the Save original source in instrumenta-
tion directory check box in the Instrumentor Preferences dialog box (select Instru-
mentor->Instrumentor Preferences from the main menu to display the dialog box)
before you save and instrument your project.

When the Use encryption check box is additionally selected, the original sources
are encrypted when they are written. The encryption is based on a password
that is requested when you write out the instrumented project. Encryption
allows you to debug on a machine that you feel would not be sufficiently
secure to store your sources. After you export the files to the unsecure
machine, you are prompted to reenter the encryption password when you
open the design in the debugger. The decrypted files are never written to the
unsecure machine’s hard disk.

For maximum security when selecting an encryption password:

• use spaces to create phrases of four or more words (multiple words
defeat dictionary-type matching)

• include numbers, punctuation marks, and spaces

• make passwords greater than 16 characters in length

Note: Passwords are the user’s responsibility; Synopsys cannot recover
a lost or forgotten password.

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
50 January 2018

Synthesizing Instrumented Designs
When you save your instrumentation, the synthesis tool creates the set of
files and subdirectories required by the debugger. These files and subdirecto-
ries are then exported from the database to an external directory location.
This location can be local to your system (when running the debugger on the
same machine) or the exported directory can be copied to a remote system
using tar or file transfer protocol (FTP).

Listing Signals
The instrumentor includes a set of menu commands and, in most cases,
icons for listing watchpoint and breakpoint conditions.

List Instrumented Signals
To view all of the signals currently instrumented in the entire design,
select Instrumentor->Instrumentor Search from the top menu bar to
display the Instrumentor Search dialog box and then click the Search for

instrumented signals icon in the Quick Search area in the upper left corner. The
result of listing the signals is displayed in the Instrument Search dialog box.

List Signals Available for Instrumentation
To see only the signals in the design available for instrumentation,
click the Search non-instrumented signals icon.

List Instrumented Breakpoints
To list all of the breakpoints that have been instrumented, click the
Search instrumented breakpoints icon.

List Breakpoints Available for Instrumentation
To list all of the breakpoints that are available for instrumentation,
click the Search non-instrumented breakpoints icon.

Commands and Procedures Chapter 3: Using the Instrumentor

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 51

Searching for Design Objects
The Search panel is a general utility to search for signals, breakpoints, and/or
instances. The panel includes an area for specifying the objects to find and an
area for displaying the results of the search.

The search criteria in the upper section of the panel includes these options:

• Quick icons – presets the conditions for instrumented or
non-instrumented watchpoints or breakpoints (see Listing Signals, on
page 50).

• Status: – specifies the status of the object to be found from the drop-down
menu. The values can be instrumented, sample trigger, sample_only,
trigger_only, not-instrumented, or “*” (any). The default is “*” (any).

• Object: – specifies the type of object to search for from the drop-down
menu: breakpoint, signal, instance, or “*” (any). The default is “*” (any).

• Name: – specifies a name, or partial name to search for in the design.
Wild cards are allowed in the name. The default is “*” (any).

• Root: – specifies the location in the design hierarchy to begin the recur-
sive search. Root (“/”) is the default setting.

• Depth: – specifies the depth of the sample buffer to be searched.

LO

Chapter 3: Using the Instrumentor Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
52 January 2018

• Results increment: – adds results increment items to the displayed list.
Click the View more search results button to the right of the search button
to list more results.

• Sync Root: – When checked, synchronizes the root of the search path to the
currently selected root in the hierarchy browser on the right.

The search results in the lower section of the panel show each object found
along with its hierarchical location. In addition, for breakpoints and signals,
the results section includes the corresponding icon (watchpoint or break-
point) that indicates the instrumentation status of the qualified signal or
breakpoint.

The results area at the bottom of the Search panel is interactive. To change
the instrumentation status of a signal, click directly on the watchpoint icon
and select the instrumentation type from the popup menu. You can use the
Ctrl and Shift keys to select multiple signals and then apply the change to all of
the selected signals. To toggle the instrumentation status of a breakpoint,
click the breakpoint icon. You also can use the Ctrl and Shift keys to select
multiple breakpoints and then apply the change to all selected breakpoints
from the popup menu.

Capturing Commands from the Tcl Script Window
To capture all text written to the console window, use the log console
command (see the Reference Manual). To capture all commands executed in
the console window use the transcript command (see the Reference Manual). To
clear the text from the console window, use the clear command.

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 53

C H A P T E R 4

HAPS Deep Trace Debug

The HAPS Deep Trace Debug feature is available to HAPS system users with
Synopsys HAPS-60 series prototyping boards and using HAPS
SRAM_1x1_HTII daughter boards.

Using external memory for the sample buffer provides a significantly deeper,
signal-trace buffer.

With the HAPS Deep Trace Debug mode, the Synplify/Identify flow remains
unchanged. The only difference is in the configuration of a HAPS memory as
the external sample buffer using IICE parameters.

The HAPS deep-trace debug feature is described in the following sections:

• External Memory Instrumentation and Configuration, on page 54

• DTD Tab, on page 55

• Running Deep Trace Debug with SRAM Memory, on page 57

LO

Chapter 4: HAPS Deep Trace Debug External Memory Instrumentation and Configuration

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
54 January 2018

External Memory Instrumentation and
Configuration

With the HAPS Deep Trace Debug mode, the flow remains unchanged. The
only difference is in the configuration of the additional memory as the sample
buffer using IICE parameters.

The deep trace debug feature is enabled in the instrumentor from the IICE
Sampler tab by setting the Buffer type to hapsram from the drop-down menu.

Selecting hapsram enables the DTD tab.

Note: Sample depth can only be set from the instrumentor and cannot
be changed from within the debugger.

DTD Tab Chapter 4: HAPS Deep Trace Debug

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 55

DTD Tab
The DTD tab is enabled when the Buffer type parameter on the IICE Sampler tab
is set to hapsram and the target HAPS board system is a HAPS-60 (when the
technology in the synthesis tool is set to Synopsys HAPS-60).

The individual parameters on the tab are defined in the following table. The
parameters can also be set directly from the TCL Script window using the iice
sampler command (see Instrumentor iice sampler Options, on page 56 in the
Reference Manual for complete syntax).

LO

Chapter 4: HAPS Deep Trace Debug DTD Tab

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
56 January 2018

Parameter Description

Board The Board parameter is determined by the HAPS board
configuration being used by the synthesis tool and cannot be
changed within the instrumentor.

Memory locations Specifies the HapsTrak connector location where the daughter
board or boards are installed. Connector selection where the
daughter boards are physically connected is done by selecting
one or more HapsTrak locations 1 through 6 of the daughter
boards for the FPGA under debug.

Memory module
type

The HapsTrak daughter board type is selected using this
drop-down option (the only selection is SRAM_1x1_HTII).

SRAM stack Sets the stack depth for the external SRAM memory to allow card
stacking. The depth of SRAM on each daughter card is 4M
locations of 72-bit words for HTII SRAM boards. To increase the
external SRAM memory depth beyond 4M x 72, the daughter
boards can be stacked. For the HTII type SRAM, 1, 2, or 4
daughter cards can be stacked for the selected SRAM location.
The stack number specified applies to all connector locations
specified by SRAM locations.

SRAM clock The clock to the SRAM daughter board can originate from the
clock used within the design (Internal) or from an external clock
source present on the HAPS board (see SRAM Clocks, on
page 58).

SRAM clock
frequency

Specifies the frequency of the clock source to the SRAM. The
supported SRAM operating frequency ranges for various HAPS
board and SRAM board stacks using the FPGA internal PLL
output as the SRAM clock are listed in SRAM Clocks, on
page 58.

Running Deep Trace Debug with SRAM Memory Chapter 4: HAPS Deep Trace Debug

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 57

Running Deep Trace Debug with SRAM
Memory

To configure the SRAM for deep trace debug:

1. In the synthesis software, compile the design, highlight the
implementation, and select New Identify Implementation from the drop-down
menu.

2. Highlight the Identify implementation and select Launch Instrumentor from
the drop-down menu.

3. In the instrumentor, complete the instrumentation of the design and
click the Edit IICE icon (); the IICE Sampler tab opens by default.

4. Set the Buffer type to hapsram and make sure that the sample depth is set
to the intended depth (once set in the instrumentor, the sample depth
setting cannot be changed in the debugger).

5. Select the DTD tab and set the following parameters:

– Memory locations – select the HapsTrak connector location where the
daughter card is physically installed (locations 1 through 6).

– SRAM stack – specify the number of SRAM daughter cards stacked at
the connector location.

– Memory module type – specify the board type from the drop-down menu
(the only type available is SRAM_1x1_HTII).

– SRAM clock – select either Internal or External. If Internal is selected, enter
the name of the internal clock in the adjacent field. For more
information on clocks, see SRAM Clocks, on page 58.

– SRAM clock frequency – specify the SRAM clock frequency. For better
performance, it is recommended that you use FPGA internal PLL
output as the source of the SRAM clock.

6. Save the IICE settings and save the instrumented design. You can close
the instrumentor.

7. Run synthesis on the instrumented design, run place and route, and
generate the bit file. If you intend to debug the design on a different
system, copy the required files to the target host (see Debugging on a
Different Machine, on page 43 in the Debugger User Guide).

LO

Chapter 4: HAPS Deep Trace Debug Running Deep Trace Debug with SRAM Memory

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
58 January 2018

When you debug the design later, the tool automatically calculates the
sample depth and source clock based on the configuration settings you
supplied. The configured sample depth can be varied dynamically from the
minimum depth to the maximum configured depth.

SRAM Clocks
When the clock source is internal to the design, any clock signal within the
design at any hierarchy level can be instrumented as the SRAM clock. When
the clock source is external, specify a suitable pin-lock constraint in the
synthesis constraint file for the deepbuf_sclk_iiceName_p and deepbuf_sclk_iice-
Name_n ports (these ports are created automatically in the instrumented
design). Provide the external clock source to this FPGA port.

Because of performance considerations, users are recommended to use FPGA
internal PLL output as the source of the SRAM clock. The supported SRAM
operating frequency ranges for SRAM_1x1_HTII daughter card stacks using the
internal PLL output as the SRAM clock are:

Sample Depth Calculation
For a given, user-defined SRAM configuration setting, the maximum allowed
depth can be calculated based on the formula described below.

• Number of HapsTrak slots used: Nslot

• Number of SRAM cards stacked: NSRAM

• Number of 72-bit words per SRAM card: Nword

(4194304 for HapsTrak II)

• Number of signals to be sampled (instrumented): Nsignal

1 SRAM stack 96 to 155 MHz

2 SRAM card stack 92 to 116 MHz

3 SRAM card stack Not Supported

4 SRAM card stack 80to 110 MHz

Running Deep Trace Debug with SRAM Memory Chapter 4: HAPS Deep Trace Debug

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 59

For example, if Nslot = 1, NSRAM =1, Nword = 4M (4194304) and Nsignal = 1900,
the maximum sampling depth for K samples for the SRAM board is 198K.

Sample Clock Calculation
For a given set of user-defined external memory configuration settings, the
sample clock frequency can estimated using the formula described below.

In the above expressions:

• Number of HapsTrak slots used: Nslot

• Number of signals to be sampled (instrumented): Nsignal

• SRAM bus frequency: fSRAM

For example, if fSRAM = 100MHz, Nslot= 1, and Nsignal= 1900, the maximum
sampling frequency is 3.44MHz.








 +
≤

slot

signal

SRAMword
sample

N
N

NNK

72
6

HapsTrak II

2
72

6
+







 +
≤

slot

signal

SRAM
sampling

N
N

ff

HapsTrak II

LO

Chapter 4: HAPS Deep Trace Debug Running Deep Trace Debug with SRAM Memory

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
60 January 2018

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 61

C H A P T E R 5

Support for Instrumenting HDL

The debug environment fully supports the synthesizable subset of both
Verilog and VHDL design languages. Designs that contain a mixture of VHDL
and Verilog can be debugged – the software reads in your design files in either
language.

There are some limitations on which parts of a design can be instrumented
by the instrumentor. However, in all cases you can always instrument all
other parts of your design.

The instrumentation limitations are usually related to language features.
These limitations are described in this chapter.

• VHDL Instrumentation Limitations, on page 62

• Verilog Instrumentation Limitations, on page 64

• SystemVerilog Instrumentation Limitations, on page 67

LO

Chapter 5: Support for Instrumenting HDL VHDL Instrumentation Limitations

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
62 January 2018

VHDL Instrumentation Limitations
The synthesizable subsets of VHDL IIEEE 1076-1993 and IEEE 1076-1987
are supported in the current release of the debugger.

Design Hierarchy
Entities that are instantiated more than once are supported for instrumenta-
tion with the exception that signals that have type characteristics specified by
unique generic parameters cannot be instrumented.

Subprograms
Subprograms such as VHDL procedures and functions cannot be instru-
mented. Signals and breakpoints within these specific subprograms cannot
be selected for instrumentation.

Loops
Breakpoints within loops cannot be instrumented.

Generics
VHDL generic parameters are fully supported as long as the generic
parameter values for the entire design are identical during both instrumenta-
tion and synthesis.

Transient Variables
Transient variables defined locally in VHDL processes cannot be
instrumented.

Scalar Signal Syntax
The values of scalar signals of type std_logic must be enclosed in single quotes
in both the GUI and the shell as shown in the following command:

watch enable -iice IICE -condition 0 /my_signal {'0'}

VHDL Instrumentation Limitations Chapter 5: Support for Instrumenting HDL

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 63

Entering a scalar signal either without quotes or in double quotes results in
an error. Conversely, a vector signal must be entered without quotes as
shown in the following command:

watch enable -iice IICE -condition 0 /my_bus {1010}

Breakpoints and Flip-flop Inferencing
Breakpoints inside flip-flop inferring processes can only be instrumented if
they follow the coding styles outlined below:

For flip-flops with asynchronous reset:

process(clk, reset, ...) begin
if reset = '0' then

reset_statements;
elsif clk’event and clk = '1' then

synchronous_assignments;
end if;

end process;

For flip-flops with synchronous reset or without reset:

process(clk, ...) begin
if clk’event and clk = '1' then

synchronous_assignments;
end if;

end process;

Or:

process begin
wait until clk’event and clk = '1'

synchronous_assignments;
end process;

The reset polarity and clock-edge specifications above are only exemplary.
The debug software has no restrictions with respect to the polarity of reset
and clock. A coding style that uses wait statements must have only one wait
statement and it must be at the top of the process.

Using any other coding style for flip-flop inferring processes will have the
effect that no breakpoints can be instrumented inside the corresponding
process. During design compilation, the instrumentor issues a warning when
the code cannot be instrumented.

LO

Chapter 5: Support for Instrumenting HDL Verilog Instrumentation Limitations

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
64 January 2018

Verilog Instrumentation Limitations
The synthesizable subsets of Verilog HDL IEEE 1364-1995 and 1364-2001
are supported.

Subprograms
Subprograms such as Verilog functions and tasks cannot be instrumented.
Signals and breakpoints within these specific subprograms cannot be
selected for instrumentation.

Loops
Breakpoints within loops cannot be instrumented.

Parameters
Verilog HDL parameters are fully supported. However, the values of all the
parameters throughout the entire design must be identical during
instrumentation and synthesis.

Locally Declared Registers
Registers declared locally inside a named begin block cannot be instrumented
and will not be offered for instrumentation. Only registers declared in the
module scope and wires can be instrumented.

Verilog Include Files
There are no limitations on the instrumentation of 'include files that are refer-
enced only once. When an 'include file is referenced multiple times as shown in
the following example, the following limitations apply:

• If the keyword module or endmodule, or if the closing ‘)’ of the module port
list is located inside a multiply-included file, no constructs inside the
corresponding module or its submodules can be instrumented.

• If significant portions of the body of an always block are located inside a
multiply-included file, no breakpoints inside the corresponding always
block can be instrumented.

Verilog Instrumentation Limitations Chapter 5: Support for Instrumenting HDL

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 65

If either situation is detected during design compilation, the instrumentor
issues an appropriate warning message.

As an example, consider the following three files:

adder.v File
module adder (cout, sum, a, b, cin);
parameter size = 1;
output cout;
output [size-1:0] sum;
input cin;
input [size-1:0] a, b;
assign {cout, sum} = a + b + cin;
endmodule

adder8.v File
`include "adder.v"
module adder8 (cout, sum, a, b, cin);
output cout;
parameter my_size = 8;
output [my_size - 1: 0] sum;
input [my_size - 1: 0] a, b;
input cin;
adder #(my_size) my_adder (cout, sum, a, b, cin);
endmodule

adder16.v File
`include "adder.v"
module adder16 (cout, sum, a, b, cin);
output cout;
parameter my_size = 16;
output [my_size - 1: 0] sum;
input [my_size - 1: 0] a, b;
input cin;
adder #(my_size) my_adder (cout, sum, a, b, cin);
endmodule

There is a workaround for this problem. Make a copy of the include file and
change one particular include statement to refer to the copy. Signals and
breakpoints that originate from the copied include file can now be
instrumented.

LO

Chapter 5: Support for Instrumenting HDL Verilog Instrumentation Limitations

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
66 January 2018

Macro Definitions
The code inside macro definitions cannot be instrumented. If a macro defini-
tion contains important parts of some instrumentable code, that code also
cannot be instrumented. For example, if a macro definition includes the case
keyword and the controlling expression of a case statement, the case
statement cannot be instrumented.

Always Blocks
Breakpoints inside a synchronous flip-flop inferring an always block can only
be instrumented if the always block follows the coding styles outlined below:

For flip-flops with asynchronous reset:

always @(posedge clk or negedge reset) begin
if(!reset) begin

reset_statements;
end

else begin
synchronous_assignments;

end;
end;

For flip-flops with synchronous reset or without reset:

always @(posedge clk) begin
synchronous_assignments;

end process;

The reset polarity and clock-edge specifications and the use of begin blocks
above are only exemplary. The instrumentor has no restrictions with respect
to these other than required by the language.

For other coding styles, the instrumentor issues a warning that the code is
not instrumentable.

SystemVerilog Instrumentation Limitations Chapter 5: Support for Instrumenting HDL

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 67

SystemVerilog Instrumentation Limitations
The synthesizable subsets of Verilog HDL IEEE 1364-2005 (SystemVerilog)
are supported with the following exceptions.

Typedefs
You can create your own names for type definitions that you use frequently in
your code. SystemVerilog adds the ability to define new net and variable
user-defined names for existing types using the typedef keyword. Only typedefs
of supported types are supported.

Struct Construct
A structure data type represents collections of data types. These data types
can be either standard data types (such as int, logic, or bit) or, they can be
user-defined types (using SystemVerilog typedef). Signals of type structure can
only be sampled and cannot be used for triggering; individual elements of a
structure cannot be instrumented, and it is only possible to instrument
(sample only) an entire structure. The following code segment illustrates
these limitations:

In the above code segment, port signal sig_oport_P_Struc_data is a packed
structure consisting of two elements (up_nibble and lo_nibble) which are of a
user-defined datatype. As elements of a structure, these elements cannot be
instrumented. The signal sig_oport_P_Struc_data can be instrumented for
sampling, but cannot be used for triggering (setting a watch point on the
signal is not allowed). If this signal is instrumented for sample and trigger,
the instrumentor allows only sampling and ignores triggering.

module lddt_P_Struc_top (
 input sig_clk, sig_rst,
 .
 .
 .
 output struct packed {
 logic_nibble up_nibble;
 logic_nibble lo_nibble;
 } sig_oport_P_Struc_data
);

Cannot be instrumented
(no sampling and

no triggering)

Instrumentable only for
sampling; no triggering

LO

Chapter 5: Support for Instrumenting HDL SystemVerilog Instrumentation Limitations

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
68 January 2018

Union Construct
A union is a collection of different data types similar to a structure with the
exception that members of the union share the same memory location.
Trigger-expression settings for unions are either in the form of serialized bit
vectors or hex/integers with the trigger bit width representing the maximum
available bit width among all the union members. Trigger expressions using
enum are not possible.

The example below shows an acceptable sample code segment for a packed
union; the trigger expression for union d1 can be defined as:

typedef union packed {
shortint u1;
logic signed [2:1][1:2][4:1] u2;

struct packed {
bit signed [1:2][1:2][2:1] st1;
struct packed {

byte unsigned st2;
} u3_int;

} u3;
logic [1:2][0:7] u4;
bit [1:16] u5;

} union_dt;

module top (
input logic clk,
input logic rst,
input union_dt d1,
output union_dt q1,
...

The maximum bit width of all elements is 16 which requires a serialized
16-bit vector to define the trigger. For example, to set st1 (2x2x2x1bit):

st1[1][1][2]=0
st1[1][1][1]=0
st1[1][2][2]=1
st1[1][2][1]=1
st1[2][1][2]=0
st1[2][1][1]=1
st1[2][2][2]=1
st1[2][2][1]=0

Similarly, to set st2:

(unsigned int) 200 = (bin) 11001000

SystemVerilog Instrumentation Limitations Chapter 5: Support for Instrumenting HDL

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 69

The trigger expression is defined as:

16b' 00110110 11001000
| st1 | st2 |

Arrays
Partial instrumentation of multi-dimensional arrays and multi-dimensional
arrays of struct and unions are not permitted.

Interface
Interface and interface items are not supported for instrumentation and
cannot be used for sampling or triggering. The following code segment
illustrates this limitation:

interface ff_if (input logic clk, input logic rst,
 input logic din, output logic dout);
modport write (input clk, input rst, input din, output dout);
endinterface: ff_if

module top (input logic clk, input logic rst,
 input logic din, output logic dout) ;

 ff_if ff_if_top(.clk(clk), .rst(rst), .*);
 sff UUT (.ff_if_0(ff_if_top.write));
endmodule

In the above code segment, the interface instantiation of interface ff_if is
ff_if_top which cannot be instrumented. Similarly, interface item modport write
cannot be instrumented.

Port Connections for Interfaces and Variables
Instrumentation of named port connections on instantiations to implicitly
instantiate ports is not supported.

Packages
Packages permit the sharing of language-defined data types, typedef
user-defined types, parameters, constants, function definitions, and task
definitions among one or more compilation units, modules, or interfaces.
Instrumentation within a package is not supported.

LO

Chapter 5: Support for Instrumenting HDL SystemVerilog Instrumentation Limitations

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
70 January 2018

Concatenation Syntax
The concatenation syntax on an array watchpoint signal is not accepted by
the debugger. To illustrate, consider a signal declared as:

bit [3:0] sig_bit_type;

To set a watchpoint on this signal, the accepted syntax in the debugger is:

watch enable –iice IICE {/sig_bit_type} {4’b1001}

The 4-bit vector cannot be divided into smaller vectors and concatenated (as
accepted in SystemVerilog). For example, the below syntax is not accepted:

watch enable –iice IICE {/sig_bit_type} {{2’b10,2’b01}}

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 1

Index

A
always-armed triggering 18

B
black boxes 26
breakpoint icon

color coding 43
breakpoints

in folded hierarchy 42
instance selection 43
listing available 50
listing instrumented 50
selecting 42

buffers
instrumenting restrictions 32

buses
instrumenting partial 32

C
clocks

edge selection 20
sample 19

complex triggering 20
Configure IICE dialog box 10, 16

IICE Controller tab 20, 22
IICE Sampler tab 17

console window operations 52

D
designs

writing instrumented 48
dialog boxes

Configure IICE 10, 16
directories

instrumentation 50

E
encrypting source files 49
essential signal database 39

F
files

encrypting source 49
idc 40
IICE core 50
project 8

folded hierarchy 37

H
hardware

skew-free 14
HDL source

including in project 49
hierarchy

folded 37
hierarchy browser

popup menu 26
hierarchy browser window 25

I
idc file

editing 40
IICE

configuration 9
IICE Controller tab 20, 22
IICE parameters

buffer type 17
common 11
individual 10, 16
JTAG port 13

IICE Sampler tab 17
IICE settings

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
2 January 2018

sample clock 19
sample depth 17

instrumentation
partial records 35

instrumentation directory 50
instrumenting partial buses 32

J
JTAG port

IICE parameter 13

L
limitations

Verilog instrumentation 64, 67
VHDL instrumentation 62

M
mixed language considerations 61
multi-IICE

tabs 10, 16
multiplexed groups

assigning 36

O
original source

including 49

P
parameterized modules

instrumenting 40
parameters

IICE 9
IICE common 11

partial buses
instrumenting 32

passwords
encryption/decryption 49

project files 8
projects

instrumenting 7

Q
qualified sampling 17

R
RAM resources 17
records

partially instrumented 35
restrictions

instrumenting buffers 32

S
sample clock 19
sample clock calculation

SRAM 59
sampling

in folded hierarchy 37
qualified 17

sampling
signals 30, 31, 38, 42, 44, 46, 48, 50

settings
sample clock 19
sample depth 17

signals
disabling sampling 32
exporting trigger 22
instance selection 38
listing available 50
listing instrumented 50
sampling

selection 30, 31, 38, 42, 44, 46, 48, 50
simple triggering 20
skew-free hardware 14
source files

encrypting 49
SRAM clocks 58
state-machine triggering 21
synthesizing designs 50

T
trigger signal

exporting 22
triggering

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 3

always-armed 18
complex 20
simple 20
state machine 21

V
Verdi platform 39
Verilog

instrumentation limitations 64, 67
VHDL

instrumentation limitations 62

W
watch icon

color coding 38
windows

hierarchy browser 25

LO

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 4

	Identify Microsemi Edition Instrumentor User Guide
	Contents

	Design Setup
	Instrumenting and Saving a Design

	IICE Configuration
	Multiple IICE Units
	Common IICE Parameters
	Individual IICE Parameters
	IICE Sampler Tab
	IICE Clock Tab
	IICE Controller Tab
	IICE Options Tab
	RTD Tab

	Using the Instrumentor
	Instrumentor Windows and Views
	Control Panel
	Search Panel
	Hierarchy Browser
	RTL Tab
	Instrumentation Tab

	Commands and Procedures
	Opening Designs
	Selecting Signals for Data Sampling
	Instrumenting Buses
	Partial Instrumentation
	Multiplexed Groups
	Sampling Signals in a Folded Hierarchy
	Instrumenting the Verdi Signal Database
	Instrumenting Signals Directly in the idc File
	Selecting Breakpoints
	Selecting Breakpoints Residing in Folded Hierarchy
	Configuring the IICE
	Real-time Debugging
	Writing the Instrumented Design
	Synthesizing Instrumented Designs
	Listing Signals
	Searching for Design Objects
	Capturing Commands from the Tcl Script Window

	HAPS Deep Trace Debug
	External Memory Instrumentation and Configuration
	DTD Tab
	Running Deep Trace Debug with SRAM Memory
	SRAM Clocks
	Sample Depth Calculation
	Sample Clock Calculation

	Support for Instrumenting HDL
	VHDL Instrumentation Limitations
	Verilog Instrumentation Limitations
	SystemVerilog Instrumentation Limitations

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	V
	W

