
Synopsys
Identify® Microsemi Edition
Debugger User Guide

January 2018

https://solvnet.synopsys.com

LO

Preface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
2 January 2018

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Destination Control Statement
All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys,
as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective
owners.

http://www.synopsys.com/Company/Pages/Trademarks.aspx

Preface

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 3

Third-Party Links
Any links to third-party websites included in this document are for your
convenience only. Synopsys does not endorse and is not responsible for such
websites and their practices, including privacy practices, availability, and
content.

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043
www.synopsys.com

January 2018

LO

Preface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
4 January 2018

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 5

Contents

Chapter 1: Using the Debugger
Configuring and Invoking the Debugger . 8

Reviewing the Instrumentation Settings . 8
Changing the Communication Settings . 8
Reviewing the JTAG Chain Settings . 9
Saving the Debugged Design . 10
Invoking the Debugger . 10

Debugger Windows . 11
IICE Instrumentation Window . 12
Console Window . 14
Project Window . 15

Commands and Procedures . 16
Opening and Saving Projects . 16
Executing a Script File . 17
Activating/Deactivating an Instrumentation . 17
Selecting Multiplexed Instrumentation Sets . 21
Activating/Deactivating Folded Instrumentation . 22
Run Command . 25
Sampled Data Compression . 26
Sample Buffer Trigger Position . 28
Sampled Data Display Controls . 29
Saving and Loading Activations . 33
Cross Triggering . 35
Listing Watchpoints and Signals . 36

HAPS Deep Trace Debug . 39
Running Deep Trace Debug . 39
Viewing Captured Deep Trace Debug Samples . 40
Hardware Configuration Verification . 41

Debugging on a Different Machine . 43
Simultaneous Debugging . 44

LO

Contents

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
6 January 2018

Waveform Display . 48
Generating the Fast Signal Database . 50

Logic Analyzer Interface Parameters . 51
Logic Analyzer Scan Tab . 51
Logic Analyzer Properties Tab . 53
Logic Analyzer Submit Tab . 53
IICE Assignments Report Tab . 54

Chapter 2: IICE Hardware Description
JTAG Communication Block . 55

Breakpoint and Watchpoint Blocks . 56
Breakpoints . 56
Watchpoints . 57
Multiple Activated Breakpoints and Watchpoints . 57

Sampling Block . 58

Complex Counter . 59
Creating a Complex Counter . 59
Debugging with the Complex Counter . 60
Disabling the Counter . 62

State Machine Triggering . 63
Simple or Advanced Triggering . 63
Advanced Triggering Mode . 64
State-Machine Editor . 74
State-Machine Examples . 77

Chapter 3: Connecting to the Target System
Basic Communication Connection . 86

Debugger Communications Settings . 86
Debugger Configuration . 89

UMRBus Communications Interface . 98
UMRBus Communication Debugging . 98

JTAG Communication Interface . 101
JTAG Hardware in Instrumented Designs . 102
Adding Microsemi Soft JTAG TAP Controllers . 108
JTAG Communication Debugging . 109

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 7

C H A P T E R 1

Using the Debugger

Before a design can be debugged, the instrumentor is first used to define the
specific signals to be monitored and then to generate an instrumentation
design constraints (idc) file containing the instrumented signals and break
points. The design is synthesized and the device is programmed with the
debuggable design. The debugger is then launched to analyze the design
while it is running in the target system

The debugger enables HDL designs to be analyzed by interacting with the
instrumented HDL design implemented in the target hardware system. You
can activate breakpoints and watchpoints to cause trigger events within the
IICE™ on the target device. These triggers cause signal data to be captured in
the IICE. The data is then transferred to the debugger through a
communications port where it can be displayed in a variety of formats. This
chapter describes:

• Configuring and Invoking the Debugger, on page 8

• Debugger Windows, on page 11

• Commands and Procedures, on page 16

• HAPS Deep Trace Debug, on page 39

• Debugging on a Different Machine, on page 43

• Simultaneous Debugging, on page 44

• Waveform Display, on page 48

• Logic Analyzer Interface Parameters, on page 51

LO

Chapter 1: Using the Debugger Configuring and Invoking the Debugger

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
8 January 2018

Configuring and Invoking the Debugger
To configure a design for debugging, click the project tab to reopen the project
window (reopening the project window shows the instrumentation and
communication settings). Configuring and invoking the debugger is described
in the following sections:

• Reviewing the Instrumentation Settings, on page 8

• Changing the Communication Settings, on page 8

• Reviewing the JTAG Chain Settings, on page 9

• Saving the Debugged Design, on page 10

• Invoking the Debugger, on page 10

Reviewing the Instrumentation Settings
The instrumentation settings are displayed in the Instrumentation settings
section of the project window. Because these configuration settings are inher-
ited from the instrumentor and used to construct the IICE, you cannot
change these settings in the debugger.

Changing the Communication Settings
The cable type and port specification communication settings can be set or
changed from the project window.

There is a list of possible vendor cable-type settings available from the Cable
type drop-down menu. A umrbus setting is also available to setup UMRBus
communications between the host and the HAPS® board system (see
UMRBus Communications Interface, on page 98). Set Cable type value
according to the type of cable you are using to connect to the programmable
device.

Adjust the port setting based on the port where the communication cable is
connected. Most often, lpt1 is the correct setting for parallel ports.

Configuring and Invoking the Debugger Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 9

Reviewing the JTAG Chain Settings
The JTAG chain settings are viewed by clicking the Show chain button in the
Communication settings section of the project window. Normally, the JTAG chain
settings for the devices are automatically extracted from the design. When the
chain settings cannot be determined, they must be created and/or edited
using the chain command in the console window. The settings shown below
are for a 2-device chain that has JTAG identification register lengths of 8 and
10 bits. In addition, the device named “fpga” has been enabled for debugging.

“fpga” device enabled for debugging

LO

Chapter 1: Using the Debugger Configuring and Invoking the Debugger

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
10 January 2018

Saving the Debugged Design
Saving your design in the debugger saves the following additional information
to the project definition file:

• IICE settings

• Instrumentations and activations

To save your design definition in the debugger, click the Save current
activations icon or select File->Save activations from the menu.

Invoking the Debugger
Before you can open a design in the debugger, the design must have
been created with the instrumentor (only the instrumentor can
configure a design for debugging) and synthesized. The debugger can
be launched directly from a synthesis project or opened directly from

a Windows or Linux prompt. Invoking the debugger includes:

• Synthesis Tool Launch, on page 10

• Operating System Invocation, on page 10

Synthesis Tool Launch
From Synplify Pro, highlight the Identify implementation and select
Run->Launch Identify Debugger from the menu bar or popup menu, or click the
Launch Identify Debugger icon in the top menu bar.

The debugger IICE instrumentation window opens with the corresponding
project displayed (see IICE Instrumentation Window, on page 12).

Operating System Invocation
The debugger runs on both the Windows and Linux platforms. To explicitly
invoke the debugger from a Windows system, either:

• double click the Identify Debugger icon on the desktop

• run identify_debugger.exe from the /bin directory of the installation path

To explicitly invoke the debugger from a Linux system:

• run identify_debugger from the /bin directory of the installation path

Debugger Windows Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 11

The initial debugger project window opens. To display the instrumentation
window, do either of the following:

• Click the Open existing project icon in the menu bar and, in the Open Project
File dialog box, navigate to the project directory and open the
corresponding project (prj) file.

• Select File->Open project from the main menu and, in the Open Project File
dialog box, navigate to the project directory and open the corresponding
project (prj) file.

The debugger instrumentation (IICE) window opens with the corresponding
project displayed (see Project Window, on page 15).

Debugger Windows
The Graphical User Interface for the debugger has three major areas:

• IICE Instrumentation Window, on page 12

• Console Window, on page 14

• Project Window, on page 15

In this section, each of these areas and their uses are described. The
following discussions assume that:

• an HDL design has been loaded into the instrumentor and instrumented

• the design has been synthesized in the synthesis tool

• the synthesized output netlist has been placed and routed by the place
and route tool

• the resultant bit file has been used to program the FPGA with the
instrumented design

• the board containing the programmed FPGA is cabled to your host for
analysis by the debugger

LO

Chapter 1: Using the Debugger Debugger Windows

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
12 January 2018

IICE Instrumentation Window
The instrumentation window in the debugger, like the instrumentation
window in the instrumentor, includes a hierarchy browser on the left and the
source code display on the right.

Debugger Windows Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 13

Hierarchy Browser
The hierarchy browser on the left shows a graphical representation of the
design hierarchy. At the top of the browser is the ROOT node. The ROOT
node represents the top-level entity or module of your design. For VHDL
designs, the first level below the ROOT is the architecture of the top-level
entity. The level below the top-level architecture for VHDL designs, or below
the ROOT for Verilog designs, shows the entities or modules instantiated at
the top level.

Clicking on a + sign opens the entity/module instance so that the hierarchy
below that instance can be viewed. Lower levels of the browser represent
instantiations, case statements, if statements, functional operators, and other
statements.

Single clicking on any element in the hierarchy browser causes the associ-
ated HDL code to be displayed in the adjacent source code window.

Source Code Display
The source code display shows the HDL source code annotated with signals
and breakpoints that were previously instrumented in the instrumentor.

Note: Signals and breakpoints that were not enabled in the
instrumentor are not displayed in the debugger.

Signals that can be selected for setting watchpoints are underlined, colored in
blue text, and have small watchpoint (or “P”) icons next to them. Breakpoints
that can be activated have small green circular icons in the left margin to the
left of the line number.

LO

Chapter 1: Using the Debugger Debugger Windows

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
14 January 2018

Selecting the watchpoint or “P” icon next to a signal (or the signal itself)
allows you to select the Watchpoint Setup dialog box from the popup menu. This
dialog box is used to specify a watchpoint expression for the signal. See
Setting a Watchpoint Expression, on page 17.

Selecting the green breakpoint icon to the left of the source line number
causes that breakpoint to become armed when the run command is executed.
See Run Command, on page 25.

Console Window
The debugger console window displays commands that have been executed,
including those executed by menu selections and button clicks. The console
window also allows you to enter debugger commands and to view the results
of command execution.

Debugger Windows Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 15

To capture all the text written to the console, use the log console command
(see the Reference Manual). Alternately, you can click the right mouse button
inside the console window and select Save Console Output from the menu. To
capture all commands executed in the console window, use the transcript
command (see the Reference Manual).

To clear the text in the console window, use the clear command or click the
right mouse button inside the console window and select clear from the menu.

Project Window
An empty project window is displayed when you explicitly start up the
debugger. The window is replaced by the instrumentation window when the
synthesis project (prj) file is read into the debugger.

The project window is restored at any time by clicking its tab at the bottom of
the window.

The project window displays the symbolic view of the project on the left and a
Run button with a list of all of the available IICE units that can be debugged
on the right.

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
16 January 2018

Commands and Procedures
This section describes the typical operations performed in the debugger and
includes the following topics:

• Opening and Saving Projects, on page 16

• Executing a Script File, on page 17

• Activating/Deactivating an Instrumentation, on page 17

• Selecting Multiplexed Instrumentation Sets, on page 21

• Activating/Deactivating Folded Instrumentation, on page 22

• Run Command, on page 25

• Sampled Data Compression, on page 26

• Sample Buffer Trigger Position, on page 28

• Sampled Data Display Controls, on page 29

• Saving and Loading Activations, on page 33

• Cross Triggering, on page 35

• Listing Watchpoints and Signals, on page 36

Opening and Saving Projects
The debugger commands to open and save projects are available as menu
items and icons.

Function Menu Bar
Icon

Menu Command

Open existing project File->Open project

Save current
activations

File->Save activations

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 17

When opening a project:

• The working directory is automatically set from the corresponding
project file.

• If the project was saved with encrypted original sources, you are
prompted to enter the original password used to encrypt the files. This
password is then used to read any encrypted files.

Executing a Script File
A script file contains Tcl commands and is a convenient way to capture a
command sequence that you would like to repeat. To execute a script file,
select the File->Execute Script menu selection and navigate to your script file
location or use the source command (see source, on page 80 in the Reference
Manual).

Activating/Deactivating an Instrumentation
The trigger conditions used to control the sampling buffer comprise break-
points, watchpoints, and counter settings (see Chapter 2, IICE Hardware
Description). Activation and deactivation of breakpoints and watchpoints are
discussed in this chapter.

Setting a Watchpoint Expression
Any signal that has been instrumented for triggering can be activated as a
watchpoint in the debugger. A watchpoint is defined by assigning it one or
two HDL constant expressions. When a watched signal changes to the value
of its watchpoint expression, a trigger event occurs.

A watchpoint is set on a signal by clicking-and-holding on the signal
or the watchpoint icon next to the signal and then selecting the Set
Trigger Expressions menu item to bring up the Watchpoint Setup dialog
box.

A watchpoint is set on a partial bus signal by clicking-and-holding
on the signal or the “P” icon next to the signal, selecting the partial
bus group from the list displayed, and then selecting the Set Trigger
Expressions menu item to bring up the Watchpoint Setup dialog box.

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
18 January 2018

There are two forms of watchpoints: value and transition.

• A value watchpoint triggers when the watched signal attains a specific
value.

• A transition watchpoint triggers when the watched signal has a specific
value transition.

To create a value watchpoint, assign a single, constant expression to the
watchpoint. A value watchpoint triggers when the watched signal value
equals the expression. In the example below, the signal is a 4-bit signal, and
the watchpoint expression is set to “0010” (binary). Any legal VHDL or Verilog
(as appropriate) constant expression is accepted.

To create a transition watchpoint, assign two constant expressions to the
watchpoint. A transition watchpoint triggers when the watched signal value
is equal to the first expression during a clock period and the value is equal to
the second expression during the next clock period. In the example below, the
transition being defined is a transition from “0010” to “1011.”

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 19

The VHDL or Verilog expressions that are entered in the Watchpoint Setup
dialog box can also contain “X” values. The “X” values allow the value of some
bits of the watched signal to be ignored (effectively, “X” values are don’t-care
values). For example, the above value watchpoint expression can be specified
as “X010” which causes the watchpoint to trigger only on the values of the
three right-most bits.

Hexadecimal values can additionally be entered as watchpoint values using
the following syntax:

x"hexValue"

As shown, a hexadecimal value is introduced with an x character and the
value must be enclosed in quotation marks. Similarly, you can include a
hexadecimal entry in an equivalent Tcl command by literalizing the quote
marks with back slashes as shown in the following example:

watch enable -iice IICE -condition 0 /structural/reg_fout x\"aa\"

Clicking OK on the Watchpoint Setup dialog box activates the watchpoint (the
watchpoint or “P” icon changes to red) which is then armed in the hardware
the next time the Run button is pressed.

Deactivating a Watchpoint
By default, a watchpoint that does not have a watchpoint expression is
inactive. A watchpoint that has a watchpoint expression can be temporarily
deactivated. A deactivated watchpoint retains the expression entered, but is
not armed in the hardware and does not result in a trigger.

To deactivate a watchpoint, click-and-hold on the signal or the
associated watchpoint icon. The watchpoint popup menu appears.

To deactivate a partial-bus watchpoint, click-and-hold on the signal
or the associated “P” icon and select the bus segment from the list of
segments displayed. The watchpoint popup menu appears.

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
20 January 2018

The Watch menu selection will have a check mark to indicate that the watch-
point is activated. Click on the Watch menu selection to toggle the check mark
and deactivate the watchpoint.

Reactivating a Watchpoint
To reactivate an inactive watchpoint, click-and-hold on the signal or the
associated watchpoint or “P” icon. Clicking the watchpoint icon redisplays the
watchpoint popup menu: clicking the “P” icon, lists the partial bus segments;
select the bus segment from the list displayed to display the watchpoint
popup menu. Click the Watch menu selection to toggle the check mark and
reactivate the watchpoint.

Activating a Breakpoint
Instrumented breakpoints are shown in the debugger as green icons in the
left margin adjacent to the source-code line numbers. Green breakpoint icons
are inactive breakpoints, and red breakpoint icons are active breakpoints. To
activate a breakpoint, click the icon to toggle it from green to red.

To deactivate an active breakpoint, click the breakpoint icon to toggle it from
red to green.

Inactive breakpoint (green)

Active breakpoint (red)

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 21

Selecting Multiplexed Instrumentation Sets
Multiplexed groups of instrumented signals defined in the instrumentor can
be individually selected for activation in the debugger (for information on
defining a multiplexed group in the instrumentor, see Multiplexed Groups, on
page 36 in the Identify Instrumentor User Guide).

Using multiplexed groups can substantially reduce the amount of pattern
memory required during debugging when all of the originally instrumented
signals are not required to be loaded into memory at the same time.

To activate a predefined multiplexed group in the debugger:

1. Click the IICE icon in the top menu to display the Enhanced Settings for IICE
Unit dialog box.

2. Use the drop-down menu in the Mux Group section to select the group
number to be active for the debug session.

3. The signals group command can be used to assign groups from the
console window (see signals, on page 75 of the Reference Manual).

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
22 January 2018

Activating/Deactivating Folded Instrumentation
If your design contains entities or modules that are instantiated more than
once, the design is termed to have a “folded” hierarchy (folded hierarchies
also occur when multiple instances are created within a generate loop). By
definition, there will be more than one instance of every signal and
breakpoint in a folded entity or module. During instrumentation, it is
possible to instrument more than one instance of a signal or breakpoint.

When debugging an instrumented design with multiple instrumented
instances of a breakpoint or signal, the debugger allows you to
activate/deactivate each of these instrumented instances independently.
Independent selection is accomplished by displaying a list of the
instrumented instances when the breakpoint or signal is selected for
activation/deactivation.

Activating/Deactivating a Folded Watchpoint
The following example consists of a top-level entity called folded2 and two
instances of the repeated_unit entity. The source code of repeated_unit is
displayed. In this folded entity, multiple instances of the signal val and the
breakpoint at line 24 (not shown) are instrumented.

To activate/deactivate instances of the val signal, select the watchpoint icon
next to the signal. A list will pop up with the two instrumented instances of
the signal val available for activation/deactivation:

/rtl/cnt_inst0/val
/rtl/cnt_inst1/val

Either of these instances is activated/deactivated by clicking on the
appropriate line in the list box to bring up the watchpoint menu shown in the
following figure.

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 23

The color of the watchpoint icon is determined as follows:

• If no instances of the signal are activated, the watchpoint icon is green
in color.

• If some, but not all, instances of the signal are activated, the watchpoint
icon is yellow in color.

• If all instances are activated, the watchpoint icon is red in color.

For related information on folded hierarchies, see Sampling Signals in a
Folded Hierarchy, on page 37 in the Identify Instrumentor User Guide and
Displaying Data from Folded Signals, on page 31.

Activating/Deactivating a Folded Breakpoint
To activate/deactivate instances of the breakpoint on line 24, select the icon
next to line number 24. A list will pop up with the two instrumented
instances of the breakpoint available for activation/deactivation:

/rtl/inst0/rtl/process_18/if_20/if_23/repeated_unit.vhd:24
/rtl/inst1/rtl/process_18/if_20/if_23/repeated_unit.vhd:24

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
24 January 2018

Either of these instances can be activated/deactivated by clicking the
appropriate line in the list box.

The color of the breakpoint icon is determined as follows:

• If no instances of the breakpoint are activated, the breakpoint icon is
green.

• If some, but not all, instances of the breakpoint are activated, the break-
point icon is yellow.

• If all instances are activated, the breakpoint icon is red.

The list of instrumented instances

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 25

Run Command
The Run command sends watchpoint and breakpoint activations to the IICE,
waits for the trigger to occur, receives data back from the IICE when the
trigger occurs, and then displays the data in the source window.

To execute the Run command for the active IICE (or a single IICE),
select Debug->Run from the menu or click the Arm selected IICE(s) for
triggering icon. If data compression is to be used on the sample data,

see Sampled Data Compression, on page 26. To execute the Run command for
multiple IICE units, open the project window (click the project window tab),
enable the individual IICE units by checking their corresponding boxes, and
either click the large Run button or select Debug->Run from the menu.

After the Run command is executed, the sample of signal values at the trigger
position is annotated to the HDL code in the source code window. This data
can be displayed in a waveform viewer (see the debugger waveform command)
or written out to a file (see the debugger write vcd command).

Note: In a multi-IICE environment, you can edit and run other IICEs
while an IICE is running. The icons within the individual IICE
tabs indicate when an IICE is running (rotating arrow) and when
an IICE has new sample data (green check mark).

The following example shows a design with one breakpoint activated, the
breakpoint triggered, and the sample data displayed. The small green arrow
next to the activated breakpoint in the example indicates that this breakpoint
was the actual breakpoint that triggered. Note that the green arrow is only
present with simple triggering.

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
26 January 2018

Stop Command
The Stop command sends control back to the debugger after you have
armed the trigger, but before the trigger occurs. The Stop command
can be executed by selecting Debug->Stop from the menu or by clicking
the Stop debugging hardware icon.

Note: If you are running the IICE from the project window using the
Run button and IICE check boxes (multi-IICE mode), you can
stop a run by clicking the STOP icon adjacent to the check box.

Sampled Data Compression
A data compression mechanism is available to compress the sampled data to
effectively increase the depth of the sample buffer without requiring any
additional hardware resources. When enabled, data compression is applied to
the sampled data to temporarily remove any data that remains unchanged
between cycles (a sample is automatically taken after 64 unchanging cycles).

Activated and triggered breakpoint Sampled data (in yellow)

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 27

Data compression is enabled from the project view by clicking the IICE icon to
display the Enhanced Settings for IICE Unit dialog box and clicking the Enable
check box in the Data Compression section or from the command prompt by
entering the following command:

iice sampler -datacompression 1

Data compression must be set prior to executing the Run command and
applies to all enabled IICE units. Data compression is not available when
using state-machine triggering, or qualified or always-armed sampling.

Sample Data Masking
A masking option is available with data compression to selectively mask
individual bits or buses from being considered as changing values within the
sample data. This option is only available through the Tcl interface using the
following syntax:

iice sampler -enablemask 0 |1 [-msb integer -lsb integer] signalName

For example, the following command masks bits 0 through 3 of vector signal
mybus[7:0] from consideration by the data compression mechanism:

iice sampler -enablemask 1 -msb 3 -lsb 0 mybus

Similarly, to reinstate the masked signals in the above example, use the
command:

iice sampler -enablemask 0 -msb 3 -lsb 0 mybus

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
28 January 2018

Sample Buffer Trigger Position
The purpose of the activated watchpoints and breakpoints is to cause a
trigger event to occur. The trigger event causes sampling to terminate in a
controlled fashion. Once sampling terminates, the data in the sample buffer
is communicated to the debugger and then displayed in the GUI.

The sample buffer is continuously sampling the design signals. Conse-
quently, the exact relationship between the trigger event and the termination
of the sampling can be controlled by the user. Currently, the debugger
supports the following trigger positions relative to the sample buffer:

• Early

• Middle

• Late

Determining the correct setting for the trigger position is up to the user. For
example, if the design behavior of interest usually occurs after a particular
trigger event, set the trigger position to “early.”

The trigger position can be changed without requiring the design to be
re-instrumented or recompiled. A new trigger position setting takes effect the
next time the Run command is executed.

Early Position
The sample buffer trigger position can be set to “early” so that the
majority of the samples occurs after the trigger event. To set the
trigger position to “early,” use the Debug->Trigger Position->early menu
selection or click the Set trigger position to early in the sample buffer icon.

Middle Position
The sample buffer trigger position defaults to “middle” so that there is
an equal number of samples before and after the trigger event. To set
the trigger position to “middle,” use the Debug->Trigger Position->middle
menu selection or click the Set trigger position to the middle of the sample
buffer icon.

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 29

Late Position
The sample buffer trigger position can be set to “late” so that the
majority of the samples occurs before the trigger event. To set the
trigger position to “late,” use the Debug->Trigger Position->late menu
selection or click on the Set trigger position to late in the sample buffer icon.

Sampled Data Display Controls
The sampled data display controls are used to navigate through the data
values captured by the sample buffer. All sample buffer data is tagged with a
cycle number based on when the data item was stored in the sample buffer
relative to the trigger event. The data item stored at the trigger event time has
cycle number 0, the data item stored one sample clock cycle after the trigger
has cycle number 1, and the data item stored one sample clock cycle before
the trigger has cycle number -1. The data display procedures allow you to
retrieve data values for a specific cycle number.

The sampled data displayed in the debugger is controlled by the Cycle text
field. You can manually change the cycle number by typing a number in the
entry field. Also, the up and down arrows to the right of the cycle number
increment or decrement the cycle number for each click.

To reset the cycle number to the default position (the zero time
position), use the Debug->Cycle->home menu selection or click on the
Goto trigger event in sample history icon.

Sampled data
display controls

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
30 January 2018

Radix
The radix of the sampled data displayed can be set to any of a number of
different number bases. To change the radix of a sampled signal:

1. Right click on the signal name or the watchpoint or “P” icon and select
Change signal radix to display the following dialog box.

2. Click the corresponding radio button.

3. Click OK.

Note: You can change the radix before the data is sampled. The watch-
point signal value will appear in the specified radix when the
sampled data is displayed.

Specifying default resets the radix to its initial intended value. Note that the
radix value is maintained in the “activation database” and that this informa-
tion will be lost if you fail to save or reload your activation. Also, the radix set
on a signal is local to the debugger and is not propagated to any of the
waveform viewers.

Note: Changing the radix of a partial bus changes the radix for all bus
segments.

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 31

Displaying Data from Folded Signals
If your design contains entities or modules that are instantiated more than
once, it is termed to have a “folded” hierarchy (folded hierarchies also occur
when multiple instances are created within a generate loop). By definition,
there will be more than one instance of every signal in a folded entity or
module. During instrumentation, it is possible to instrument more than one
instance of a signal.

When debugging an instrumented design with multiple instrumented
instances of a signal, the debugger allows you to display the data values of
each of these instrumented signals.

Because multiple data values cannot be displayed at the same location, a
single data value is always displayed. For multiply instrumented signals, the
debugger displays an ellipsis (...) to indicate that there are multiple values
present. To display all of the instrumented values, click-and-hold on the
ellipsis indicator.

The example below consists of a top-level entity called top and two instances
of the repeated_unit entity. In the example, the source code of repeated_unit is
displayed, and both of the lists of instances of the signal val have been
instrumented. The two instances are /rtl/inst0/val and /rtl/inst1/val, and their
data values are displayed in the pop-up window as shown in the following
figure:

For related information on folded hierarchies, see Sampling Signals in a
Folded Hierarchy, on page 37 in the Identify Instrumentor User Guide and
Activating/Deactivating Folded Instrumentation, on page 22.

Indicator of folded data Data values for instances of folded signal val

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
32 January 2018

Displaying Data for Partial Buses
When debugging designs with partially instrumented buses, the debugger
displays the data values of each of the instrumented segments.

To display the instrumented values for the individual bus segments, position
the cursor over the composite bus value. The individual partial bus values
are displayed in a tooltip in the specified radix as shown in the following
figure.

In the above figure, the question marks (?) in the composite bus value (64'
h3fad7910d1????36) indicate that the corresponding segment (data_in [23:8]) has
not been instrumented.

Displaying Data for Partial Instrumentation

In the debugger, the value for a fully instrumented record or structure is
shown with a value for each field, in field order. The following figure shows
instrumented signal sig_iport_P_Struc_instr. When displaying a partially instru-
mented bus, the value U is used for the uninstrumented slices. This same
notation is used to show the data values for a partially instrumented record
or structure (the value for each instrumented field is listed in field order, and
an uninstrumented field value is shown as a U).

Composite bus value Data values of partial buses

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 33

The Find dialog in the debugger shows a partially instrumented signal with
the P icon. You can set the trigger expressions on the fields instrumented for
triggering in the same manner as if the signal was fully instrumented (that is,
select the signal, right click to bring up the dialog, and select the option to set
the trigger expression).

Saving and Loading Activations
The debugger includes a “capture and replay” function that allows you to
save and load a set of enabled watchpoints and breakpoints referred to collec-
tively as an “activation.” Each activation can additionally include the sample
data set that was captured for a given trigger condition. Activations are stored
in files with an adb extension in a project’s instrumentation subdirectory.

Saving an Activation
An activation can be explicitly saved or saved on exit. To explicitly save an
activation:

1. Enable the set of watchpoints and breakpoints for the activation.

2. If the sample data set is to be included, run the debugger to collect the
sample data.

3. Select File->Save activations or click the Save current activations icon in the
menu bar to bring up the following dialog box.

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
34 January 2018

4. Enter (or select) an activation name in the Save current trigger settings as:
field. Selecting an existing activation from the drop-down menu
overwrites the selected activation.

5. To include the sample data set with the activation, enable the Save
current sample data check box.

6. Click Yes to save the activation.

Loading an Activation
To load an existing activation:

1. Open the project view.

2. Expand (if necessary) the hierarchy to display the list of activations as
shown in the following figure.

3. Click the desired activation and select Load activation.

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 35

Autosaving Current Activation
By default, when you exit the debugger without explicitly saving an activa-
tion, the active activation is automatically saved to the last_run.adb file. This
file is automatically loaded the next time you open the project.

Note: To save a specific activation, always use Save current activations to
explicitly name the file and prevent the data from overwriting the
last_run.adb file.

To disable the auto-save feature, uncheck the Auto-save trigger settings and
sample results check box on the Debugger Preferences dialog box (select
Options->Debugger preferences).

Cross Triggering
Cross triggering allows the trigger from one IICE unit to be used to qualify a
trigger on another IICE unit, even when the two IICE units are in different
time domains. Cross triggering is available in both the simple triggering and
complex counter triggering modes (state-machine triggering supports cross
triggering by allowing the IICE unit IDs to be included in the state-machine
equations).

Cross triggering for an IICE unit is enabled in the instrumentor by selecting
the Allow cross-triggering in IICE check box on the IICE Controller tab for the local
IICE unit. The cross-trigger mode is selected from the drop-down menu in the
debugger as shown below.

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
36 January 2018

The drop-down menu selections are as follows:

Note: If the drop-down menu does not display, make sure that Allow
cross-triggering in IICE is enabled on the IICE Controller tab of the
instrumentor and that you have defined more than one IICE unit.

Listing Watchpoints and Signals
To list categories of watchpoints and signals in the debugger, use the popup
Debug menu selection and select the category from the list displayed.

Menu Selection Function

disabled No triggers accepted from external IICE units (event trigger can
only originate from local IICE unit)

any Event trigger from local IICE unit occurs when an event at any
IICE unit, including the local IICE unit, occurs

all Event trigger from local IICE unit occurs when all events,
irrespective of order, occur at all IICE units including the local
IICE unit

after-iiceName Event trigger from local IICE unit occurs only after the event at
selected external IICE unit iiceName has occurred (external IICE
units are individually listed)

after all Event trigger from local IICE unit occurs after all events occur
at all IICE units

Commands and Procedures Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 37

The results are displayed in the Find Design Elements dialog box.

The show watchpoint and breakpoint icons in the menu bar display their
corresponding values in the Find Design Elements dialog box as follows:

LO

Chapter 1: Using the Debugger Commands and Procedures

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
38 January 2018

Show Disabled Breakpoints
To display the disabled (inactive) breakpoints, click the Show disabled
breakpoints icon.

Show Enabled Breakpoints
To display the enabled (active) breakpoints, click the Show enabled
breakpoints icon.

Show Disabled Watchpoints
To display the disabled (inactive) watchpoints, click the Show disabled
watchpoints icon.

Show Enabled Watchpoints
To display the enabled (active) watchpoints, click the Show enabled
watchpoints icon.

HAPS Deep Trace Debug Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 39

HAPS Deep Trace Debug
The HAPS Deep Trace Debug feature supports the HAPS SRAM_1x1_HTII
memory configuration on a HAPS-60 system. Using this type of added
memory provides a significantly deeper, signal-trace buffer.

With the HAPS deep trace debug mode, the flow remains unchanged. The
only difference is in the configuration of the additional memory as the sample
buffer using IICE parameters in the instrumentor (see Chapter 4, HAPS Deep
Trace Debug in the Identify Instrumentor User Guide).

When you debug the design, the debugger automatically calculates the
sample depth and source clock based on the configuration settings supplied
in the instrumentor.

Running Deep Trace Debug
To maximize performance when using the expanded memory available from
the SRAM daughter board, the tool automatically calculates the maximum
buffer depth based on the number of signals instrumented. The configured
sample depth can be varied dynamically from the minimum depth to the
maximum depth.

When the sample depth is set to a large value, the captured samples are first
downloaded block-by-block. Once all of the blocks are downloaded, viewing of
large samples in the waveform viewer is very time consuming and also the
size of the VCD/FSDB dumps becomes extremely large (for a full buffer
depth, the time to download all the sample blocks can be between 30 and 40
minutes and a full VCD dump can require several hours).

To reduce these times, use the waveform writer in the debugger to dump a
specific range or slice of the VCD/FSDB waveform (see Viewing Captured
Deep Trace Debug Samples, on page 40). In the debugger, click on the
waveform display icon to bring up the pop-up window where you can specify
the cycle range over which to view the waveform. The configured sample
depth can be varied in the debugger, but cannot be greater than the depth set
in the instrumentor.

LO

Chapter 1: Using the Debugger HAPS Deep Trace Debug

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
40 January 2018

Also, using deep-trace debug on a Windows-based system with minimal
resources can be extremely slow, especially when downloading large captured
samples or when writing the corresponding VCD/FSDB waveform dumps.
Increasing the memory capacity and processor speed of the host can signifi-
cantly improve performance.

Viewing Captured Deep Trace Debug Samples
A large sample depth translates to large VCD/FSDB dump files. For these
cases, the debugger includes the option of viewing or writing out a slice of the
FSDB or VCD waveform based the number of captured cycles.

To write out a slice of the waveform:

1. Launch the debugger with the exported runtime environment from the
operating system (see Invoking the Debugger, on page 10).

2. In the debugger GUI, open the project file (debug.prj).

3. Click the Waveform Display icon. If the sample depth is set to more than
8000000, the tool displays a popup window.

HAPS Deep Trace Debug Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 41

4. In the pop-up window:

– Specify the cycle range to view on either side of the trigger position.
The following example shows a sub-range of -1000 to 1000 specified,
although the complete VCD/FSDB extends from -4000000 to
3999999 on ether side of the trigger position.

– Click Save waveform at the bottom of the dialog box to save and view
the specified sub-range. If you click the button without specifying a
sub-range, the tool saves the entire waveform to IICE.vcd or IICE.fsdb.
This could take some time, as it downloads the full buffer depth and
all the sample blocks. A full VCD dump can take hours.

5. Alternatively, write out vcd or fsdb using the -range argument with the
appropriate TCL command:

write vcd -range {fromCycle toCycle} filename.vcd
write fsdb -range {fromCycle toCycle} filename.vcd

Hardware Configuration Verification
A self-test is available for verifying the deep trace debug hardware configura-
tion. The self-test writes data patterns to the external memory and reads
back the data pattern written to detect configuration errors, connectivity
problems, and SRAM frequency mismatches.

The self test is normally executed:

• following the initial setup to verify the hardware configuration against
the instrumentation

• during routine operations whenever a hardware problem is suspect

• whenever the physical configuration is modified (changing any of the
IICE Sampler dialog box configuration settings such as relocating the
SRAM daughter board to another connector)

LO

Chapter 1: Using the Debugger HAPS Deep Trace Debug

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
42 January 2018

To run the self-test from the debugger GUI:

1. Open the project view.

2. Click the IICE icon.

3. Select one of the two patterns (pattern 0 or pattern 1) from the Self-test
drop-down menu.

4. Click the Run SRAM tests button.

Selecting 0 uses one test pattern, and selecting 1 uses another pattern. To
ensure adequate testing, repeat the command using alternate pattern
settings.

The self-test can also be run from the command line using the following
syntax:

iice sampler -runselftest 1|0

Debugging on a Different Machine Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 43

Debugging on a Different Machine
It is not unusual for the instrumentation phase and the debugging phase to
be performed on different machines. For example, the debug machine is often
located in a hardware lab. When a different machine is used for debugging,
you must copy the project file (projectName.prj) and the following files to the lab
machine:

• Implementation folder (for example, rev_1); it is not necessary to copy the
contents of the folder

• syn.db file

• instr.db file

• orig_sources files

Because the instrumentor/debugger tool set allows you to debug your design
in the HDL, the debugger must have access to the original source files.
Depending on the type of your network, the debugger may be able to access
the original sources files directly from the lab machine. If this is not possible
or if the two computers are not networked, you must also copy the original
sources to the debug machine. If the debugger cannot locate the original
source files, it will open the project, but an error will be generated for each
missing file, and the corresponding source code will not be visible in the
source viewer.

Copying the source files to the debug machine can be done in two ways:

• The instrumentor can automatically include the original source files in
the implementation directory so that when you copy the implementation
directory to the lab machine, the original sources files (in the orig_sources
subdirectory) are included. The debugger automatically looks in this
directory for any missing source files. This preference is set before
compiling the instrumented design by selecting Options->Instrumentation
preference and making sure that Save original source in instrumentation directory
is checked.

LO

Chapter 1: Using the Debugger Simultaneous Debugging

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
44 January 2018

• The original source files can be manually copied to the lab machine or
may already exist in a different location on this machine. In this case, it
may be necessary to help locate the design files using the searchpath
command. Simply call this command from the command line before
loading the project file (projectName.prj). The argument is a
semi-colon-separated (Windows) or colon-separated (Linux) list of
directories in which to find the original source files.

searchpath {d:/temp;c:/Documents and Settings/me/my_design/}

The debugger only displays files that match the CRC generated at the time of
instrumentation.

Note: If there are security issues with having the original source files
on the lab machine, the instrumentor can password-protect the
original sources on the development machine for use with the
debugger (for information on file encryption, see Including Orig-
inal HDL Source, on page 49 in the Identify Instrumentor User
Guide).

Simultaneous Debugging
When multiple debugger licenses are available, multiple FPGAs residing on a
single, non-HAPS board can be debugged concurrently through a single
cable. This capability is based on semaphores that allow more than one
debugger to share the common port.

Simultaneous Debugging Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 45

Board

FPGA1 FPGA2

Cable

Semaphore
pid1

pid2

Debugger 1

Debugger 2

PID1

PID2

LO

Chapter 1: Using the Debugger Simultaneous Debugging

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
46 January 2018

Simultaneous Debugging Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 47

LO

Chapter 1: Using the Debugger Waveform Display

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
48 January 2018

Waveform Display
The waveform display control displays the sampled data in a waveform style.
By default, this feature uses the Synopsys DVE waveform viewer. Provision
for using other popular waveform viewers that support VCD data is included.
Alternately, you can interface your own waveform viewer by writing a custom-
ized script to access your waveform viewer from the debugger.

Viewer selection and setup are controlled by the Waveform Viewer Preferences
dialog box. Selecting Options->Debugger preferences from the menu bar brings
up the dialog box shown below.

The Synopsys DVE waveform viewer is only available on Linux platforms. To
use the included GTKWave viewer, click the GTKWave radio button in the
Default Waveform Viewer section.

Waveform Display Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 49

The Period field sets the period for the waveform display and is independent of
the design speed.

After running the debugger, the selected waveform viewer is displayed
by selecting Window->Waveform from the menu or by clicking the Open
Waveform Display icon in the menu bar. All sampled signals in the

design are included in the waveform display. Two additional signals are
added to the top of the display when enabled by their corresponding check
boxes. The first signal, identify_cycle, reflects the trigger location in the sample
buffer. The second signal, identify_sampleclock, is a reference that shows every
clock edge. The following figure shows a typical waveform view with the identi-
fy_cycle and identify_sampleclock signals enabled (highlighted in the figure).

If you select a waveform viewer from the Waveform preference dialog box that is
not installed, an error message is displayed when you attempt to invoke the
viewer. To install the waveform viewer:

1. Open the Debugger Preferences dialog box (select Options->Debugger
preferences).

2. Select the desired waveform viewer by clicking the adjacent radio button
and then click OK.

3. Make sure that the selected simulator is installed on your machine and
that the path to the executable is set by your $PATH environment
variable.

To invoke the viewer after running the debugger, select Window->Waveform or
click on the Open Waveform Display icon.

LO

Chapter 1: Using the Debugger Waveform Display

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
50 January 2018

Generating the Fast Signal Database
The debugger is used to generate the fast signal database (FSDB) for the
Verdi platform and for display by the Verdi nWave viewer. To generate this
database:

1. Instrument the design with the essential signal list (see Instrumenting
the Verdi Signal Database, on page 39 in the Identify Instrumentor User
Guide).

2. Run the instrumented design in the synthesis tool and load the project
into the debugger.

3. Use the Debugger Preferences dialog box and make sure that Synopsys Verdi
nWave is selected as the default waveform viewer.

4. Setup the trigger conditions and click the Run button to download the
sample buffer.

5. Generate the fast signal database using the following command syntax:

write fsdb -iice iiceID -showequiv fsdbFilename

6. Click the Open Waveform Display icon to view the samples in the nWave
viewer.

The fast signal database file (fsdbFilename) can be imported directly back into
the Verdi platform.

Logic Analyzer Interface Parameters Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 51

Logic Analyzer Interface Parameters
The logic analyzer interface parameters for the real-time debug
feature in the debugger are defined on the tabs of the RTD type IICE
information dialog box. To display this dialog box, click on the RTD
(RTD type IICE Information/Settings) icon in the top menu. The remainder

of this section describes the individual logic analyzer tabs:

• Logic Analyzer Scan Tab, on page 51

• Logic Analyzer Properties Tab, on page 53

• Logic Analyzer Submit Tab, on page 53

• IICE Assignments Report Tab, on page 54

Logic Analyzer Scan Tab
The Logic Analyzer Scan tab defines:

• the logic analyzer type

• the TLA script program

• user name

• host name/IP address

• if pods are automatically assigned to Mictor connectors

LO

Chapter 1: Using the Debugger Logic Analyzer Interface Parameters

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
52 January 2018

Type of Logic Analyzer
Selects the type of logic analyzer from a drop-down menu. Current supported
types are Agilent 16700 and 16900 series and Tektronix TLA series analyzers.
The logic analyzer must be accessible on the local network.

TLA Script Program
Specifies the full path to the tlascript script file on the Tektronix logic analyzer.
The default path is C:\Program Files\TLA 700\System\tlascript. If this location
does not match the location expected by the Tektronix logic analyzer, change
the location setting. The logic analyzer requires an rsh daemon to access the
script file. To download and install the rsh daemon on the logic analyzer, see
the web-site at http://rshd.sourceforge.net.

User Name
Identifies the user name on the analyzer (Tektronix only).

Host Name/IP Address
Specifies the host name or IP address for the debugger host.

Assign Pods automatically to Mictor connectors
When checked, automatically assigns pods to the Mictor connectors.

Scan Logic Analyzer
Clicking the Scan Logic Analyzer button scans the specified IP address and, if
scanned successfully:

• opens a network connection with the given parameters

• retrieves the modules and pods information

• displays Logic Analyzer Properties and Logic Analyzer Submit tabs

http://rshd.sourceforge.net

Logic Analyzer Interface Parameters Chapter 1: Using the Debugger

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 53

Logic Analyzer Properties Tab
The Logic Analyzer Properties tab allows Mictor pin groups to be manually
assigned to modules and pods using corresponding drop-down menus.
Clicking the Assign Pods button updates the assignments.

Logic Analyzer Submit Tab
The Logic Analyzer Submit tab submits signal/breakpoint names to the logic
analyzer.

LO

Chapter 1: Using the Debugger Logic Analyzer Interface Parameters

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
54 January 2018

IICE Assignments Report Tab
When using the real-time debugging feature in the instrumentor (see
Real-time Debugging, on page 44 in the Identify Instrumentor User Guide), the
signal/breakpoint interface assignments to the Mictor connector are reported
in the debugger on the IICE Assignments Report tab. Clicking the tab before
assigning logic analyzer pods to the Mictor pin groups reports only the
signal/breakpoint assignments. Clicking the tab after assigning logic
analyzer pods to the Mictor pin groups includes the pods assignments in the
report.

By default, the report is displayed on the screen (standard out). The report
can be redirected to a file using the iice assignmentsreport Tcl command (see iice,
on page 51 in the Reference Manual.

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 55

C H A P T E R 2

IICE Hardware Description

The instrumentor adds instrumentation logic to your HDL design that allows
you to understand and debug design operation. There are some aspects of the
instrumentation logic that are important to understand in order to use the
debug environment tool set in the most effective way. In this chapter, the
overall instrumentation logic is described briefly followed by descriptions of
some of the more important features. A simplified functional breakdown of
the instrumentation logic consists of:

• JTAG Communication Block

• Breakpoint and Watchpoint Blocks

• Sampling Block

• Complex Counter

• State Machine Triggering

JTAG Communication Block
The JTAG communication block can be implemented using either the built-in
device-specific TAP controller (the builtin option) or using the debug
environment implementation of the TAP controller (the soft option). See
Chapter 3, Connecting to the Target System, for more information on the
JTAG controller.

LO

Chapter 2: IICE Hardware Description Breakpoint and Watchpoint Blocks

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
56 January 2018

Breakpoint and Watchpoint Blocks
The following topics are described in this section:

• Breakpoints

• Watchpoints, on page 57

• Multiple Activated Breakpoints and Watchpoints, on page 57

Breakpoints
Breakpoints are a way to easily create a trigger that is determined by the flow
of control in the design.

In both Verilog and VHDL, the flow of control in a design is primarily
determined by if, else, and case statements. The control state of these
statements is determined by their controlling HDL conditional expressions.
Breakpoints provide a simple way to trigger when the conditional expressions
of one or more if, else, or case statements have particular values.

The example below shows a VHDL code fragment and its associated
breakpoints.

 99 process(op_code, cc, result) begin
100 case op_code is
101 when "0100" =>
102 result <= part_res;
103 if cc = '1' then
104 c_flag <= carry;
105 if result = zero then
106 z_flag <= '1';
107 else
108 z_flag <= '0';
109 end if;
110 end if;

Breakpoint and Watchpoint Blocks Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 57

The four breakpoints correspond to these control flow equations:

• Breakpoint at line number 102:

(op_code = "0100")

• Breakpoint at line number 104:

(op_code = "0100") and (cc = '1')

• Breakpoint at line number 106:

(op_code = "0100") and (cc = '1') and (result = zero)

• Breakpoint at line number 108:

(op_code = "0100") and (cc = '1') and (result != zero)

Watchpoints
A watchpoint creates a trigger that is determined by the state of a signal in
the design. The watchpoint can trigger either on the value of a signal or on a
transition of a signal from one value to another.

Multiple Activated Breakpoints and Watchpoints
How breakpoints and watchpoints operate individually is described in the
Instrumentor User Guide. Activated breakpoints and watchpoints also interact
with each other in a very specific way.

Multiple Activated Breakpoints
Each breakpoint is implemented as logic that watches for a particular event
in the design. When an instrumented design has more than one activated
breakpoint, the breakpoint events are ORed together. This effectively allows
the breakpoints to operate independently – only one activated breakpoint
must trigger in order to cause the sampling buffer to acquire its sample.

LO

Chapter 2: IICE Hardware Description Sampling Block

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
58 January 2018

Multiple Activated Watchpoints
Each watchpoint is implemented as logic that watches for a specific event
consisting of a bit pattern or transition on a specific set of signals. When an
instrumented design has more than one activated watchpoint, the
watchpoint events are ANDed together. This effectively causes the
watchpoints to be dependent on each other – all activated watchpoint events
must occur concurrently to cause the sampling buffer to acquire its sample.

For example, if watchpoint 1 implements (count == 23) and watchpoint 2
implements (ack == ‘1’), then activating these watchpoints together effectively
creates a new watchpoint: (count == 23) && (ack == ‘1’).

Combining Activated Breakpoints and Activated Watchpoints
When an instrumented design has one or more activated breakpoints and
one or more activated watchpoints, the result of the OR of the breakpoint
events and the result of the AND of the watchpoint events is ANDed together.
The result of this AND operation is called the Master Trigger Signal. This
ANDing effectively causes the breakpoints and watchpoints to be dependent
on each other – one activated breakpoint and all activated watchpoint events
must occur concurrently to cause the sampling buffer to acquire its sample.

As a result, a Master Trigger Signal event can be constructed that operates
like a conditional breakpoint. For example, activating a breakpoint and the
two watchpoints from the previous example produces a conditional
breakpoint: (breakpoint event) && (count== 23) && (ack == ‘1’).

Sampling Block
The sampling block is basically a large memory used to store all the sampled
signals. During an active debugging session, the sampled signals are contin-
ually being stored in the sample block. When the sample block receives an
event from the Master Trigger Signal event logic or the complex counter logic,
the sampling block stops writing new data to the buffer and holds its
contents. Eventually, the contents of the sample block are uploaded to the
debugger for display and formatting.

Complex Counter Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 59

Whenever possible, the sample block should use the built-in RAM blocks that
are available in most programmable chips. Otherwise, implementing the
sample buffer using individual storage elements will consume large amounts
of the logic capacity of the chip. If you have no choice but to use individual
storage elements, analyze how much logic you have available on your chip
and adjust how many signals you sample and the depth of the sample buffer.

Complex Counter
The complex counter connects the output of the breakpoint and watchpoint
event logic to the sampling block and allows the user to implement complex
triggering behavior.

Creating a Complex Counter
The counter is created, configured, and inserted into the HDL design during
instrumentation using the instrumentor IICE Controller tab of the IICE Configura-
tion dialog box or using the instrumentor iice controller command.

During configuration, the size of the counter is specified. For example, a
16-bit counter is the default. This default value produces a counter that
ranges from 0 to 65535.

Setting the counter size to zero during instrumentation configuration
disables counter insertion.

LO

Chapter 2: IICE Hardware Description Complex Counter

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
60 January 2018

Debugging with the Complex Counter
The complex counter is used to produce complex triggering behavior. During
the debugging of the design, the complex counter is set to zero on invocation
of the debugger run command. Then, it counts events from the Master Trigger
Signal event logic in a specific way depending on the counter mode.

Finally, the counter sends a trigger event to the sample block when a termi-
nation condition occurs. The form of the termination condition depends on
the mode of operation of the counter and on the target value of the counter:

• The counter target value can be set to any value in the counter’s range.

• The counter has four modes: events, cycles, watchdog, and pulsewidth.

The counter target value and the counter mode can be set directly from the
main menu.

The following table provides a general description of the trigger behavior for
the various complex counter modes. Each mode is described in more detail in
individual subsections, and examples are included showing how the modes
are used. In both the table and subsection descriptions, the counter target
value setting is represented by the symbol n.

Complex Counter Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 61

events Mode
In the events mode, the number of times the Master Trigger Signal logic
produces an event is counted. When the nth Master Trigger Signal event
occurs, the complex counter sends a trigger event to the sample block. For
example, this mode could be used to trigger on the 12278th time a collision
was detected in a bus arbiter.

cycles Mode
In the cycles mode, the complex counter sends a trigger event to the sample
block on the nth cycle after the first Master Trigger Signal event is received.
The clock cycles counted are from the clock defined for sampling. For
example, this mode could be used to observe the behavior of a design
2,000,000 cycles after it is reset.

watchdog Mode
In the watchdog mode, the counter sends a trigger event to the sample block
if no Master Trigger Signal events have been received for n cycles. For
example, if an event is expected to occur regularly, such as a memory refresh
cycle, this mode triggers when the expected event fails to occur.

Counter mode Target value = 0 Target value n > 0

events illegal stop sampling on the nth trigger
event.

cycles stop sampling on 1st
trigger event

stop sampling n cycles after the
1st trigger event.

watchdog illegal stop sampling if the trigger
condition is not met for n
consecutive cycles.

pulsewidth illegal stop sampling the first time the
trigger condition is met for n
consecutive cycles.

LO

Chapter 2: IICE Hardware Description Complex Counter

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
62 January 2018

pulsewidth Mode
In the pulsewidth mode, the complex counter sends a trigger event to the
sample block if the Master Trigger Signal logic has produced an event during
each of the most recent n consecutive cycles. For example, this mode can be
used to detect when a request signal is held high for more than n cycles
thereby detecting when the request has not been serviced within a specified
interval.

Disabling the Counter
According to the previous table, the counter can be disabled simply by setting
its target value to 1 and its mode to events. Then, the complex counter will
pass any received event from the Master Trigger Signal logic on to the sample
block with no additional delay.

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 63

State Machine Triggering
This section describes the different methods of triggering available in the
debugger. It explains the different choices available during instrumentation
and the functionality these choices provide in the debugger as well as
discussing the cost effects of the various types of instrumentation.

Simple or Advanced Triggering
There are two triggering modes available, the simple mode and the advanced
mode. The simple mode allows comparing signals to values (including don’t
cares) and then triggering when the signals match those values. This scheme
can be enhanced by using breakpoints to denote branches in control logic. If
a breakpoint is enabled, this particular branch must be active at the same
time that the signals match their respective values. The overall trigger logic
involves signals and breakpoints in the following way:

• Signals: All signals must match their respective comparison values in
order to trigger.

• Breakpoints: All breakpoints are OR connected, meaning that any one
enabled breakpoint is enough to trigger.

• Signals and breakpoints are combined using AND, such that all signals
must match their values AND at least one enabled breakpoint must
occur.

The logic that implements breakpoint and signal triggering is referred to as
trigger condition in the following text.

In the advanced trigger mode, multiple such trigger conditions are instru-
mented, and a runtime-programmable state machine is also instrumented to
allow you to specify the temporal and logical behavior that combines these
trigger conditions into a complex trigger function. For instance, this state
machine enables you to trigger on a certain sequence of events like “trigger if
pattern A occurs exactly five cycles after pattern B, but only if pattern C does
not intervene.”

By default, the instrumentor instruments the design according to the simple
trigger mode. See the following for more information on how to select the
advanced trigger mode.

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
64 January 2018

Advanced Triggering Mode
Setting up an instrumented design to enable advanced triggering is extremely
easy. There are two iice controller command options available in the
instrumentor that control the extent and cost of the instrumentation:

• -triggerconditions integer – The integer argument to this option defines
how many trigger conditions are created. The range is from 1 to 16. All
these trigger conditions are identical in terms of signals and breakpoints
connected to them, but they can be programmed separately in the
debugger.

• -triggerstates integer – The integer argument to this option defines how
many states the trigger state machine will have. The range is 2 to 16;
powers of 2 are preferable as other numbers limit functionality and do
not provide any cost savings.

Similar to the simple-triggering mode, a counter can be instrumented to
augment the functionality of the state machine. To instrument a counter,
enter an iice controller -counterwidth option with an argument greater than 0 in
the instrumentor console window.

Please refer to the following text to determine cost and consequences of these
settings in the instrumentor.

Structural Implementation of State Machine Triggering
For each trigger condition ci, a logic cone is implemented which evaluates the
signals and the breakpoints connected to the trigger logic and culminates in a
1-bit result identical to the trigger condition in simple mode. All these 1-bit
results are connected to the address inputs of a RAM table.

If a counter has been added to the instrumentation, the counter output is
compared to constant 0, and the single-bit output of that comparison is also
connected to the address inputs of the same RAM table.

The other address inputs are provided by the state register. The outputs of
the RAM table are:

• the next-state value nstate

• the trigger signal trigger (causes the sample buffer to take a snapshot if
high)

• the counter-enable signal cnten (if ‘1’, counter is decremented by 1)

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 65

• the counter-load signal cntld (if ‘1’, counter is loaded with cntval)

• the counter value cntval (only useful in conjunction with cntld)

The last three outputs are only present if a counter is instrumented. Please
also refer to the figure below.

The implementation of the RAM table is identical to the implementation of the
sample buffer (that is, the device buffertype setting selects the implementation
of both the sample buffer and the state-machine RAM table).

Using State Machine Triggering in the Debugger
Perform the following steps in the debugger console window to setup a trigger
in advanced triggering mode. These steps can be done in any order.

• setup the values for the trigger conditions using the debugger watch and
stop commands.

• setup the trigger state machine behavior using the debugger statemachine
command.

trigger

cntld
cnten
cntval

nstate
state

cntnull

2-port RAM

port 1, read-only

port 2, write-only

co
un

te
r

re
g.

Write port driven by JTAG circuitry

c1
cn

c0

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
66 January 2018

The watch command takes an additional parameter, -condition, specifying the
trigger conditions that the given condition is intended for. This argument is
available in simple mode as well, but as there is only one trigger condition in
this case, the argument is redundant.

• watch enable -condition (triggerCondition|all) signalName value1 [value2 ...]

• watch disable -condition (triggerCondition|all) signalName

• watch info [-raw] signalName

The parameter triggerCondition is a list value conforming to the Tcl language.
Examples are: 1, "1 2 3", {2 3}, or [list 1 2 3], quotes, braces, and
brackets included, respectively. Alternatively, the keyword all can be specified
to apply the setting to all trigger conditions.

The debugger watch info command reports status information about the signal.
This information is returned in machine-processible form if the optional
parameter -raw is specified.

Similarly for the debugger stop command:

• stop enable -condition (triggerCondition |all) breakpoint

• stop disable -condition (triggerCondition |all) breakpoint

• stop info [-raw] breakpoint

The semantics of the parameters are identical to the above descriptions.

The statemachine Command
During instrumentation, the number of states was previously defined using
the -triggerstates option of the instrumentor iice controller command. Now, at
debug time, you can define what happens in each state and transition
depending on the pattern matches computed by the trigger conditions.

The debugger statemachine command is used to configure the trigger state
machine with the desired behavior. This is very similar to the “advanced”
trigger mode offered by many logic analyzers. As it is very easy to introduce
errors in the process of specifying the state machine, special caution is
appropriate. Also, a state-machine editor is available in the debugger user
interface to facilitate state-machine development and understanding (see
State-Machine Editor, on page 74). It is also important to note that the initial
state for each run is always state 0 and that not all of the available states
need to be defined.

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 67

The syntax forms of the debugger statemachine command are:

• statemachine addtrans -from state [-to state] [-cond "equation|titriggerInID"]
[-cntval integer] [-cnten] [-trigger]

• statemachine clear (-all|state [state ...])

• statemachine info [-raw] (-all|state [state ...])

Subcommand statemachine addtrans
The debugger addtrans subcommand defines the transitions between the
states. The options are as follows:

• -from state – specifies the state this transition is exiting from.

• -to state – specifies the state this transition goes to. If this is not given, it
defaults to the state given in the -from option.

• -cond "equation|titriggerInID" – specifies the condition or external trigger
input under which the transition is to be taken. The default is “true”
(i.e., the transition is taken regardless of input data; see below for more
details).

• -cntval integer – specifies that if this transition is taken, the counter is
loaded with the given value. Only valid when a counter is instrumented.

• -cnten – when this flag is given, the counter is decremented by 1 during
this transition. Only valid when a counter is instrumented.

• -trigger – when this flag is given, a trigger occurs during this transition.

The order in which the transitions are added is important. In each state, the
first transition condition that matches the current data is taken and any
subsequent transitions in the list that match the current data are ignored.

Conditions
The conditions are specified using Boolean expressions comprised of
variables and operators. The available variables are:

• c0,... cn, where n is the number of trigger conditions instrumented.
These variables represent the output bit of the respective trigger condi-
tion.

• titriggerInID – the ID (0 thru 7) of an external trigger input.

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
68 January 2018

• cntnull – true whenever the counter is equal to 0 (only available when a
counter is instrumented).

• iiceID – variable used with cross triggering to define the source IICE units
to be included in the equation for the destination IICE trigger.

Operators are:

• Negation: not, !, ~

• AND operators: and, &&, &

• OR operators: or, ||, |

• XOR operators: xor, ^

• NOR operators: nor, ~|

• NAND operators: nand, ~&

• XNOR operators: xnor, ~^

• Equivalence operators: ==, =

• Constants: 0, false, OFF, 1, true, ON

Parentheses ‘(‘, ‘)’ are recommended whenever the operator precedence is in
question. Use the debugger statemachine info command to verify the conditions
specified.

For example, valid expression examples are:

"c0 and c1"
"!(c1 or c2) and c3"
"c0 or ti4" (condition c0 or external trigger ID ti4)

Other Subcommands
The debugger statemachine clear command deletes all transitions from the
states given in the argument, or from all states if the argument -all is speci-
fied.

The debugger statemachine info command prints the current state machine
settings for the states given in the argument, or for the entire state machine,
if the option -all is specified. If the option -raw is given, the information is
returned in a machine-processible form.

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 69

State Machine Examples
To implement a trigger behavior that triggers when the pattern on condition 1
or condition 2 (c1 or c2) becomes true for the 10th time (a setting identical to
counter mode events in the simple mode triggering), the following state
machine can be used:

statemachine addtrans -from 0 -to 1 -cntval 9
statemachine addtrans -from 1 -cond "(c1 | c2) & cntnull" -trigger
statemachine addtrans -from 1 -cond "c1 or c2" -cnten

A trigger condition requiring pattern c2 to occur 10 times after pattern c1 has
occurred, without pattern c3 occurring in between (commonly available in
logic analyzers as “Pattern 1 followed by Pattern 2 before Pattern 3”) can be
achieved with the following state machine:

statemachine addtrans -from 0 -to 1 -cond c1 -cntval 9
statemachine addtrans -from 1 -cond "c2 & cntnull" -trigger
statemachine addtrans -from 1 -to 0 -cond c3
statemachine addtrans -from 1 -cond "c2" -cnten

These behaviors can be cascaded by moving on to the next behavior instead
of triggering in the transition that has -trigger specified, as long as there are
trigger conditions and states available.

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
70 January 2018

Convenience Functions
There are a number of convenience functions to set up complex triggers avail-
able in the file InstallDir/share/contrib/syn_trigger_utils.tcl which is loaded into the
debugger at startup:

• st_events condition integer – Sets up the state machine to mimic counter
mode events of the simple triggering mode as described above. The
argument condition is a boolean equation setting up the condition, and
integer is the counter value.

• st_watchdog condition integer – Same as st_events for watchdog mode.

• st_cycles condition integer – Same as above for cycles mode.

• st_pulsewidth condition integer – Same as above for pulsewidth mode.

• st_B_after_A conditionA conditionB [integer:=1] – Sets up a trigger mode to
trigger if conditionB becomes true anytime after conditionA became true.
The optional integer argument defaults to 1 and denotes how many
times conditionB must become true in order to trigger.

• st_B_after_A_before_C conditionA conditionB conditionC [integer:=1] – Sets up a
trigger mode to trigger if conditionB becomes true after conditionA
becomes true, but without an intervening conditionC becoming true
(same as the second example above). The optional integer argument
defaults to 1 and denotes how many times conditionB must become true
without seeing conditionC in order to trigger.

• st_snapshot_fill condition [integer] – Uses qualified sampling to sample data
until sample buffer is full. The argument condition is a boolean equation
defining the trigger condition, and integer is the number of samples to
take with each occurrence of the trigger (default 1).

• st_snapshot_intr condition [integer] – Uses qualified sampling to sample data
until manually interrupted by an debugger stop command. The
argument condition is a boolean equation defining the trigger condition
and integer is the number of samples to take with each occurrence of the
trigger (default 1).

Please refer to the file syn_trigger_utils.tcl mentioned above for the implementa-
tion of these trigger modes using the debugger statemachine command. Users
can add their own convenience functions by following the examples in this
file.

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 71

Cross Triggering with State Machines
Cross triggering allows a specific IICE unit to be triggered by one or more IICE
units in combination with its own internal trigger conditions. The IICE being
triggered is referred to as the “destination” IICE; the other IICE units are
referred to as the “source” IICE units.

Multiple IICE designs allow triggering and sampling of signals from different
clock domains. With an asynchronous design, a separate IICE unit can be
assigned to each clock domain, triggers can be set on signals within each
IICE unit, and then the IICE units scheduled to trigger each other on a
user-defined sequence using cross triggering. In this configuration, each IICE
unit is independent and can have unique IICE parameter settings including
sample depth, sample/trigger options, and sample clock and clock edges.

Cross triggering is supported in all three IICE controller configurations
(simple, complex counter, and state-machine triggering) and all three
configurations make use of state machines.

Cross triggering is enabled in the instrumentor (cross triggering can be
selectively disabled in the debugger). To enable a destination IICE unit to
accept a trigger from a source IICE unit, enter the following command in the
instrumentor console window (by default, cross triggering is disabled):

iice controller -crosstrigger 1

For cross triggering to function correctly, the destination and the contributing
source IICE units must be instrumented by selecting breakpoints and
watchpoints. Concurrently run these units either by selecting the individual
IICE units and clicking the RUN button in the debugger project view or by
entering one of the following commands in the debugger console window:

run -iice all

run -iice {iiceID1 iiceID2 ... iiceIDn}

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
72 January 2018

When simple- or complex-counter triggering is selected in the destination
IICE controller, the following debugger cross-trigger commands are available:

• The following debugger command causes the destination IICE to trigger
normally (the triggers from source IICE units are ignored).

iice controller -crosstriggermode DISABLED

• The following debugger command causes the destination IICE to trigger
when any source IICE triggers or on its own internal trigger.

iice controller -crosstriggermode ANY

• The following debugger command causes the destination IICE to trigger
when all source IICE units and the destination IICE unit have triggered
in any order.

iice controller -crosstriggermode ALL

• The following debugger commands cause the destination IICE to trigger
after the source IICE unit triggers coincident with the next destination
IICE internal trigger.

iice controller -crosstriggermode after -crosstriggeriice iiceID
iice controller -crosstriggermode after -crosstriggeriice all

The first debugger command uses a single source IICE unit (iiceID), and
the second debugger command requires all source IICE units to trigger.

When state-machine triggering is selected, the state machine must be speci-
fied with at least three states (three states are required for certain triggering
conditions, for example, when the destination IICE is in Cycles mode and you
want to configure the destination IICE to trigger after another (source) IICE.

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 73

With state-machine triggering, the following debugger statemachine command
sequences are available in the debugger console window:

• The following debugger command sequence is equivalent to disabling
cross triggering. The destination IICE triggers on its own internal trigger
condition (c0).

statemachine clear -all
statemachine addtrans -from 0 -cond "c0" -trigger

• In the following debugger command sequence, the destination IICE
waits for iiceID to trigger and then triggers on its own internal trigger
condition (c0). This sequence implements the “after iiceID” functionality
of the simple- and complex-counter triggering modes.

statemachine clear -all
statemachine addtrans -from 0 -to 1 -cond "iiceID"
statemachine addtrans -from 1 -to 0 -cond "c0" -trigger

• In the following debugger command sequence, the destination IICE
triggers when the last running IICE triggers.

statemachine clear -all
statemachine addtrans -from 0 -cond "c0 and iiceID and iiceID1

and iiceID2" -trigger
statemachine addtrans -from 0 -to 1 -cond "c0"
statemachine addtrans -from 1 -to 0 -cond "iiceID and iiceID1

and iiceID2" -trigger

• In the following debugger command sequence, the destination IICE
waits for all the other running source IICE units to trigger and then
triggers on its own internal trigger condition (c0).

statemachine clear -all
statemachine addtrans -from 0 -to 1 -cond "iiceID and iiceID1

and iiceID2"
statemachine addtrans -from 1 -cond "c0" -trigger"

The incorporation of a counter in the state-machine configuration is similar
to the use of a counter in non-cross trigger mode for a state machine.

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
74 January 2018

State-Machine Editor
The debugger includes a graphical state-machine editor that is available
when state-machine triggering is enabled for the active IICE unit on the IICE
Controller tab in the instrumentor.

To bring up the state-machine editor in the debugger, click the
Configure Statemachine Trigger icon in the debugger toolbar. Note that the
icon will be grayed out if state-machine triggering was not enabled in

the instrumentor when the design was instrumented and that an error
message will be generated if more than 10 states are defined. Clicking the
icon displays the Statemachine Editor dialog box for the selected IICE.

Each state is defined in an individual entry field. Within each entry, you can
add multiple definitions for transitioning from that state. Each transition
includes either one or two actions and a condition. The actions and condi-
tions are defined in the following tables.

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 75

To use the dialog box:

• As an optional starting point, use Insert Macro to select predefined
state-machine behaviors from the drop-down list. When a macro is
selected, a corresponding Configure Statemachine Macro dialog box is
displayed to set the parameters for the macro. The following figure
shows the dialog box for the st_B_after_A macro.

Action Description

Decrement Counter Decrements counter when condition is true
(mutually exclusive with Initialize Counter)

Initialize Counter Initializes counter to count specified by
statemachine transition editor (mutually exclusive
with Decrement Counter)

Trigger Sample Buf-
fer

Triggers sample buffer when condition is true

Go to State Transitions to specified state when condition is true

Condition Description

c0 ... cN References trigger event in active IICE unit

cntnull True when counter is equal to 0 (available only when counter is
instrumented)

iiceID References trigger event from a second IICE unit for cross
triggering (cross triggering must have been enabled when the
design was instrumented)

titriggerInID References external trigger originating from an IICE module in
another FPGA or on-board external logic

Boolean Boolean operators used to define state-machine events (see
Conditions, on page 67)

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
76 January 2018

Enter the required parameters into the dialog box. These parameters
include events, Boolean functions, transition count, and IICE unit. Click
OK after all of the parameters are entered.

• Use the Add new transition, Edit current transition, and Delete current transition
icons as required. The Add new transition and Edit current transition icons
bring up the Statemachine transition editor dialog box which allows transi-
tions to be defined or redefined.

Click OK when the transition has been defined/redefined.

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 77

• Click OK in the initial Statemachine Editor dialog box when the
state-machine triggering condition has been defined.

Note that you can view the corresponding state-machine commands in the
debugger console window using the statemachine info -all command.

State-Machine Examples
The state-machine triggering feature allows the creation of counter-based
state machines from sequences of trigger conditions to create very effective
triggers. You can set up a state-machine trigger during instrumentation and
then program the state machine dynamically during debug to create a
complex, design-specific trigger.

Building a Complex State-machine Trigger
When building a complex, state-machine trigger, you specify the number of
trigger states, the trigger conditions (which can be set dynamically in the
debugger), and the counter width. A common design configuration is to
trigger when a specific sequence of events occurs which, in turn, causes data
collection to stop and the sample data to be downloaded by the corresponding
debugger executable from the FPGA. You can enable state-machine triggering
and specify the states through the user interface as outlined in the following
steps:

1. Make sure that the following prerequisites are done:

– In the instrumentor graphical user interface, select Actions->Configure
IICE from the top menu bar or click the IICE icon.

– From the instrumentor Configure IICE dialog box, select the IICE
Controller tab, click the State Machine triggering radio button, and specify
the number of trigger states, trigger conditions, and the counter
width in the corresponding fields.

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
78 January 2018

2. Build the state machine trigger from the debugger console window. The
following debugger command sequence is an example.

statemachine addtrans -from 0 -to 1 -cond c0 -cntval 7 -trigger
statemachine addtrans -from 1 -to 0 -cond "cntnull"
statemachine addtrans -from 1 -to 1 -cnten -trigger

Note that in the last debugger statemachine command, the -to 1 can be
omitted (unnecessary because there is no change in state) and that
because the -from states are the same in the second and third
commands, execution falls through to the third command when the
second condition is not true.

3. Once the state-machine trigger is created, use the debugger statemachine
info -all command to display and review the state-machine transitions.

The state-machine editor in the debugger GUI can be used to define the
state-machine trigger event described in step 3 as shown in the following
figure.

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 79

The following figure shows the state-machine transition editor (click the Add
new transition icon).

load counter

trigger when counter = 0
count

transition on counter = 0

transition
count = 0

count > 0

transition
c0 = 1

load counter

trigger
count = 0

State 0

State 1

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
80 January 2018

The debugger state-machine and state-machine transition editors allow:

• Graphical entry of state machines

• Editing of state transitions and trigger events

• Conditions to be combined with each other or with a counter

• Counter mode selection of up, down, or initialized to any value

State-machine Triggering with Tcl Commands
The IICE can be configured using TCL commands entered from both the
instrumentor and debugger console windows. Some of the example
commands are as follows:

• To delete the state transitions from each IICE, use the following
debugger command:

statemachine clear -iice all

• To enable complex counter triggering, use the following instrumentor
command:

iice controller complex

• To set the counter width, use the following instrumentor command:

iice controller -counterwidth 8

• To configure an IICE for state-machine triggering, use the following
instrumentor command sequence:

iice controller -iice IICE statemachine
iice controller -iice IICE -counterwidth 4
iice controller -iice IICE -triggerconditions 2
iice controller -iice IICE -triggerstates 2

In addition to state-machine triggering, the above instrumentor
commands set the number of trigger conditions to 2 and the number of
trigger states to 2.

• To enable cross triggering, use the following instrumentor command:

iice controller -crosstrigger 1

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 81

• Similarly, to configure the sample depth, use the following instrumentor
command:

iice sampler -depth 2048

Note that the only option for buffer type is internal_memory.

Qualified Sampling
During qualified sampling, a single sample of all sampled signals is collected
each time the trigger condition is true. When a trigger condition occurs,
instead of filling the entire buffer, the IICE collects the single sample and then
waits for the next trigger to acquire the next sample. The following example
uses qualified sampling to examine the data for a given number of clock
cycles. To create a complex trigger event to perform qualified sampling:

1. As a prerequisite in the instrumentor GUI:

– From the Configure IICE dialog box, select the IICE Controller tab, click
the State Machine triggering radio button, and enter a value in the Counter
width field to define the width of the sample buffer.

– Select the IICE Sampler tab and enable the Allow qualified sampling check
box.

2. From the debugger GUI, select qualified_fill or qualified_int from the Sample
Mode drop-down menu. For more information, see -qualified_sampling 0|1,
on page 59.

3. From the debugger GUI, click on the adjacent Configure Statemachine
Trigger icon and define the state-machine trigger event.

4. From the debugger GUI, select the st_snapshot_fill macro from the Insert
Macro drop-down menu.

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
82 January 2018

Enter the trigger event (the condition that will be the qualifying trigger)
in field A, enter the number of samples to be accumulated in the sample
buffer after the trigger event occurs in field N, and click OK to update the
state-machine definition.

When you click Run in the debugger project window, the sample buffer begins
accumulating data when the trigger event occurs and stops accumulating
data after the specified number of samples is reached.

Note: If you use the debugger st_snapshot_intr macro in place of the
st_snapshot_fill macro, the sample buffer is continually overwritten
until manually interrupted by a stop command.

You can also perform qualified sampling using equivalent debugger Tcl
commands. The following debugger example command sequence samples the
data every N cycles beginning with the first trigger event.

iice sampler -samplemode qualified_fill
statemachine clear -iice IICE -all
statemachine addtrans -iice IICE -from 0 -to 1

-cond "true" -cntval 0
statemachine addtrans -iice IICE -from 1 -to 2

State Machine Triggering Chapter 2: IICE Hardware Description

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 83

-cond "c0" -cntval 15 -trigger
statemachine addtrans -iice IICE -from 2 -to 2

-cond "! cntnull" -cnten
statemachine addtrans -iice IICE -from 2 -to 2

-cond "cntnull" -cntval 15 -trigger

Remote Triggering
Remote triggering allows one debugger executable to send a software trigger
event to terminate data collection in the other debugger executables, effec-
tively creating a remote stop button.

You can selectively set the remote trigger to:

• trigger all IICEs in all debugger executables

• trigger all IICEs in a specific debugger executable

• trigger a specific IICE in a specific debugger executable

A common design configuration is to trigger all FPGAs on a single board-level
event; when that event occurs, data collection is stopped and the sample data
is downloaded by the corresponding debugger executables for all FPGAs.

Remote triggering is a scripting application. The IICE/debugger targets are
defined by the debugger remote_trigger command (see the command descrip-
tion in the Reference Manual).

As an example, the debugger scripting sequence

run ; remote_trigger -pid 12

waits for the trigger condition in the active IICE and then sends a trigger to all
IICE units in the debugger executable identified by process ID 12.

Importing External Triggers
An import external trigger capability can be used with trigger signals origi-
nating from on-board logic external to the FPGA or from an IICE module in a
second FPGA.

LO

Chapter 2: IICE Hardware Description State Machine Triggering

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
84 January 2018

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 85

C H A P T E R 3

Connecting to the Target System

This chapter describes methods to connect the debugger to the target
hardware system. The programmable device in the target system that
contains the design to be debugged are usually placed on a printed circuit
board along with a number of other support devices. The difficulty is that the
boards differ greatly in the connections between their programmable devices,
the other components, and the external connections of the boards.

This chapter outlines how to connect the debugger to most of the common
board configurations and addresses the following topics:

• Basic Communication Connection, on page 86

• UMRBus Communications Interface, on page 98

• JTAG Communication Interface, on page 101

LO

Chapter 3: Connecting to the Target System Basic Communication Connection

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
86 January 2018

Basic Communication Connection
The components that make up the debugging system are:

• The host machine running the debug environment with a loaded project.

• The communication cable connecting the host machine to the program-
mable device.

• The programmable device or devices loaded with the instrumented
version of the design to be debugged.

The following topics are outlined in this section:

• Debugger Communications Settings, on page 86

• Debugger Configuration, on page 89

Debugger Communications Settings
Debugger communications settings are defined on the project window and
include selecting the cable type and setting the port parameters for the
selected cable.

Cable Type
The cable type is selected from a drop-down menu in the Communications
settings area of the debugger project window (see following figure).

Basic Communication Connection Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 87

The following table lists the correspondence between cable-type setting and
the supported cables in the Identify debugger.

If you are using the command interface, set the com command’s cabletype
option to byteblaster, Microsemi_BuiltinJTAG, JTAGTech3710, Catapult_EJ1,
Digilent_JTAG_HS1, or demo according to the cable being used. If you are using
the soft JTAG port, you must use either a ByteBlaster or ByteBlaster MV
hardware cable.

Byteblaster Cable Setting
To configure a ByteBlaster cable, click the Port Settings button to display the
Configure Port Settings dialog box and select the appropriate port from the
drop-down menu (see following figure).

If you are using the command interface, set the com command’s cableoptions
byteblaster_port option to 1 (lpt1), 2 (lpt2), 3 (lpt3), or 4 (lpt4). Different
computers have their lpt ports defined for different address ranges so the port
you use depends on how your computer is configured.

Cable Type Setting Compatible Hardware Cables

umrbus HAPS UMRBus Interface Kit
UMRBus over USB connection (HAPS-70 only)

Microsemi_BuiltinJTAG Microsemi FlashPro, FlashProLite, or FlashPro3

JTAGTech3710 JTAGTech3710

Catapult_EJ1 Standard Ethernet cable in an IP network

LO

Chapter 3: Connecting to the Target System Basic Communication Connection

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
88 January 2018

The Identify debugger uses the “standard” I/O port definitions: lpt1:
0x378-0x37B, lpt2: 0x278-0x27B, lpt3: 0x3BC-0x3BF, and lpt4:
0x288-0x28B if it cannot determine the proper definitions from the operating
system. If the hardware address for your parallel port does not match the
addresses for lpt1 through lpt4, you can use the setsys set command variable
lpt_address to set the hardware port address (for example, setsys set lpt_address
0x0378 defines port lpt1).

JTAGTech3710 Cable Settings
To configure a JTAGTech3710 cable, click the Port Settings button to display
the Configure Port Settings dialog box (see following figure) and enter the corre-
sponding parameters (type, port, and tap number). If you are using the
command interface, use the com command’s cableoptions option to set the
cable-specific parameters – JTAGTech_type (takes values PCI and USB; default
is PCI), JTAGTech_port (takes values 0, 1, 2, ...; default value is 0), and
JTAGTech_tapnum (takes values 1, 2, 3, or 4; default is 1).

Microsemi Actel_BuiltinJTAG cable Settings
To configure a Microsemi FlashPro, FlashProLite, or FlashPro3 cable, simply
select the Microsemi_BuiltinJTAG setting from the Cable type drop-down menu. If
you are using the command interface, you can additionally use the com
command’s cableoptions option to set the tristate pin parameter (see the com
command cableoptions option in the Reference Manual for the parameter
syntax).

Catapult EJ-1 Settings
To configure a Catapult EJ-1 cable, select the Catapult_EJ1 setting from the
Cable type drop-down menu. Click the Port Settings button to display the
Configure Port Settings dialog box and enter the host IP address.

Basic Communication Connection Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 89

Digilent_JTAG_HS1/HS3 Settings
To configure a Digilent JTAG HS1/HS3 cable, select the Digilent_JTAG_HS1
setting from the Cable type drop-down menu. Click the Port Settings button to
display the Configure Port Settings dialog box and select the appropriate commu-
nication frequency from the drop-down menu.

Note that the Digilent_JTAG drivers must be installed before using the Digilent
JTAG cable. The drivers are available from the Digilent website
(http://store.digilentinc.com/digilent-adept-2-download-only/). Also, when
using the Digilent JTAG cable as the communication cable, first close any other
software applications currently using the cable.

Demo Cable Settings
The Port Settings button is disabled when the demo cable is selected.

Debugger Configuration
All parts of the debugging system must be configured correctly to make a
successful connection between the debugger and the instrumented device
through the cable. In addition to selecting the cable type and port parameters
described in Debugger Communications Settings, on page 86, the following
additional requirements must be met to ensure proper communications.

Local Client-Server Configuration
The following figure shows a typical local server configuration.

JTAG/UMRBus
Hardware

USB USBSocket
Port

Number

Socket
Port

Number

JTAG/UMRBus
Server Application

Local Communication Over TCP Sockets

Debugger Client

JTAG Server Address: localhost or 127.0.0.1

Workstation or Server with Linux or Windows

http://store.digilentinc.com/digilent-adept-2-download-only/

LO

Chapter 3: Connecting to the Target System Basic Communication Connection

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
90 January 2018

The client-server configuration is set from a dialog box available by selecting
Options->Configure client/server settings in the Identify debugger. The default
settings are usually correct for most configurations and require changing
only when the default server port address is already in use or when the
debugger is being run from a remote machine that is not the same machine
connected to the FPGA board/device (see Remote Client-Server Configuration,
on page 92).

The available configure client-server settings in the dialog box are defined in
the following table:

Basic Communication Connection Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 91

To establish a local client-server connection:

1. Start the debugger and open the Configure client/server settings dialog box.
Select the cable type from the Cable type drop-down menu and make sure
that the server address is either 127.0.0.1 or localhost.

2. Use the default client-server port (59015) if available. If this port is
already in use, list the port status with the netstat command and select
an unused port. Known ports for system components range from 0
through 1023, and registered ports for software components range from
1024 through 49151. The dynamic and/or private ports range from
49152 through 65535. If possible, use a port address within this range
where there is usually ample room.

Setting Function

Cable type The type of interface cable (see Cable Type, on page 86).

Use client/server Check box for enabling client-server communications when
the cable type is USB-based UMRBus (limited to HAPS-70
systems).

server address The address of the server. The address localhost (or 127.0.0.1)
is used when the debugger is run on the same machine
connected to the FPGA device. The server address is set to the
name or tcp/ip4 address of the machine connected to the
FPGA device/board when the debugger is run from a different
machine.

client/server logfile The name of the log file.

Start/Stop Server control buttons for starting and stopping the server in
stand-alone mode. The button adds a start/stop entry to the
log file.

Update log Adds a start/stop entry to the log file.

LO

Chapter 3: Connecting to the Target System Basic Communication Connection

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
92 January 2018

3. For a local client-server connection, click the OK button when satisfied
with the server address and port values. Do not use the Start server
button as this creates a standalone server which must then be manually
stopped with the Stop server button.

4. Start the debugger client-server session with a run or com check command
after loading the project. The local client-server application ends
automatically when the Identify debugger session ends.

Check the Cable type setting in the main page of the debugger after loading the
project.

Remote Client-Server Configuration
The following figure shows a client-server configuration for remote debugging.

The Identify debugger uses a client-server architecture to communicate with
the device. Client-server architecture lets you work remotely with the Identify
debugger using Ethernet as the backbone for the client-server
communication.

Workstation or Server
with Linux or Windows

Workstation or Server
with Linux or Windows

Computer A
Computer B

Socket
Port

Number

Socket
Port

Number

Debugger Client JTAG/UMRBus
Server Application

USB

USB

JTAG/UMRBus
Hardware

Communicate
Over Network

Basic Communication Connection Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 93

In the client-server architecture, the machine connected to the target device
hardware (Computer B in the diagram) is termed the server and any machine
on the same network that is used to launch the Identify debugger and
connect to the server is termed the client (Computer A). You use the Configure
client/server settings dialog box described in the previous section to set up both
the client and server machines so that you can remotely debug the design.
Client-server communication uses the TCP/IP communication protocol over
the network.

To establish a server connection for remote debugging:

1. Configure the target device with the design to be debugged.

2. To start the server on the machine connected to the target device,
launch the Identify debugger, and then configure the server-side Identify
debugger as described below:

– Load the design project file (debug.prj) of the design to be debugged.

– In the debugger GUI, select Configure client/server from the Options
drop-down menu to display the Configure client/server settings dialog box.

– Specify the cable type, server address, port number, and log file name
in the corresponding fields. Set the client/server port according to the
selected cable type and enable the Use client/server check box.
Configuring the client-server parameters does not start the server.

– Start the server in stand-alone mode by clicking the Start server button
in the dialog box. Once started, close the dialog box by clicking OK to
save any changed settings or simply click Cancel to close. With the
server running, you can exit the debugger, but you must manually
stop the server (click the Stop server button) after your session ends.

– If the server starts successfully, you see the umrbussrv process
running in the task manager. If the server cannot be started on the
host machine, an error message is displayed.

LO

Chapter 3: Connecting to the Target System Basic Communication Connection

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
94 January 2018

3. To debug the design from a remote machine (client), launch the
debugger on the client machine and load the design to be debugged.
Then configure the client-side debugger as described below:

– In the debugger GUI, select Configure client/server from the Options
drop-down menu.

– Specify the server address, port number, and log file name in the
Configure client/server settings dialog box. Use the ipconfig (Windows)
or /sbin/ifconfig (Linux) command to verify the name or tcp/ip4
address of the client. The port number must be the same as the port
number used to configure the server.

– If you are using the UMRBus, enable the Use client/server check box.

Once started, close the dialog box by clicking OK to save any changed
settings or simply click Cancel to close.

The following syntax shows the equivalent TCL commands to configure the
server:

umrbus_server set -addr {hostName/IP_address} -port {serverPort}
-logf {logFileName}

jtag_server set -addr {hostName/IP_address} -port {serverPort} -logf {logFileName}

To view the existing server configuration settings, use the jtag_server get or
umrbus_server get Tcl command.

Check the client-server communication by running the com check command
(click the Comm check button in the debugger design-view). If the client-server
communication cannot be established, an error message is displayed in the
debugger.

The client-server architecture may not always work within a WLAN. Also,
firewall restrictions as well as security software such as anti-virus or
anti-spyware can also impact client-server communications.

Once the client-server communication is running properly, you can debug
the design remotely.

Basic Communication Connection Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 95

License Consumption
If you start a debugger session on the server machine, then load an instru-
mented project, and run a communications check, the server does not start
in standalone mode. With this method, you cannot terminate the debugger
session, and two licenses are consumed.

You can start the umrbussrv process in stand-alone mode on the server/host
machine that interfaces to the HAPS hardware system either from the
debugger GUI or from the command line. Both methods are described below.

1. Start the debugger on the HAPS system host.

2. Configure the client/server.

– Select Options->Configure client/server settings.

– In the dialog box, specify the port number.

– Set the cable type.

– Click Use Client/server.

– Set the server address to the hostname of the machine (localhost or
127.0.0.1).

– Click Start Server. This starts the umrbussrv process, according to the
cable type selected.

3. Close the debugger session.

The server (umrbussrv) continues to run in standalone mode, without
consuming a debugger license.

4. Verify that the umrbussrv process is running, using systems tools like
Task Manager or Process Explorer on Windows or ps, top, or htop on
Linux.

5. As an alternative to the previous steps, start the process by running the
following command from the shell or command prompt.

umrbussrv -p portNum -l logfile

Use the - option with either of the commands to verify that the process is
running. For example: umrbus -. For usage information about these
commands, specify the -? option.

LO

Chapter 3: Connecting to the Target System Basic Communication Connection

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
96 January 2018

Communications Cable Connections
There are two connections: cable-to-board and cable-to-host. The latest cable
types use a USB connector to interface with the host and require a USB
driver to be installed (see the installation procedures in the release notes). A
parallel port connection is also supported and requires the installation of a
parallel-port driver.

When using a parallel port, make sure that the parallel port where the cable
is connected corresponds to the lpt specified using the com port command. The
Identify debugger uses the “standard” I/O port definitions: lpt1:
0x378-0x37B, lpt2: 0x278-0x27B, lpt3: 0x3BC-0x3BF, and lpt4:
0x288-0x28B if it cannot determine the proper definitions from the operating
system. If the hardware address for your parallel port does not match the
addresses for lpt1 through lpt4, you can use the setsys set command variable
lpt_address to set the hardware port address (for example, setsys set lpt_address
0x0378 defines port lpt1).

The cable-to-board connection requires a type of mating connector or inter-
face pod to connect to the board containing the device. If you are using
parallel JTAG cables, see JTAG Hardware in Instrumented Designs, on
page 102.

Project File
Make sure that the project file you load into the debugger is the same one
used to create the instrumented version of your design. The debugger detects
any difference between the project and hardware versions when it first
attempts to communicate with the device.

JTAG Chain Description
If you are using the builtin JTAG connection and the device to be debugged is
part of a multi-device scan chain, the debugger first attempts to detect the
devices in the scan chain. If auto-detection is unsuccessful, describe the
device chain to the debugger using the chain command (see Setting the JTAG
Chain, on page 105).

Basic Communication Connection Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 97

Device Family
If you are using the Identify instrumentor/Identify debugger tool set in
stand-alone mode, make sure that the device family (generic, ProASIC, ...) is
correct for the type of programmable chip being used. If this is incorrect, you
must go back and re-instrument your design using the proper device family.

Device Programming
Make sure that you program the device with the instrumented version of your
design, NOT the original version.

LO

Chapter 3: Connecting to the Target System UMRBus Communications Interface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
98 January 2018

UMRBus Communications Interface
The UMRBus is available as a communication interface between the HAPS
hardware and the host machine running the debugger. With the UMRBus, all
communications are performed over the UMRBus communication system,
and the JTAG port is no longer used. During instrumentation, the top level of
the user design is automatically extended with the additional top-level ports
for the UMRBus.

The UMRBus supports both the FPGA Memory and hapsram buffer types as
well as user-defined CAPIMs. The UMRBus is also used for configuring board
systems. To enable the use of the UMRBus in the debugger:

• In the instrumentor, select umrbus from the Communication port drop-down
menu in the design-view or set the device jtagport option to umrbus in the
console window.

• In the debugger, select umrbus from the Cable type drop-down menu in the
design-view or set the com cabletype option to umrbus in the console
window.

Only the UMRBus cable type supports client-server deactivation and works
directly with hardware via UMRBus drivers.

UMRBus Communication Debugging
The Identify debugger performs a number of diagnostic communication tests
every time the “run” function is executed either by clicking the Run button or
executing the run command.

Below is a list of communication related problems associated with UMRBus
communications and some additional explanations.

UMRBus Communications Interface Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 99

Local Client-Server Communications
To eliminate as many unknowns as possible, terminate any Identify debugger
and server applications such as umrbussrv and make sure that you are the
only user working on the system.

• For a local test, start the Identify debugger and open the client/server
dialog box. Select the cabletype, set the server address to 127.0.0.1 or
localhost, and set the port number to 57015. Select Start server and check
for a connection startup message. If not received, make sure that the
cable type, server address, and port number entered are correct. Again
select Start server. If the server starts, the problem is resolved; press Stop
server.

• If the startup test still fails, either use another port or search the
security software options installed on the machine. Check the rules from
firewall (for the LAN adapter) and for all other components such as
anti-virus or anti-spyware software. In most cases, the problem can be
located through the rules, logs, or messages.

• If the problem persists, shutdown the server completely (and restart the
computer) and create a new test with the client-server as the highest
priority.

If the server now starts, the options from the firewall or from the security
software are suspect.

Remote Client-Server Communications
To eliminate as many unknowns as possible, clear memory from the
debugger and server applications such as umrbussrv. Make sure that you are
the only user working on the system.

WLAN is not supported directly. An administrator is required to setup the
WLAN router with the appropriate rules on how the port is mapped from one
network to another.

For an initial check, use the ping command:

ping computerName

Try the command from each machine with the appropriate computer name or
address. If you can ping in both directions, it is safe to assume that the
addresses were located and the responses received. This test is not
conclusive, but it does indicate that the client server can work.

LO

Chapter 3: Connecting to the Target System UMRBus Communications Interface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
100 January 2018

Repeat, step-by-step, the section Local Client-Server Configuration, on
page 89:

• Verify that the same cable type is specified on both the client and server
sides.

• Make sure that the server address on the server side is either localhost or
127.0.0.1.

• Make sure that the server address on the client side is correct. Use the
ipconfig (Windows) or /sbin/ifconfig (Linux) command to verify the name or
tcp/ip4 address of the client interfacing the JTAG/UMRBus hardware.

• Verify that the same port number is specified for both the client and
server sides.

If all of the above are correct and client-server communication is not running
properly, individually start a local test on each computer host using only the
Start server and Stop server buttons. If both computers can be started and
stopped locally (but not over the network), a problem with network configura-
tion and/or security software is indicated.

User Preferences File Impact on Remote Debugging
Communication options and settings are saved in the userprefs.cfg file which is
located in the user profile. When debugging a design remotely, a problem can
occur if the same userprefs.cfg file is used when logging in to both the client
and server (if the user profile is defined as global, the specified configuration
applies to all logins by that user which would include the client host for the
Identify debugger).

To avoid conflicts with dissimilar userprefs.cfg files, start the server (the host
connected to the device) only after checking and changing any parameters in
the dialog box or on the command line. Start the client with run/com check.
Check the parameters in dialog box and change if needed. Save the settings
by clicking OK and repeat this procedure each time you begin a new remote
debug session.

JTAG Communication Interface Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 101

JTAG Communication Interface
JTAG is a 4-wire communication protocol defined by the IEEE 1149.1
standard. The JTAG standard defines the names of the four connections as:
TCK, TMS, TDI, and TDO.

The JTAG-compliant devices are connected to a host computer through a
JTAG cable. Such devices can be connected directly to the cable (see following
figure), or multiple devices can be connected in a serial chain.

The following topics are included in this section:

• JTAG Hardware in Instrumented Designs, on page 102

• JTAG Communication Debugging, on page 109

JTAG
Cable

TCK
TMS

TDO

TAP
ControlTDI

LO

Chapter 3: Connecting to the Target System JTAG Communication Interface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
102 January 2018

JTAG Hardware in Instrumented Designs
When the debug environment uses a JTAG connection to communicate with
the instrumented design, the IICE must contain a TAP controller to
implement the JTAG standard. The IICE JTAG connection currently can be
implemented in one of two ways:

• The IICE can be configured (using the builtin option) to use the JTAG
controller that is built into the programmable chip. This approach has
the advantage that the built-in TAP controller already has hard-wired
connections and four dedicated pins. Accordingly, employing the debug
environment does not cost extra pins. In addition, the built-in TAP
controller does not require any user logic resources because it usually is
implemented in hard-wired logic on the chip. Unfortunately, not all
devices have a usable built-in TAP controller.

• The IICE can be configured (using the soft JTAG port option) to include a
complete, JTAG-compliant TAP controller. The TAP controller is
connected to external signals by using four standard I/O pins on the
programmable device. Any programmable device family can utilize this
type of cable connection since it only requires four standard I/O pins.

The following sections provide more detail on these two communication
options.

Using the Built-in JTAG Port
Some programmable device families employ a built-in TAP controller as a
means for device configuration. In most cases, the IICE also can be config-
ured to use this built-in TAP controller. Using this TAP controller saves the
user logic necessary to implement the controller and also saves four I/O pins.

Using the built-in port is slightly more complicated than using the soft debug
port because the built-in port usually has special board-level connections
that facilitate the programming of the chip. Consequently, these program-
ming connections must be understood to properly connect the JTAG cable to
the board and to properly communicate with the IICE.

Boards with Direct JTAG Connections
HAPS boards and other boards that connect the built-in JTAG port directly to
four header pins on the board allow the JTAG cable to simply be connected
directly to the header pins. This configuration works for both directly
connected devices and serially chained devices.

JTAG Communication Interface Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 103

A common serial configuration is the combination of an EEPROM with a
programmable device. This configuration allows you to either directly
program the chip, or to program the EEPROM and then use the contents of
the EEPROM to program the device via some other connection (see following
figure).

This configuration is well suited to the debugger and works just like any
other serially connected chain.

Using the Synopsys Debug Port
By configuring the IICE using the soft JTAG port option, the design instrumen-
tation includes a complete, JTAG-compliant TAP controller. The debugger
connects the TAP controller to four top-level I/O connections to the design.
The signal names for these connections are:

• identify_jtag_tck: the asynchronous clock signal

• identify_jtag_tms: the control signal

• identify_jtag_tdi: the serial data IN signal

• identify_jtag_tdo: the serial data OUT signal

TAP
Control

EEPROM

JTAG
Cable

TAP
Control

FPGA

TDO
TDI
TMS
TCK

LO

Chapter 3: Connecting to the Target System JTAG Communication Interface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
104 January 2018

Direct JTAG Connection
Commonly, the host computer is directly connected to the four JTAG signals
on the programmable chip as follows:

• The four JTAG I/O signals on the programmable chip are connected to a
header on the circuit board that contains the programmable chip.

• A standard JTAG cable is connected to the four pins on the circuit board
header.

• The other end of the JTAG cable is connected to the host computer.

Serial JTAG Connection
A programmable chip using the Synopsys FPGA Debug Port can also be
connected in a serial chain. To allow the debugger to communicate with the
device, the configuration of the device chain must be successfully
auto-detected or declared using the chain command (see the Reference
Manual). The steps for making a serial cable connection are the same as a
direct cable connection described above.

JTAG Clock Considerations
The JTAG clock signal syn_tck on the JTAG port drives many flip-flops in the
instrumentation logic – the number depends on the instrumentation, but can
be larger than 1000 flip-flops. Consequently, the clock signal on the program-
mable device must be able to drive large numbers of flip-flops and have
low-skew properties. If the JTAG clock signal is not handled correctly, it is
likely that the instrumentation will act erratically.

JTAG Communication Interface Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 105

Most programmable devices have the ability to route such high-fanout
signals using dedicated clock drivers and global clock distribution networks.
Different devices use different methods of accomplishing this and have
different names for this resource. Here are some simple guides:

• Some programmable devices have a number of dedicated clock I/O pins
that drive internal clock distribution networks. In this case, be sure to
connect the syn_tck signal to the chip using one of these clock I/O pins.

• Other programmable devices have clock buffers and clock distribution
networks that can use any internal signal as a clock signal. For these
technologies, the synthesis tool usually detects high-fanout signals and
implements them with a clock buffer. In this case, it is important to
make sure that the synthesis tool has worked correctly. If it does not put
the syn_tck signal into a global buffer, it may be necessary to manually
add a global buffer to this signal.

Setting the JTAG Chain
JTAG connections on an FPGA board usually chain devices together to form a
serial chain of devices. This chain includes PROMs and other FPGA devices
present on the board.

The debugger automatically detects the JTAG chain at the beginning of the
debug session. You can review the JTAG chain settings by clicking the Show
JTAG chain button in the Communications settings section of the design-view
window.

To enable the debugger to properly communicate with the target device, the
device chain must be configured correctly. If, for some reason, the JTAG
chain cannot be successfully configured, you must manually specify the
chain through a series of chain instructions entered in the console window.

LO

Chapter 3: Connecting to the Target System JTAG Communication Interface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
106 January 2018

Configuring a device chain is very similar to the steps required to program the
device with a JTAG programmer.

For the debugger, the devices in the chain must be known and specified. The
following information is required to configure the device chain:

• the number of devices in the JTAG chain

• the length of the JTAG instruction register for each device

Instruction register length information is usually available in the bsd file for
the particular device. Specifically, it is the Instruction_length attribute listed in
the bsd file.

For the board used in developing this documentation, the following sequence
of commands was used to specify a chain consisting of a PROM followed by
the FPGA. The instruction length of the PROM is 8 while the instruction
length of the FPGA is 5. Note that the chain select command identifies the
instrumented device to the system. Identifying the instrumented device is
essential when a board includes multiple FPGAs.

Note: The names PROM and FPGA have no meaning to the debugger –
they simply are used for convenience. The two devices could be
named device1 and device2, and the debugger would function
exactly the same.

Again, the sequence of chain commands is specific to the JTAG chain on your
board; these commands are the chain commands for the board used to
develop this document – the board you use will most likely be different.

Type the following sequence in the console window of the debugger:

chain clear
chain add prom 8
chain add fpga 5
chain select fpga
chain info

The following figure shows the results of the above command sequence.

JTAG Communication Interface Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 107

LO

Chapter 3: Connecting to the Target System JTAG Communication Interface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
108 January 2018

Adding Microsemi Soft JTAG TAP Controllers

This procedure describes how to select and set up a specific Flashpro
programmer, when multiple Flashpro programmers are connected to a
common host.

The com cableoptions option allows you to select one among the multiple
FlashPro
programmers connected to a common host:

com cableoptions Microsemi_BuiltinJTAG_port <string>

The string represents the FlashPro programmer’s port name.

You can identify the port name and proceed to use the cable option as
described below:

1. Start FlashPro.

2. Scan the programmers that are connected to the host and note down the
port name (for example—usb32344).

3. Close FlashPro.

4. Start Identify debugger.

5. Define the cable type as:

com cabletype Microsemi_BuiltinJTAG

6. Define the cable option using the FlashPro programmer port name that
you identified in Step 2. For example:

com cableoptions Microsemi_BuiltinJTAG_port usb32344

Note: For Flashpro4 programmer ports, the port name must include
the usb prefix, as shown in the example above. Flashpro5 ports
on the other hand, must NOT include the prefix. For example:
com cableoptions Microsemi_BuiltinJTAG_port S201R1NLS

7. Check communication with the port using the com check command. If the
check is successful, you can start the debugger and debug the design.

JTAG Communication Interface Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 109

Note that you cannot change to a different port by just re-running step 6 with
the new port’s name. To select a different port, perform the following steps:

1. Stop the server using the jtag_server stop -forced 0 command. If this does
not work,
use -forced 1.

2. Define the new cable option. For example:

com cableoptions Microsemi_BuiltinJTAG_port usb32388

3. Run com check to check communication with the new port.

JTAG Communication Debugging
The debugger performs a number of diagnostic communication tests. The
first time the debugger connects to the on-chip TAP controller, it performs
extensive communication tests. Later, every time the “run” function is
executed, either by clicking the Run button or executing the run command,
simpler and faster tests are executed.

Below is a list of communication related error messages with some additional
explanations.

Basic Communication Test
This test sends a pattern of ones and zeros to the chip and examines the
return values

• ERROR: Communication is stuck at zero. Please check the cable connection.
It is likely that the debugger is unable to communicate with the
instrumented chip. This error is usually a cable connection problem, or
the cable type is not set correctly.

• ERROR: Communication is stuck at one. Please check the cable connection.
This has the same reasons as a stuck-at-zero communication error.

• ERROR: Communication is returning incorrect IR data. Please check the cable
connection.
If this error is received, then the previous two errors were NOT received
as the communication is returning a mixture of ones and zeroes.
However, the data is not coherent and again the communication
connection is suspect.

LO

Chapter 3: Connecting to the Target System JTAG Communication Interface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
110 January 2018

• ERROR: Communication problem - data sent is not the same as data received.
This test verifies that the debugger can shift data into the instrumented
chip and receive the same data back. If this error occurs, there is again a
problem with your cable connection or the cable type setting is incorrect.
Also, the JTAG chain may be experiencing noise immunity/signal integ-
rity problems. As a troubleshooting step, select a reduced JTAG clock
frequency by clicking Port settings in the debugger project window and
selecting a lower clock frequency.

The last two errors can also be the result of a syn_tck signal that is not using a
high-fanout clock buffer resource, and thus may show large clock skew
properties. If you are using a parallel port, make sure that you have selected
the correct port.

On-chip Identification Register
The instrumentor adds hardware to implement an on-chip identification
register.

• ERROR: Cannot find valid instrumented design.
The debugger cannot verify that the identification register on the
instrumented design is correct or even exists. This error usually means
that the design on the programmable chip is NOT the instrumented
version of the design.

• ERROR: Instrumented design on FPGA differs from design loaded into Identify
Debugger.
The debugger verified that the chip is instrumented but the
instrumentation does not match the design that was loaded into the
debugger.

JTAG Communication Interface Chapter 3: Connecting to the Target System

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 111

JTAG Chain Tests
The debugger attempts to verify the device chain (as defined by the chain
auto-detector or the chain command).

• ERROR: No hardware devices were found. Please check the cable connection.
No devices can be seen in the JTAG identification register chain.
Probably a bad cable connection, or the cable type is incorrect.

• ERROR: The actual number of devices differs from the defined number: ACTUAL: XX
DEFINED: YY
The number of devices seen in the JTAG chain is XX, but the debugger
was expecting the number to be YY (as was defined using the chain
command). The chain description is incorrect.

• ERROR: The actual IR chain size differs from the defined size: ACTUAL: XX
DEFINED: YY
The total number of JTAG identification register bits is incorrect. The
debugger measured the hardware to have XX bits, but was expecting YY
bits (as was defined using the chain command). Please review your chain
configuration.

• ERROR: Communication with device number XX is not correct. Please check your
chain setup.
If this error appears, the previous error does not appear. Thus, the total
JTAG instruction register length is correct, but the size of the
instruction register of device number XX is incorrect. It is likely that the
order of your devices is incorrect. Review your chain settings.

LO

Chapter 3: Connecting to the Target System JTAG Communication Interface

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
112 January 2018

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 1

Index

A
activations

auto-saving 35
loading 34
saving 33

asynchronous clocks 71

B
blocks

JTAG communication 55
sampling 58

breakpoints
activating 20
combined with watchpoints 58
folded 23
multiple 57

Byteblaster cable settings 87

C
cable compatibility 87
cable type 86
cable type settings

Byteblaster 87
JTAGTech3710 88
Microsemi 88

cables
connection 96

client-server configuration 89
clocks

asynchronous 71
communication cable

settings 8
communications settings 86
complex counter 59

cycles mode 61
disabling 62
events mode 61

modes 60
pulsewidth mode 62
size 59
watchdog mode 61

condition operators 67
Configure IICE dialog box 51
console window 14

operations 15
convenience functions 70
cross triggering 35, 44, 71

commands 72
enabling 71
state machine commands 73

cycles mode
complex counter 61

D
data compression 26

masking 27
DDR3 performance 39
debug sample data

viewing 40
Debugger tool

invoking 10
debugger tool

opening projects 10
debugging

on separate machines 43
deep trace debug configurations 39
dialog boxes

Configure IICE 51

E
events mode

complex counter 61

Index

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
2 January 2018

F
fast signal database 50
files

last_run.adb 35
script 17
syn_trigger_utils.tcl 70

folded breakpoints 23
folded signals 31
folded watchpoints 22

I
identification register 110
IICE

cross triggering 71
JTAG connection 102

IICE parameters
individual 51

IICE units
cross triggering 35

J
JTAG

chain tests 111
communication 101
communication block 55
communication test 109
debugging 98, 109
direct connection 104
serial connection 104

JTAG chain
settings 9

JTAGTech3710 cable settings 88

L
last_run.adb file 35

M
macros

st_snapshot_fill 81
st_snapshot_intr 82

Microsemil
cable type settings 88

modes
cross triggering 36

multi-IICE
tabs 51

multiple signal values 31, 32
multiplexed groups

selecting 21

O
operators

condition 67
original source files

searchpath 44
original sources 43

P
projects

opening in debugger 10
saving 10

pulsewidth mode
complex counter 62

Q
qualified sampling 81

R
radix

sampled data 30
RAM resources 59
remote triggering 83
run command 25

S
sample buffer 29

trigger position 28
sample data

viewing 40
sample modes 81
sampled data

changing radix 30
compressing 26
display controls 29

Index

Identify for Microsemi Edition User Guide © 2018 Synopsys, Inc.
January 2018 3

masking 27
sampling block 58
sampling signals 13
saving a project 10
script files 17
settings

cable 8
JTAG chain 9

signal values
displaying multiple 31, 32

signals
folded 31
listing available 13
listing instrumented 13
multiply instrumented 31, 32
partially instrumented 32
sampling selection 13
status 66

source files
copying 43

st_snapshot_fill macro 81
st_snapshot_intr macro 82
state machines

transitions 67
triggering 64, 65

statemachine command 66
state-machine editor 74
status reporting 66
stop command 26, 66
syn_trigger_utils.tcl file 70

T
TAP controller 102
tools

invoking Debugger 10
transition watchpoint 18
trigger conditions 63
triggering

advance mode 64
between IICEs 71
modes 63
remote 83
state machine 64, 65

triggers
complex 59

U
UMRBus 98

V
value watchpoint 18
Verdi nWave viewer 50

W
watch command 66
watchdog mode

complex counter 61
watchpoints 57

activating 17, 20
combined with breakpoints 58
deactivating 19
folded 22
hexadecimal values 19
listing 36
multiple 58
transition 18
value 18

waveform display 48
waveform viewers 48

Verdi 50
windows

console 14

Index

© 2018 Synopsys, Inc. Identify for Microsemi Edition User Guide
4 January 2018

	Identify Microsemi Edition Debugger User Guide
	Copyright Notice and Proprietary Information
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links
	Contents

	Using the Debugger
	Configuring and Invoking the Debugger
	Reviewing the Instrumentation Settings
	Changing the Communication Settings
	Reviewing the JTAG Chain Settings
	Saving the Debugged Design
	Invoking the Debugger

	Debugger Windows
	IICE Instrumentation Window
	Console Window
	Project Window

	Commands and Procedures
	Opening and Saving Projects
	Executing a Script File
	Activating/Deactivating an Instrumentation
	Selecting Multiplexed Instrumentation Sets
	Activating/Deactivating Folded Instrumentation
	Run Command
	Sampled Data Compression
	Sample Buffer Trigger Position
	Sampled Data Display Controls
	Saving and Loading Activations
	Cross Triggering
	Listing Watchpoints and Signals

	HAPS Deep Trace Debug
	Running Deep Trace Debug
	Viewing Captured Deep Trace Debug Samples
	Hardware Configuration Verification

	Debugging on a Different Machine
	Simultaneous Debugging
	Waveform Display
	Generating the Fast Signal Database

	Logic Analyzer Interface Parameters
	Logic Analyzer Scan Tab
	Logic Analyzer Properties Tab
	Logic Analyzer Submit Tab
	IICE Assignments Report Tab

	IICE Hardware Description
	JTAG Communication Block
	Breakpoint and Watchpoint Blocks
	Breakpoints
	Watchpoints
	Multiple Activated Breakpoints and Watchpoints

	Sampling Block
	Complex Counter
	Creating a Complex Counter
	Debugging with the Complex Counter
	Disabling the Counter

	State Machine Triggering
	Simple or Advanced Triggering
	Advanced Triggering Mode
	State-Machine Editor
	State-Machine Examples

	Connecting to the Target System
	Basic Communication Connection
	Debugger Communications Settings
	Debugger Configuration

	UMRBus Communications Interface
	UMRBus Communication Debugging

	JTAG Communication Interface
	JTAG Hardware in Instrumented Designs
	Adding Microsemi Soft JTAG TAP Controllers
	JTAG Communication Debugging

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

