
Synplify Pro ME L201609MSP1-5

Release Notes
2/2018

Release Notes 1.0 2

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not be
used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other
testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on
any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system
solutions for aerospace & defense, communications, data center and industrial markets. Products include
high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs;
power management products; timing and synchronization devices and precise time solutions, setting the
world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage
and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions;
Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at
www.microsemi.com.

51300194-1/2.18

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi Corporation. All rights
reserved. Microsemi and the Microsemi
logo are registered trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

Synplify Pro L2016.09MSP1-5 Release Notes

Release Notes 1.0 3

Revision History

The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

Revision 1.0
Revision 1.0 is the first publication of this document.

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 4

Contents
Revision 1.0 .. 3

1 Installation ... 5

2 Families Supported .. 6

3 Enhancements ... 7

3.1 RTG4 - Disable safe implementation for FSMs ... 7

3.2 RTG4 - Write Byte-Enable Support for RAM .. 7

Example 1: RTL coding style for Single port RAM with write byte-enables ... 7

Example 2: RTL coding style for Two- port RAM with write byte-enable .. 8

Example 3: VHDL RTL coding style for Two- port RAM with write byte-enable .. 9

3.3 RTG4 - Updated Timing Models ... 11

3.4 SmartFusion2, IGLOO2, RTG4 - Soft JTAG Controller feature in Identify Instrumentor 11

4 Resolved Issues .. 14

4.1 SmartFusion2, IGLOO2, and RTG4 - Logical Bug with inference of pipelined wide multipliers into MATH
blocks ... 14

4.2 Other resolved issues ... 14

5 Known Issues ... 16

5.1 Synplify Pro error: library fusion not found ... 16

5.2 High reliability option in Synplify Pro is not inferring the state machine correctly 16

5.3 Warning message: "@W: CL269 : State error detection not built".. 16

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 5

1 Installation

• The Synplify Pro ME L201609MSP1-5 version can be downloaded from
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-
pro-me#downloads

• Change the Libero SoC Tool Profile for Synthesis (Libero SoC -> Project -> Tool Profiles ->
Synthesis) and point to the location of the newly-installed Synplify Pro executable.

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#downloads
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#downloads

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 6

2 Families Supported

Synplify Pro ME L201609MSP1-5 supports the following families:

• Fusion
• IGLOO
• IGLOOE
• IGLOO PLUS
• IGLOO2
• ProASIC3
• ProASIC3E
• ProASIC3L
• RTG4
• SmartFusion
• SmartFusion2
• PolarFire

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 7

3 Enhancements

The Synplify Pro ME (L2016.09MSP1-5) version has following enhancements for SmartFusion2, IGLOO2,
and RTG4 families.

3.1 RTG4 - Disable safe implementation for FSMs
The following options can be used to insert safe implementation logic:

• Attribute syn_encoding = safe
• Attribute syn_safe_case

Enable the options under Implementation Options -> High Reliability -> Preserve and Decode
unreachable states.

Synplify Pro L-2016.09M-SP1-5 issues the following error: “Safe state machine option is not
recommended for Microsemi RTG4 technology. To continue with safe state machine
implementation, downgrade this error to warning”.

You have the option to downgrade this error to a warning message, and Synplify Pro implements
the safe logic for FSMs if these options are present.

3.2 RTG4 - Write Byte-Enable Support for RAM
This feature is supported for RAMs inferred in non-low power (speed) mode.

Coding style examples for RAM Write Byte-Enable are provided below.

Example 1: RTL coding style for Single port RAM with write byte-enables

module ram (din, dout, addra, clk, wen1, wen2);
input [9:0] din;
input wen1;
input wen2;
input [9:0] addra;
input clk;
output reg [9:0] dout;
localparam max_depth=1024;
localparam min_width=10;
reg [9:0] taddra;
reg [min_width-1:0] mem_ram[max_depth-1:0];
always @(posedge clk) begin

taddra<=addra;
if(wen1) mem_ram[taddra][4:0]<=din[4:0];

 if(wen2) mem_ram[taddra][9:5]<=din[9:5];

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 8

end
always @(posedge clk)
begin
 dout <= mem_ram[taddra];
end
endmodule

Resource Usage Report:

SLE 10 uses

Total Block RAMs (RAM1K18_RT): 1 of 209 (0%)

Total LUTs: 0

Example 2: RTL coding style for Two- port RAM with write byte-enable

module ram_wb_wen_2addr(din ,dout, addra, addrb, clk, wen);

input [17:0] din;

input [1:0] wen;

input [9:0] addra;

input [9:0] addrb;

input clk;

output reg [17:0] dout;

localparam max_depth=1024;

localparam min_width=18;

reg [9:0] taddra;

reg [9:0] taddrb;

reg [min_width-1:0] mem_ram[max_depth-1:0];

always @(posedge clk)

begin

taddra<=addra;

taddrb<=addrb;

 if(wen[0])

 mem_ram[taddra][8:0]<=din[8:0];

 if(wen[1])

 mem_ram[taddra][17:9]<=din[17:9];

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 9

end

always @(posedge clk)

begin

 dout <= mem_ram[taddrb];

end

endmodule

Resource Usage Report:

SLE 10 uses

Total Block RAMs (RAM1K18_RT) : 1 of 209 (0%)

Total LUTs: 0

Example 3: VHDL RTL coding style for Two- port RAM with write byte-enable

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity test_LSRAM_1kx16 is

 port (clk_wr : in std_logic;

 clk_rd : in std_logic;

 en1_wr : in std_logic;

 en2_wr : in std_logic;

 addr_wr : in std_logic_vector(9 downto 0);

 data_wr : in std_logic_vector(15 downto 0);

 addr_rd : in std_logic_vector(9 downto 0);

 data_rd : out std_logic_vector(15 downto 0)

);

end test_LSRAM_1kx16;

architecture behave of test_LSRAM_1kx16 is

 type mem_type is array (1023 downto 0) of std_logic_vector(15 downto 0);

 signal MEM1 : mem_type;

 signal r_addr_rd : std_logic_vector(9 downto 0);

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 10

 begin

 process(clk_wr)

 begin

 if rising_edge(clk_wr) then

 if (en1_wr = '1') then

MEM1(CONV_INTEGER(addr_wr(9 downto 0)))(7 downto 0)<= data_wr(7
downto 0);

end if;

if (en2_wr = '1') then

MEM1(CONV_INTEGER(addr_wr(9 downto 0)))(15 downto 8) <= data_wr(15
downto 8);

end if;

 end if;

 end process;

 data_rd <= MEM1(CONV_INTEGER(r_addr_rd));

 process(clk_rd)

 begin

 if rising_edge(clk_rd) then

 r_addr_rd <= addr_rd;

 end if;

 end process;

end behave;

Resource Usage Report:

SLE 0 uses

Total Block RAMs (RAM1K18_RT) : 1 of 209 (0%)

Total LUTs: 0

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 11

3.3 RTG4 - Updated Timing Models
Synplify Pro L-2016.09M-SP1-5 updates the timing models for RTG4 – cell delay, net delay
models and carry-chain paths.

3.4 SmartFusion2, IGLOO2, RTG4 - Soft JTAG Controller feature in Identify
Instrumentor

• The “soft” communication interface feature is fixed.
• Users can select through the Identify Instrumentor integrated within Synplify Pro as

shown in the following screenshots:

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 12

• In Identify Debugger, the communication port selected in Instrumenter shows as “soft”

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 13

For details about this feature, refer to the Synplify Pro and Identify User Guides:

Identify -> doc -> identify_instrumentor_user_guide.pdf

Identify -> doc -> identify_debugger_user_guide.pdf

For using Identify Instrumentor and Identify Debugger with Libero SoC, refer to the tutorial
at the following link:

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-
soc#documents

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#documents
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#documents

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 14

4 Resolved Issues

4.1 SmartFusion2, IGLOO2, and RTG4 - Logical Bug with inference of pipelined
wide multipliers into MATH blocks
Testcase Scenario:

• Two stages of registers.
• The first stage of registers has an async or sync reset, but the second stage does not.
• Width of ina > 18 or Width of inb > 18.

In the above test scenario, Synplify Pro infers MACC block by packing registers.

Issue:
• Reset signal was left dangling and was not connected to the MACC block.

4.2 Other resolved issues

CASE Description

493642-2121758499 Synplify does not issue warning

493642-2275822814 Synplify Pro ME L2016.09M-2 crash

493642-2329166944 Synplify Pro L-2016.09M-2 prompts warning Pure - Impure
Function but J-2015.03M SP1-2 does not give warning

493642-2352648113 Internal Error in m_proasic.exe

 For the RTG4 family, the async_globalthreshold should be
set 12 by default

 Synplify creates RGRESETs when FSM compiler option is
checked for RTG4

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 15

 Synplify Pro infers RAM1K18_RT with unsupported
WMODE =01 with ECC=1

 Synplify Pro crashes with Compiler Error for vhdl design

 The total global count is "8" for all dies, which is incorrect.

 Synplify Pro (embedded with Libero SoC v11.7) displays the
unsupported Operating Condition for SmartFusion2/
IGLOO2/RTG4 devices

 Need explanation for SRST_N absorption across hierarchy

 Synplify Pro Online Help claims register initial value
support

 Synplify suboptimal 32x32 Mult

 Forward-annotated SDF is not supported for ProASIC3 and
other families and needs to be removed from doc.

Synplify Pro L2016.09MSP1-5 Release Notes

 Release Notes 1.0 16

5 Known Issues

5.1 Synplify Pro error: library Fusion not found
Issue: There are missing lines related to the Fusion library from the location.map from Synplify
Pro installation folder.

Workaround: Updated files can be patched locally upon request.

5.2 High reliability option in Synplify Pro is not inferring the state machine
correctly
Issue: With High reliability option on, Synplify Pro does not infer state machines from the state
machine coding in the correct way.

Workaround: Use the attribute syn_state_machine in the case statement code as below:
attribute syn_state_machine : boolean;
attribute syn_state_machine of state : signal is true;

5.3 Warning message: "@W: CL269 : State error detection not built"
Reason: Refer to Synplify Pro Help for CL269 warning message.

In safe mode, the compiler generates a state error detection component for all case statements
used to synthesize the state machine logic. If the component is removed, this warning is
generated for you to confirm the following:

1. A state machine was not inferred for a particular case statement.
2. A state machine was inferred from a case statement, but the case statement is missing an

others clause (VHDL) or default clause (Verilog).

Action: Check for the correct intended behavior. In the first condition above, verify whether the
logic should not be a state machine or if the compiler was unable to extract it. For the second
scenario, you may need to add an others or default clause to the source code so the compiler
knows how to handle a bad state.

Workaround: If you believe a state machine was not inferred for a particular case statement,
analyze the RTL to understand why the logic should not be a state machine. If the intended
behavior is correct, ignore the warning message. Otherwise, modify the RTL so that a state
machine is inferred.

	Revision 1.0
	1 Installation
	2 Families Supported
	3 Enhancements
	3.1 RTG4 - Disable safe implementation for FSMs
	3.2 RTG4 - Write Byte-Enable Support for RAM
	Example 1: RTL coding style for Single port RAM with write byte-enables
	Example 2: RTL coding style for Two- port RAM with write byte-enable
	Example 3: VHDL RTL coding style for Two- port RAM with write byte-enable

	3.3 RTG4 - Updated Timing Models
	3.4 SmartFusion2, IGLOO2, RTG4 - Soft JTAG Controller feature in Identify Instrumentor

	4 Resolved Issues
	4.1 SmartFusion2, IGLOO2, and RTG4 - Logical Bug with inference of pipelined wide multipliers into MATH blocks
	4.2 Other resolved issues

	5 Known Issues
	5.1 Synplify Pro error: library Fusion not found
	5.2 High reliability option in Synplify Pro is not inferring the state machine correctly
	5.3 Warning message: "@W: CL269 : State error detection not built"

