Packaged and Bondable Chips

Features

- Low-Noise Performance
- High Cut-off Frequency
- Passivated to Enhance Reliability
- Packaged Diodes and Bondable Chips

Applications

- Single and Balanced Mixers and Detectors
- Transceivers X, K and Ka Bands
- 30 and 60 GHz Radios
- Automotive Radar Detectors

Maximum Ratings

<table>
<thead>
<tr>
<th>Description</th>
<th>Microsemi’s MS8000 series of GaAs Schottky barrier diodes are available in packaged form and bondable chip configurations. These Schottky devices have low series resistance and low junction capacitance. The resulting low noise figure makes these diodes suitable for sensitive mixer and detector applications from below X band to beyond Ka band frequencies.</th>
</tr>
</thead>
</table>

Ordering Information

P00 is the designation for the bondable chip Schottky (e.g. MS8001-P00). Packaged diodes are designated by the package outline number (e.g. MS8001-30)
Packaged and Bondable Chips

SPICE Model Parameters for MS8004

<table>
<thead>
<tr>
<th>I_S (A)</th>
<th>R_S (Ω)</th>
<th>N</th>
<th>T_T (Sec.)</th>
<th>C_{J0} (pF)</th>
<th>m</th>
<th>E_G (ev)</th>
<th>V_J (V)</th>
<th>B_V (V)</th>
<th>I_{BV} (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 x 10⁻¹³</td>
<td>6</td>
<td>1.05</td>
<td>0</td>
<td>0.06</td>
<td>0.50</td>
<td>1.42</td>
<td>0.85</td>
<td>5.0</td>
<td>1x10⁻²</td>
</tr>
</tbody>
</table>

Specifications @ 25°C

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Cj @ 0 V (pF)</th>
<th>Max. R_S (Ω)</th>
<th>LO Frequency (GHz)</th>
<th>Typ. Noise Figure (dB)</th>
<th>IF Impedance (Ω)</th>
<th>Min. V_{BR} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS8001</td>
<td>0.12</td>
<td>6</td>
<td>9.375</td>
<td>5.6</td>
<td>250–500</td>
<td>5</td>
</tr>
<tr>
<td>MS8002</td>
<td>0.10</td>
<td>6</td>
<td>16.000</td>
<td>5.6</td>
<td>250–500</td>
<td>5</td>
</tr>
<tr>
<td>MS8003</td>
<td>0.07</td>
<td>6</td>
<td>24.000</td>
<td>6.5</td>
<td>250–500</td>
<td>5</td>
</tr>
<tr>
<td>MS8004</td>
<td>0.06</td>
<td>6</td>
<td>36.000</td>
<td>6.5</td>
<td>250–500</td>
<td>5</td>
</tr>
</tbody>
</table>

1. Suffix of the model number indicates the package style. Available in M22, M38 and M39 and in chip form P10, e.g. MS8001-P10.
2. C_J is specified at 1 MHz.
3. Series resistance, R_S, is calculated by subtracting the barrier resistance $R_D = kT/qI$ from the measured total resistance R_T at 10 mA: $R_S = R_T - R_D$.
4. The quoted noise figure (NF) is a single side band NF measured at 8 dBm LO power in a single-ended mixer, and 10 dBm in a balanced mixer with a 30 MHz IF amplifier with 1.5 dB NF.
5. The breakdown voltage, V_{BR}, is specified at a reverse current of 10 µA.

Device Reliability

The reliability of GaAs Schottky barrier diodes has been established through long-term operation and step-stress testing. A high-temperature refractory metatization structure, Ti- Pt- Au, eliminates potential problems arising from the penetration of metalization into the semiconductor during long-term use in the RF systems. Well established chip fabrication and manufacturing techniques further enhance device reliability by reducing the possibility of surface breakdown or chip damage in mounting.

Long-term operation and step stress tests have indicated that for a junction temperature of 200°C, MTTF will be greater than 1E6 hours.

Precautions for Handling Schottky Barrier Diodes

Microwave and millimeter wave Schottky barrier diodes have very small junction areas and are therefore extremely sensitive to accidental electrostatic discharge (ESD) and over voltage burnout. The first or most sensitive indication of excessive electrical stress or burnout is an increase in the reverse leakage current: I_R of the diode. A large overload will cause the reverse breakdown voltage to decrease to a lower value, and also degrade the forward voltage characteristics of the diode. ESD is responsible for both catastrophic and latent failures of high-frequency Schottky barrier diodes.

Static electricity, or ESD, is more prevalent in dry climates such as experienced during the winter months, and may be generated on one’s person or by the diode packaging material. Therefore, extreme care must be taken when handling these diodes.

Grounded dual wrist straps with continuous monitor, table-top ionizers and ESD bags/enclosures should be used when handling Schottky barrier diodes.

If auxiliary test equipment, such as an oscilloscope or a digital voltmeter, is to be connected and used for a monitoring diode operation, it should be connected electrically before the diode is installed if possible. If not, the ground side of the instrument must be connected first, or the diode may be damaged by the AC current flowing in the ground loop and through the diode.
GaAs Schottky Diodes (Packaged and Bondable Chips)

Typical Characteristics

![Graph showing Noise Figure (dB) @ 24 GHz](image)

Noise Figure (dB) @ 24 GHz

(Balanced Mixer)

- The quoted noise figure (NF) is a single side band NF measured at LO power of 6 dBm for a single, and 10 dBm for a balanced mixer with a 30 MHz IF amplifier with a noise figure of 1.5 dB.

![Graph showing Junction Capacitance](image)

Junction Capacitance

![Graph showing I-V Characteristics for GaAs Schottky Diode](image)

I-V Characteristics for GaAs Schottky Diode