

Silicon Carbide Dual Schottky Power Rectifier 10A, 600V

ORDERABLE PART NUMBERS					
	MSiCSN10060CC	MSiCSN10060CA	MSiCSN10060D		
Configuration	Common Cathode	Common Anode	Doubler		
DESCRIPTION					

These dual 600 V rated SiC Schottky rectifiers are in a hermetically sealed package with options for common cathode, common anode, and doubler configurations. They offer very fast switching capabilities with greater efficiency at higher operating temperatures compared to existing ultrafast silicon rectifiers.

TO-257 Package

Also available in:

Dual U3 package

(surface mount)

MSiCSS10060CC

U4 package (surface mount)

MSiCSS10060

TO-257 package (leaded)

FEATURES

- TO-257 package
- Lightweight
- Hermetically sealed package
- Internal metallurgical bonds
- High temperature (T_J) +175 °C
- Zero reverse recovery current
- Temperature independent switching behavior
- Very fast switching compared to fast or ultrafast rectifiers

Important: For the latest information, visit our website http://www.microsemi.com.

- Positive V_F temperature coefficient (parallel devices for higher currents)
- RoHS compliant versions are available

APPLICATIONS / BENEFITS

- Schottky barrier diode for military, space and other high reliability applications
- Switching power supplies or other applications requiring extremely fast switching and essentially no switching losses
- High forward surge capability
- High reverse voltage capability with very fast switching.
- Inherently radiation hard >100 krads as described in Microsemi MicroNote 050

MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J and T _{STG}	-65 to +175	°C
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.6	°C/W
Working Peak Reverse Voltage	V _{RWM}	600	V
Non-Repetitive Peak Inverse Voltage	V _{RSM}	600	V
DC Blocking Voltage	V_{DC}	600	V
Average DC Output Current @ 25 °C	Io	10	Α
Non-Repetitive Sinusoidal Surge Current	I _{FSM}	50	Α
@ tp = 8.3 ms, half sinewave, $I_0 = 0$; $V_{RM} = 0$			

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

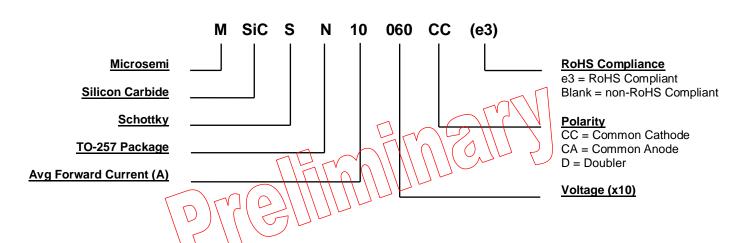
MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING


• CASE: Nickel plated copper base & 1020 steel frame

• TERMINALS: Solder dipped copper cored 52 alloy or RoHS compliant matte-tin plating

• MARKING: Alpha numeric

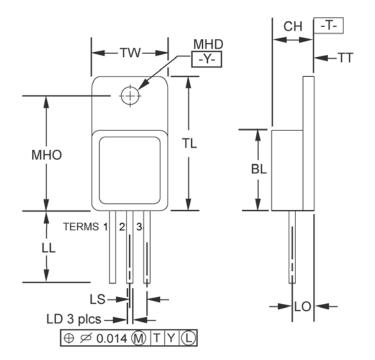
POLARITY: See <u>schematic</u> on last page
 WEIGHT: Approximately 3.43 grams
 See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS			
Symbol	Definition		
С	Junction Capacitance: The junction capacitance in pF at a specified frequency (typically 1 MHz) and specified voltage.		
I _F	Forward Current: The forward current dc value, no alternating component.		
I_R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.		
T_J	Junction Temperature: The temperature of a semiconductor junction.		
V _F	Forward Voltage: The forward voltage the device will exhibit at a specified current (typically shown as maximum value).		
V_R	Reverse Voltage: The reverse voltage dc value, no alternating component.		

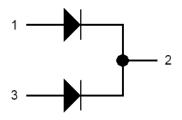
ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Тур.	Unit
Forward Voltage* $I_F = 1 \text{ A}, T_J = 25 \text{ °C}$ $I_F = 2.5 \text{ A}, T_J = 25 \text{ °C}$ $I_F = 5.0 \text{ A}, T_J = 25 \text{ °C}$ $I_F = 10.0 \text{ A}, T_J = 25 \text{ °C}$	V _F		1.1 1.2 1.4 1.8		V
Reverse Current $V_R = 600 \text{ V}, T_J = 25 \text{ °C}$ $V_R = 600 \text{ V}, T_J = 175 \text{ °C}$	I _R		50 100		μA
Junction Capacitance $V_R = 0 V$ $f = 1 MHz$	Сл			550	pF


ellimett.

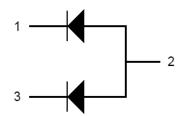
^{*} Pulse test: Pulse width 300 µsec, duty cycle 2%.

PACKAGE DIMENSIONS

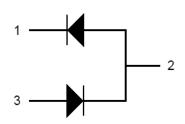

	Dimensions				
Ltr	Inch		Millimeters		
	Min	Min	Min	Max	
BL	0.410	0.430	10.41	10.92	
CH	0.190	0.200	4.83	5.08	
LD	0.025	0.035	0.64	0.89	
LL	0.505	0.595	12.82	15.11	
LO	0.120 BSC		3.05 BSC		
LS	0.100 BSC		2.54 BSC		
MHD	0.140	0.150	3.56	3.81	
МНО	0.527	0.537	13.39	13.64	
TL	0.645	0.665	16.38	16.89	
TT	0.035	0.045	0.89	1.14	
TW	0.410	0.420	10.41	10.67	
TERM 1	SEE SCHEMATIC				
TERM 2	SEE SCHEMATIC				
TERM 3	SEE SCHEMATIC				

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Glass meniscus included in dimension TL and BL.


SCHEMATIC

CC - COMMON CATHODE


TERM 1 = ANODE TERM 2 = CATHODE TERM 3 = ANODE

CA – COMMON ANODE

TERM 1 = CATHODE TERM 2 = ANODE TERM 3 = CATHODE

D-DOUBLER

TERM 1 = CATHODE TERM 2 = CENTER TAP TERM 3 = ANODE