

APT4M120K

1200V, 5A, 3.80Ω Max

N-Channel MOSFET

Power MOS 8TM is a high speed, high voltage N-channel switch-mode power MOSFET. A proprietary planar stripe design yields excellent reliability and manufacturability. Low switching loss is achieved with low input capacitance and ultra low C_{rss} "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control slew rates during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency. Reliability in flyback, boost, forward, and other circuits is enhanced by the high avalanche energy capability.

FEATURES

- Fast switching with low EMI/RFI
- Low R_{DS(on)}
- + Ultra low $\mathbf{C}_{\mathrm{rss}}$ for improved noise immunity
- · Low gate charge
- Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- PFC and other boost converter
- Buck converter
- Two switch forward (asymmetrical bridge)
- Single switch forward
- Flyback
- Inverters

Absolute Maximum Ratings						
Symbol	Parameter	Ratings	Unit			
Ι _D	Continuous Drain Current @ T _C = 25°C	5				
	Continuous Drain Current @ T _C = 100°C	3	A			
I _{DM}	Pulsed Drain Current ^①	15				
V _{GS}	Gate-Source Voltage	±30	V			
E _{AS}	Single Pulse Avalanche Energy ^②	310	mJ			
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	2	A			

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Мах	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			225	W	
R _{θJC}	Junction to Case Thermal Resistance			0.56	0.56 °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	- °C	
TL	Soldering Temperature for 10 Seconds (1.6mm from case)			300		
W _T	Package Weight		0.07		οz	
			1.9		g	
Torque	Mounting Torque (TO-220 Package), 4-40 or M3 screw			10	in∙lbf	
				1.1	N∙m	

Static Characteristics

$T_1 = 25^{\circ}C$ unless otherwise specified

APT4M120K

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	1200			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250 \mu A$		1.41		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V_{GS} = 10V, I_{D} = 2A		3.12	3.8	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 0.5 \text{mA}$	3	4	5	V
$\Delta V_{\rm GS(th)}/\Delta T_{\rm J}$	Threshold Voltage Temperature Coefficient			-10		mV/°C
I	Zero Gate Voltage Drain Current	$V_{DS} = 1200V$ $T_{J} = 25^{\circ}C$			100	μA
DSS	Zero Gate voltage Drain Gurrent	$V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			500	
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

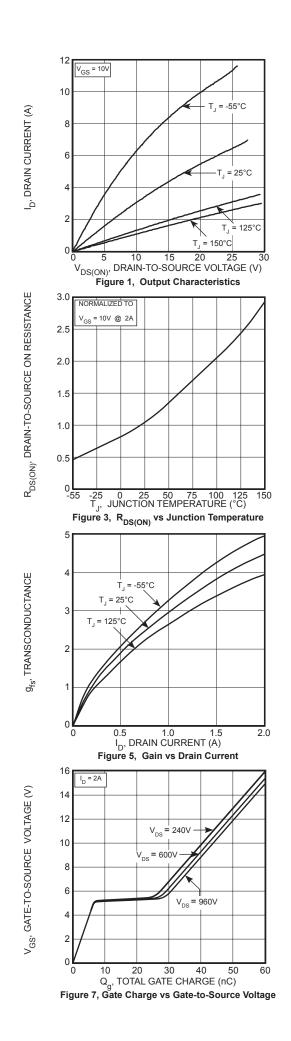
Dynamic Characteristics

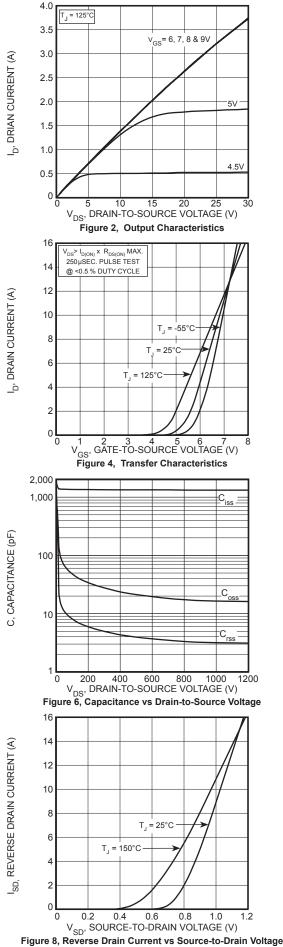
T_J = 25°C unless otherwise specified

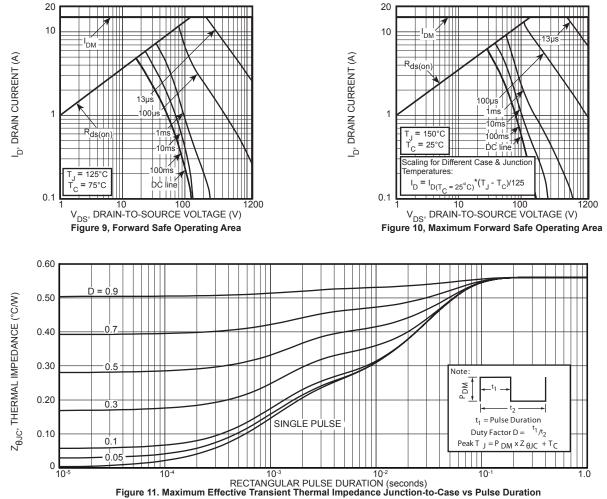
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 2A$		4.5		S
C _{iss}	Input Capacitance			1385		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		17		
C _{oss}	Output Capacitance	1 111112		100		
C _{o(cr)} ④	Effective Output Capacitance, Charge Related			40		pF
C _{o(er)} (5)	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 800V$		20		
Q _g	Total Gate Charge			43		
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_D = 2A,$ $V_{DS} = 600V$		7		nC
Q _{gd}	Gate-Drain Charge	v _{DS} - 600V		20		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		7.4		
t _r	Current Rise Time	V _{DD} = 800V, I _D = 2A		4.4		ns
t _{d(off)}	Turn-Off Delay Time	R _G = 4.7Ω [®] , V _{GG} = 15V		24		115
t _f	Current Fall Time			6.9		

Source-Drain Diode Characteristics

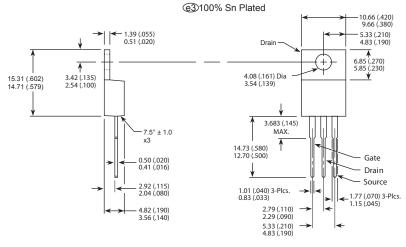
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
۱ _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the			5	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)			15	~
V _{SD}	Diode Forward Voltage	$I_{SD} = 2A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.3	V
t _{rr}	Reverse Recovery Time	I _{SD} = 2A, V _{DD} = 100V ⁽³⁾		1150		ns
Q _{rr}	Reverse Recovery Charge	di _{SD} /dt = 100A/µs, T _J = 25°C		16		μC
dv/dt	Peak Recovery dv/dt	I _{SD} ≤ 2A, di/dt ≤1000A/µs, V _{DD} = 800V, T _J = 125°C			10	V/ns


(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.


(2) Starting at $T_J = 25^{\circ}$ C, L = 155.0mH, $R_G = 25\Omega$, $I_{AS} = 2A$.


- (3) Pulse test: Pulse Width < 380μ s, duty cycle < 2%.
- (4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)} = -6.30E 8/V_{DS}^{2} + 7.65E 9/V_{DS} + 1.09E 11$.
- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.



Dimensions in Millimeters and (Inches)

Disclaimer:

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp