Static Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic / Test Conditions</th>
<th>APT30S20BCTG</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward Voltage</td>
<td>.80</td>
<td>.85 Volts</td>
</tr>
<tr>
<td>I_{FM}</td>
<td>Maximum Reverse Leakage Current</td>
<td>.91</td>
<td>mA</td>
</tr>
<tr>
<td>I_{RM}</td>
<td>Maximum Reverse Leakage Current</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>V_T</td>
<td>Junction Capacitance, $V_R = 200V$</td>
<td>150</td>
<td>pF</td>
</tr>
</tbody>
</table>

MSCross Reference:
- APT30S20BCTG 200V 2x45A
Dynamic Characteristics

Symbol | **Characteristic** | **Test Conditions** | **MIN** | **TYP** | **MAX** | **UNIT**
--- | --- | --- | --- | --- | --- |
t_{rr} | Reverse Recovery Time | $I_F = 30\,A$, $di/dt = -200\,A/\mu s$ $V_R = 133\,V$, $T_C = 25\,^\circ C$ | - | 55 | - | ns
q_{rr} | Reverse Recovery Charge | $I_F = 30\,A$, $di/dt = -200\,A/\mu s$ $V_R = 133\,V$, $T_C = 25\,^\circ C$ | - | 190 | - | nC
I_{RRM} | Maximum Reverse Recovery Current | | - | 6 | - | Amps
t_{rr} | Reverse Recovery Time | $I_F = 30\,A$, $di/dt = -700\,A/\mu s$ $V_R = 133\,V$, $T_C = 125\,^\circ C$ | - | 100 | - | ns
q_{rr} | Reverse Recovery Charge | $I_F = 30\,A$, $di/dt = -700\,A/\mu s$ $V_R = 133\,V$, $T_C = 125\,^\circ C$ | - | 450 | - | nC
I_{RRM} | Maximum Reverse Recovery Current | | - | 9 | - | Amps
t_{rr} | Reverse Recovery Time | | - | 70 | - | ns
q_{rr} | Reverse Recovery Charge | | - | 960 | - | nC
I_{RRM} | Maximum Reverse Recovery Current | | - | 24 | - | Amps

Thermal and Mechanical Characteristics

Symbol | **Characteristic / Test Conditions** | **MIN** | **TYP** | **MAX** | **UNIT**
--- | --- | --- | --- | --- |
R_{JUC} | Junction-to-Case Thermal Resistance | | 0.58 | - | °C/W
R_{JUA} | Junction-to-Ambient Thermal Resistance | | 40 | - | °C/W
W_T | Package Weight | | 0.22 | - | oz
| | | | 5.9 | - | g
| | Maximum Mounting Torque | | 10 | - | lb•in
| | | | 1.1 | - | N•m

APT Reserves the right to change, without notice, the specifications and information contained herein.

FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

Note:

\[P_{DM} = P_{DM} \times Z_{JUC} \times \Delta T\]

\[\Delta T = \frac{P_{DM}}{R_{JUC}}\]

FIGURE 1b. TRANSIENT THERMAL IMPEDANCE MODEL
TYPICAL PERFORMANCE CURVES

APT30S20BCT

TJ = 25°C

VR, ANODE-TO-CATHODE VOLTAGE (V)

IF, FORWARD CURRENT (A)

Figure 2. Forward Current vs. Forward Voltage

Qrr, REVERSE RECOVERY CHARGE I F, FORWARD CURRENT (nC) (A)

trr, REVERSE RECOVERY TIME (ns)

Figure 3. Reverse Recovery Time vs. Current Rate of Change

Figure 4. Reverse Recovery Charge vs. Current Rate of Change

Figure 5. Reverse Recovery Current vs. Current Rate of Change

Figure 6. Dynamic Parameters vs. Junction Temperature

CJ, JUNCTION CAPACITANCE (pF)

Figure 8. Junction Capacitance vs. Reverse Voltage

Figure 7. Maximum Average Forward Current vs. Case Temperature

TJ = 125°C

VR = 133V

15A

30A

60A

TJ = 150°C

TJ = -55°C

Duty cycle = 0.5

Kf, DYNAMIC PARAMETERS (Normalized to 700A/µs)

Irrm, REVERSE RECOVERY CURRENT (A)

Figure 6. Dynamic Parameters vs. Junction Temperature

Figure 7. Maximum Average Forward Current vs. Case Temperature
I_F - Forward Conduction Current

\(\frac{di_F}{dt} \) - Rate of Diode Current Change Through Zero Crossing.

I_RRM - Maximum Reverse Recovery Current.

\(t_{rr} \) - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through \(I_{RRM} \) and \(0.25 \cdot I_{RRM} \) passes through zero.

\(Q_{rr} \) - Area Under the Curve Defined by \(I_{RRM} \) and \(t_{rr} \).