POWER MOS 7® FREDFET

Power MOS 7® is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7® by significantly lowering $R_{\text{DS(on)}}$ and Q_g. Power MOS 7® combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT’s patented metal gate structure.

- Lower Input Capacitance
- Increased Power Dissipation
- Lower Miller Capacitance
- Easier To Drive
- Lower Gate Charge, Q_g
- Popular SOT-227 Package
- FAST RECOVERY BODY DIODE

MAXIMUM RATINGS

All Ratings: $T_C = 25^\circ\text{C}$ unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>APT12031JLL</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain-Source Voltage</td>
<td>1200</td>
<td>Volts</td>
</tr>
<tr>
<td>I_D</td>
<td>Continuous Drain Current @ $T_C = 25^\circ\text{C}$</td>
<td>30</td>
<td>Amps</td>
</tr>
<tr>
<td>I_{DM}</td>
<td>Pulsed Drain Current \dagger</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-Source Voltage Continuous</td>
<td>±30</td>
<td>Volts</td>
</tr>
<tr>
<td>V_{GSM}</td>
<td>Gate-Source Voltage Transient</td>
<td>±40</td>
<td></td>
</tr>
<tr>
<td>P_D</td>
<td>Total Power Dissipation @ $T_C = 25^\circ\text{C}$</td>
<td>690</td>
<td>Watts</td>
</tr>
<tr>
<td>Linear Derating Factor</td>
<td>5.52</td>
<td>$\text{W/}^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_J, T_{STG}</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to 150</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>T_L</td>
<td>Lead Temperature: 0.063" from Case for 10 Sec.</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>I_{AR}</td>
<td>Avalanche Current \dagger (Repetitive and Non-Repetitive)</td>
<td>30</td>
<td>Amps</td>
</tr>
<tr>
<td>E_{AR}</td>
<td>Repetitive Avalanche Energy \dagger</td>
<td>50</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single Pulse Avalanche Energy \dagger</td>
<td>3600</td>
<td></td>
</tr>
</tbody>
</table>

STATIC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic / Test Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_{DSS}</td>
<td>Drain-Source Breakdown Voltage $(V_{\text{GS}} = 0\text{V}, I_D = 250\mu\text{A})$</td>
<td>1200</td>
<td></td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>$R_{\text{DS(on)}}$</td>
<td>Drain-Source On-State Resistance \dagger $(V_{\text{GS}} = 10\text{V}, 15\text{A})$</td>
<td>0.33</td>
<td></td>
<td></td>
<td>Ohms</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>Zero Gate Voltage Drain Current $(V_{\text{DS}} = 1200\text{V}, V_{\text{GS}} = 0\text{V})$</td>
<td>250</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>Zero Gate Voltage Drain Current $(V_{\text{DS}} = 960\text{V}, V_{\text{GS}} = 0\text{V}, T_C = 125^\circ\text{C})$</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>Gate-Source Leakage Current $(V_{\text{GS}} = \pm 30\text{V}, V_{\text{DS}} = 0\text{V})$</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>$V_{\text{GS(th)}}$</td>
<td>Gate Threshold Voltage $(V_{\text{DS}} = V_{\text{GS}}, I_D = 5\text{mA})$</td>
<td>3</td>
<td>5</td>
<td></td>
<td>Volts</td>
</tr>
</tbody>
</table>

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com
Dynamic Characteristics

### Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C_{iss} | Input Capacitance | $V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1$ MHz | | | | |
C_{oss} | Output Capacitance | | | | | |
C_{rss} | Reverse Transfer Capacitance | | | | | |
Q_g | Total Gate Charge \(^\circ\) | $V_{GS} = 10V$, $V_{DD} = 600V$, $I_b = 30A @ 25°C$ | 9480 | 1460 | | pF |
Q_{gs} | Gate-Source Charge | | 365 | 45 | nC |
Q_{gd} | Gate-Drain ("Miller") Charge | | 235 | | |
$t_{d(on)}$ | Turn-on Delay Time | | | 23 | ns |
t_{r} | Rise Time | | | 16 | |
$t_{d(\text{off})}$ | Turn-off Delay Time | | | 79 | |
t_{f} | Fall Time | | | 30 | |
E_{on} | Turn-on Switching Energy \(^\circ\) | $V_{DD} = 800V$, $V_{GS} = 15V$, $I_b = 30A$, $R_G = 5\Omega$ | 1760 | 1241 | | µJ |
E_{off} | Turn-off Switching Energy | | | | |
E_{on} | Turn-on Switching Energy \(^\circ\) | | | 1557 | |
E_{off} | Turn-off Switching Energy | | | | |

Source-Drain Diode Ratings and Characteristics

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
I_S | Continuous Source Current (Body Diode) | | 30 | | Amps |
I_{SM} | Pulsed Source Current \(^\circ\) (Body Diode) | | 120 | | |
V_{SD} | Diode Forward Voltage \(^\circ\) ($V_{GS} = 0V$, $I_S = -30A$) | | 1.3 | | Volts |
dv/dt | Peak Diode Recovery $dv/dt \circ$ | | 18 | | V/ns |
t_{rr} | Reverse Recovery Time | $T_J = 25°C$, $T_J = 125°C$ | 300 | 600 | ns |
Q_{rr} | Reverse Recovery Charge | $T_J = 25°C$, $T_J = 125°C$ | 1.8 | 7.4 | µC |
I_{RRM} | Peak Recovery Current | $T_J = 25°C$, $T_J = 125°C$ | 16 | 30 | Amps |

Thermal Characteristics

Symbol	Characteristic	MIN	TYP	MAX	UNIT
R_{JUC} | Junction to Case | | 0.18 | | °C/W |
R_{JJA} | Junction to Ambient | | 40 | | |

Note:

1. Repetitive Rating: Pulse width limited by maximum junction temperature.
2. Pulse Test: Pulse width < 380 μs, Duty Cycle < 2%
3. See MIL-STD-750 Method 3471
4. Starting $T_J = +25°C$, $L = 8.0mH$, $R_G = 25Ω$, Peak $I_L = 30A$
5. dv/dt numbers reflect the limitations of the test circuit rather than the device itself. $I_S \leq -30A$, $dv/dt \leq 700A/\mu s$, $V_{Rs} \leq V_{DS}$, $T_J \leq 150°C$
6. E_{on} includes diode reverse recovery. See figures 18, 20.

APT reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves

RC MODEL

Junction temp C 0.0375 0.0554F

Power (watts) 0.142 0.751F

Case temperature C

FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL

FIGURE 3, LOW VOLTAGE OUTPUT CHARACTERISTICS

VGS = 10V

VGS = 20V

VGS = 15 & 10V

VGS = 10V

FIGURE 4, TRANSFER CHARACTERISTICS

FIGURE 5, RDS(ON) vs DRAIN CURRENT

FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE

FIGURE 8, ON-RESISTANCE vs TEMPERATURE

FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE
Typical Performance Curves

Figure 18, Turn-on Switching Waveforms and Definitions

Figure 19, Turn-off Switching Waveforms and Definitions

Figure 20, Inductive Switching Test Circuit

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)