MicroNote 132

Application Note Aircraft Lightning Protection

Final January 2020

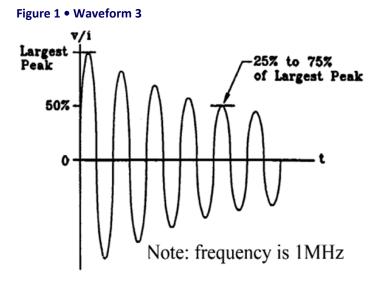
Contents

1	Aircraft Lightning Protection	. 1
2	Abnormal Voltage Characteristics	. 4
3	Definitions for Graphs 1 through 18	6
4	Using DIRECTselect - Examples for Waveform 4	. 7
5	Clamping Voltage Significance	. 8
6	Selecting Lightning Protection for Waveform 5A	10
7	Protecting Across Power Distribution Lines	12
8	Multiple Surge Events	15
9	Summary/Conclusions	16
10	Acknowledgements	
11	Index to DIRECTselect Graphs and Datapoints	18

1 Aircraft Lightning Protection

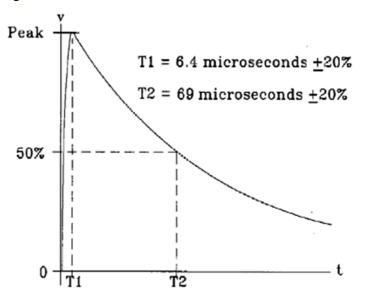
A Shortcut to Selecting Transient Voltage Suppressors for RTCA/DO-160 Threats Using Microsemi's New *DIRECTselect*™ Method

By Mel Clark and Kent Walters


Within the thin metal and composite shell of every jetliner, tens of thousands of sensitive semiconductor components are performing critical functions from navigation to engine control. Since aircraft are struck by lightning twice a year on average, protection of sensitive electronic devices providing a myriad of functions is essential to ensuring the safety of both passengers and crew.

Although aircraft lightning threats are well defined in RTCA/DO-160, there are very few off-the-shelf transient voltage suppressors (TVSs) that are direct "plug-ins," rated for operating voltage and surge protection from the three waveforms and five levels of lightning threats defined in this document.

Lengthy calculations must often be made to convert TVS surge ratings at standard 10/1000 μ s to their equivalent values for specified aircraft lightning threats. In addition, matching a device with the threat can be cumbersome. Our MicroNotes 126, 127, and 130 illustrate these computations, providing a path from defined aircraft surge requirements to the parameters of available TVS products suitable for a given application. With those many resources, there is also now a better way using Microsemi's **DIRECTselect**TM to quickly guide the designer to a suitable solution, including considerations for elevated temperature deratings where applicable.


DIRECTselect Method

Here is how it works: define your surge requirements as specified in DO-160G in Section 22 Induced Transient Susceptibility per waveform 3, 4, or 5A, and threat levels 1 through 5 as specified in Table 22-2. Herein are the threat levels for pin injection that define the most severe threats to your circuit. Most requirements combine waveforms 3 and 4. Because waveform 4 ($6.4/69 \ \mu$ s) is more severe by a factor of 3.8 [1], we have included only waveform 4 on our charts for simplicity. Values of waveform 3, when required, are easily calculated using the guidance in MicroNote 127 [2].

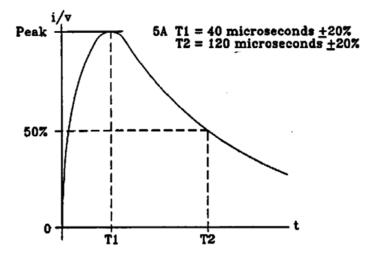
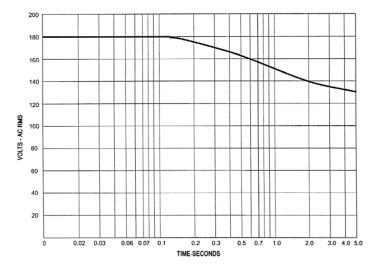


Figure 4 • Matrix of Threat Levels 1 through 5 from Table 22-2 in RTCA/DO-160

	Waveforms									
LEVEL	3	4	5A							
	Voc/Isc	Voc/Isc	Voc/Isc							
1	100/4	50/10	50/50							
2	250/10	125/25	125/125							
3	600/24	300/60	300/300							
4	1500/60	750/150	750/750							
5	3200/128	1600/320	1600/1600							

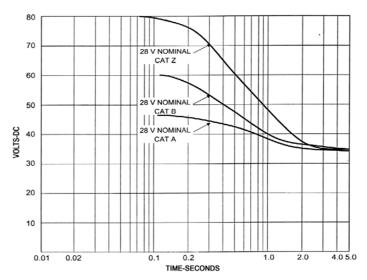
The table in Figure 4 (see page 2) defines the peak open circuit voltage (Voc) and peak short circuit current (Isc) for each of the waveforms listed. In making your TVS selection, maximum working standoff voltage (Vwm) values are required along with the peak pulse current (IP) threat, where the graphs shown on pages 20 through 37 are plotted with IP vertically and Vwm horizontally. The IP as displayed on the graph must exceed the curve depicting the current limit of the threat level. Examples will lead you through the selection process.


Individual graphs exist for each TVS product family and are arranged in ascending order of power rating and surge current from 500 W up through 30,000 W. These graphs are also a further extension of information in Tables 1 and 2 of MicroNote 130 [3] with added consideration for 70 °C and 100 °C. Graphs 1 through 9 are associated with waveform 4, and graphs 10 through 18 are associated with waveform 5A. Each graph is accompanied by a supplemental table containing multiple data points from which each curve was derived, plus a list of the applicable Microsemi products for use with these specific surge current threat levels. This presentation provides direction for TVS selection for a broad distribution, from low-voltage, low-level lightning threats on data lines up through high levels for power distribution lines.

2 Abnormal Voltage Characteristics

Other critical voltage parameters for selecting TVS products may sometimes include extended surge limits associated with abnormal voltage. These are maximum excursions above the nominal operating voltage. Surges differ from transient voltage in that they are long term abnormal voltage characteristics with high-line voltages extending for durations of tens, up to hundreds of milliseconds that can destroy TVSs.

These voltage anomalies are caused by normal generator functions and must be considered in TVS selection. An example of the ac abnormal voltage surge curve, displaying voltage versus time is shown in Figure 16-5 of the RTCA/DO-160, Section 16 specification as illustrated below in Figure 5 (see page 4):



The normal operating voltage values in this graph are for 115 V rms. The rms values must be converted to peak AC values for comparing TVS parameters, since the TVSs are characterized for peak, not rms values. A TVS will not withstand the long surge durations of abnormal voltage surge. They must be selected so that the maximum peak working voltage, V_{WM}, is equal to or greater than the peak abnormal voltage. Higher magnitude short transients well beyond these voltages, such as those found in waveform 3, 4 and 5A, are still clamped after exceeding the V_{BR} of the properly selected TVS. For 230 V rms lines, double the values shown in the graph above [4].

DC power lines are also plagued with the same anomaly, abnormal dc voltage surge, resulting from voltage excursions produced by the generators. For dc power, there are three categories of surge voltage (as shown in RTCA/DO-160, Section 16, Figure 16-6), also shown below in Figure 6 (see page 5)

Figure 6 • Typical Abnormal DC Voltage Surges per Figure 16-6 in RTCA/DO-160

Note that there are three categories of abnormal voltages for 28 V nominal and with 100 ms worst case surge, similar to the ac power lines. Three levels of abnormal voltages are listed; category A, B, and Z with the most common requirement being category B. For 14 V dc requirements, divide these upper voltage limits by two for the applicable values [5].

As with the envelope for the ac voltages, the V_{WM} of the TVS must be equal to or greater than the abnormal voltage limit. For exceptions, consult factory.

3 Definitions for Graphs 1 through 18

The green, blue, and yellow curves represent the ratings of the TVS device in terms of rated peak pulse current (I_P) at ambient temperatures. The I_P is shown in the vertical axis and working voltage (V_{WM}) in the horizontal axis. The green curve on each graph depicts the peak surge current rating versus working voltage at 25 °C along with additional curves for derating to 70 °C (blue curve) and 100 °C (yellow curve). The red curves, represent the pin injection current threat levels as defined by the RTCA/DO-160 specification and are labeled accordingly. If the curve for the applicable ambient operating temperature is above the red curve designating the maximum threat level, the TVS device will perform at that threat level. Only those levels that are applicable for the associated device families are included on the graph.

The 18 individual graphs in this document cover the entire DO-160 threat range. Nine of these graphs display surge threats and surge capability of the TVSs for waveform 4 (6.4/69 μ s), and nine display this same information for the more severe waveform 5A (40/120 μ s). Values shown on the graph include the 20% high side tolerance of the pulse widths.

Based on requests from the aerospace industry, Microsemi devices meet the vast majority of needs. If no part exists for a given voltage and surge current rating, custom components can be designed. Consult the factory for these options.

Graph Overview

Each graph is derived from the peak pulse current (IPP) levels at 10/1000 μ s ratings of the product datasheet. For the shorter aircraft transients, the power levels are higher by a factor of 3.33 times for the 6.4/69 μ s waveform, and 2.33 times for the 40/120 μ s waveform and are labeled as IP. These multiplication factors include the 20% tolerance of the threat duration [6]. For waveform 4, the graph numbers and associated TVS power levels with part types are listed on the following page. Except for 1Nxxxx part numbers shown that already have military qualifications, add M prefix for source control or MA, MX, or MXL for further upgrade screening options on plastic devices as described in MicroNote 129.

Graph Number	TVS Power Level @ 10 /1000 μ s	Product Series (more details on graphs)
1	500 W	1N6103A-1N6137A, 1N6461-1N6468, 1N8073-1N8109, P5KE, SMBJSAC
2	600 W	Р6КЕ, ЅМВ
3	1500 W	1N5629A-1N5665A, 1N5907, 1N5908, 1N6036A-1N6072A, 1N6138A-1N6173A, 1N6469-1N6476, 1N8110-1N8146.1.5KE, SMC, SMCJLCE
4	3000 W	SML
5	5000 W	5KP
6	6500 W	PLAD6.5KP
7	7500 W	PLAD7.5KP
8	15,000 W	15KP, PLAD15KP
9	18,000 W	PLAD18KP
10	30,000 W	PLAD30KP
11	36,000 W	PLAD36KP

A more complete listing of each product series is shown on its associated graph.

NOTE: A second series of graphs (12 through 22) are also included for waveform 5A and contains equivalent information on the product series as waveform 4 above, with threat levels increased to the magnitude of waveform 5A.

4 Using DIRECTselect - Examples for Waveform 4

For our first example, let's consider a low-level transient voltage threat to an ARINC 429, \pm 5 V data line. For this illustration, the lightning threat requires protection from waveform 4, (6.9/69 µs) level 3 (300 Voc/60 lsc). Applications with voltages going in both positive and negative directions require bidirectional TVS devices.

We know the selection will be within the first few of the seven graphs because of the relatively low current rating requirement. Since the lowest voltage devices have the highest current ratings, the device would most likely be found on the first one or two graphs.

In reviewing Graph 1, the 500 W TVS at 5 V working voltage (V_{WM}) has a peak current rating of 180 A. This is well above the necessary requirement of 60 A for level 3 with margin for temperature derating up to 100 °C. In the supplementary table, data points for these graphs are provided that include the major parameters: peak pulse current (IPP), clamping voltage (V_c), and V_{WM}. Exact values not shown can be extrapolated from this data.

Device selection for the ARINC 429, slow data rate signals, 10 kHz–11 kHz, would be the SMBJ5.0C or SMBJ5.0CA. For the fast data rate signals at 100 kHz, the selection would be the SMBJSAC5.0 with a low capacitance of 30 pf or less. Two of these devices are required in anti-parallel to achieve bidirectional protection. Refer to the data sheet on Microsemi's website for complete information on installing this part. The selection shown is a surface mount device; however, these parts are also available in axialleaded configurations.

In our second example, a TVS is required for performance to waveform 4 (6.4/69 μ s), level 3 (Voc 300 V / Isc 60A) for ± 48 VAC. This application also requires a bidirectional device and must have a higher power rating than in the previous example because its operating voltage is significantly greater. Since silicon TVSs provide the same power rating within a series (Ppp = Ipp x Vc), the current rating will be about one-tenth of the value for a 48 V TVS compared to a 5.0 V device in the same series. However, the peak pulse power requirement is greater for this application, so we continue our search among the graphs for a higher power device. In Graph 3 for the 1500 W series, we find that the current withstand (Ip) of a 48 V device at 25 °C is 64 A, while the requirement is 45 A at 48 V. It is interesting to note that the specified requirement of 60 A per Table 22-2 is reduced significantly by the clamping voltage subtracting from the driving voltage [7], thus proportionally reducing the surge current. This is reflected in the downward slope of the level 3 curve. The SMCJ48CA, (CA suffix denoting bidirectional performance for AC) or equivalent will meet the surge requirements at 25 °C and 70 °C but is marginal at 100 °C. The next level up, the 3000 W series is recommended for 100 °C performance if required (see Graph 4).

Why are the "driving" current threats (Is) of levels 1 through 5 reduced with increasing voltage? Because the clamping voltage of the TVS subtracts from the open circuit driving voltage, thus lowering the driving current as illustrated in the following equation:

Equation 1:

Is = (Voc - Vc)/Zs = (300 V - 77.4 V)/5 Ω = 44.5 A

Where:

Is = peak driving current of surge through the TVS Voc = open circuit voltage – 300 V Vc = Max clamping voltage of SMCJ48CA Zs = Source impedance of driving voltage – Voc/Isc

In this equation, we see the Voc open circuit voltage of 300 V is reduced to 222.6 V, with a corresponding reduction of surge current to 44.5 A, or about 25% below the value of 60 A for the Isc specified for level 3.

5 Clamping Voltage Significance

The purpose of the TVS is to clamp the voltage spike to a level below the failure threshold of the components it is protecting. The failure threshold voltage is not the operating voltage of the protected device. All components have a margin between rated value and transient failure threshold which is usually not specified by the manufacturer.

Maximum operating voltage levels specified on datasheets for ICs and power transistors are for steady state conditions while most components can tolerate short-term voltage spikes of less than 150 µs up to 50% greater values than the operating voltages. Normally the higher the voltage of the protected device, the more narrow the margin in percentage between maximum operating voltage level and voltage spike failure level. For example, a 400 V rated switching transistor can usually tolerate a clamping level of 420 V or more, which is about 5% greater than its steady state operating level. In comparison, a 5 V to 15 V UART (universal asynchronous receiver transmitter) can normally withstand a 50% or greater voltage clamp above its maximum operating level. Manufacturers are reluctant to provide any other than the maximum operating voltage. The above failure threshold values are based on the writer's experience, including test measurements.

Our third example of protection is for a 48 V signal line monitoring status of the voltage across a relay. The threat is waveform 4, level 4 (750 Voc/150 Isc). This takes us to a higher power level device requirement that we find is the 5000 W rated TVS shown in Graph 5. The peak current protection is more than twice that for our previous example, so we look for a TVS with a higher power that will withstand this higher peak current surge.

Observing the V_{WM} of 48 V at level 4 in Graph 5 for 5000 W devices, we see that the maximum peak current rating for this voltage is approximately 210 A at 25 °C. The derating graphs indicate that this part will operate safely at 70 °C but marginally at 100 °C. For 100 °C performance, the higher power PLAD6.5KP48A surface mount TVS in Graph 6 or the PLAD7.5KP48A in Graph 7 is recommended. A unipolar device was selected because this is a DC application. Clamping of the negative transients is through the diode in the forward direction that can withstand higher surge currents than in the avalanche mode.

A fourth example of protection continues when ascending to a higher threat level protecting from a transient surge per waveform 4, level 5 (1600 Voc/320 Isc). Operating conditions are on a 28 V DC power distribution line that must withstand an abnormal voltage condition of 60 V maximum, category B [4].

Continue working your way further into the pages noting that in Graph 8 the 15,000 W TVS series will withstand surge currents of greater than 320 A at a voltage level of 60 V and 100 °C. Above 60 V, a TVS will not conduct during the abnormal condition but will withstand a surge >320 A for this waveform 4, level 5 threat. A good selection for this application in Graph 8 would be a 15KP64A or PLAD15KP64A. Verify that the clamping voltage is compatible with the maximum failure threshold voltage of the protected circuit/component. This device is rated for approximately 500 A at 25 °C. It has a clamping voltage of 104 V at its rated peak pulse current (lpp) as extrapolated from the graph/data table. This device has a significant margin of about 60% at 25 °C that can be derated to 100 °C with a margin of safety.

The 15,000 W axial-leaded devices are often made using 3-stacked chips that have been considered the most economical method for higher power surge suppressors. The PLAD15KP and PLAD18KP series are made up of a single larger chip in a surface mount package for the same power rating as well as two stacked chips for twice the PPP rating at 30,000 W and 36,000 W with the PLAD30KP and PLAD36KP series, respectively. With fewer internal chips stacked in series, it also allows lower voltages in these PLAD product series families where they start at 7 V and 14 V respectively. This can also be very useful for generating higher peak pulse power options as we shall observe in further examples for the severe waveform 5A.

Our fifth example is one in which a 125 V dc status monitoring signal line must be protected from conditions of waveform 4, level 5 (1600 Voc/300 lsc) in a 70 °C ambient.

Continue on to Graph 9 and locate the coordinates for the required performance. At 130 V, the PLAD30KP130A device has a 6.4/69 μs rating of 470 A at 25 °C, 380 A at 70 °C, and 330 A for 100 °C. This selection should perform well for the application.

6 Selecting Lightning Protection for Waveform 5A

Waveform 5A is defined as having a waveform of $40/120 \ \mu s \pm 20\%$. Calculations in the following examples are based on the 20% worst case, increasing the pulse duration from 120 μs to 144 μs maximum. Graphs 10 through 18 depict curves for waveform 5A. These protection levels are developed in the same manner as those for waveform 4 but with lower IPP device ratings attributed to the longer waveform 5A. The increase in surge current/power for waveform 5A is only 2.33 times the peak current value for a given device at 10/1000 μs found in Microsemi datasheets as stated earlier.

Referring to Figure 4 (see page 2) and the column for waveform 5A, note that the voltage spike amplitudes are identical to those for waveform 4. However, the lsc current is higher by a factor of five because of the lower source impedance of only 1 Ω , compared to 5 Ω for waveform 4. Another component of the increased threat for waveform 5A is its 74% longer duration compared to waveform 4.

The more severe conditions of waveform 5A are attributed to applications involving closer proximity of lightning source, including those conductors close to the skin of the aircraft—areas containing a higher density of composite materials, long power distribution lines, and long signal line runs within the airframe, plus a myriad of others.

From the writer's experience, ac and dc power distribution systems may be located in areas requiring protection from waveform 5A surges, depending on the airframe structure. With the large amounts of composite materials used in construction of newer aircraft, both power and data lines are subjected to more severe lightning threats. Most threats presented by waveform 5A appear to be level 4 (750 Voc /750 Isc).

Typical waveform 5A level 4 threats require the higher 30 kW or 36+ kW product ratings for protection. Multiple devices are often wired in series or parallel to provide the surge current withstand capability for level 4, waveform 5A threats. TVS devices for level 5 threats can be designed to also meet these requirements.

Example 1

Protecting from waveform 5A threats is that of a 125 V DCstatus signal line subjected to level 2 (125 Voc /125 Isc). This is an easy one to solve since the operating voltage and threat are at the same level. There will be zero voltage impressed on the line, because it is of the same value as the threat, hence no current is driven into the 125 V signal line and no protection is required (see Equation 1). For this same threat at lower operating voltages, protection will be required as shown in the following example.

Example 2

Protection from waveform 5A is one where a low speed 32 V bidirectional signal line is exposed to a level 2 (125 Voc/125 Isc) threat. ARINC-429 and most other signals are run through shielded wiring that provides significant lightning protection. Also, the line impedances are quite high, further reducing lightning threats. This issue was discussed earlier in the section on protecting from waveform 4 threats.

For this requirement, the solution is found on Graph 13 for the 3000 W device. The closest fit is the SMLJ33CA (33 V V_{WM}) that can be derated for 100 °C performance. This is a compact surface mount device in the DO-214AB with J bend tabs. The SMLJ series is a frequent choice for signal line protection from harsh lightning conditions.

Example 3

Example 3 for a waveform 5A threat from level 3 (300Voc/300Isc) lightning exposure is for a 12 V power supply. The 3000 W device in Graph 13 will protect up to 70 °C as observed on the coordinates. However, for protection at 100 °C ambient levels, the 5000 W device depicted in Graph 14 is required where the 5KP12A axial leaded device is recommended. For surface mount, the PLAD6.5KP12A is recommended in Graph 15.

Example 4

Example 4

Example 4 is more challenging protecting a 48 V off-line switching power supply with a 100 V rated transistor and waveform 5A, threat level 4 (750 Voc/750 lsc). Ambient operating temperature is 100 °C, and the power is category B with a maximum abnormal voltage surge of 60 V for 100 ms (previously described in Figure 6 (see page 5)). Since a TVS will not withstand the power delivered by a 100 ms surge, 60 V becomes our de facto operating voltage. From Graph 18 for the 30,000 W TVS, our highest powered device for this voltage (PLAD30KP60A) will withstand a peak current of 727 A at 40/120 μ s, (with Vc of 96.8 V) only 74 A above the threat level of 653 A at 25 °C (see Equation 1). This is a close margin, but it is more than adequate to meet this requirement. A further level of creativity is required to meet higher temperature requirements.

One option to increase surge current capability is to use two devices of the same voltage type matched in parallel, providing twice the current capability of a single device to meet the often required 100 °C ambient. They must be matched under surge conditions to ensure near equal voltage for sharing the current evenly. Two each of a 30KPA60A matched in parallel will provide the necessary protection up to 100 °C with an approximate 50% safety margin. Special selected matched devices can be avoided by using two of the PLAD30KP30A in series for surface mount applications. The clamping voltage for the two devices in series is conservatively estimated to be 100 V maximum, the same value as the maximum rated operating voltage of the protected device [8]. Using two or more of the same lower voltage TVS devices in series (if available) where the voltage adds up to the desired V_{WM} value is recommended when surge currents are beyond the capability of a single TVS of a higher selected V_{WM} value. Multiple devices can be used as long as they are of the same type or of higher current rating when an equally divisible required number is not available.

7 Protecting Across Power Distribution Lines

For protection across high voltage AC power distribution lines, there is the option of stacking lower voltage, higher current rated devices in series to compensate for the inherently lower surge current ratings of high voltage TVSs. This is particularly applicable for high V_{WM} applications requiring high surge current protection across AC distribution from a waveform 5A level 4 threat (750 Voc/750 lsc).

Example 5

Example 5 is for an application across a 115 V AC distribution line having an abnormal voltage of 255 V peak from 180 V rms (see Figure 5 (see page 4)) feeding a switching power supply. A maximum clamping of 420 V is required for protection of the 400 V rated transistor within the supply. A few well-chosen parts can be stacked in series which have a clamping voltage of 420 V maximum and still meet the surge current and a working voltage level equal to or slightly above the 255 V, 100 ms abnormal high voltage condition.

When reviewing the selection of available PLAD30KPxxx series devices and comparing the listed I_{PP}, remember that the current rating in the datasheet is for a 10/1000 μ s waveform and waveform 5A is 40/120 μ s. In the Graph Overview section, the 10/1000 μ s surge current rating is multiplied by 2.33 to obtain its higher value for the shorter 40/120 μ s pulse width.

For example, we first calculate the true surge current (Is) of the level 4 threat to the power supply using 400 V switching transistors with 420 V transient capability.

Equation 2:

Is = (Voc - Vc)/Zs = (750 V - 420 V)/1 Ω = 330 A

From this simple calculation, we find the threat at 25 °C is 330 A at 40/120 μ s. Next ,we review the TVS devices available from the 30 kW ratings at 10/1000 μ s such as the PLAD30KPxxx datasheet to select TVSs that provide the desired electrical parameters with surge capability of 330 A plus derating for high temperature performance.

Our target working voltage is 255 V peak, the worse case abnormal high voltage condition, or slightly higher, but still meeting conditions of maximum surge current and clamp voltage. For a trial fit on this severe requirement, we divide the working voltage by two, with a resulting value of 127.5 V which is closely rounded up to 130 V providing a PLAD30KP130CA option. Total clamping voltage of these parts in series is $2 \times Vc$, (Vc is 209 V) resulting in 418 V. The peak pulse current of the PLAD30KP130CA for the 40/120 µs waveform 5A is:

Equation 3:

 $I_{P} \text{ at } 40/120 \ \mu\text{s} = 2.33 \times I_{PP} \text{ at } 10/1000 \ \mu\text{s} \\ = 2.33 \times 142 \ \text{A} \\ = 331 \ \text{A} \ \text{max} \ \text{I}_{PP}$

Just a reminder that I_P is used to denote peak current rating at a waveform other than 10/1000 μ s while I_{PP} is the 10/1000 μ s datasheet rated peak pulse current. This limit of 331 A for the TVS is approximately equal to that calculated for this surge event of 330 A in Equation 2, and is only suitable for 25 °C ambient temperatures, with no margin for derating to higher temperatures. When using multiple TVS devices in series resulting in higher Vc values, the calculations in Equation 2 indicate the red threat level curves decline in value or effectively shift to the left with respect to the individual V_{WM} voltages for each TVS device used in series. This also results in an improved margin of the green, blue, and yellow performance curves relative to the Is calculations for threat level curves where the 22 graphs only show Is relations for individual TVS devices.

Three devices in series will provide a greater surge protection level. Dividing 255 V by three provides a PLAD30KP85CA for a surface mount package option with a clamp voltage of 137 V each. Total clamp voltage for the three parts in series is the additive values or 137 V \times 3 yielding 411 Volts on the PLAD example where Vc is still conservative for the 420 V minimum requirement.

The peak surge current (I) rating for these three devices rated for a 40/120 μ s, waveform 5A is derived

The peak surge current (I_P) rating for these three devices rated for a 40/120 µs, waveform 5A is derived in the same manner as in the previous example yielding 508 A for I_P that provides a 54% increased margin from 330 A in Equation 2 and can also be conservatively derated to 100 °C. In this example, the stacked devices were all the same voltage without fractional values remaining. If this is not the case, use a lower voltage device which matches closest when added together but is still above the system operating voltage.

Example 6

Example 6 is protection across 230 V ac lines requires performance at an abnormal voltage surges up to 360 V rms or 509 V peak for 100 ms that is twice the value in Figure 5 (see page 4). TVS protection voltage levels are double the values previously illustrated for 115 V. The same techniques are used for selecting lightning protection devices. In some applications where narrow margins exist between operating voltage and clamping voltage, the designer is encouraged to consult the factory for assistance.

Example 7

For protection across 28 V, category B dc bus lines, threat level 4 of waveform 5A, the net surge current is higher resulting from the lower clamp voltage as shown with a PLAD30KP60A selected for protection. This 66.7 V minimum breakdown device will adequately meet the 60 V for 100 ms, "abnormal voltage" condition.

Equation 4:

Is = (Voc - Vc)/Zs = (750 V - 96.8 V)/1 Ω = 653 A

The level 4 surge current threat for a 28 V dc line is almost double that for the 115 V ac requirement previously shown, since the clamping voltage of 96.8 V is far less across the ac power line in equation 4 above. The I_P of the PLAD30KP60A for a 40/120 μ s pulse is 312 × 2.33 = 727 A providing a margin of 11% above the I_P requirement of 653 A for a 25 °C ambient.

Many applications require the lowest clamping voltage that can be attained. Since the abnormal surge voltage does not exceed 60 V, using a device with a breakdown voltage equal to this value has been acceptable for most applications. Lower voltage TVSs providing lower clamping voltage than the PLAD30KP60A described above include the PLAD30KP58A and PLAD30KP54A. Minimum breakdown voltages at 25 °C are 64.4 V and 60.0 V respectively on the PLAD products with minimum clamping voltages of 93.6 V and 87.1 V respectively. Maximum I_P for the PLAD30KP54A is 797 A at 40/120 µs or 2.33 x 342. Let's also compare this to the waveform 5 Level 4 threat limit calculation.

Equation 5:

Is =(Voc - Vc)/Zs = (750 V - 87.1 V)/1 Ω = 662.9 A

Compared to the PLAD30KP60A, the PLAD30KP54A offers 9.9 A of additional current protection and a lower clamping voltage by 9.7 V for protecting more sensitive components. Although the lower end of the breakdown voltage (V_{BR}), is identical to the maximum abnormal voltage (60.0 V), the TVS will draw current when the temperature drops below 25 °C for example, since TVS devices have a positive temperature coefficient of voltage. However, the current drawn by the TVS will be minimal and only sufficient to maintain a breakdown voltage equal to the maximum abnormal voltage during this brief time period of 100 ms. For a power line, this small amount of extra current drawn for heating the TVS should present no problem.

When comparing this analysis of a 54 V V_{WM} in Graph 21 for level 4 protection, it is apparent this is sufficient for 25 °C but not for 70 °C or above. For higher ambient temperatures as in earlier examples, the easiest practice is to place two devices in series of one-half the voltage of the PLAD30KP54A. This is available in the surface mount series with the PLAD30KP28A to almost double the surge current or three devices with the PLAD30KP18A to triple the surge current capabilities. In those TVS series where these lower voltage selections have not been previously available (such as in the older 30KPxxx axial-leaded series), the alternative for increasing surge current capability is with matched parallel devices. Voltage matching is performed under surge conditions to ensure a very close match, typically within the range of \pm 0.5%, for even load sharing between devices. This is normally performed by the manufacturer. Parallel matched TVSs for aircraft lightning protection and general heavy duty surge protection have been in use for several decades and have a record of proven performance. This method has also been thoroughly tested in battle performance in military ships and aircraft.

For higher current applications using single components beyond the limitations of Microsemi's 30,000 watt devices, there is the RT130KP275CV thru 295CV or CA series, which is rated at 40,000 W for 10/1000 μ s. They are characterized for waveform 4, 6.4/69 μ s and available in voltages intended for protection across 115 AC lines including abnormal high voltage conditions. Using the conversion equations reviewed in MicroNote 127, they may be applicable for other protection requirements confronted by the designer. Also the new PLAD36KPxxx surface mount series rated at 36 kW is now available in the same package as the PLAD30KPxxx series.

8 Multiple Surge Events

Further inquiries have been made for devices to withstand multiple surge events as also defined by RTCA /DO-160. The profile of the surge consists of a maximum value followed by multiple strokes. Since there are cumulative heating effects from these multiple surges, the lower thermal resistance junction to case (bottom) of the PLAD designs make them a better choice. Reference MicroNote 133 on our web swebsite

9 Summary/Conclusions

This document is the fifth in our series of MicroNotes providing selection guidance specifically for the avionics design engineer. The others include MicroNotes 126, 127, 130, and 133). It translates the datasheet peak pulse current ratings of the $10/1000 \mu$ s waveform into the surge rating equivalents to meet the waveform 3, 4 and Waveform 5A threats described in RTCA/DO-160.

A matrix of graphs for each device family from 500 W peak pulse power up through 36,000 W has been derived for surge ratings of each device family at 25 °C, 70 °C, and 100 °C for the above threats. Each graph is supported with a table listing the datasheet electrical parameters for the individual components listed along with calculated data points for the curves.

Using the examples and guidelines in the text, the designer is able to select directly from the graph of a device to fit his requirement with minimal calculating and guesswork. We expect those using this document to save valuable design time by more rapidly selecting a TVS correctly rated for a given application.

This is our second issue at presenting this information in graph selection format. We expect other revisions to keep up with the emerging technologies and updates of the RTCA/DO-160 specification and its latest revision. We also still recognize there is room for modifications to make this document more user friendly. To help achieve this goal, constructive comments from the user are welcome. It is Microsemi's desire to provide the design engineer with the most up to date design information to assist in achieving his/her goal more efficiently.

10 Acknowledgements

The authors wish to express their appreciation to Joe Leindecker for his valuable contribution with development and layout of the graphs and supporting tables.

For additional technical information, please contact Design Support at: http://www.microsemi.com/designsupport or Kent Walters (kwalters@microsemi.com) at 480-302-1144

10.1 References

[1] Clark, O. M., MicroNote[™] No. 127, Microsemi Corp., pg. 6

[2] Clark, O. M., MicroNote No. 127, Microsemi Corp., pg. 6

[3] Walters, K., MicroNote No. 130, Microsemi Corp.,

[4] RTCA/DO-160G, Section 16, Figure 16-5, pgs. 16-37

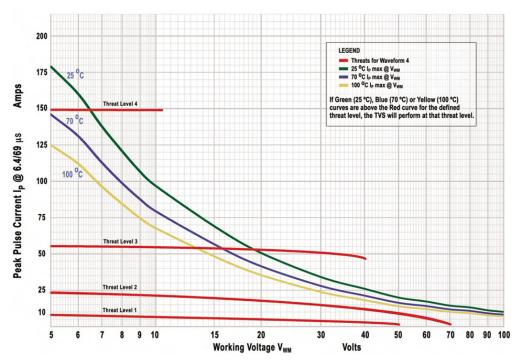
[5] RTCA/DO-160G, Section 16, Figure 16-6, pgs. 16-38

[6] Clark, O. M., MicroNote No. 127, Microsemi Corp., pg. 10

[7] Clark, O. M., MicroNote No. 127, Microsemi Corp., pg. 17

[8] Clark, O. M. and Walters, K. MicroNote No. 112, Microsemi Corp.

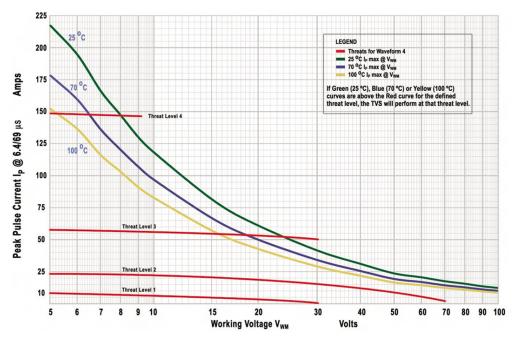
[9] Walters, K., MicroNote No. 133, Microsemi Corp.



11 Index to DIRECTselect Graphs and Datapoints

The following table is an index for the DIRECT select graphs and datapoints. All power ratings are taken at 10/1000 $\mu s.$

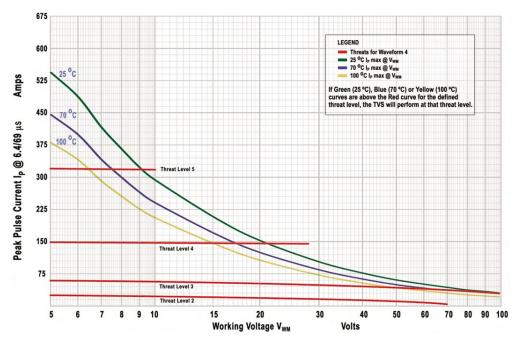
Graph #	Waveform Rating	Power *	Pg #
Graph 1	Waveform 4	500 W	19
Graph 2	Waveform 4	600 W	20
Graph 3	Waveform 4	1500 W	21
Graph 4	Waveform 4	3000 W	22
Graph 5	Waveform 4	5000 W	23
Graph 6	Waveform 4	6500 W	24
Graph 7	Waveform 4	7500 W	25
Graph 8	Waveform 4	15000 W	26
Graph 9	Waveform 4	18000 W	27
Graph 10	Waveform 4	30000 W	28
Graph 11	Waveform 4	36000 W	29
Graph 12	Waveform 5A	2500 W	30
Graph 13	Waveform 5A	600 W	31
Graph 14	Waveform 5A	1500 W	32
Graph 15	Waveform 5A	3000 W	33
Graph 16	Waveform 5A	5000 W	34
Graph 17	Waveform 5A	6500 W	35
Graph 18	Waveform 5A	7500 W	36
Graph 19	Waveform 5A	15000 W	37
Graph 20	Waveform 5A	18000 W	38
Graph 21	Waveform 5A	30000 W	39
Graph 22	Waveform 5A	36000 W	40


Graph 1: RTCA/DO-160G, Waveform 4, Levels 1 through 4, 500 W TVS Series

Data Points for Curves in Graph 1 - Waveform 4 RTCA/DO-160 using 500 W TVS Diodes

500	W TVS @ [.]	10/1000 µs	Conversio		reat for Lev			Microsemi TVs Part Numbers compliant to RTCA/DO-160		
V _{WM} V	V _c V	I _{PP} 500 W 10/1000 μs A	I _p 25 ⁰ C 6.4/69 μs Α	I _p 70 ⁰ C 6.4/69 μs Α	I _p 100 ⁰ C 6.4/69 μs Α	1 50V/10A A	2 125V/25A A	3 300V/60A A	4 750V/150A A	Standard Capacitance • Axial Lead
5 6 7	9.2 10.3 12.0	54.3 48.5 41.7	179 160 138	146 131 113	125 112 96.6	8.2 7.9 7.6	23.1 22.9 22.6	58.2 57.9 57.6	148.2 147.9 دو	P5KE5.0A-170A, CA 1N6103A-6137A 1N6461-6468
8 9 10	13.6 15.4 17.0	36.7 32.5 29.4	121 107 97	99 88 79.5	84.7 74.9 67.9	7.2 7.0 6.6	22.8 21.9 21.6	57.2 56.9 56.6	0ver limit 25 °C	Low Capacitance • Axial Lead SAC5.0-50
12 15 18	19.9 24.4 29.2	25.1 20.6 17.2	83 68 57	68.0 55.8 46.7	58.1 47.6 39.9	6.0 5.1 4.0	21.0 20.1 19.2	56.0 55.1 54.2		Surface Mount SMBJSAC5.0-50
20 28 30	32.4 45.4 48.4	15.4 11.0 10.3	51 36 34	41.8 29.5 27.9	35.7 25.2 23.8	3.5 0.9	18.5 15.9 15.3	53.5 50.9 50.3		
36 40 48	58.1 64.5 77.4	8.6 7.8 6.5	29 26 22	23.7 21.3 18.0	20.3 18.2 15.4		13.4 12.1 9.5	Over limit 25 °C		Except for 1Nxxxx part numbers shown that already have military qualifications, add M prefix for source control or MA, MX, or MXL for further upgrade
50 60 70	80 96.8 113	6.0 5.2 4.4	20 17.3 14.5	16.4 14.2 11.9	14.0 12.1 10.2			Ove		screening options on plastic devices as described in Micronote 129.
80 90 100	126 146 162	4.0 3.4 3.1	13.3 11.3 10.2	10.9 9.3 8.4	9.3 7.9 7.1	ţ	ţ	ţ	ţ	

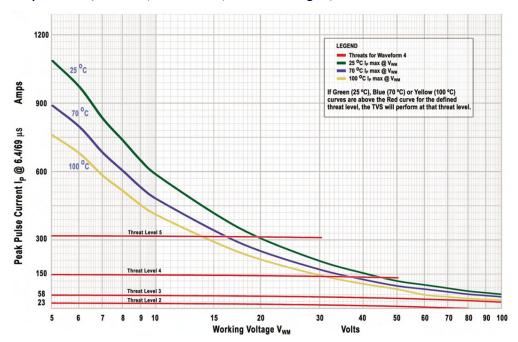
* Surge currents are reduced by clamping voltage (see Eq. 1). In the table above, the first three columns, V_{IMD}, V_C, and I_{pp} 500 W are taken from the data sheet while the subsequent three columns of 6.469 µs data were derived as illustrated earlier in this document and also MicroNote^{IIII} 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 2: RTCA/DO-160G, Waveform 4, Levels 1 through 4, 600 W TVS Series

Data Points for Curves in Graph 2 - Waveform 4 RTCA/DO-160 using 600 W TVS Diodes

600	W TVS @1	10/1000 µs	Conversio	on to 6.4/69	µs Ip Values		rge Curren nreat for Lev Threat		Microsemi TVS Part Numbers compliant to RTCA/DO-160	
V _{WM} V	V _C V	l _{pp} 600 W 10/1000 µs A	I _p 25 ^ο C 6.4/69 μs Α	I _p 70 ^ο C 6.4/69 μs Α	I _P 100 ⁰ C 6.4/69 μs Α	1 50V/10A A	2 125V/25A A	3 300V/60A A	4 750V/150A A	Standard Capacitance • Axial Lead
5 6 7	9.2 10.3 12.0	65.2 58.3 50.0	217 194 166	178 159 136	152 136 116	8.2 7.9 7.6	23.1 22.9 22.6	58.2 57.9 57.6	148.2 147.9 147.6	PGKE6.8A-200A, CA • Surface Mount SMBJ5.0A-170A, CA
8 9 10	13.6 15.4 17.0	44.1 39.0 35.3	147 130 118	120 107 96.7	103 91.0 82.6	7.2 7.0 6.6	22.2 21.9 21.6	57.2 56.9 56.6	147.2 3. 52	Add M prefix for the part numbers shown to add source control or MA, MX, or MXL for further
12 15 18	19.9 24.4 29.2	30.2 24.0 20.5	101 80.0 68.2	82.8 65.6 55.9	77.7 56.0 47.7	6.0 5.2 4.0	21.0 20.1 19.2	56.0 55.1 54.2	 Over limit 25 	upgrade screening options on plastic devices as described in Micronote 129.
20 28 30	32.4 45.4 48.4	18.5 13.2 12.4	61.3 43.9 41.3	50.2 35.9 33.9	42.9 30.7 28.9	3.5 0.9 0.3	18.5 15.9 15.3	53.5 50.9		
36 40 48	58.1 64.5 77.4	10.3 9.3 7.7	34.3 31.0 25.6	28.1 25.4 20.9	24.0 21.7 17.9	0	13.4 12.1 9.5	Over limit 25 °C		
50 60 70	80.0 96.8 113	7.1 5.6 5.3	23.6 20.6 17.6	19.3 16.9 14.4	16.5 14.4 12.3		9.0 5.6 2.4			
80 90 100	126 146 162	4.7 4.1 3.7	15.6 13.6 12.3	12.8 11.2 10.1	10.9 9.52 8.61	ţ	ţ	ţ	Ļ	

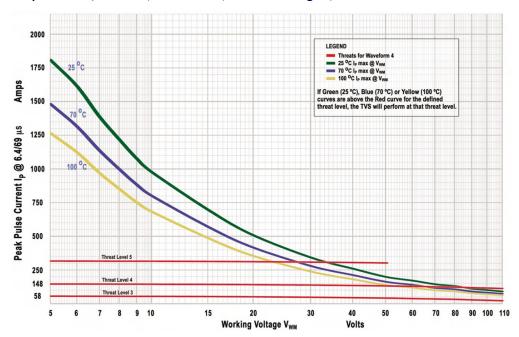
* Surge currents are reduced by clamping voltage (see Eq.1). In the table above, the first three columns, V_{WW} V_C, and I_{PP} 600 W are taken from the data sheet while the subsequent three columns of 6.469 µs data were derived as illustrated earlier in this document and also MicroNote[™] 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 3: RTCA/DO-160G, Waveform 4, Levels 2 through 5, 1500 W TVS Series

Data Points for Curves in Graph 3 - Waveform 4 RTCA/DO-160 using 1500 W TVS Diodes

1500	W TVS @	10/1000 µs	Conversio	n to 6.4/69	µs Ip Values		reat for Lev	ts for the F els shown o Levels 2-5	Microsemi TVs Part Numbers compliant to RTCA/DO-160	
V _{WM} V	V _C V	l _{pp} 1500 W 10/1000 μs A	l _p 25 ⁰ C 6.4/69 μs Α	I _P 70 ⁰ C 6.4/69 μs Α	I _P 100 ⁰ C 6.4/69 μs Α	2 125V/10A A	3 300V/60A A	4 750V/150A A	5 1600V/320A A	Standard Capacitance • Axial Lead
5 6 7	9.2 10.3 12.0	163 146 125	543 486 416	445 398 341	380 340 291	23.1 22.9 22.6	58.2 57.9 57.6	148.2 147.9 147.6	318.2 317.9 317.6	1.5KE6.8A-400A, CA 1N5629A-1N5665A 1N5907, 1N5908 1N6036A-1N6072A
8 9 10	13.6 15.4 17.0	110 97.4 88.2	366 324 294	300 266 241	256 227 206	22.8 21.9 21.6	57.2 56.9 56.6	147.2 146.9 146.6	317.3 316.9 316.6	1N6138A-1N6073A 1N6469-1N6476 1N8110-1N8146
12 15 18	19.9 24.4 29.2	75.3 61.5 51.4	251 205 171	206 168 140	176 144 120	21.0 20.1 19.2	56.0 55.1 54.2	146.0 145.1 144.2	316.0 • • • • •	• Surface Mount SMCJ5.0A-170A, CA
20 28 30	32.4 45.4 48.4	46.3 33.0 31.0	154 110 103	126 90.2 84.5	108 77.0 72.1	18.5 15.9 15.3	53.5 50.9 50.3	143.5 140.9 2	Over limit 25	Low Capacitance • Axial Lead LC6.5-170A LCE6.5-170A
33 40 48	53.3 64.5 77.4	28.1 23.2 19.4	93.6 77.2 64.6	76.7 63.3 52.0	65.5 54.0 45.2	14.3 12.1 9.5	49.3 47.1 44.5	Over limit 25 °C		Surface Mount SMCJLCE6.5-170A
50 60 70	80.0 96.8 113	18.2 15.5 13.3	60.6 51.6 44.2	49.6 42.3 36.2	42.4 36.1 30.9	9.0 5.6 2.4	44.0 40.6 37.4	Í		Except for 1Nxxxx part numbers shown that already have military qualifications, add M prefix for source control or
80 90 100	126 146 162	11.4 10.3 9.3	38.0 34.7 31.0	31.2 28.1 25.4	26.6 24.0 21.7	° ♥	34.8 30.8 27.6	ļ	Ļ	MA, MX, or MXL for further upgrade screening options on plastic devices as described in Micronote 129.

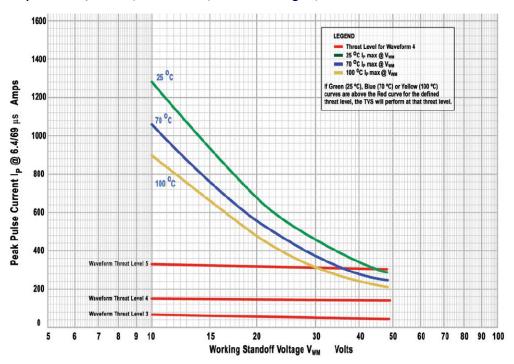
* Surge currents are reduced by damping voltage (see Eq.1). In the table above, the first three columns, V_{WM}, V_C, and I_{PP} 1500 W are taken from the data sheet while the subsequent three columns of 6.4/69 µs data were derived as illustrated earlier in this document and also MicroNote[™] 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 4: RTCA/DO-160G, Waveform 4, Levels 2 through 5, 3000 W TVS Series

Data Points for Curves in Graph 4 - Waveform 4 RTCA/DO-160 using 3,000 W TVS Diodes

3000	W TVS @	10/1000 µs	Conversio	n to 6.4/69	us Ip Values		reat for Lev	its for the F els shown o Levels 2-5	- Microsemi TVS Part Numbers compliant to RTCA/D0-160	
V _{WM} V	V _C V	I _{PP} 3000 W 10/1000 μs A	I _p 25 ^ο C 6.4/69 μs Α	I _p 70 ⁰ C 6.4/69 μs Α	I _p 100 ⁰ C 6.4/69 μs Α	2 125V/10A A	3 300V/60A A	4 750V/150A A	5 1600V/320A A	Standard Capacitance • Surface Mount
5 6 7	9.2 10.3 12.0	326 291 250	1085 969 832	889 794 682	759 678 582	23.2 22.9 22.6	58.1 57.9 57.6	148.2 147.9 147.6	318.1 317.9 317.6	SMLJ5.0A-170A, CA Add M prefix for the part numbers shown to add source control or
8 9 10	13.6 15.4 17.0	221 195 176	736 649 586	603 532 480	515 454 410	22.8 21.9 21.6	57.2 56.9 56.6	147.2 146.9 146.6	317.3 317.0 316.6	MA, MX, or MXL for further upgrade screening options on plastic devices as described in
12 15 18	19.9 24.4 29.2	151 123 103	502 409 343	412 335 281	351 286 240	21.0 20.1 19.2	56.0 55.1 54.2	146.0 145.1 144.1	316.0 315.1 314.1	Micronote 129.
20 28 30	32.4 45.4 48.4	92.6 66.0 62.0	308 220 206	252 180 169	215 154 144	18.5 15.9 15.3	53.5 50.3 50.3	143.5 140.9 140.3	313.5 310.9 310.3	
33 40 48	53.3 64.5 77.4	56.2 46.4 38.8	187 154 129	153 126 105	130 107 90.3	14.3 12.1 9.5	49.3 47.1 44.5	139.3 137.1 138.5	Dver limit 25 °C	
50 60 70	82.4 96.8 113	36.4 31.0 26.6	120 103 88.6	98.4 84.5 72.6	84.0 72.1 62.0	8.5 5.6 2.4	43.5 40.6 37.4	134.2 ទ្	Over li	
80 90 100	126 146 162	22.8 20.6 18.6	75.9 68.6 61.9	62.2 56.2 50.7	53.1 48.0 43.3	∮	34.8 30.8 27.6	Over limit 25 •C	ţ	

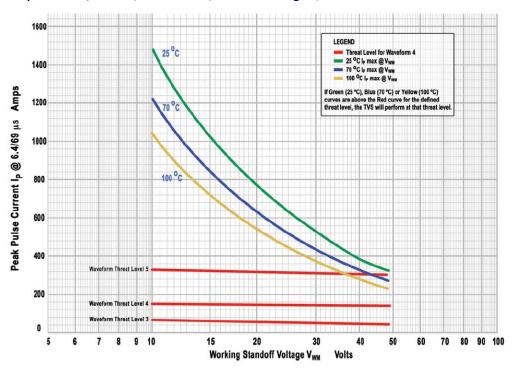
* Surge currents are reduced by clamping voltage (see Eq.1). In the table above, the first three columns, V_{MM}, V_C, and I_{PP} 3000 W are taken from the data sheet while the subsequent three columns of 6.4/69 µs data were derived as illustrated earlier in this document and also MicroNote[™] 127. The 70 ⁶C and 100 ⁶C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 5: RTCA/DO-160G, Waveform 4, Levels 3 through 5, 5000 W TVS Series

Data Points for Curves in Graph 5 - Waveform 4 RTCA/DO-160 using 5000 W TVS Diodes

5000	W TVS @	10/1000 µs	Conversio	n to 6.4/69	µs I _P Values		e Currents for t at for Levels show Threat Levels		Microsemi TVS Part Numbers compliant to RTCA/DO-160
V _{WM} V	V _C V	I _{PP} 5000 W 10/1000 μs A	I _P 25 ^ο C 6.4/69 μs Α	l _p 70 °C 6.4/69 µs A	I _P 100 ⁰ C 6.4/69 μs Α	3 300V/60A A	4 750V/150A A	5 1600V/320A A	Standard Capacitance • Axial Lead
5 6 7	9.2 10.3 12.0	543 485 417	1808 1615 1389	1482 1316 1138	1266 1124 972	58.2 57.9 57.6	148.2 147.9 147.6	318.2 317.9 317.6	5KP5.0A - 110, CA Add M prefix for the part numbers
8 9 10	13.6 15.4 17.0	367 325 294	1222 1082 979	1002 889 803	855 757 685	57.2 56.9 56.6	147.2 146.9 146.6	317.3 317.0 316.6	shown to add source control or MA, MX, or MXL for further upgrade screening options on plastic devices as described in
12 15 18	19.9 24.4 29.2	251 206 172	835 686 572	684 562 469	584 480 400	56.0 55.1 54.2	146.0 145.1 144.2	316.0 315.1 314.0	Micronote 129.
20 28 30	32.4 45.4 48.4	154 110 103	512 366 342	420 300 280	358 256 239	53.5 50.9 50.3	143.5 140.9 140.3	313.5 310.9 310.3	
36 40 50	58.1 64.5 80.0	86 78 60	286 260 200	234 213 164	200 182 140	48.3 47.1 44.0	138.4 137.1 134	308.3 307.1 304.0	
60 70 80	96.8 113 126	52 44 40	173 146 133	142 119 109	121 102 93.1	40.6 37.4 34.8	131 127 124	Over limit 25 •C	
90 100 110	146 162 177	113 31 28	34 103 93.2	92.7 84.5 76.4	79.1 72.1 65.2	30.8 27.6 24.6	121 118 115	M0	

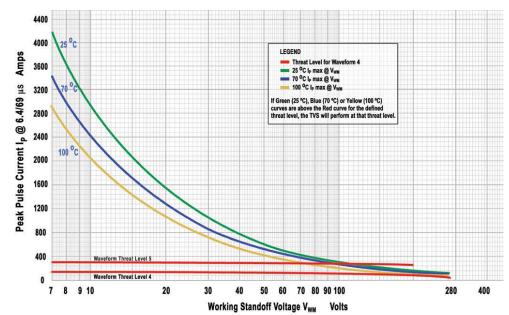
* Surge currents are reduced by clamping voltage (see Eq.1). In the table above, the first three columns, V_{VMI}, V_C, and I_{PP} 5000 W are taken from the data sheet while the subsequent three columns of 6.4/69 us data were derived as illustrated earlier in this document and also MicroNote¹¹⁰ 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 6: RTCA/DO-160, Waveform 4, Levels 3 through 5, 6500 W TVS Series

Data Points for Curves in Graph 6 - Waveform 4 RTCA/DO-160 using 6500 W TVS Diodes

6500	W TVS @	010/1000 µs	Conversio	on to 6.4/69	µs I _P Values	Is Threat	Currents for the for Levels show Threat Levels 3	n on graph	Microsemi TVS Part Numbers compliant to RTCA/DO-160
V _{WM} V	V _c V	I _{PP} 6500 W 10/1000 μs A	I _p 25 ⁰ C 6.4/69 μs Α	l _p 70 °C 6.4/69 µs A	I _P 100 ⁰ C 6.4/69 μs Α	3 300V/60A A	4 750V/150A A	5 1600V/320A A	Standard Capacitance • Surface Mount
10	17.0	383	1275	1045	892	56.6	146.6	316.6	PLAD6.5KP10A – 48A, CA
11	18.2	358	1192	977	834	56.4	146.4	316.4	
12	19.9	327	1089	893	762	56.0	146.0	316.0	
13	21.5	302	1006	825	704	55.7	145.7	315.7	
14	23.2	280	932	764	652	55.4	145.4	315.4	
15	24.4	267	889	729	622	55.1	145.1	315.1	
16	26.0	250	833	683	583	54.8	144.8	314.8	
17	27.6	236	786	645	550	54.5	144.5	314.5	
18	29.2	223	743	609	520	54.2	144.2	314.0	
20	32.4	202	673	552	471	53.5	143.5	313.5	
22	35.5	183	609	499	426	52.9	142.9	312.9	
24	38.9	167	556	456	389	52.2	142.2	312.2	
26	42.1	154	513	421	359	51.6	141.6	311.6	
28	45.5	143	476	390	333	50.9	140.9	310.9	
30	48.4	135	450	369	315	50.3	140.3	310.3	
33	53.3	123	410	336	287	49.3	139.3	309.3	
36	58.1	111	370	303	259	48.3	138.4	308.3	
40	64.5	101	336	276	235	47.1	137.1	307.1	
43	69.4	93	310	254	217	46.1	136.1	306.1	
45	72.7	89	296	243	207	45.5	135.5	Over Limit	
48	77.4	85	283	232	198	44.5	134.5	25°C	

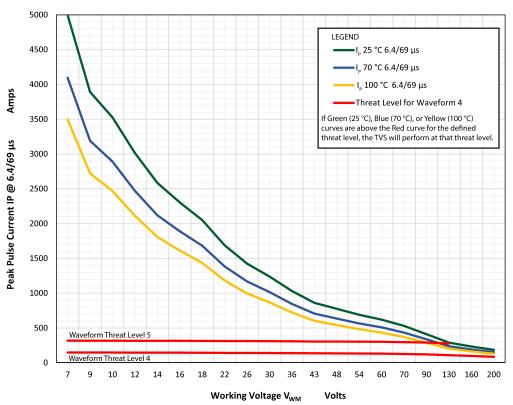
* Surge currents are reduced by clamping voltage (see Eq 1). In the table above, the first three column (V_{WM}, V_C, and I_{PP}) are taken from the data sheet while the subsequent three columns of 6.4/69 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 7: RTCA/DO-160, Waveform 4, Levels 3 through 5, 7500 W TVS Series

Data Points for Curves in Graph 7 - Waveform 4 RTCA/DO-160 using 7500 W TVS Diodes

7500	W TVS @	010/1000 µs	Conversio	on to 6.4/69	µs I _P Values		Currents for the F for Levels shown Threat Levels 3-5	Microsemi TVS Part Numbers compliant to RTCA/DO-160	
V _{WM} V	V _c V	I _{PP} 7500 W 10/1000 μs A	I _p 25 ^ο C 6.4/69 μs Α	l _p 70 °C 6.4/69 µs A	I _P 100 ⁰ C 6.4/69 μs Α	3 300V/60A A	4 750V/150A A	5 1600V/320A A	Standard Capacitance • Surface Mount
10	17.0	441	1469	1205	1028	56.6	146.6	316.6	PLAD7.5KP10A – 48A, CA
11	18.2	412	1372	1125	960	56.4	146.4	316.4	
12	19.9	377	1255	1029	878	56.0	146.0	316.0	
13	21.5	349	1162	953	813	55.7	145.7	315.7	
14	23.2	323	1076	882	753	55.4	145.4	315.4	
15	24.4	307	1022	838	715	55.1	145.1	315.1	
16	26.0	288	959	786	671	54.8	144.8	314.8	
17	27.6	272	906	743	634	54.5	144.5	314.5	
18	29.2	257	856	702	599	54.2	144.2	314.0	
20	32.4	231	769	631	538	53.5	143.5	313.5	
22	35.5	211	703	576	492	52.9	142.9	312.9	
24	38.9	193	643	527	450	52.2	142.2	312.2	
26	42.1	178	593	486	415	51.6	141.6	311.6	
28	45.5	165	549	450	384	50.9	140.9	310.9	
30	48.4	155	516	423	361	50.3	140.3	310.3	
33	53.3	141	470	385	329	49.3	139.3	309.3	
36	58.1	129	430	353	301	48.3	138.4	308.3	
40	64.5	116	386	317	270	47.1	137.1	307.1	
43	69.4	108	360	295	252	46.1	136.1	306.1	
45	72.7	103	343	281	240	45.5	135.5	305.5	
48	77.4	97	323	265	226	44.5	134.5	304.5	

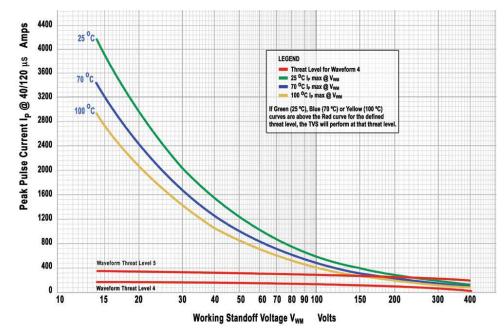
* Surge currents are reduced by clamping voltage (see Eq 1). In the table above, the first three column (V_{WM} V_C, and I_{PP}) are taken from the data sheet while the subsequent three columns of 6.4/69 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 8: RTCA/DO-160G, Waveform 4, Levels 4 through 5, 15,000 W TVS Series

Data Points for Curves in Graph 8 - Waveform 4 RTCA/DO-160 using 15,000 W TVS Diodes

15,000) W TVS (@10/1000 µs	Conversio	on to 6.4/69	µs I _P Values	Is Threat for Lev	ts for the Red Curves* els shown on graph Levels 4-5	Microsemi TVS Part Numbers compliant to RTCA/DO-160
V _{WM} V	Vc V	I _{PP} 15,500 W 10/1000 μs A	I _P 25 ⁰ C 6.4/69 μs Α	I _P 70 ⁰ C 6.4/69 μs Α	I _P 100 ⁰ C 6.4/69 μs Α	4 750V/150A A	5 1600V/320A A	Standard Capacitance • Axial Lead
7.0	12.0	1251	4166	3416	2916	148	318	15KP22A – 280A, CA
9.0	15.4	975	3247	2663	2273	147	317	• Surface Mount
10	17.0	882	2937	2408	2056	147	317	PLAD15KP7.0A – 200A, CA
12	19.9	753	2507	2055	1755	146	316	
14	23.2	645	2148	1761	1504	145	315	
16	26.0	576	1918	1573	1343	145	315	
18	29.2	516	1718	1409	1207	144	314	Add M prefix for the part numbers shown to add source control or
22	35.5	423	1409	1155	986	143	313	
26	42.1	357	1189	975	823	142	312	
30	48.4	309	1029	844	720	140	310	MA, MX, or MXL for further upgrade
36	58.1	258	859	704	601	138	308	screening options on plastic devices
43	69.4	216	719	590	503	136	306	as described in Micronote 129.
48	77.4	195	649	532	454	135	305	
54	87.1	171	569	467	398	133	303	
60	96.8	156	519	426	363	131	301	
70	113	132	440	361	308	127	297	
90	146	102	340	279	238	121	291	
130	209	71	236	194	165	108	Over Limit 25°C	
160 200 280	259 322 452	58 47 33	193 157 110	158 129 90.0	135 110 77.0	98.2 85.6 59.6	ţ	

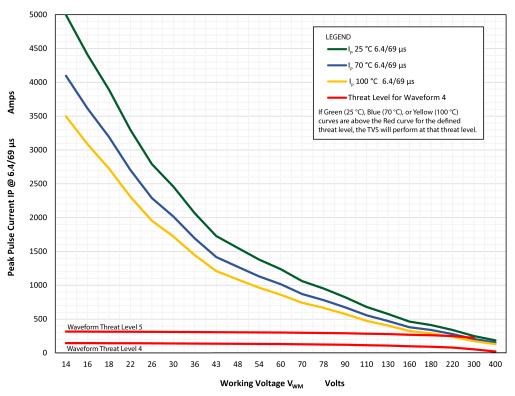
* Surge currents are reduced by clamping voltage (see Eq 1). In the table above, the first three column (V_{WM}, V_C, and I_{PP}) are taken from the data sheet while the subsequent three columns of 6.4/69 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.



Graph 9: RTCA/DO-160, Waveform 4, Levels 4 through 5, 18,000 W TVS Diodes

Data Points for Curves in Graph 9 - Waveform 4 RTCA/DO-160 using 18,000 W TVS Diodes
--

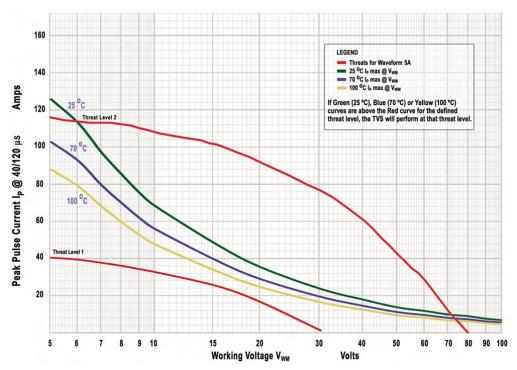
18,00	OW TVS	@10/1000 µs	Conversio	on to 6.4/69 j	us I _P Values	Is Threat for Leve	s for the Red Curves* Is shown on graph Levels 4-5	Microsemi TVS Part Numbers Compliant for RTCA/DO-160
V _{WM} V	v _c v	I _{PP} 18,000 W @ 10/1000 µs А	l⊧ 25°C 6.4/69 µs A	l⊧70°C 6.4/69 μs A	l⊧ 100°C 6.4/69 µs A	4 750V/150A A	5 1600V/320A A	Standard Capacitance • Surface Mount PLAD18KP7.0A – 200A, CA
7.0	12.0	1500	4995	4096	3496	148	318	
9.0	15.4	1169	3893	3192	2725	147	317	
10	17.0	1059	3526	2891	2468	147	317	
12	19.9	905	3014	2471	2110	146	316	
14	23.2	776	2584	2119	1809	145	315	Add M prefix for the part numbers
16	26.0	692	2304	1889	1613	145	315	shown to add source control or MA, MX, or MXL for further
18	29.2	616	2051	1682	1436	144	314	upgrade screening options on
22	35.5	507	1688	1384	1182	143	313	plastic devices as described in MicroNote 129.
26	42.1	428	1425	1168	997	142	312	
30	48.4	372	1239	1016	867	140	310	
36	58.1	310	1032	846	722	138	308	
43	69.4	259	862	707	603	136	306	
48	77.4	233	776	636	543	135	305	
54	87.1	207	689	565	482	133	303	
60	96.8	186	619	508	433	131	301	
70	113	159	529	434	370	127	297	
90	146	123	410	336	287	121	291	
130	209	87	290	238	203	108	278	
160	259	70	233	191	163	98.2	Over Limit	
200	322	56	186	152	130	85.6	25 °C	


Graph 10: RTCA/DO-160G, Waveform 4, Levels 4 through 5, 30000 W TVS Series

Data Points for Curves in Graph 10 - Waveform 4 RTCA/DO-160 using 30,000 W TVS Diodes

30,000	30,000 W TVS @10/1000 µs			on to 6.4/69	µs I _P Values	Is Threat for Leve	s for the Red Curves* els shown on graph Levels 4-5	Microsemi TVS Part Numbers compliant to RTCA/D0-160
V _{WM} V	V _c V	I _{PP} 30,000 W 10/1000 μs A	I _P 25 ⁰ C 6.4/69 μs Α	I _P 70 ⁰ C 6.4/69 μs Α	I _P 100 ⁰ C 6.4/69 µs A	4 750V/150A A	5 1600V/320A A	Standard Capacitance • Surface Mount
14	24.0	1251	4166	3416	2916	145.2	315.2	PLAD30KP14A – 400A, CA
16	27.2	1101	3666	3006	2566	144.6	314.6	
18	30.8	975	3247	2663	2273	143.8	313.8	
22	36.4	822	2737	2244	1916	142.7	312.7	Add M prefix for the part numbers shown to add source control or
26	43.0	696	2318	1901	1623	141.4	311.4	
30	48.8	618	2058	1688	1441	140.2	310.2	
36	58.1	516	1718	1409	1203	138.3	308.4	MA, MX, or MXL for further upgrade
43	69.4	432	1439	1180	1007	136.1	306.1	screening options on plastic devices
48	77.4	390	1299	1065	909	134.5	304.5	as described in Micronote 129.
54	87.1	342	1139	934	797	132.6	302.6	
60	96.8	312	1039	852	727	130.6	300.6	
70	113	264	879	721	615	127.4	297.4	
78	126	240	799	655	559	124.8	294.8	
90	146	204	679	557	475	120.8	290.8	
110	177	168	559	458	391	114.6	284.6	
130	209	142	473	388	331	108.2	278.2	
160	259	116	386	317	270	98.2	268.2	
180	291	104	346	284	242	91.8	261.8	
220	356	84	280	230	196	78.8	248.8	
300	483	62	206	169	144	53.4	Over Limit	
400	644	46	153	125	107	21.2	25°C	

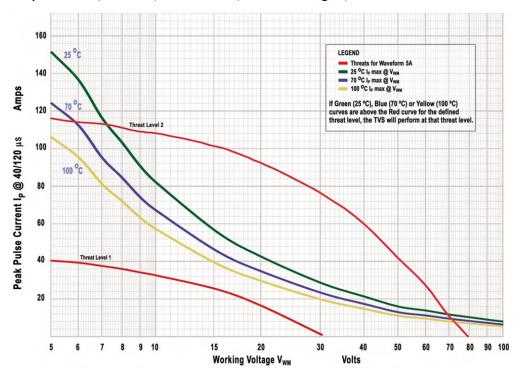
* Surge currents are reduced by clamping voltage (see Eq 1). In the table above, the first three column (V_{wwe} V_C, and I_{pp}) are taken from the data sheet while the subsequent three columns of 6.4/69 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 °C and 100 °C curves were added for simplifying selecton since many TVS devices require derating for higher temperatures.



Graph 11: RTCA/DO-160, Waveform 4, Levels 4 through 5, Using 36,000 W TVS Diodes

36,00	OW TVS	@10/1000 µs	Conversio	on to 6.4/69 j	µs I _P Values	Is Threat for Leve	s for the Red Curves* Is shown on graph evels 4-5	Microsemi TVS Part Numbers Compliant for RTCA/DO-160
V _{WM}	v _c v	l⊧⊧ 36,000 W @ 10/1000 μs A	l⊧ 25°C 6.4/69 µs A	l⊧70°C 6.4/69 µs A	l⊧ 100°C 6.4/69 µs A	4 750V/150A A	5 1600V/320A A	Standard Capacitance Surface Mount
14	24.0	1500	4995	4096	3496	145.2	315.2	PLAD36KP14A – 400A, CA
16	27.2	1324	4409	3615	3086	144.6	314.6	
18	30.8	1169	3893	3192	2725	143.8	313.8	
22	36.4	990	3297	2703	2308	142.7	312.7	
26	43.0	838	2790	2288	1953	141.4	311.4	
30	48.8	738	2458	2016	1721	140.2	310.2	Add M prefix for the part numbers shown to add source control or
36	58.1	620	2065	1693	1445	138.3	308.4	MA, MX, or MXL for further
43	69.4	519	1728	1417	1210	136.1	306.1	upgrade screening options on plastic devices as described in
48	77.4	466	1552	1273	1086	134.5	304.5	MicroNote 129.
54	87.1	414	1379	1131	965	132.6	302.6	
60	96.8	372	1239	1016	861	130.6	300.6	
70	113	319	1062	871	743	127.4	297.4	
78	126	286	952	781	666	124.8	294.8	
90	146	247	823	675	576	120.8	290.8	
110	177	204	679	557	475	114.6	284.6	
130	209	173	576	472	403	108.2	278.2	
160	259	139	463	380	324	98.2	268.2	
180	291	124	413	339	289	91.8	261.8	
220	356	102	340	279	238	78.8	248.8	
300	483	75	250	205	175	53.4	223.4 Over Limit	
400	644	56	186	153	130	21.2	25 ℃	

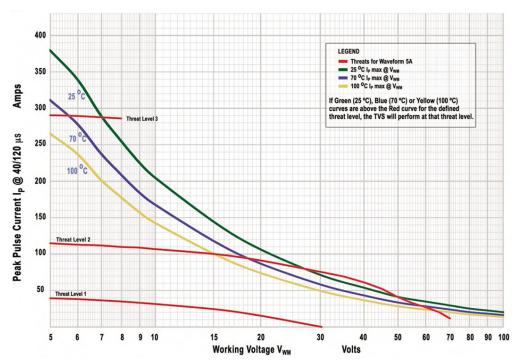
*Surge currents are reduced by clamping voltage (see Eq. 1). In the table above, the first three columns (V_{VMA}, V_C, and I_W 36,000 W are taken from the data sheet while the subsequent three columns of 6.4/69 µs data were derived as illustrated earlier in this document and also MicroNote 127. The 70°C and 100°C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 12: RTCA/DO-160G, Waveform 5A, Levels 1 through 2, 500 W TVS Series

Data Points for Curves in Graph 12 - Waveform 5A RTCA/DO-160 using 500 W TVS Diodes

500	500 W TVS @10/1000 µs			n to 40/120	µs I _P Values	Is Threat for Le	nts for the Red Curves* vels shown on graph t Levels 1-2	Microsemi TVS Part Numbers compliant to RTCA/D0-160
v _{wm} v	v _c v	I _{PP} 500 W 10/1000 μs Α	I _P 25 ⁰ C 40/120 μs Α	I _P 70 ⁰ C 40/120 µs A	I _P 100 ⁰ C 40/120 μs Α	1 50V/50A A	2 125V/125A A	Standard Capacitance • Axial Lead
5 6 7	9.2 10.3 12.0	54.3 48.5 41.7	126 113 97.2	103 92.7 79.7	88.2 79.1 68.3	40.8 39.7 38.0	116 114 113	P5KE5.0A-170A, CA 1N6103A-1N6137A 1N6461-1N6468 1N8073-1N8109
8 9 10	13.6 15.4 17.0	36.7 32.5 29.4	85.5 75.7 68.5	70.1 62.1 56.1	59.8 53.0 47.9	36.4 34.6 33.0	112 110 108	Low Capacitance • Axial Lead
12 15 18	19.9 24.4 29.2	25.1 20.6 17.2	58.5 48.0 40.1	48.0 39.3 32.9	41.0 33.6 28.1	30.1 25.6 20.8	105 101 ♀ 96.8 \$	• SAC5.0-50 • Surface Mount SMBJSAC5.0-50
20 28 30	32.4 45.4 48.4	15.4 11.0 10.3	35.9 25.6 24.0	29.4 21.0 19.7	25.1 17.9 16.8	17.1 4.6 1.6	91.6 E 79.0 b 76.6	Except for 1Nxxxx part numbers shown
36 40 48	53.3 64.5 77.4	8.6 7.8 6.5	20.0 18.1 15.1	16.4 14.8 12.4	14.0 12.7 10.6		71.7 60.5 47.6	that already have military qualifications, add M prefix for source control or MA, MX, or MXL for further upgrade
50 60 70	82.4 96.8 113	6.0 5.2 4.4	14.0 12.1 10.2	11.5 9.9 8.4	9.8 8.4 7.1		42.6 28.2 12.0	screening options on plastic devices as described in Micronote 129.
80 90 100	126 146 162	4.0 3.4 3.1	9.3 7.9 7.2	7.6 6.5 5.9	6.5 5.5 5.0		Devices > 78 V _{WM} within limits	

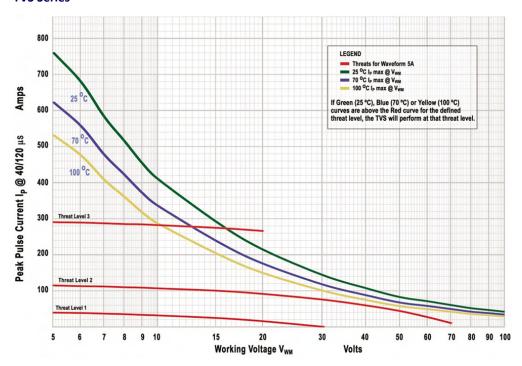
* Surge currents are reduced by clamping voltage (see Eq.1). In the table above, the first three columns, V_{VMM}, V_C, and I_{PP} 500 W are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNote[™] 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 13: RTCA/DO-160G, Waveform 5A, Levels 1 through 2, 600 W TVS Series

Data Points for Curves in Graph 13 - Waveform 5A RTCA/DO-160 using 600 W TVS Diodes

600	600 W TVS @10/1000 µs			n to 40/120	µs Ip Values	Is Threat for Lev	nts for the Red Curves* vels shown on graph Levels 1-2	Microsemi TVS Part Numbers compliant to RTCA/D0-160
V _{WM} V	V _C V	I _{pp} 600 W 10/1000 μs A	l _p 25 °C 40/120 µs A	l _p 70 °C 40/120 µs A	I _p 100 ⁰ C 40/120 μs Α	1 50V/50A A	2 125V/125A A	Standard Capacitance • Axial Lead
5 6 7	9.2 10.3 12.0	62.2 58.3 50.0	151 136 116	124 112 95.1	106 95.2 81.2	40.8 39.7 38.0	116 114 113	P6KE6.8A-200A, CA • Surface Mount SMBJ5.0A-170A, CA
8 9 10	13.6 15.4 17.0	44.1 39.0 35.3	103 90.8 82.2	84.5 74.4 67.4	72.1 63.6 57.5	36.4 34.6 33.0	111 109 108	Add M prefix for the part numbers shown to add source control or
12 15 18	19.9 24.4 29.2	30.2 24.0 20.5	70.4 55.9 47.8	57.7 45.8 39.2	49.3 39.1 33.4	30.1 25.6 20.8	105 101 y 95.8 x	MA, MX, or MXL for further upgrade screening options on plastic devices as described in Micronote 129.
20 28 30	32.4 45.4 48.4	18.5 13.2 12.4	43.1 30.7 28.9	35.3 25.2 23.7	30.2 21.5 20.2	17.1 4.6 1.6	92.6 E 79.6 b 76.6 č	micronole 129.
36 40 48	58.1 64.5 77.4	10.3 9.3 7.7	24.0 21.7 17.9	19.7 17.8 14.7	16.8 15.2 12.5		66.9 60.5 47.6	
50 60 70	82.4 96.8 113	7.1 6.2 5.3	16.5 14.4 12.3	13.5 11.8 10.1	11.6 10.1 8.6		42.6 28.2 12.0	
80 90 100	126 146 162	4.7 4.1 3.7	10.9 9.6 8.6	8.9 7.9 7.0	7.6 6.7 6.0		Devices > 75 V _{WM} within limits	

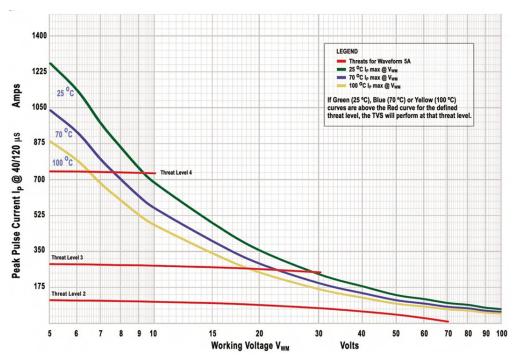
* Surge currents are reduced by clamping voltage (see Eq.1). In the table above, the first three columns, V₁₀₀₀, V_C, and I_{pp} 600 W are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNote[™] 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 14: RTCA/DO-160G, Waveform 5A, Levels 1 through 3, 1500 W TVS Series

Data Points for Curves in Graph 14 - Waveform 5A RTCA/DO-160 using 1500 W TVS Diodes

1500	W TVS @	910/1000 µs	Conversio	on to 40/120	µs Ip Values		Currents for t for Levels sh Threat Level		Microsemi TVS Part Numbers compliant to RTCA/DO-160
V _{WM} V	V _C V	I _{PP} 1500 W 10/1000 µs А	lp 25 ⁰ C 40/120 μs Α	I _P 70 ^o C 40/120 µs A	I _P 100 ⁰ C 40/120 μs Α	1 50V/50A A	2 125V/125A A	3 300/300 A	Standard Capacitance • Axial Lead
5 6 7	9.2 10.3 12.0	163 146 125	380 340 291	312 279 239	266 238 203	40.8 39.7 38.0	116 114 113	291 290 288	1.5KE6.8A-400A, CA 1N5629A-1N5665A 1N5907, 1N5908 1N6036A-1N6072A
8 9 10	13.6 15.4 17.0	110 97.4 88.2	256 227 206	210 186 169	179 159 144	36.4 34.6 33.0	111 110 108	Over limit 25 °C	1N6138A-1N6173A 1N6469-1N6476 1N8110-1N8146
12 15 18	19.9 24.4 29.2	75.3 61.5 51.4	175 143 120	144 117 98.4	122 100 84.0	30.1 25.6 20.8	105 101 95.8	Over	• Surface Mount SMCJ5.0A-170A, CA
20 28 30	32.4 45.4 48.4	46.3 33.0 31.0	108 76.9 72.2	88.6 63.0 59.2	75.6 53.8 50.5	17.1 4.6 1.6	92.6 79.6 76.6 9		Low capacitance • Axial Lead LC6.5-170A
36 40 48	58.1 64.5 77.4	28.1 23.2 19.4	65.5 54.0 45.2	53.7 44.3 37.1	45.8 37.8 31.6		66.9 60.5 47.6 0 8		LCE6.5-170A • Surface Mount SMCJLCE6.5-170A
50 60 70	82.4 96.8 113	18.2 15.5 13.3	42.4 36.1 31.0	34.8 29.6 25.4	29.7 25.2 21.7		42.6 28.2 12.0		Except for 1Nxxxx part numbers shown that already have military qualifications, add M prefix for source control or
80 90 100	126 146 162	11.4 10.3 9.3	26.6 24.0 21.7	21.8 19.7 17.8	18.6 16.8 15.2	ţ	Devices >60 V _{WM} within limits	ļ	MA, MX, or MXL for further upgrade screening options on plastic devices as described in Micronote 129.

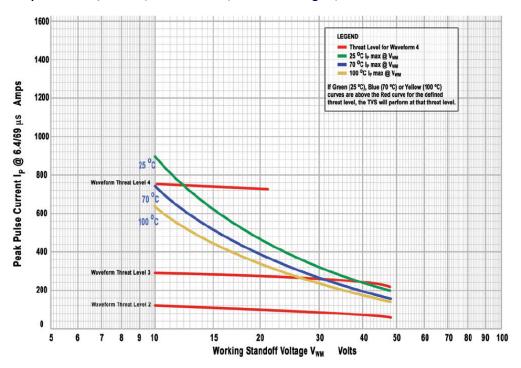
* Surge currents are reduced by clamping voltage (see Eq.1). In the table above, the first three columns, V_{MM}, V_G, and I_{ep} 1500 W are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNote[™] 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 15: TVS Selection Guide for: RTCA/DO-160G, Waveform 5A, Levels 1 through 3, 3000 W TVS Series

Data Points for Curves in Graph 15 - Waveform 5A RTCA/DO-160 using 3000 W TVS Diodes

3000	W TVS @	10/1000 µs	Conversion	n to 40/120 j	ıs Ip Values	I _s Threat fo	urrents for th or Levels show reat Levels *		Microsemi TVS Part Numbers compliant to RTCA/DO-160
V _{WM} V	V _c V	I _{PP} 3000 W 10/1000 μs A	l _p 25 °C 40/120 µs A	I _p 70 °C 40/120 µs A	I _p 100 ⁰ C 40/120 μs Α	1 50V/50A A	2 125V/125A A	3 300V/300A A	Standard Capacitance • Surface Mount
5 6 7	9.2 10.3 12.0	326 291 250	759 678 582	622 556 477	531 475 408	40.8 39.7 38.0	116 114 113	290.8 289.7 288	– SMLJ5.0A-170A, CA
8 9 10	13.6 15.4 17.0	221 195 176	515 454 410	422 372 336	361 318 287	36.4 34.6 33.0	111 110 108	286.4 285 283	Add M prefix for the part numbers shown to add source control or MA, MX, or MXL for further
12 15 18	19.9 24.4 29.2	151 123 103	352 287 240	289 235 197	246 201 168	30.1 25.6 20.8	105 101 95.8	280 275 2	upgrade screening options on plastic devices as described in Micronote 129.
20 28 30	32.4 45.4 48.4	92.6 66.0 62.0	216 154 144	177 126 118	151 108 101	17.1 4.6 1.6	92.6 79.6 76.6	Over limit 25	
36 40 48	58.1 64.5 77.4	51.6 46.4 38.8	120 108 90.4	98.4 88.6 74.1	84.0 75.6 63.3	0	66.9 60.5 47.6	046	
50 60 70	82.4 96.8 113	35.9 31.0 26.6	83.6 72.2 61.9	68.5 59.2 50.7	58.5 50.5 43.3		45.0 28.2 12.0		
80 90 100	126 146 162	22.8 20.6 18.6	53.1 48.0 43.3	43.5 39.4 35.5	37.2 33.6 30.3		∮		

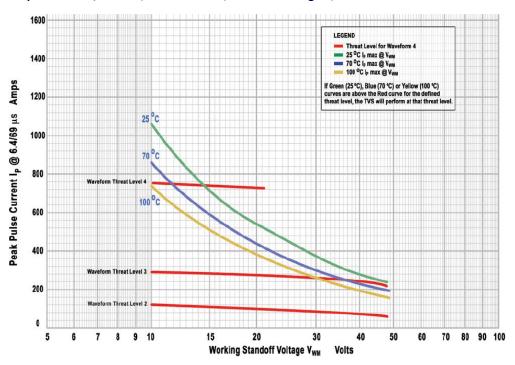
* Surge currents are reduced by clamping voltage (see Eq.1). In the table above, the first three columns, V_{VMM}, V_C, and I_{pp} 3000 W are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNote™ 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 16: RTCA/DO-160G, Waveform 5A, Levels 2 through 4, 5000 W TVS Series

Data Points for Curves in Graph 16 - Waveform 5A RTCA/DO-160 using 5000 W TVS Diodes

5000) W TVS @	910/1000 µs	Conversio	n to 40/120	µs Ip Values	Is Threat f		the Red Curves* own on graph s 2-4	Microsemi TVS Part Numbers compliant to RTCA/DO-160
V _{WM} V	v _c v	I _{PP} 5000 W 10/1000 μs A	l _p 25 °C 40/120 µs A	I _p 70 ^o C 40/120 µs A	I _p 100 ⁰ C 40/120 μs A	2 125V/125A A	3 300V/300A A	4 750V/750A A	Standard Capacitance • Axial Lead
5 6 7	9.2 10.3 12.0	543 485 417	1265 1130 972	1037 927 797	886 791 681	116 114 113	291 290 288	741 740 738	5KP5.0A - 110A, CA
8 9 10	13.6 15.4 17.0	367 325 294	855 757 685	701 621 562	599 530 480	111 110 108	286 285 283	736 734 2	
12 15 18	19.9 24.4 29.2	251 206 172	585 480 401	480 394 329	410 336 281	105 101 95.8	280 275 270	Over limit 25	Add M prefix for the part numbers shown to add source control or MA, MX, or MXL for further
20 28 30	32.4 45.4 48.4	154 110 103	359 256 240	294 210 197	251 179 168	92.6 79.6 76.6	267 254 وي	å 	upgrade screening options on plastic devices as described in Micronote 129.
36 40 48	58.1 64.5 77.4	86 78.0 65.0	200 182 151	164 149 124	140 127 106	66.9 60.5 47.6	0 ver limit 25		
50 60 70	82.4 96.8 113	60.0 47.0 44.0	140 109 102	115 89.4 83.6	98.0 76.3 71.4	45.0 28.2 12.0	Ove		
80 90 100	126 146 162	49.0 34.0 31.0	95.5 79.2 72.2	78.3 64.9 59.2	66.9 55.4 50.6	° ∳	ł	ļ	

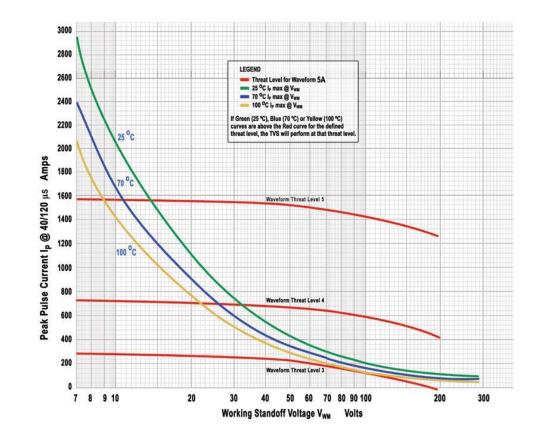
* Surge currents are reduced by clamping voltage (see Eq.1). In the table above, the first three columns, V_{WM}, V_C, and I_{PP} 5000 W are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 [°]C and 100 [°]C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 17: RTCA/DO-160, Waveform 5A, Levels 2 through 4, 6500 W TVS Series

Data Points for Curves in Graph 17 - Waveform 5A RTCA/DO-160 using 6500 W TVS Diodes

6500	W TVS @	910/1000 µs	Conversio	n to 40/120	µs I _P Values	I _s Threat	Currents for the R for Levels shown Threat Levels 2-4	Microsemi TVS Part Numbers compliant to RTCA/DO-160	
V _{WM} V	V _c V	I _{PP} 6500 W 10/1000 μs A	l _p 25 °C 6.4/69 µs A	l _p 70 °C 6.4/69 µs A	I _P 100 ⁰ C 6.4/69 μs Α	2 125V/125A A	3 300V/300A A	4 750V/750A A	Standard Capacitance • Surface Mount
10 11 12	17.0 18.2 19.9	383 358 327	892 834 762	731 684 625	624 584 533	108 107 105	283 282 280	733 732 730	PLAD6.5KP10A – 48A, CA
13 14 15	21.5 23.2 24.4	302 280 267	704 652 622	577 535 510	493 456 435	103 102 101	278 277 276	Limit 25°C	
16 17 18	26.0 27.6 29.2	250 236 223	582 550 520	477 451 426	407 385 364	99.0 97.4 95.8	274 272 271	Over I	
20 22 24	32.4 35.5 38.9	202 183 167	471 426 389	386 349 319	330 298 272	92.6 89.5 86.1	268 264 261		
26 28 30	42.1 45.5 48.4	154 143 135	359 333 315	294 273 258	251 233 220	82.9 79.5 76.6	258 254 252		
33 36 40	53.3 58.1 64.5	123 111 101	287 259 235	235 212 193	201 181 164	71.7 66.9 60.5	247 242 Over Limit		
43 45 48	69.4 72.7 77.4	93 89 85	217 207 198	178 170 162	152 145 139	55.6 52.3 47.6	25°C	ļ	

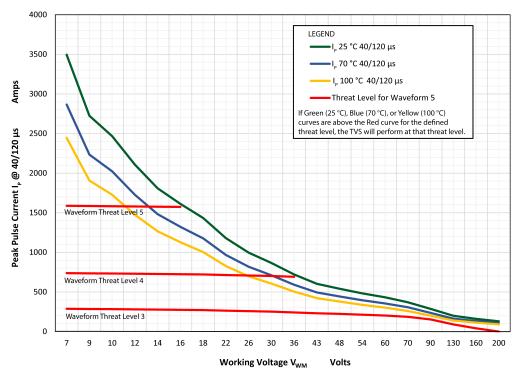
* Surge currents are reduced by clamping voltage (see Eq 1). In the table above, the first three column (V_{WM}, V_C, and I_{PP}) are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 [°]C and 100 [°]C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 18: RTCA/DO-160, Waveform 5A, Levels 2 through 4, 7500 W TVS Series

Data Points for Curves in Graph 18 - Waveform 5A RTCA/DO-160 using 7500 W TVS Diodes

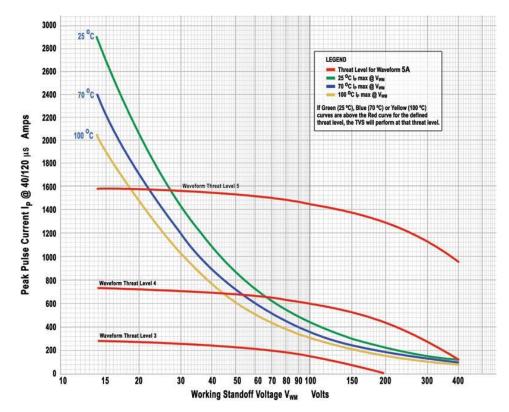
7500	W TVS @	910/1000 µs	Conversio	on to 40/120	µs I _P Values		Currents for the F for Levels shown Threat Levels 2-4	Microsemi TVS Part Numbers compliant to RTCA/D0-160	
V _{WM} V	V _c V	I _{PP} 7500 W 10/1000 μs A	l _p 25 °C 6.4/69 µs A	l _p 70 °C 6.4/69 µs A	l _p 100 ⁰ C 6.4/69 μs Α	2 125V/125A A	3 300V/300A A	4 750V/750A A	Standard Capacitance • Surface Mount
10 11 12	17.0 18.2 19.9	441 412 377	1028 960 878	843 787 720	720 672 615	108 107 105	283 282 280	733 732 730	PLAD7.5KP10A – 48A, CA
13 14 15	21.5 23.2 24.4	349 323 307	813 753 715	667 617 586	569 527 500	103 102 101	278 277 276	728 727 0	
16 17 18	26.0 27.6 29.2	288 272 257	671 634 599	550 520 491	470 444 419	99.0 97.4 95.8	274 272 271	Over Limit 25°C	
20 22 24	32.4 35.5 38.9	231 211 193	538 492 450	441 403 369	377 344 315	92.6 89.5 86.1	268 264 261	ð	
26 28 30	42.1 45.5 48.4	178 165 155	415 384 361	340 315 296	290 269 253	82.9 79.5 76.6	258 254 252		
33 36 40	53.3 58.1 64.5	141 129 116	329 301 270	270 247 221	230 211 189	71.7 66.9 60.5	247 242 236		
43 45 48	69.4 72.7 77.4	108 103 97	252 240 226	207 197 185	176 168 158	55.6 52.3 47.6	231 227 223		

* Surge currents are reduced by clamping voltage (see Eq 1). In the table above, the first three column (V_{WM}, V_C, and I_{PP}) are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 19: RTCA/DO-160G, Waveform 5A, Levels 3 through 5, 15000 W TVS Series

15,000 W TVS @10/1000 µs			Conversion to 40/120 µs I _P Values			I _s Threat	Currents for the I for Levels shown Threat Levels 3-5	Microsemi TVS Part Numbers compliant to RTCA/D0-160	
V _{WM} V	V _c V	I _{PP} 15,500 W 10/1000 μs Α	I _p 25 ^o C 40/120 µs A	l _p 70 °C 40/120 µs A	I _p 100 ^o C 40/120 μs Α	3 300V/300A A	4 750V/750A A	5 1600V/1600A A	Standard Capacitance • Axial Lead
7.0 9.0 10	12.0 15.4 17.0	1251 975 882	2915 2272 2055	2390 1863 1685	2040 1590 1438	288 285 283	738 735 733	1588 1585 1583	15KP22A – 280A, CA • Surface Mount PLAD15KP7.0A – 200A, CA
12 14 16	19.9 23.2 26.0	753 645 576	1754 1503 1342	1438 1232 1100	1228 1052 939	280 277 274	730 727 724	1580 52°C	
18 22 26	29.2 35.5 42.1	516 423 357	1202 986 832	986 809 682	841 690 582	271 264 258	721 714 708	Over Limit 25°C	Add M prefix for the part numbers shown to add source control or
30 36 43	48.4 58.1 69.4	309 258 216	720 601 503	590 493 412	504 421 352	252 242 231	207 C 22°C		MA, MX, or MXL for further upgrade screening options on plastic devices as described in Micronote 129.
48 54 60	77.4 87.1 96.8	195 171 156	454 398 363	372 326 298	318 279 254	223 213 203	Over Limi		
70 90 130	113 146 209	132 102 71	308 238 165	253 195 135	216 167 115	187 154 91			
160 200 280	259 322 452	58 47 33	135 110 76.9	111 90.2 63.0	94.5 77.0 53.8	41 0 0			

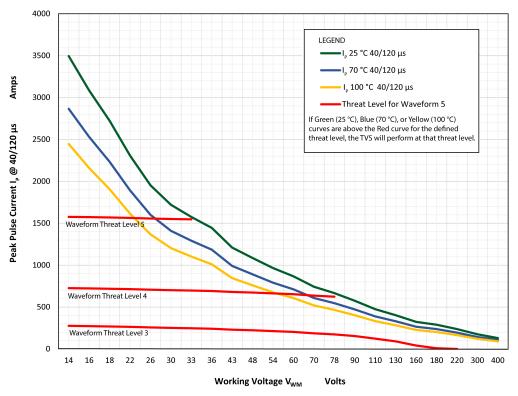
* Surge currents are reduced by clamping voltage (see Eq 1). In the table above, the first three column (V_{WM}, V_C, and I_{PP}) are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 20: RTCA/DO-160, Waveform 5A, Levels 3 through 5, Using 18,000 W TVS Diodes

Data Points for Curves in Graph 20 - Waveform 5A RTCA/DO-160 using 18,000 W TVS Diodes

18,000	18,000 W TVS @10/1000 µs			Conversion to 40/120 µs I _P Values			Currents for th for Levels sho Threat Levels	Microsemi TVS Part Numbers Compliant for RTCA/DO-160	
V _{WM}	v₀ v	l⊮e 18,000 W @ 10/1000 µs A	lթ 25°C 40/120 µs A	l⊧70°C 40/120 µs A	l⊧ 100°C 40/120 µs A	3 300V/300A A	4 750V/750A A	5 1600V/1600A A	Standard Capacitance
· ·	· ·								
7.0	12.0	1500	3495	2866	2446	288	738	1588	 Surface Mount
9.0	15.4	1169	2724	2234	1907	285	735	1585	PLAD18KP7.0A – 200A, CA
10	17.0	1059	2467	2023	1727	283	733	1583	
12	19.9	905	2108	1728	1475	280	730	1580	
14	23.2	776	1808	1482	1265	277	727	1577	
16	26.0	692	1612	1322	1128	274	724	1594	
18	29.2	616	1435	1177	1004	271	721	Over Limit 25 °C	Add M prefix for the part numbers
22	35.5	507	1181	968	827	264	714	25 °C	shown to add source control or MA. MX. or MXL for further
26	42.1	428	997	818	698	258	708		upgrade screening options on
30	48.4	372	867	711	607	252	702		plastic devices as described in MicroNote 129.
36	58.1	310	722	592	505	242	692		
43	69.4	259	603	494	422	231	Over Limit		
48	77.4	232	541	444	379	223	25 °C		
54	87.1	207	482	395	337	213			
60	96.8	186	433	355	303	203			
70	113	159	370	207	259	187			
90	146	123	287	235	201	154			
130	209	86	200	164	140	91			
160	259	69	161	132	113	41	1	1	
200	322	56	130	107	91	0		V	

*Surge currents are reduced by clamping voltage (see Eq. 1). In the table above, the first three columns (V_{VMA}, V_C, and I_{VP} 18,000 W are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNote 127. The 70[°]C and 100[°]C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.


Graph 21: RTCA/DO-160G, Waveform 5A, Levels 3 through 5, 30000 W TVS Series

30,000 W TVS @10/1000 µs			Conversion to 40/120 µs I _P Values			Is Threat	Currents for the for Levels shown Threat Levels 3-5	- Microsemi TVS Part Numbers compliant to RTCA/D0-160	
V _{WM} V	V _c V	I _{PP} 30,000 W 10/1000 μs A	I _P 25 ^o C 40/120 µs A	I _P 70 ^o C 40/120 µs A	l _P 100 ^o C 40/120 µs A	3 300V/300A A	4 750V/750A A	5 1600V/1600A A	Standard Capacitance • Surface Mount
14 16 18	24.0 27.2 30.8	1251 1101 975	2915 2565 2272	2390 2103 1863	2040 1795 1590	276 273 269	726 723 719	1576 1573 1569	PLAD30KP14A – 400A, CA
22 26 30	36.4 43.0 48.8	822 696 618	1915 1622 1440	1570 1330 1181	1379 1135 1008	264 257 251	714 707 701	1564 1557 2	Add M prefix for the part numbers shown to add source control or
36 43 48	58.1 69.4 77.4	516 432 390	1202 1007 909	986 826 745	841 705 636	242 231 223	692 681 673	Over Limit 25°C	MA, MX, or MXL for further upgrade screening options on plastic devices as described in Micronote 129.
54 60 70	87.1 96.8 113	342 312 264	797 727 615	654 596 504	558 509 430	213 203 187	663 653 2	ð	
78 90 110	126 146 177	240 204 168	559 475 391	458 390 320	391 332 274	174 154 123	Over Limit 25°C		
130 160 180	209 259 291	142 116 104	331 270 242	271 221 198	232 189 169	91 41 9	6		
220 300 400	356 483 644	84 62 46	196 144 107	161 118 88	137 101 74.9	0		Ļ	

* Surge currents are reduced by clamping voltage (see Eq 1). In the table above, the first three column (V_{WM}, V_C, and I_{PP}) are taken from the data sheet while the subsequent three columns of 40/120 µs data were derived as illustrated earlier in this document and also MicroNoteTM 127. The 70 °C and 100 °C curves were added for simplifying selection since many TVS devices require derating for higher temperatures.

Graph 22: RTCA/DO-160, Waveform 5A, Levels 3 through 5, Using 36,000 W TVS Diodes

36,00	OW TVS	@10/1000 µs	Conversio	on to 40/120 j	us l⊳ Values	I ₈ Threat f	Currents for th or Levels show Threat Levels	Microsemi TVS Part Numbers Compliant for RTCA/DO-160	
V _{WM} V	v _c v	I _{PP} 36,000 W @ 10/1000 µs А	l⊧ 25°C 40/120 μs Α	l⊧70°C 40/120 μs A	l⊧ 100°C 40/120 µs A	3 300V/300A A	4 750V/750A A	5 1600V/1600A A	Standard Capacitance
14	24.0	1500	3495	2866	2446	276	726	1576	PLAD36KP14A – 400A, CA
16	27.2	1324	3085	2530	2159	273	723	1573	
18	30.8	1169	2724	2234	1907	269	719	1569	
22	36.4	990	2307	1892	1615	264	714	1564	
26	43.0	838	1953	1601	1367	257	707	1557	
30	48.8	738	1720	1410	1204	251	701	1551	Add M prefix for the part numbers shown to add source control or
33	53.3	676	1575	1291	1102	247	697	1547	MA, MX, or MXL for further
36	58.1	620	1445	1185	1011	242	692	Over Limit 25 °C	upgrade screening options on plastic devices as described in
43	69.4	519	1209	991	846	231	681	25 C	MicroNote 129.
48	77.4	466	1086	890	760	223	673		
54	87.1	414	965	791	675	213	663		
60	96.8	372	867	711	607	203	653		
70	113	319	743	609	520	187	637		
78	126	286	666	546	466	174	624		
90	146	247	575	471	402	154	Over Limit 25 °C		
110	177	204	475	389	332	123	23 C		
130	209	173	403	330	282	91			
160	259	139	324	266	227	41			
180	291	124	289	237	202	9			
220	356	102	238	195	166	0			
300	483	75	175	143	122	Over Limit		1	
400	644	56	130	107	91	25 °C		V	

Data Points for Curves in Graph 22 - Waveform 5A RTCA/DO-160 using 36,000 W TVS Diodes

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2020 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi heruwnder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and percise time solutions, security technologies and scalable anti-tamper products; there solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; thermet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.