AUDIOMAX DESIGN RESOURCE

AN-16

Table of Contents

AudioMAX Introduction 3
Key Features 3
Applications 4
AudioMAX Controller 4
Controllers With Evaluation Boards 5
Output Power 6
LXE1710 Schematic 7
LXE1721 Schematic 8
Block Diagram 9
Circuit Description Input Section 10
Output Stage 11
Filter Stage 12
Application Information
Filter Design Tradeoffs 12
LC Filter Design 13
MOSFET Selection 15
MOSFET Selection Table 17
Inductor Selection 18
Capacitor Selection 19
Gate Resistor 20
Oscillator Configuration 21
Multi Channel Synchronization 22
System Gain 23
Thermal Consideration 24
PCB Layout 25
LXE1710 PCB 26
LXE1721 PCB 28
LXE1710 / 1711 BOM 30
LXE1721 BOM 31
EMI Recommendations 32
Reference Designs
LX1711-100 35
5.1 Channel 39

Introducing AudioMAX

The LX1710/1711 (Mono) and LX1721/1722 (Stereo) are high performance Class-D Controllers targeted for high efficiency audio requirements such as battery powered products, portable systems, or space constrained applications. Other ideal end products that can utilize Class-D switching technology include automotive amplifiers, multi-channel multimedia computers, and video game systems where maximum power density (output power per circuit area) is beneficial.

The LX1711/LX1722 are the high power mono/stereo versions ($50 \mathrm{Wrms} / 60 \mathrm{Wrms} \times 2,4 \Omega$) with a supply voltage range of $7 \mathrm{~V}-25 \mathrm{~V}$ and the LX1710/LX1721 are the high fidelity mono/stereo versions (better SNR performance) with a supply voltage range of $7 \mathrm{~V}-15 \mathrm{~V}$. The current rating of the external MOSFET's, the available supply voltage, and speaker load primarily determines the maximum output power.

The Class-D controllers are supported with complete audio amplifier evaluation modules. The amplifiers provide high fidelity performance and are designed to operate over the full 20 Hz to 20 kHz audio band. Signal distortion measurements yield THD +N levels of $<0.06 \%$ ($1 \mathrm{kHz}, 1 \mathrm{Wrms}$). Efficiency is greater than $80 \%-85 \%$ typical, which eliminates the need for heatsinks in most applications. Reference designs are available to support a variety of requirements including multi channel systems, powered subwoofers, satellite/subwoofer combination products and various speaker loads ($2 \Omega, 4 \Omega, 8 \Omega$).

This design guide is intended to illustrate this versatile amplifier solution and demonstrate how to modify a design for frequency response, optimize for efficiency and performance, or design an amplifier to minimize PCB area and component count.

Key Features

- Integrated Switching Class-D Controllers
- Supports Full $20 \mathrm{~Hz}-20 \mathrm{kHz}$ Audio Bandwidth
- High Fidelity (LX1710 Mono/LX1721 Stereo) Or High Power (LX1711/LX1722) Versions
- Single Supply Operation
- \quad THD $+\mathrm{N}<0.06 \%$ Typical ($1 \mathrm{Wrms}, 1 \mathrm{kHz}, 4 \Omega$)
- Maximum Efficiency $80 \%-85 \%$
- Output Power >60Wrms per Channel (LX1722, 4 Ω, 1% THD+N)
- Reference Designs Available For >100W Applications
- PSRR -70dB Typical
- Differential Input To Minimize Noise Effects
- Synchronization to Support Multi-Channel Systems
- Complete Amplifier Evaluation Modules

Applications

- Multimedia Speakers
- Surround Sound Game Systems
- Automotive Amplifiers And Head Units
- Wireless Speakers
- Desktop Computers
- Battery Operated Equipment (Megaphone, Public Address System)
- Portable Audio (Boom Box)
- High Power Subwoofer
- Notebook Computers
- Home Theatre

AudioMAX Controllers

Part Number	Product	Description
LX1710CDB	AudioMAX High Fidelity Mono Controller IC	$V_{D D}=7 \mathrm{~V}$ to 15 V , Switching Class-D Mono Power Amplifier IC, 28-Pin SSOP Package.
LX1711CDB	AudioMAX High Power Mono Controller IC	$V_{D D}=7 \mathrm{~V}$ to 25 V , Switching Class-D Mono Power Amplifier IC, 28-Pin SSOP Package.
LX1721CDB	AudioMAX High Fidelity Stereo Controller IC	$V_{D D}=7 \mathrm{~V}$ to 15 V , Switching Class-D Stereo Power Amplifier IC, 44-Pin QSOP Package.
LX1722CDB	AudioMAX High Power Stereo Controller IC	$V_{D D}=7 \mathrm{~V}$ to 25V, Switching Class-D Stereo Power Amplifier IC, 44-Pin QSOP Package.

Table 1 - AudioMAX Controllers

AudioMAX Controllers with Evaluation Boards

LXE1710

LXE1711

LXE1721

LX1721-HV Driver

LXE1722

IC	EVALUATION BOARDS	TYPICAL OUTPUT POWER $(4 \Omega,<1 \%$ THD+N)	TYPICAL OUTPUT POWER $(2 \Omega,<1 \% ~ T H D+N)$
LX1710	LXE1710	25 W	$\sim 40 \mathrm{~W}$
LX1711	LXE17111	LXE1711-100 Buffer	50 W
LX1721	LXE1721	60 W	$\sim 50 \mathrm{~W}$
LX1722	LXE1722	$25 \mathrm{~W} \times 2$	120 W

Table 2 - AudioMAX IC \& Eval Board Info

Output Power Capability

Since the LX1710/1711/1721/1722 are Class-D controllers, the maximum output power is virtually unlimited and primarily a function of the current rating of the external MOSFET's, the available supply voltage, and the speaker load. The following output power values (derived from Audio Precision plots using evaluation boards) are shown for various loads and supply voltages at $<1 \% \mathrm{THD}+\mathrm{N}, 1 \mathrm{kHz}$. The plots are available in the controller datasheets.

VDD	LOAD (Ω)	OUTPUT POWER (TYPICAL WRMS)
15 V	4Ω	25 W
15 V	2Ω	42 W
25 V	4Ω	63 W
25 V	2Ω	$110 \mathrm{~W}^{*}$

*Care must be exercised to provide adequate thermal conductivity.
Table 3 - Output Power \& Load

Although power rating standards have been established such as FTC (Federal Trade Commission) or EIA (Electronic Industries Association), discussion involving power numbers does not always follow these guidelines. The "watts per channel" number could actually be "peak" power, "music" power, or "peak music power output" (PMPO) which are inflated numbers over their true $W_{\text {RMS }}$ capability. Furthermore, conditions such as distortion level, input frequency band, and filter range should be specified. The output power numbers for the LX17xx ClassD amplifier series are specified as continuous $\mathrm{W}_{\mathrm{RMS}}$ values. For the high power applications, care must be exercised to provide adequate thermal management for continuous operation at these levels.

Microsemi Class-D amplifiers support a wide range of maximum power levels from $25 \mathrm{Wrms}(<1 \% \mathrm{THD}+\mathrm{N}, 4 \Omega$) to over $400 \mathrm{Wrms}(<1 \% \mathrm{THD}+\mathrm{N}, 2 \Omega)$. These configurations are available as evaluation boards and reference designs.

Schematic For LXE1710

Figure 1 - LXE1710 Mono Evaluation Amplifier

Schematic For The LXE1721

Figure 2 - LXE1721 Mono Evaluation Amplifier

Class-D Controller Block Diagram

Figure 3 - Simplified Block Diagram (One Channel Shown)

Circuit Description

The Microsemi Class-D Controllers require a minimal number of external components to create a complete amplifier solution. A Class-D Amplifier is a "switching" amplifier that converts a low-level, analog audio input signal into a high power, pulse-width modulated (PWM) output. Each channel consists of a control loop that adjusts the PWM output to "track" the audio input signal. The switching frequency (450 kHz typical but can be adjusted) is much higher than the audio bandwidth (20 Hz to 20 kHz), and is easily filtered out with a simple LC filter. The support circuitry can be generally grouped into three areas (input circuit, output power stage, and output filter).

Input Section and Compensation

The first group is the input section, compensation network and control setting components. These resistors and capacitors set up the controller operating frequency, response characteristics, and comparator ramp fundamental to Class-D operation. The controllers have differential signal inputs, LIN+ (RIN+) and LIN- (RIN-) to reduce input noise. The input amplifier has a gain $3.5 \mathrm{~V} / \mathrm{V}(+10.9 \mathrm{~dB})$, and $42 \mathrm{k} \Omega$ input impedance. Adding serial external resistors with $\mathrm{IN}+$ and IN - can reduce the input amplifier gain. For example, if $100 \mathrm{k} \Omega$ resistors are added to the input, the gain will be reduced to $1 \mathrm{~V} / \mathrm{V}$
(0 dB), also increasing the input impedance to $140 \mathrm{k} \Omega$. The differential audio input is AC coupled into the LXE1721 via an external pair of capacitors C3/C4 and C5/C6 (C3/C14 for the LXE1710/1711). The internal op-amp level shifts the input signal to 2.5 volts as seen in the System Gain Diagram.

Error Amplifier: The input amplifier's output is fed to the error amplifier. The output of the feedback amplifier is also fed to the error amplifier. The error amplifier integrates the "error signal" (integrates the difference between the audio input and the feedback signal). The output of the error amplifier represents the desired audio output signal.

PWM Generator: The output of the error amplifier (LEAOUT and REAOUT for the LX1721) and a voltage ramp waveform are connected to a comparator. The voltage ramp repeats at the switching frequency which is much greater than the audio band. At the beginning of the ramp, the comparator output is reset high. When the ramp voltage exceeds L/REAOUT, the comparator output switches low. Thus, the pulse-width or duty-cycle of the comparator output is proportional to the voltage at L/REAOUT. The comparator output is latched into a flip-flop which drives the external MOSFETs to complete the control loop. The action of the control loop causes the PWM output to accurately track the audio input signal.

System Gain Diagram

Gain caculation:
At error amp, the signal level should be same, we have
Vin x Gin $=$ Vout x Gfb
So, the whole system Gain = Vout/Vin = Gin/Gfb ;
At LX1710/LX1721-01 : Gain=3.5/0.089=39.2 V/V (31.9dB);
At LX1711/LX1721-02 : Gain=3.5/0.056=62.3 V/V(35.9dB);
Figure 4 - System Gain

OUTPUT STAGE AND FEEDBACK AMPLIFIER

The next section is the output stage. The controller IC generates a PWM output by controlling external FETs connected in a full bridge configuration. The full bridge configuration is connected between the single supply voltage (PVDD) and ground (PGND) with the output of the bridge driving the LC filter stage which removes the switching frequency component of the PWM output prior to driving the speaker. Because the FETs are either fully "on" or fully "off", Class-D topology is extremely efficient (up to 85% typical), circuit power dissipation is minimal, and maximum power is delivered to the speaker.

Feedback Control: Each bridge output also drives an RC low pass filter (R16-R19/C25-C28 for LXE1721, R3-R4/C6-C7 for LXE1710/1711) which provides the feedback for the control loop through the FBK+ and FBK- inputs. Internal to the controllers, these two differential feedback inputs are converted to a single-ended signal by the feedback amplifier. The feedback amplifier also attenuates the feedback signals and level shifts its output to 2.5 volts. The "High Fidelity" LX1721 and "High Power" LX1722 have different feedback loop gain. The LX1721 stage gain is approximately $91 \mathrm{mV} / \mathrm{V}(-21 \mathrm{~dB})$ and the LX1722 approximately $57 \mathrm{mV} / \mathrm{V}(-25 \mathrm{~dB})$. Feedback resistors internal to the IC as seen in the System Gain Diagram control this feedback gain.

Filter Stage

The single stage, second order LC filter is used to remove the switching frequency and reconstruct the amplified audio signal. The frequency response and corner frequency can be easily adjusted for
optimization of various loads. The LC evaluation board component values have been chosen for a 4Ω load. See section on LC filter design for component selection.

Application Information

THD + N vs. Output Power ($4 \Omega, 1 \mathrm{kHz}$)
LX1710 Filter Implementation, 1-stage vs. 2- stage

Figure 5

Filter Design Tradeoffs (1-stage vs. 2-stage)

A 1-stage or 2-stage filter may be used depending on your application and performance targets. The main tradeoff in this selection is price (number of components, component costs, PCB area) vs. performance. The primary advantage of the single stage filter is lower cost whereas the main benefit to a 2 -stage filter is that it will provide steeper attenuation. This allows the corner frequency to be selected further outside of the audio band (to minimize the effects of impedance variations in the passband) and still provide adequate RF attenuation. Normally, the single stage design is adequate to filter out the switching frequency. However, in some applications such as long speaker wire systems, a two stage approach may offer other advantages.

Single Stage Filter Advantages

- Low Cost: The 1-stage LC filter uses one half the number of inductors/capacitors resulting in a substantial cost savings over a 2-stage design. Key parameters such as THD+N, frequency response, and nose performance do not change significantly.
- Power Loss: Since current will flow in two inductors and not four, the inductor power loss will be less in the single stage design. The overall amplifier will have a wider dynamic range and improved efficiency.
- Filter Design: This easy-to-design filter can limit audio signal changes within +/- 3dB across the audio band with impedance
variance from 2Ω to approximately 8Ω. Due to a steeper rolloff with the 2 -stage filter, impedance changes could result in a +/- 6dB change.
- THD: There are minimal differences between the 1 -stage and 2 -stage implementations with other parameters such as THD +N as seen in the above graph.

Single Stage Filter Disadvantages

- EMI and Switching Frequency: For the 1stage, the switching frequency must be higher than 400 kHz to ensure the corner frequency will provide adequate amplifier performance in the high end of the audio frequency range. If $f_{S}<400 \mathrm{kHz}$, then $f_{C}<f_{S}$ $/ 10=40 \mathrm{kHz}$ which is too close to the desired audio band. A higher oscillation frequency could translate into greater MOSFET switching losses, slightly lower efficiency, and increased EMI effects. With a 2-stage 4th order filter, the switching frequency f_{S} can be reduced to 120 kHz . If $f_{S}=120 \mathrm{kHz}$, then f_{C} $=f_{s} / 3=40 \mathrm{kHz}$. The lower oscillation frequency could help minimize EMI issues.

LC Filter Design

The output filter helps to reconstruct the amplified audio signal and filter out the switching frequency. The design of the filter depends on the type of attenuation and frequency response desired at the output. The output filter designed into the LXE1710/1711 and LXE1721 evaluation boards are a second order, LC type filter as shown below. Tradeoffs between performance and component cost must be considered when determining the complexity or type of filter selected.

Figure 6

$$
\begin{aligned}
& \mathrm{H}(\mathrm{~S})=\frac{\frac{S}{C}}{S^{2}+\frac{1}{R C} S+\frac{1}{L C}}=\frac{\frac{S}{C}}{S^{2}+\frac{\omega}{Q} S+\omega^{2}} \\
& \text { Where } \quad \omega=\frac{1}{\sqrt{L C}} \\
& Q=R C \omega
\end{aligned}
$$

The Class-D amplifier evaluation board design has a pass-band of 20 Hz to 20 kHz to support the audio frequency range and is configured to utilize a switching or oscillator frequency $f_{s}=500 \mathrm{kHz}$. Depending on the application, this oscillator frequency may be adjusted (see section on Oscillator Configuration) to optimize amplifier performance or modified for other considerations such as EMI effects. Further requirements of the filter are that the pass band attenuation of switching frequency f_{s} should be lower than 40dB and the corner frequency of the LC filter should be set higher than 20 kHz to avoid attenuating audio signals in the desired audio band by more than 1 dB . A speaker DC impedance of 4Ω with an $f_{C}=50 \mathrm{kHz}$ corner frequency are defined for the evaluation board.

The Q (selectivity factor or ratio of the center frequency divided by the bandwidth) of the filter must also be considered when designing a filter. Too high a Q will result in a boost of the audio signal across the audio band whereas a low Q will cause too much attenuation of the signal. A Q value of 0.707 provides the required audio response and is used in the calculation below.

$$
C=\frac{Q}{R \omega}=\frac{Q}{R(2 \pi \mathrm{fc} c)}=\frac{0.707}{4(2 \pi)(50000)}=0.56 \mu \mathrm{~F}
$$

$C=0.68 \mu \mathrm{~F}$ is used in the EvaluationBoard
To Compute the Inductor Value:

$$
L=\frac{1}{\omega^{2} C}=\frac{1}{(2 \pi f c)^{2} C}=\frac{1}{[(2 \pi)(50000)]^{2}(.68 \mu)}=14.9 \mu \mathrm{H}
$$

$L=15 \mu \mathrm{H}$ is used in the EvaluationBoard

Its Laplace Transform function is:

Figure 7 - LXE1710 Evaluation Board, Frequency Response

Frequency response of the audio amplifier was measured using various speaker load impedances $2 \Omega, 4 \Omega$, and 8Ω. The graphs verify that the filter calculations were based on a 4Ω speaker. The 8Ω and 2Ω curves display a 2 dB boost and a -4 dB attenuation respectively. Therefore, to improve frequency response performance for other loads, the value of Q must be increased/decreased by changing the capacitor. Since a different value C will affect the corner frequency, values for L and C must be recalculated. Below are recommended inductor and capacitor values for $2 \Omega, 4 \Omega$, and 8Ω loads for this single stage LC filter design.

	CAPACITOR C $(\boldsymbol{\mu F})$	INDUCTOR L $(\boldsymbol{\mu H})$
$\mathbf{2 \Omega}$	1.0	10
$\mathbf{4 \Omega}$	0.68	15
$\mathbf{8 \Omega}$	0.47	22

Table 4 - Filter Component Values

Please note: These recommended values are guidelines for speaker loads. Actual speakers have varying impedances, which may require revised filter calculations and optimization. Furthermore, your application may have different design goals than those chosen for the AudioMAX evaluation boards.

MOSFET SELECTION

As seen in previous sections, the user can design the output filter of the amplifier to meet performance or costs targets. In addition, the amplifier's power stage (selection of MOSFETs) can be selected depending on these tradeoffs. The efficiency of the amplifier circuit can be approximated by the following equation.

$$
\eta=\frac{P_{O U T}}{P_{I N}}=\frac{I^{2} R_{L}}{I^{2}\left[2\left(R_{N D S}+R_{P D S}+R_{I N D}\right)+R_{L}\right]+P_{C R O S S}+P_{I C}+P_{S E N}}
$$

```
Where
    R
    R
    R PDS = p-channel MOSFET on-resistance
    RIND = DC Resistance of Inductor
    P
PIC = IC Power Consumption
P
```

The overall efficiency is a function of primarily the MOSFETs and output filter inductors. The "Inductor" section's contribution will be considered later. The MOSFET Power loss is a function of the on-resistance and gate charge.

On-Resistance, $R_{D S}$:

$$
\text { MOSFET Power Loss }=P_{D S}=I^{2}\left[2\left(R_{N D S}+R_{P D S}\right)\right]
$$

$$
\begin{gathered}
\text { If } \quad P o=25 W \text { at } 4 \Omega \\
\text { Then } I=\sqrt{\frac{P}{R}}=\sqrt{\frac{25}{4}}=2.5 \mathrm{~A}
\end{gathered}
$$

The LX1710 Evaluation Board is designed using FDS4953 p-channel and FDS6612A n-channel MOSFETS.

$$
\begin{aligned}
& R_{N D S}=0.03 \Omega, \quad R_{P D S}=0.095 \Omega \\
& P_{D S}=(2.5)^{2}[2(0.03+0.095)]=1.56 \mathrm{~W}
\end{aligned}
$$

MOSFET power loss is proportional to on-resistance.

Total Gate Charge, Q_{g} :

$$
\text { MOSFET SwitchingLoss }=P C R O S S=C V^{2} f_{s n}
$$

Where

$$
C=\text { Input Capacitance }
$$

$$
\begin{aligned}
V & =\text { Supply Voltage } \\
f_{S} & =\text { Switching Frequency } \\
n & =\text { Number of MOSFETS } \\
\text { Assume } \quad C & =1000 \mathrm{pF} \\
V & =15 \mathrm{VDC} \\
f_{S} & =500 \mathrm{kHz}
\end{aligned}
$$

$$
P_{\text {CROSS }}=\left(1 \times 10^{-9}\right)\left(15^{2}\right)\left(500 \times 10^{3}\right)(4)=0.45 \mathrm{~W}
$$

MOSFET switching loss is proportional to total gate charge, supply voltage, and switching frequency.

There are a few other important parameters to consider when selecting the output power components besides the on-resistance and gate charge of the MOSFETs. The drain-source voltage must provide ample margin for circuit noise and high speed switching transients. Since the amplifier configuration requires output bridge operation at the supply voltage, the MOSFETs should have a drainsource voltage of at least $25 \%-50 \%$ greater than the supply voltage. The power dissipation of the MOSFETs should also be able to dissipate the heat generated by the internal losses and be greater than the sum of $P_{D S}$ and $P_{\text {CROss. }}$ MOSFETs with $R_{D S}<$ 0.10Ω are recommended.

The Class-D controller's gate drive capability determine MOSFET selection related to key parameters of total gate charge (Qg) and gate capacitance (Ciss). Although the controllers can drive a wide range of FETs, too high a drive current can result in increased temperature and power dissipation. The LX1721 driving Ciss $=3300 \mathrm{pF}$ with a switching frequency of 450 kHz at room temperature $28^{\circ} \mathrm{C}$ could approach a case temperature greater than $100^{\circ} \mathrm{C}$. Therefore, $\mathrm{Qg}<25 \mathrm{nC}$ and Ciss < 2200 pF are recommended for the LX1721 and $\mathrm{Qg}<$ $15 n C$ and Ciss $<1500 \mathrm{pF}$ for the LX1710/1711. If
higher value gate charge MOSFETs are used, reducing the switching frequency may be helpful.

Other important considerations are Turn-ON delay (Tdon), Turn-OFF delay (Tdoff), Rise time (Tr) and Fall time (Tf). The LX1721 has 35ns typical dead time control. If the rise/fall times Tdon/Tdoff are too long, MOSFET shoot-through, higher switching losses, or pulse skipping when the output signal level is close to PVDD level could occur resulting negatively on THD (0.1% to 0.5%).

MOSFET Selection Guide Summary

- Vds > Power Supply Voltage by a minimum of $25 \% \sim 50 \%$ greater
- Use Logic level MOSFET (4.5V-5V gate voltage)
- $\quad R_{D S}(o n)<0.10 \Omega$ is typical, but lower values are better.
- Ids > Irms through the MOSFET
- Total gate charge Qg < 25nC (LX1721), 15nC (LX1710/1711)
- Ciss gate capacitance < 2200pF (LX1721), 1500pF (LX1710/1711)

The table below provides several MOSFET options.

P/N	Channel	Vds	Rds(on) @10.0V	Rds(on) @4.5V	$\mathrm{Id}(\mathrm{A})$ max	$\begin{gathered} \operatorname{Qg}(\mathrm{nC}) \\ \text { typ. } \end{gathered}$	Package	Source
Si4886DY	Single N	30	0.01	0.013	13	14.5	SO8	Vishay
Si4884DY	Single N	30	0.01	0.016	12	15.3	SO8	Vishay
Si4882DY	Single N	30	0.01	0.02	11	13.5	SO8	Vishay
Si4416DY	Single N	30	0.018	0.028	9	13	SO8	Vishay
Si4800DY	Single N	30	0.018	0.033	9	8.7	SO8	Vishay
FDS4410	Single N	30	0.0135	0.02	10	13	SO8	Fairchild
FDS6614A	Single N	30	0.018	0.025	9.3	12	SO8	Fairchild
FDS6612A	Single N	30	0.022	0.03	8.4	9	SO8	Fairchild
Si4431ADY	Single P	-30	0.03	0.055	-7	15	SO8	Vishay
Si4953DY	Dual P	-30	0.053	0.095	-4.9	16	SO8	Vishay
Si4953ADY	Dual P	-30	0.053	0.09	-4.9	15	SO8	Vishay
FDS6975	Single P	-30	0.032	0.045	-6	14.5	SO8	Fairchild
FDS4435	Single P	-30	0.02	0.035	-8.8	17	SO8	Fairchild
Si4539ADY	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} 30 \\ -30 \end{gathered}$	$\begin{aligned} & 0.036 \\ & 0.053 \end{aligned}$	$\begin{gathered} 0.053 \\ 0.09 \end{gathered}$	$\begin{array}{r} 5.9 \\ -4.9 \end{array}$	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	SO8	Vishay
Si4539DY	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} 30 \\ -30 \end{gathered}$	$\begin{aligned} & 0.037 \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.055 \\ & 0.095 \end{aligned}$	$\begin{gathered} 5.8 \\ -4.9 \end{gathered}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	SO8	Vishay
Si4558DY	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} 30 \\ -30 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.07 \end{aligned}$	$\begin{gathered} 6 \\ -6.0 \end{gathered}$	$\begin{aligned} & 17 \\ & 22 \end{aligned}$	SO8	Vishay
Si4532ADY	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} 30 \\ -30 \end{gathered}$	$\begin{gathered} 0.053 \\ 0.08 \end{gathered}$	$\begin{aligned} & 0.075 \\ & 0.135 \end{aligned}$	$\begin{array}{r} 4.9 \\ -3.9 \end{array}$	$\begin{gathered} 8 \\ 10 \end{gathered}$	SO8	Vishay
Si4532DY	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} 30 \\ -30 \end{gathered}$	$\begin{aligned} & 0.065 \\ & 0.085 \end{aligned}$	$\begin{gathered} 0.095 \\ 0.19 \end{gathered}$	$\begin{array}{r} 3.9 \\ -3.5 \end{array}$	9.8	SO8	Vishay
FDS8958A	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{array}{r} 30 \\ -30 \end{array}$	$\begin{aligned} & 0.028 \\ & 0.052 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.08 \end{aligned}$	$\begin{array}{r} 7.0 \\ -5.0 \end{array}$	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	SO8	Fairchild
IRF7309	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} 30 \\ -30 \end{gathered}$	$\begin{gathered} 0.05 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.16 \end{aligned}$	$\begin{array}{r} 4.0 \\ -3.0 \end{array}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	SO8	IR
IRF7379	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} 30 \\ -30 \end{gathered}$	$\begin{gathered} 0.055 \\ 0.13 \end{gathered}$	$\begin{gathered} 0.075 \\ 0.18 \end{gathered}$	$\begin{gathered} 5.8 \\ -4.3 \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	SO8	IR

[^0]Table 5 - Mosfet Selection Guide

Inductor Selection

The output filter inductors are key elements in the performance of a Class-D audio power amplifier. Inductor selection criteria also involves tradeoffs between performance (efficiency) and component costs. The critical specifications for the inductor are the DC resistance (lower value equates to less power loss), DC current, and peak current ratings. The rated current specification must be greater than the current through the inductors. Inductance vs. current data should also be reviewed for inductance loss at rated DC current ($<15 \%$ is recommended). The inductors should be able to handle the amplifier's power as well as operate within its linear region. Saturating the inductors could decrease performance (increase THD) and even produce a short, which can damage either the circuit or the speaker.

Certain variables when selecting an inductor depend on the switching frequency of the designed amplifier. A higher switching frequency implies that the corner frequency of the LC filter can be higher. With a higher f_{C}, the inductor value is smaller (and case size reduction). Other characteristics such as SRF (self resonant frequency) must be considered. The SRF should be at least greater than the $7^{\text {th }}$ harmonic of the switching frequency.

The amplifier's application and design constraints will help determine whether the inductors are selected for size, power, or performance. Various inductors such as those that are shielded may also have different EMI effects and distortion performance. The overall efficiency (η) of the amplifier circuit is given in the previous MOSFET section. The inductor's power
loss contribution is a function of the inductor's DC resistance, $R_{\text {IND }}$.

Inductor DC Resistance, $R_{\text {IND }}$:

$$
\text { Inductor Power Loss }=P_{I N D}=\left(I^{2}\right)(2)\left(R_{I N D}\right)
$$

The LXE1710 and LXE1721 Evaluation boards utilize $15 \mu \mathrm{H}$ radial leaded R.F. inductors from Inductor Supply, Inc. (ISI). When evaluating component options, inductors such as from Coilcraft can be used for other performance / price tradeoffs. See inductor table below.

$$
P_{I N D}=\left(2.5^{2}\right)(2)(.056)=0.7 \mathrm{~W}
$$

The efficiency approximation can now be completed.

$$
\begin{aligned}
& \eta=\frac{P_{\text {OUT }}}{P_{\text {IN }}}=\frac{I^{2} R_{L}}{I^{2}\left[2\left(R_{N D S}+R_{P D S}+R_{I N D}\right)+R_{L}\right]+P_{C R O S S}} \\
& \eta=\frac{I^{2} R_{L}}{P_{D S}+P_{\text {IND }}+P_{C R O S S}+I^{2} R_{L}} \\
& \eta=\frac{25}{1.56+.7+.45+25} \quad=90.2 \%
\end{aligned}
$$

The efficiency is a function of the power and switching loss in the MOSFETs and inductors.

Manufacturer	Part Number	Inductance $(\boldsymbol{\mu H})$	Q min	Test Frequency	DC Resistance $\max (\mathbf{m} \Omega)$	DC Current max (ARMS $)$	Self Resonant Frequency min $(\mathbf{M H z})$
ISI	RL622-150K	15.0	50	2.520 MHz	56	2.50	12.0
Coilcraft	DO5022P-153HC	15.0		100 kHz	32	4.4	20

Table 6 - Inductor Component Options

CAPACITOR SELECTION

The LC filter design section discusses filter options and the calculation of component values. However, the specification of capacitor type depends on the
application in the circuit. The table provides descriptions and guidelines for capacitors in the LX1710 AudioMAX amplifier boards.

Reference Designator	Capacitor	Comments
C10, C11	FET gate drive	These $4.7 \mu \mathrm{~F}$ tantalum capacitors are charge transfer capacitors for the FET gate drive.
C3 C14	Audio input path	These decoupling capacitors are used for the audio input +/-signals.
$\begin{aligned} & \text { C18, C19, } \\ & \text { C20, C21 } \end{aligned}$	Output filter	The output filter metal film capacitors (low ESR, 5% tolerance) work well to set an accurate corner frequency at a low cost.
C8, C12	FET bypass	These metal film capacitors are used for the power supply bypass for the FETs. Place adjacent to the FETs or consider lower value ESR solutions depending on the PCB component placement.
C22	LX1710 bypass	The metal film capacitor is a high frequency bypass for the LX1710 IC.
C9, C13	VDD, PVDD bypass	These tantalum capacitors provide the bypass for the IC supply voltage and output driver supply voltage utilizing a minimal footprint area.
C17	Output power stage	The electrolytic filter capacitor smoothes out ripple current and should be placed close to the output FETs.
C16	Oscillator frequency	The timing capacitor (5% tolerance) sets the oscillator frequency.
C6, C7	Feedback filter	These (5\%) capacitors are used in the RC filter to provide feedback for the control loop.
C4, C5	Error amplifier	These (5\%) capacitors create the compensation network. Make sure the appropriate "temperature grade" is used to ensure stability.
C1, C2	Voltage references	The filter capacitors provide the bypass for the 5 V and 2.5 V references.
C26	Audio input filter	The RC filter minimizes high frequency noise to the amplifier.

Table 7 - Capacitor Description

Figure 8 - Gate Resistor

GATE RESISTOR

Series resistors (R6, R10, R11, R12) can be added to the gate of MOSFETs (Q1 to Q4) to control the switching transition times. This reduces signal distortion as seen in the THD+N vs. Output Power graph below. The slower switching speeds will however, increase power dissipation and therefore slightly decrease the overall efficiency of the amplifier.

Figure 9

The LXE1710 evaluation board utilizes 10Ω (5Ω on LXE1721) gate resistors, which improves (decreases) the $\mathrm{THD}+\mathrm{N}$ from 0.1% to 0.05% with a slight impact on efficiency of approximately 2%. The recommended gate resistor is from 0 to 15Ω.

OSCILLATOR CONFIGURATION

The oscillator is programmed by the external timing components RPWM and CPWM. RPWM and CPWM values of $34.8 \mathrm{k} \Omega$ and 100 pF produce a nominal frequency of 429 kHz (with the LX1710/1711) and a nominal frequency of 449 kHz (with the LX1721/1722). Note that in order to keep the slope of the PWM ramp voltage proportional to the supply voltage, both the ramp peak and valley voltages, and
the charge and discharge currents are proportional to the supply voltage. This keeps the frequency relatively constant while keeping the slope of the PWM ramp proportional to the voltage on the VDD pin. For operating frequencies other than those specified above, the frequency can be approximated by the following equations:

For the LX1710/1711
Frequency $=\frac{1}{(0.577)\left(R_{P W M}\right)\left(C_{P W M}\right)+320 n s}$

For the LX1721/1722
Frequency $=\frac{1}{(0.525)\left(R_{P W M}\right)\left(C_{P W M}\right)+400 n s}$

Oscillator Frequency vs. Cpwm (with Rpwm $=34.8 \mathrm{k} \Omega$)

Figure 10

Multi Channel Requirements and Frequency Synchronization

For applications that require more than a single channel (such as a 5.1 surround sound application), the oscillators of multiple LX1710/1711 or LX1721/1722 controllers can be configured for synchronous operation and eliminate possible beat frequency noise. Although individual controllers will run at very similar frequencies, the additional tolerance associated with other external components (resistors, capacitors) and even different propagation times and voltage levels internal to the IC could affect the controller's run frequency. The delta frequency difference between two controllers of 2 kHz for example, falls within the audio range and will not be filtered out. This unwanted tone can be heard and measured at the speaker but is easily eliminated with synchronization.

One unit, the master, is programmed for the desired frequency with the RPWM and CPWM as usual. Additional units will be slave units, and their oscillators will be disabled by leaving the RPWM pin disconnected. The CLOCK pin and the CPWM pin of the slave units should be tied to the CLOCK pin and the CPWM pin of the master unit respectively. In this configuration, the CLOCK pins of the slave units begin receiving instead of transmitting clock pulses. Also, the CPWM pins quit driving the PWM capacitor in the slave units. Note that for optimum performance, all slave units should be located within a few inches of the master unit. If two controllers are located far apart or on separate PCB, synchronization may not be necessary since the traces or wires of the PCB could sink the beat frequency noise.

Figure 11 - Frequency Synchronization

SYSTEM GAIN

Some applications such as very high output power designs utilizing a gate driver may require modifying the feedback gain circuit. The system gain can be calculated. At the error amplifier,

$$
\begin{aligned}
& (\text { Vin })(3.5)=(\text { Vout })\left(G_{F B}\right) \\
& G=(\text { Vout }) /(\text { Vin })=(3.5) /\left(G_{F B}\right)
\end{aligned}
$$

For the $\mathrm{LX} 1721, \mathrm{G}_{\mathrm{FB}}=0.091 \mathrm{~V} / \mathrm{V}$, so $\mathrm{G}=39 \mathrm{~V} / \mathrm{V}=$ 32dB;

For the $L X 1722, G_{F B}=0.057 \mathrm{~V} / \mathrm{V}$, so $\mathrm{G}=61.4 \mathrm{~V} / \mathrm{V}=$ 36dB.

AudioMAX controllers can be used with high voltage gate drivers for very high power amplifier solutions. For these high power output applications, the feedback gain must be reduced to provide a higher system gain. With the LXE1722 evaluation board, increasing the value of the feedback resistors R16-R19 increases the overall system gain

Figure 12 - High System Gain Diagram

To calculate feedback gain G_{FB},

$$
\mathrm{G}_{\mathrm{FB}}=(21 \mathrm{k}) /(135 \mathrm{k}+239 \mathrm{k}+\mathrm{R})
$$

Increasing R results in the desired higher system gain. However, the capacitor value (C) must also be
adjusted to make sure the characteristics of the low pass filter do not change.
$f=1 /(2 \pi R C)$ should be greater than 20 kHz to minimize audio band interference.

Thermal Consideration

Thermal resistance calculations and analysis must be performed especially with the high power designs. Assume the absolute maximum conditions.

VDD $=25 \mathrm{VDC}$
Die temperature $\mathrm{Td}=125^{\circ} \mathrm{C}$
$\mathrm{f}=450 \mathrm{kHz}(\mathrm{Cpwm}=100 \mathrm{pF})$
Ambient temperature $\mathrm{Ta}=40^{\circ} \mathrm{C}$
From LX1721/22 thermal characteristics,
Junction-to-Case $\theta \mathrm{jc}=17.8^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient $\theta \mathrm{ja}=50^{\circ} \mathrm{C} / \mathrm{W}$
MOSFETs FDS4435 (Ciss $=1600 p F$) and FDS6612A (830 pF) have been used and averaged to a gate
capacitance of 1200 pF. From the Dynamic Current vs. CPWM (PWM Capacitor) vs. Gate Capacitance Load Graph, the dynamic current and power dissipation is determined.

$$
\begin{aligned}
& \mathrm{Id}=40 \mathrm{~mA} \\
& \mathrm{Pd}=(\mathrm{Id})(\mathrm{VDD})=(0.04)(25)=1 \mathrm{~W}
\end{aligned}
$$

So, the case temperature $\mathrm{Tc}=40^{\circ} \mathrm{C}+$ $\left(50^{\circ} \mathrm{C} / \mathrm{W}\right)(1 \mathrm{~W})=90^{\circ} \mathrm{C}$

Since the Die temperature $\mathrm{Td}=90^{\circ} \mathrm{C}+$ $\left(17.8^{\circ} \mathrm{C} / \mathrm{W}\right)(1 \mathrm{~W})=107.8^{\circ} \mathrm{C}<125^{\circ} \mathrm{C}$

No extra heatsink is required for this LX1721 example.

Dynamic Current vs. CPWM vs. Capacitance Load

Figure 13

The graph illustrates case temperature test results using different loads at different switching frequencies with the following conditions.

$$
\text { VDD }=25 \mathrm{VDC}, \text { open air } \mathrm{Ta}=25^{\circ} \mathrm{C}
$$

If MOSFETs with Ciss > 3000pF are used in the design, the case temperature is raised and thermal
methods like heatsinks are recommended for cooling to keep the Die temperature below $125^{\circ} \mathrm{C}$.

If MOSFETs with Ciss < 2000pF are used at $40^{\circ} \mathrm{C}$ or lower operating temperature, heatsinks are typically not required.

LX1721 Case Temperature vs. CPWM vs. Capacitance Load

Figure 14

PCB Layout Recommendations

Like most analog circuits, component placement, signal routing, and power/ground isolation can affect the overall performance of the design. The layout should utilize individual ground traces/planes for the audio amplifier whenever possible. The audio input and controller ground, FET ground, and output filter ground are routed using a "star" connection in the LXE1710 evaluation board. See PCB layer views. The power to the controller IC should be routed using separate traces that do not carry high current pulses from the switching circuit. In general, minimizing the
high frequency, high power currents from flowing through the same copper as the audio signal references are recommended. Signal traces that could be sensitive to noise should be node to node connections (no "shared" traces). Stray capacitance at the controller pins RPWM, EAOUT, EAIN, and FAOUT can affect the circuit performance and components associated with these pins should be placed as close to the controller IC as possible.

LXE1710/1711 Printed Circuit Board Layout

Figure 15

Printed Circuit Board For the LXE1710

Figure 16 - Bottom Layer

Figure 17 - Top Layer

$$
\text { Figure } 18 \text { - LXE1721 Schematic and Layout Recommendations }
$$

\qquad

组

LXE1721 Printed Circuit Board Layout

Figure 19 - Top Layer

Figure 20 - Bottom Layer

Figure 21 - Component Location

LXE1710/1711 Bill of Materials

MISCELLANEOUS COMPONENTS					
Line Item	Part Description	Manufacturer \& Part \#	Case	Reference Designators	Qty
1	Controller	LINFINITY LX1710 / LX1711	SSOP 28	U1	1
2	N-Channel MOSFET	FAIRCHILD FDS6612A	SO-8	Q2, Q4	2
3	P-Channel MOSFET	FAIRCHILD FDS4953	SO-8	Q1, Q3	2
4	Printed Circuit Board	LINFINITY SGE2758		REV.X	1
5	Inductor 15uH	ISI RL622-150K (LXE1710)	TH	L1, L2	2
5	Inductor, 15uH	COILCRAFT DO5022-153HC (LXE1711)	SMT	L,	2
6	Phono Jacks, 90° Nickel Plated, Wht	Mouser 161-4214	TH	CN1	1
7	Strip Line Plugs, Straight, Single Row .100"	CA CA-S36-24B-44	TH	J1, J2	2
8	Shorting Jumpers, Open Top, Black	Mouser 151-8030	TH	J1	1
9	Terminal Block 2 pos 5mm	Block Master 301-021-1000	TH	TB1, TB2	2
CAPACITORS					
Line Item	Part Description	Part Description	Case	Reference Designators	Qty
1	Capacitor, COG, 18pF, 50V, 5\%	Novacap 1206N180J500NT AVX 12065C180JAT2A	1206	C5	1
2	Capacitor, COG, 150pF, 50V, 5%	Novacap 1206N151J500NT AVX 12065C151JAT2A	1206	C4	1
3	Capacitor, COG, 220pF, 50V, 5\%	AVX 12065C221JAT2A	1206	C6, C7	2
4	Capacitor, X7R, 330pF, 50V, 10\%	Panasonic ECu-V1H331KBM	1206	C26	1
5	Capacitor, X7R, . $47 \mathrm{uF}, 16 \mathrm{~V}, 20 \%$	Novacap 1206B474M160NT AVX 1206YC474MAT2A	1206	C3, C14	2
6	Capacitor, X7R, 1uF, 50V, 10\%	Novacap 1206B105K500NT AVX 12065C105KAT2A	1206	C1, C2	2
7	Capacitor, COG, 100pF, 50V, 5\%	Novacap 0805N101J500NT AVX 08055C101JAT2A	0805	C16	1
8	Capacitor Tant 0.1uF 35V 20\%	AVX TAJA104M035R	3216	C9	1
9	Capacitor Tant 2.2uF 25V 20\%	Kemet T491A225M025AS	3216	C13	1
10	Capacitor, Tant, 4.7uF, 16V, 20\%	Kemet T491A475M016AS AVX TAJA475M016R	3216	C10, C11	2
11	Capacitor Stacked MF 0.1uF 50V 5\%	Panasonic ECQ-V1H104JL	TH	C8, C12, C22	3
12	Capacitor Stacked MF 0.47uF 50V 5\%	Panasonic ECQ-V1H474JL	TH	C18, C19	2
13	Capacitor Stacked MF 0.68uF 50V 5\%	Panasonic ECQ-V1H684JL	TH	C20, C21	2
14	Capacitor, Elect 220uF, 25V, 20\%	Elna RV-25V221MH10-R	NT	C17	1
RESISTORS					
Line Item	Part Description	Part Description	Case	Reference Designators	Qty
1	Resistor, 10K, 5\%, 1/4W	ASJ CR32J103T	1206	R2	1
2	Resistor, $24.3 \mathrm{~K}, 1 \%$, 1/4W	ASJ CR32F2432T	1206	R3, R4	2
3	Resistor, 10 Ohm, 5\%, 1/8W	ASJ CR J100T	0805	R6, R10, R11, R12	4
4	Resistor, 10K, 5\%, 1/8W	ASJ CR21J103T	0805	R8, R9	2
5	Resistor, 34.8K, 1\%, 1/8W	ASJ CR21F3482T	0805	R5	1
6	Resistor,20K, 5\%, 1/8W	ASJ CR J203T	0805	R7	1
7	Resistor, 56.2K, 1\%, 1/8W	ASJ CR21F5622T	0805	R1	1
8	Resistor, 15 Ohm 5\% 1W	KOA RM73B3A150J Rohm MCR100JZHJ150	2512	R13	1
9	Resistor, Low Value Flat . 0374	IRC LR2010-01-R0374-F	2512	RS1	1

LXE1721 Bill of Materials

MISCELLANEOUS COMPONENTS					
Line Item	Part Description	Manufacturer \& Part \#	Case	Reference Designators	Qty
1	IC, Controller	LINFINITY LX1721CDB	QSOP 44	U1	1
2	IC, N \& P - Channel MOSFET	SILICONIX Si4558DY	SO-8	Q1, Q2, Q3, Q4	4
3	Ferrite Bead, 1000 Ohm	Murata BLM41P102SGPT	1206	L100	1
4	Printed Circuit Board	LINFINITY LXE1721 DC2601		Rev.	1
5	Inductor, 15uH	ISI \# RL622-150K	TH	L1, L2, L3, L4	4
6	Phono Jack, 90° Nickel Plated, White	Mouser 161-4214	TH	RCA1	1
7	Phono Jack, 90° Nickel Plated, Red	Mouser 161-4215	TH	RCA2	1
8	Header, Str. .100" Center, 2Pos	AMP 87220-2	TH	$\underset{\mathrm{JP7}}{\mathrm{~J} 1, \mathrm{~J} 2, \mathrm{JP2}, \mathrm{JP2A},}$	5
9	Header, Str. .100" Center, 3Pos	AMP 87220-3	TH	JP3	1
10	Header, Double Row .100" Center, 6Pos		TH	JP4	1
11	Shorting Jumpers, Open Top, Black	$\begin{aligned} & \text { 3M 929950-00 } \\ & \text { AMP 531220-7 } \\ & \text { SuLLINs STC02SYAN } \end{aligned}$	TH	J1, J2	2
12	Terminal Block 2Pos 5mm	Block Master 301-021-1000	TH	JP1, JP5, JP6	3
13	Heat Sink Low-Cost for DIP	Wakefield 651B	SMT		4
14	Epoxy, Thermal Conductive	Wakefield 156K			
CAPACITORS					
Line Item	Part Description	Manufacturer \& Part \#	Case	Reference Designators	Qty
1	Capacitor, COG, 18pF, 50V, 5\%	Novacap 0805N180J500NT AVX 08055C180JAT2A	0805	C9, C11	2
2	Capacitor, COG, 100pF, 50V, 5\%	Novacap 0805N101J500NT AVX 08055C101JAT2A	0805	C7	1
3	Capacitor, COG, 150pF, 50V, 5\%	Novacap 0805N151J500NT AVX 08055C151JAT2A	0805	C10, C12	2
4	Capacitor, COG, 220pF, 100V, 5%	AVX 08055C221JAT2A	0805	C25, C26, C27, C28	4
5	Capacitor, X7R, 100nF, 50V, 20\%	AVX 08055C104MAT2A Novacap 0805B104M500NT Samsung CL21B104MBNC	0805	$\begin{gathered} \text { C2, C8, C16, C19, } \\ \text { C22, C35, C36, C37, } \\ \text { C38 } \end{gathered}$	9
6	Capacitor, Tant $1 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$	Kemet T491A105K025AS	3216	C13	1
7	Capacitor, Tant 4.7 μ F, 16V, 20\%	Kemet T491A475M016AS AVX TAJA475M016R	3216	C17, C20	2
8	Capacitor, Stacked MF 0.47 μ F, 50V, 5%	Panasonic ECQ-V1H474JL	TH	$\begin{gathered} \mathrm{C} 3, \mathrm{C} 4, \mathrm{C}, \mathrm{C} 6, \mathrm{C} 31, \\ \mathrm{C} 34 \end{gathered}$	6
9	Capacitor, Stacked MF $0.68 \mu \mathrm{~F}, 50 \mathrm{~V}, 5 \%$	Panasonic ECQ-V1H684JL	TH	C29, C30, C32, C33	4
10	Capacitor, Alum Elect. 47 F , 50V	Panasonic ECA-1HM4701	TH	C18, C21	2
11	Capacitor, Alum Elect. 1000 F , 25V	Panasonic EEU-FC1E102	TH	C1	1
RESISTORS					
Line Item	Part Description	Manufacturer \& Part \#	Case	Reference Designators	Qty
1	Resistor, 10K, 5\%, 1/8W	ASJ CR21J103T	0805	R1, R3, R22, R23	4
2	Resistor, $24.3 \mathrm{~K}, 1 \%$, 1/8W	ASJ CR21F2432T	0805	R16, R17, R18, R19	4
3	Resistor, $34.8 \mathrm{~K}, 1 \%, 1 / 8 \mathrm{~W}$	ASJ CR21F3482T	0805	R5	1
4	Resistor, $56.2 \mathrm{~K}, 1 \%, 1 / 8 \mathrm{~W}$	ASJ CR21F5622T	0805	R2, R4	2
5	Resistor, 5.1 Ohm, 5\%, 1W	KOA RM73B3A5R1J Rohm MCR100JZHJ5R1	2512	R8, R9, R10, R11, R12, R13, R14, R15	8
6	Resistor 15 Ohm, 5\%, 1W	KOA RM73B3A150J Rohm MCR100JZHJ150	2512	R20, R21	2
7	Resistor, Low Value Flat . 020	IRC LR2010-01-R0200-F	2512	R6, R7	2

EMI Recommendations and Testing

Due to the high speed switching topology of Class-D amplifiers, passing emissions and gaining the required certifications can be a challenge. Although EMI is a function of each individual design (including system mechanics and enclosure, component placement, PCB routing and layout), there are general options which may help to reduce EMI in most systems.
The major source of the EMI in Class-D topology is in the switches. The EMI is produced by fast switching edges that can couple into the circuit. These risetimes have frequency components that are orders of magnitude above the oscillator frequency. To minimize the switching EMI, the switching edges can be slowed down by controlling the risetime of the gate drive signal. The risetime limiting should be subtle as there is a tradeoff between EMI reduction and efficiency. To prevent conduction overlap of the FET switches, the switch turn off time should be as fast as possible, but the turn on edges can be slowed down with some series resistance to the gate capacitance.

Similar techniques can be applied to designs that utilize a Class-D controller with a gate driver. A
typical gate driver will source and sink current so a resistor can be added to the source leg of the NMOS driver and the sink leg of the PMOS driver. If there is stray inductance and capacitance on the drains of the switching FETs, there may be ringing on the output. In some layouts this stray impedance is unavoidable due to the need to heatsink the switches and other layout constraints. The ringing can be eliminated with a snubber (a series resistor and capacitor). The snubber capacitor is sized to be greater than the stray capacitance and the snubber resistor is sized so the time constant of the snubber coincides with the frequency of the ringing. The tradeoff is the resistor will reduce efficiency of the amplifier. The resistor will dissipate a power equivalent to Fsw x Csnubber $\mathrm{x} V \mathrm{x}$ V. A carefully optimized, tight layout may be enough to prevent ringing.

The following schematic contains a buffer circuit used in the LX1711-100 buffer board. R38 and C28 are the snubber circuit that can be added to reduce EMI. Scope photos illustrate the effects of the snubber circuit to reduce ringing noise at the MOSFET output.

Figure 22

Figure 23 - MOSFET Output Without Snubber Circuit

Figure 24 - MOSFET Output With Snubber Circuit

EMI Report

The following sweep was performed on a LXE1721 Stereo Evaluation Amplifier that utilized a second stage LC filter ($2.2 \mathrm{uH} / 0.1 \mathrm{uF}$) as an EMI filter, a ground plane, chassis ground, and a small high-current loop. Results are from a pre-scan test at 3 meters in a chamber with a $120 \mathrm{VAC} / 60 \mathrm{~Hz}$ switching power supply. Desktop computer speakers with 3 feet of speaker wire and a portable CD player set at full volume were used. Maximum peak value is about 15dB lower than FCC CISPR 22 B limit at about $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ band.

Figure 25

Reference Designs and Evaluation Boards

LX1711-100 Buffer High Power Amplifier Board

The LX1711 Mono Class-D Controller is used with a discrete drive circuit that shifts the LX1711 logic gate drive level to 12 V to increase its drive capability. Greater than $120 \mathrm{Wrms}(2 \Omega)$ or $60 \mathrm{Wrms}(4 \Omega)$ output power levels are supported.

Figure 26 - LX1711-100 Buffer Schematic, Sheet 1

REVISIONS			
LTR	DESCRIPTION	DATE	APPR
X1	ORIG. ECN \#180 RELEASED TO ENGINEERING	$06 / 13 / 101$	

Figure 27 - LX1711-100 Buffer Schematic, Sheet 2

REVISIONS			
LTR	DESCRIPTION	DATE	APPR
X1	ORIG. ECN \#180 RELEASED TO ENGINEERING	06/13/01	

Figure 28 - LX1711-100 Buffer Schematic, Sheet 3

REVISIONS			
LTR	DESCRIPTION	DATE	APPR
X1	ORIG. ECN \#180 RELEASED TO ENGINEERING	$06 / 13 / 01$	

Figure 30 - LX1711-100 Buffer Schematic, Sheet 4

Reference Designs and Evaluation Boards

5.1 Channel LX1710/ LX1711 Evaluation Board (Mono x 6 channels) and User Guide

This 5.1 Channel amplifier has been designed to support applications such as the combo DVD type systems with output power of 25 Wx 6 @ $4 \mathrm{ohm}, 1 \% \mathrm{THD}$, single supply 15 V or $50 \mathrm{~W} \times 6$ @ $4 \mathrm{ohm}, 1 \% \mathrm{THD}$, single supply 25 V .

Input Connector CN401

Pin1 ---- Front Left (FL) Input;
Pin2 ---- Signal Ground for FL and RL Input;
Pin3 ---- Front Right (FR) Input;
Pin4 ---- Signal Ground for CTR and SW Input;
Pin5 ---- Center Channel (CTR) Input;
Pin6 ---- Signal Ground for FR and RR Input;
Pin7 ---- Rear Left (RL) Input;
Pin8 ---- Power Supply PWM Control pin1;
Pin9 ---- Rear Right (RR) Input;
Pin10 ---- Power Supply PWM Control pin2;
Pin11 ---- SubWoofer (SW) Channel Input;
Pin12 ---- Clipping Detection Control Pin1;
Pin13 ---- No Connection;
Pin14 ---- Clipping Detection Control Pin2;
Pin15 ---- MUTE Control;
Pin16 ---- Clipping Detection Control Pin3;
Pin17 ---- Clipping Detection Control Pin4;
Pin18 ---- Clipping Detection Control Pin5;

- If all the channels input are single wire/no ground, then AGND1, AGND2, AGND3 must be tied to the power supply GND.
- \quad MUTE $=$ ON if pin15 is high, if no mute is to be connected, then pin15 must be connected to the power GND for system operation.
- Pin8, pin10 are power supply PWM control pins from a microcontroller. If power supply control is not available, leave these two pins open.
- Pin12, pin14, pin16~18 are clipping detection control from/to microcontroller. If a microcontroller is not used, leave them open.

Clipping Detection Control Connector CN402

2mm Header 14

Pin1 ---- Ground for clipping board;
Pin2 ---- Power supply for clipping board, comes from main board Vcc;
Pin3 ---- Relay control pin;
Pin4 ---- Sleep control pin;
Pin5 ---- Clipping Detection Control Pin3;
Pin6 ---- Clipping Detection Control Pin1;
Pin7 ---- Clipping Detection Control Pin2;
Pin8 ---- Clipping Detection Control Pin4;
Pin9 ---- FL channel negative feedback;
Pin10 ---- RL channel negative feedback;
Pin11 ---- SW channel negative feedback;
Pin12 ---- CTR channel negative feedback;
Pin13 ---- RR channel negative feedback;
Pin14 ---- FR channel negative feedback;

- If the clipping detection board is not plugged into the socket, pin4 must be connected to the power GND, and relay control pin3 must be connected to the Vcc or short the Relay pin3 to pin4, pin5 to pin6 and leave pin3 of CN402 open. All other pins are left open.

Power Supply Connector JP1

> JP1

CONN PWR 4-H

Pin1, 2 ---- Power Ground;
Pin3, 4 ---- Power Supply: 15VDC for LX1710 and 25VDC for LX1711;

Power Supply PWM Control Connector

.100" Ctr. Hd.
Pin1 ---- Power Supply PWM Control pin1;
Pin2 ---- Power Supply PWM Control pin2;

- These pins come from the microcontroller and connect to the power supply board. If power supply is not connected, leave them open.

Output Connector JP3

			JP3
OUT_F	FL-	1	
OUT_F	FL+	2	1
OUT_P	RL+	3	2
OUT_R	RL-	4	3
OUT_C	CTR-	5	4
OUT_C	CTR+	6	5
OUT_S	SW+	7	6
OUT_S	SW-	8	7
OUT_F	FR-	9	8
OUT_F	FR+	10	9
OUT_P	RR+	11	10
OUT_P	RR-	12	11

.156" Ctr. Hd.

Pin1 ---- Front Left Negative Output;
Pin2 ---- Front Left Positive Output;
Pin3 ---- Rear Left Positive Output;
Pin4 ---- Rear Left Negative Output;
Pin5 ---- Center Negative Output;
Pin6 ---- Center Positive Output;
Pin7 ---- SubWoofer Positive Output;
Pin8 ---- SubWoofer Negative Output;
Pin9 ---- Front Right Negative Output;
Pin10 ---- Front Right Positive Output;
Pin11 ---- Rear Right Positive Output;
Pin12 ---- Front Right Negative Output;

Gain Control Potentiometers

- There are four Potentiometers POT1~4 to control the gain of each channel. POT1 controls FL/FR; POT2 controls CTR; POT3 controls SW; POT4 controls RL/RR. Each channel's gain can be adjusted for special effects.

System Configuration

- All channels use LX1710 with output power of $25 \mathrm{~W} x 6$ @4ohm, 1\%THD output power under 15VDC power supply condition.
- All channels use LX1711, can get 50Wx6 @4ohm, 1\% THD output power under 20~25VDC power supply condition. Care must be exercised for thermal performance and possible heatsink options.
- Different mono controllers can be uses. FL, FR, RL, RR channels use LX1710 and CTR, SW channels use LX1711 for a system of $25 \mathrm{~W} x 4+35 \mathrm{~W} \times 1+50 \mathrm{Wx} 1$ @4ohm, 1\% THD output power under 15~25VDC condition. Gain can be individually adjusted using POT1~4.
- Another option is to use the LX1711-100 high power buffer design. FL/FR/RL/RR/CTR use LX1711, SW channel uses LX1711 buffer solution to get 50Wx5 @4ohm + 130W @2ohm, 1\%THD for a total output power of 380 W . This solution requires a layout change to the SW channel on the evaluation board.

[^0]: *Please refer to Manufacturer's Datasheets for latest specifications

