DG0802 Demo Guide PolarFire FPGA PCIe Root Port

a **MICROCHIP** company

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

©2021 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Contents

1	Revisi 1.1 1.2 1.3 1.4 1.5 1.6 1.7	on History Revision 7.0 Revision 6.0 Revision 5.0 Revision 4.0 Revision 3.0 Revision 2.0 Revision 1.0	1 1 1 1 1
2	PolarF	Fire FPGA PCIe Root Port	2
	2.1 2.2 2.3	Design Requirements	2 3 3 4 5
	2.4 2.5	Clocking Structure	8 9
3	Libero 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Design Flow 1 Synthesize 1 Place and Route 1 3.2.1 Resource Utilization Verify Timing 1 Generate FPGA Array Data 1 Configure Design Initialization Data and Memories 1 Generate Bitstream 1 Run PROGRAM Action 1	0 11 12 12 12 12 15
4	Setting 4.1	g Up the Demo	7 17
5	Runnii 5.1 5.2 5.3 5.4	ng the Demo1Installing the GUI	8 18 20 21 22 23 25 25 26 29
6	Apper	ndix 1: Programming the Devices Using FlashPro Express	0
7	Apper	ndix 2: DDR4 Configuration	3

		🏷 Microsemi.
		а 🐼 Місноснір company
8	Appendix 3: Running the TCL Script	
9	Appendix 4: References	

Figure 1	Block Diagram	. 3
Figure 2	PCIe Root Port demo design	. 5
Figure 3	MIV_SS_0 SmartDesign	. 6
Figure 4	PCIe_RP SmartDesign	. 7
Figure 5	PCIe_TL_CLK_0 SmartDesign	. 8
Figure 6	Clocking Structure	. 8
Figure 7	Reset Structure	. 9
Figure 8	Libero Design Flow Options	10
Figure 9	I/O Editor—XCVR View	11
Figure 10	PF DDR3 SubSystem 0 Placement	11
Figure 11	Design and Memory Initialization Window	13
Figure 12	Fabric RAMs Tab	13
Figure 13	Edit Fabric RAM Initialization Client Dialog Box	14
Figure 14	Applying Fabric RAM Content	14
Figure 15	Third Stage INIT Client	15
Figure 16	Board Setup—Evaluation Kit	16
Figure 17	Demo Setup	17
Figure 18	PCIe Boot Port GUI	18
Figure 19	Endpoint Device Information	19
Figure 20	Endpoint Config Space-Basic	19
Figure 21	Endpoint Config Space-Advanced	20
Figure 22	Single I ED Control	20
Figure 23		20
Figure 24	DIP SW/ Status Ontion	21
Figure 25	Endpoint DIP SW Status	21
Figure 26	Enable Interrupt Session Ontion	22
Figure 20	Enable interrupt Session Option	22
Figure 27	PAP2 SPAM Dead Ontion	23
Figure 20		23
Figure 29		24
Figure 30		24
Figure 31		20
Figure 32		20
Figure 33		21
Figure 34		27
Figure 35	Root port DDR4 Memory Content	28
Figure 36		28
Figure 37	FlashPro Express Job Project	30
Figure 38	New Job Project from FlashPro Express Job	31
Figure 39	Programming the Device	31
Figure 40	FlashPro Express—RUN PASSED	32
Figure 41	PF_DDR4 Configurator—General	33
Figure 42	PF_DDR4 Configurator—Memory Initialization	34
Figure 43	PF_DDR4 Configurator—Controller	35

Tables

Table 1	Design Requirements	. 2
Table 2	Mi-V and PF PCIE Address Maps	. 4
Table 3	Resource Utilization	12
Table 4	Jumper Settings	15
Table 5	Allocated MSIs	23
Table 6	Throughput Summary	29

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 7.0

The following is a summary of the changes made in this revision.

- Updated the document for Libero SoC v2021.2.
- Added support for PERSTn signal generation.
- Replaced Figure 1, page 3 through Figure 7, page 9.
- Updated Table 2, page 4 and Table 3, page 12.
- Updated section Design Implementation, page 5.
- AHBtoAXIAPB subsystem is removed from the MiV subsystem.
- AXI_Interconnect_0 and Core_APB_0 were added in the MiV subsystem.
- Enabled AXI master interface and APB master interface on MiV core.
- Updated the reset structure.

1.2 Revision 6.0

The following is a summary of the changes made in this revision.

- Updated the document for Libero SoC v12.6.
- Removed the references to Libero version numbers.

1.3 Revision 5.0

The document was updated for Libero SoC v12.0.

1.4 Revision 4.0

The document was updated for Libero SoC PolarFire v2.3.

1.5 Revision 3.0

The document was updated for Libero SoC PolarFire v2.2.

1.6 Revision 2.0

The document was updated for Libero SoC PolarFire v2.1.

1.7 Revision 1.0

The first publication of this document.

2 PolarFire FPGA PCle Root Port

Microsemi PolarFire[®] FPGAs support fully integrated PCIe Endpoint and Root Port subsystems with optimized embedded controller blocks that use the physical layer interface (PHY) of the transceiver. Each PolarFire device includes two embedded PCIe subsystem (PCIESS) blocks that can be configured either separately, or as a pair, using the PF_PCIE IP configurator in the Libero[®] SoC software.

The PF_PCIE IP core is compliant with the PCI Express Base Specification, Revision 3.0 with Gen1/2. It implements memory-mapped Advanced Microcontroller Bus Architecture (AMBA) advanced extensible interface 4 (AXI4) access to the PCIe space and the PCIe access to the memory-mapped AXI4 space. For more information, see *UG0685: PolarFire FPGA PCI Express User Guide*.

This document describes the Root Port capabilities of the PolarFire FPGA PCIe controller using Mi-V soft processor. The PCIe Root Port capabilities like the enumeration of an Endpoint device, low-speed and high-speed data transfers are demonstrated using the PCIe Root Port Demo GUI application.

The demo design includes a Mi-V soft processor, which initiates PCIe control and data plane functions. For more information about the PCIe Root Port design implementation, and the necessary blocks and IP cores instantiated in Libero SoC, see Demo Design, page 3.

The demo design can be programmed using any of the following options:

- Using the job file: To program the device using the job file provided along with the design files, see Setting Up the Demo, page 17.
- Using Libero SoC: To program the device using Libero SoC, see Libero Design Flow, page 10. Use this option when the demo design is modified.

To run the demo, perform the following steps:

- The Root Port demo design must be programmed on a PolarFire Evaluation board.
- The Endpoint demo design must be programmed on another PolarFire Evaluation board.
- Both the boards must be connected using a PCIe Adapter card.

For more information about setting up the PCIe Root Port demo, see Setting Up the Demo, page 17.

2.1 Design Requirements

The following table lists the hardware and software requirements for this demo design.

Table 1 •Design Requirements

Requirement	Version						
Operating system	64-bit Windows 7 or 10						
Hardware							
Two PolarFire Evaluation Kits (MPF300TS-FCG1152I)	Rev D or later						
Microsemi PCIe Adapter Card	PCIE-ROOTPORT-AD						
Software							
Libero SoC							
SoftConsole	Note: Refer to the readme.txt file provided in the design files for the						
ModelSim	software versions used with this						
Synplify Pro	reference design.						

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only. Open the Libero design to see the latest updates.

2.2 **Prerequisites**

Before you begin:

- For demo design files download link: http://soc.microsemi.com/download/rsc/?f=mpf_dg0802_df
- 2. http://soc.microsemi.com/download/rsc/?f=mpf_dg0756_eval_df
- 3. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the following location:

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads

The latest versions of ModelSim, Synplify Pro, and FTDI drivers are included in the Libero SoC installation package.

2.3 Demo Design

The top-level block diagram of the PCIe Root Port design is shown in the following figure. The PolarFire PCIe Root Port can establish a PCIe link with any PCIe Endpoint or Bridge. The user application enumerates the Endpoint device using the ECAM (enhanced configuration access mechanism) feature. The user application also initiates the AXI transactions from the Root Port. These AXI transactions are converted to PCIe Configuration space or memory transactions (CfgWr/CfgRd/MWr/MRd) to Endpoint.

As shown in Figure 1, page 3, the following points describe the data flow in the PCIe Root Port design:

- 1. The CoreUART block interfaces with the GUI.
- 2. The Mi-V soft processor reads/writes data to the Core_UART_0 block through the core Core_APB_0.
- 3. The Mi-V soft processor forwards the corresponding PCIe command to the PF_PCIE_0 block through the PCIe_APB/PCIe_AXI slave interface.
- 4. The PCIe request and completion TLPs are transmitted and received between the Root Port and the Endpoint through the serial link.
- 5. Inbound TLPs are reflected as AXI transactions on the AXI_1_Master port of PF_PCIE.
- 6. The Mi-V soft processor uses the PCIe_AXI bus interface to read the data from AXI_1_SLAVE.
- 7. The Mi-V soft processor uses the core Core_APB_0 and writes the data to the UART_APB slave interface to forward the data to the GUI.

As shown in Figure 1, page 3, the following points describe the DMA flow from Root Port to Endpoint:

- 1. The Mi-V soft processor enumerates the Endpoint by accessing the Root Port and the Endpoint configuration space through the SLAVE ATR0 path.
- **Note:** ATRs (address translation registers) perform address translation from PCIe address space to the AXI master. For more information about ATRs, see *UG0685: PolarFire FPGA PCI Express User Guide*.
 - 2. The Mi-V soft processor accesses the Endpoint BAR 0/2 through the SLAVE ATR 0/1 path.
 - 3. The Mi-V soft processor accesses the Root Port LSRAM memory through the SLAVE ATR 3 path.
 - 4. The DMA is performed according to the user selection on the GUI application.

2.3.1 Memory and Peripheral Address Map

This section lists the memory and peripheral address map of the Root Port demo design.

The address map of the Mi-V peripherals and main memory are:

- APB/AXI MMIO Interface: 0x60000000 to 0x7FFFFFF
- AHB MEM Interface: 0x80000000 to 0x8FFFFFF

The address map of the bus interfaces connecting Mi-V to PF_PCIE is listed in the following table.

Table 2 • Mi-V and PF_PCIE Address Maps

Bus Interface/Component	Description	Memory Map
PCle_APB	This bus interface is used to access the PCIe register	0x63000000 to 0x63FFFFF
CoreUARTapb	This block establishes a UART interface to connect the Mi-V processor to the external world	0x64000000 to 0x64FFFFF
CoreGPIO_C0	This component is used to generate the PERSTn signal for the link partner that is connected to the Root port	0x65000000 to 0x65FFFFF
PCIe_AXI	This bus interface is the PCIe AXI slave for EP configuration or BAR space access	0x70000000 to 0x7000FFFF – Configuration space (Mi-V configures through PCIe APB) 0x71000000 to 0x7100FFFF – EP BAR0 space 0x72000000 to 0x7200FFFF – EP BAR2 space 0x73000000 to 0x73FFFFFF – RP AXI Master - LSRAM/DDR4 (Mi-V configures through PCIe APB)
ТСМ	This block is the main memory of the Mi-V processor	0x80000000 to 0x8FFFFFF

The PF_PCIE block connects to the DDR4 and LSRAM blocks through the AXI_1_MASTER bus interface. The address maps of DDR4 and LSRAM are 0x10000000 to 0x1FFFFFFF and 0x00000000 to 0x00000FFF respectively.

2.3.2 Design Implementation

Figure 2, page 5 shows the Libero SoC software design implementation of the PCIe Root Port demo design.

Figure 2 • PCIe Root Port demo design

The top-level design includes the following SmartDesign components and memory controller subsystems:

- MIV_SS_0
- PCle_RP_0
- DDR4
- CoreGPIO_C0_0
- Note: PERSTn is a fundamental reset signal defined in both PCI Express Base Specification and PCI Express Card Electromechanical Specification. It is a reset signal issued by the Root port via PCIe slots to reset the entire PCIe fabric hierarchy. CoreGPIO_C0_0 is used to generate the PERSTn signal for the link partner that is connected to the root port. The Root port firmware running on the MI-V processor can assert the PERSTn signal through CoreGPIO_C0_0. When the host is power cycled, the PERSTn signal is asserted by the PCIe_INIT_MONITOR_0 until the PCIe controller in the Root port is initialized.

2.3.2.1 Mi-V Subsystem

The sub-blocks of MIV_SS_0 are shown in the following figure.

2.3.2.1.1 MIV_RV32_C0

The MIV_RV32_C0 (MIV_RV32_C0) is configured with a Reset Vector Address of 0x80000000. After reset, the processor starts executing the instructions from this address. The main memory of the processor address ranges from 0x80000000 to 0x8FFFFFFF.

The AXI_Interconnect_0 and Core_APB_0 block connects the MIV_RV32_C0 block to:

- The PF_PCIE_0 block through PCIe_APB slave interface. The MIV_RV32_C0 block accesses the PCIe control registers through the PCIe_APB slave interface.
- The PF_PCIE_0 block through PCIe_AXI slave interface.
- The Core_UART_0 block through a APB slave interface.
- The CoreGPIO_C0_0 block through the PERSTn_CTRL_APB slave interface of CoreGPIO_C0_0.

These slaves are connected at the following addresses:

- PCIe_APB slave: 0x63000000
- PCIe_AXI: 0x7000000
- UART_APB slave: 0x64000000
- PERSTn_CTRL_APB slave: 0x65000000

2.3.2.2 PCIe Rootport Subsystem

The sub-blocks of PCIe_RP_0 are shown in the following figure.

Figure 4 • PCIe_RP SmartDesign

2.3.2.2.1 PF_PCIE_0

The PF_PCIE_0 IP block is used to configure the PCIe subsystem (PCIESS) as a Root Port (PCIe 1). PCIESS block is configured for x4 lanes, 5 Gbps data rate, and APB interface for PCIe Controller access.

2.3.2.2.2 PCIe_Tx_PLL_0

The PCIe_Tx_PLL_0 (Transmit PLL) is configured for a 100 MHz **Reference Clock** and a 5000 Mbps **Desired Output Bit Clock**.

The PolarFire FPGA transceiver is a half-rate architecture that is the internal high-speed path that uses both edges of the clock to keep the clock rates down. Therefore, the clock can run at half of the data rate, thereby consuming less dynamic power. The transceiver in PCIe mode requires a 2500 MHz bit clock.

2.3.2.2.3 PCIe_TL_CLK_0 SmartDesign

The PCIe_TL_CLK SmartDesign implements PCIe TL CLK for PolarFire devices as shown in the following figure. PCIe TL CLK needs to be connected to CLK_125 MHz of Tx PLL. In PolarFire devices, TL CLK is available only after PCIe initialization. The 80 MHz clock is derived from the on-chip 160 MHz oscillator to drive the TL CLK during PCIe initialization. The NGMUX is used to switch this clock to the required CLK_125 MHz after PCIe initialization.

2.3.2.2.4 PCIeM_AXI4Connect_0

The PCIeM_AXI4Connect_0 (CoreAXI4Interconnect) bus is configured for a single master and two slaves and used to connect the PF_PCIE_0 with PCIe_AXI_SRAM_0 and DDR4 for DMA operations.

2.3.2.3 DDR4 Subsystem

The DDR4 subsystem is configured to access the 32-bit DDR4 memory through an AXI4 64-bit interface. The DDR4 memory initialization and timing parameters are configured as per the DDR4 memory on the PolarFire Evaluation kit.

2.4 Clocking Structure

The following figure shows the clocking structure of the demo design.

Figure 6 • Clocking Structure

Figure 5 • PCIe_TL_CLK_0 SmartDesign

licrosemi

a **MICROCHIP** company

2.5 Reset Structure

The following figure shows the reset structure of the PCIe Root port demo design.

Figure 7 • Reset Structure

The Reset_AXI_IF_0(CoreReset_PF) block synchronizes "PLL_LOCK" signal of PF_DDR4_SS_0 IP with the DDR4 system clock(200MHz) to generate FABRIC_RESET_N signal, which drives the PCIe_RP_0 and MIV_SS_0 blocks.

The Reset_MIV_0(CoreReset_PF) block synchronizes the external user_resetn (SW6 on the PolarFire Evaluation board) and DEVICE_INIT_DONE(PF_INIT_MONITOR) together with the RISCV system clock (100 MHz) to generate the SYS_RESET_N, which drives the PF_DDR4_SS block.

The CORERESET_PF_C0_0(CoreReset_PF) block synchronizes "CTRLR_READY" signal of PF_DDR4_SS_0 IP with the RISCV system clock (100 MHz) to generate FABRIC_RESET_N signal, which drives the PCIe_RP_0,MIV_SS_0 and CoreGPIO_C0_0 blocks.

For more information about device initialization, see *UG0725: PolarFire FPGA Device Power-Up and Resets User Guide*.

For more information on CoreReset_PF IP core, see CoreReset_PF handbook from the Libero catalog.

3 Libero Design Flow

This chapter describes the Libero design flow of the demo design. The Libero design flow involves the following steps:

- Synthesize
- Place and route
- Verify Timing
- Configure Design Initialization Data and Memories
- Generate Bitstream
- Run PROGRAM Action
- **Note:** To initialize the TCM in PolarFire using the system controller, a local parameter **I_cfg_hard_tcm0_en**, in the miv_rv32_opsrv_cfg_pkg.v file should be changed to 1'b1 prior to synthesis. See the 2.7 TCM section in the *MIV_RV32 Handbook*.

The following figure shows these options in the Design Flow tab.

Figure 8 • Libero Design Flow Options

3.1 Synthesize

To synthesize the design, perform the following steps:

- 1. From the **Design Flow** window, double-click **Synthesize**.
- When the synthesis is successful, a green tick mark appears as shown in Figure 8, page 10.
- 2. Right-click **Synthesize** and select **View Report** to view the synthesis report and log files in the Reports tab.

We recommend viewing the RP_Demo_Top.srr and the RP_Demo_Top_compile_netlist.log files for debugging synthesis and compile errors.

3.2 Place and Route

To place and route the design, the Transmit PLL (TX_PLL), XCVR_REF_CLK, PF_XCVR TX and RX lane, and the PF_DDR4_SS_0 must be placed using the **I/O Editor**.

To place and route the design, perform the following steps:

1. From the **Constraints Manager window**, place the Transmit PLL, XCVR_REF_CLK, and PF_XCVR TX and RX lanes using **I/O Editor** as shown in the following figure.

Figure 9 • I/O Editor—XCVR View

2. Place the PF_DDR4_SS_0 at NORTH_NW location as shown in the following figure.

Figure 10 • PF_DDR3_SubSystem_0 Placement

D	Nesign View 🗗 🗙	Por	rt View 🗗 🛛 Pin View 🗗	Memory View [active]	1	IOD View 🗗	XCVR View	8	Package View 🗗	Floorplanner View		
[Ports D D 1	Men	nory Type: DDR4 🔻									
	A CTRLR READY		Port Function	1 Port Name	•	Pin Number	-		Function		Max Memory Width 💌	Max Data Rate 💌
	PCIE_0_INTERRUPT_OUT	1	NORTH_NE	Unassigned							72	1600
		146	NORTH_NW	PF_DDR4_SS_0							72	1600
	A D REF_CLK_0	291	SOUTH_SE	Assigned							16	1600
	A D RX A O TX D user_resetn											
	DDR4											

- 3. From the **Design Flow** window, double-click **Place and Route**. When place and route is successful, a green tick mark appears as shown in Figure 8, page 10.
- 4. Right-click **Place and Route** and select **View Report** to view the place and route report and log files in the Reports tab.

We recommend viewing the $\mbox{RP}_\mbox{Demo}_\mbox{Top}_\mbox{place}_\mbox{and}_\mbox{route}_\mbox{constraint}_\mbox{coverage}.\xml$ file for place and route constraint coverage.

3.2.1 Resource Utilization

The resource utilization report is written to the RP_Demo_Top_layout_log.log file in the **Reports** tab -> RP_Demo_Top report -> Place and Route. Table 3, page 12 lists the resource utilization of the design after place and route. These values may vary slightly for different Libero runs, settings, and seed values.

Туре	Used	Total	Percentage
4LUT	30938	299544	10.33
DFF	23206	299544	7.75
I/O Register	0	510	0

Table 3 •Resource Utilization

3.3 Verify Timing

To verify timing, perform the following steps:

- 1. From the **Design Flow** window, double-click **Verify Timing**.
- 2. When the design successfully meets the timing requirements, a green tick mark appears as shown in Figure 8, page 10.
- 3. Right-click **Verify Timing** and select **View Report** to view the verify timing report and log files in the Reports tab.

3.4 Generate FPGA Array Data

To generate FPGA array data, In the **Design Flow** window, double-click **Generate FPGA Array Data**.

A green tick mark is displayed after the successful generation of the FPGA array data as shown in Figure 8, page 10.

3.5 Configure Design Initialization Data and Memories

The Configure Design Initialization Data and Memories step generates an TCM initialization client and adds it to sNVM, μ PROM, or an external SPI flash, based on the type of non-volatile memory selected. In this tutorial, the TCM is initialized from μ PROM.

This process requires the user application executable file (hex file) as input to initialize the TCM after device power-up. The hex file is provided with the design files.

To select the non-volatile memory and generate the initialization client, perform the following steps:

- 1. On the **Design Flow** tab, double-click **Configure Design Initialization Data and Memories.** The **Design and Memory Initialization** window opens.
- Under Third stage (uPROM/sNVM/SPI-Flash), select μPROM, as shown in Figure 11, page 13. In the Third Stage pane, select uPROM as the non-volatile memory, and retain the default start address (0x00000000).
- **Note:** The default start address 0x0000000 is retained because there are no other initialization clients specified in µPROM.

Figure 11 • Design and Memory Initialization Window

Design Initialization UPROM SNVM SPI Flash Fabric RAMs	
Apply Discard Help In design initialization, user design blocks such as LSRAM, uSRAM, transceivers, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. The initialization data can be stored in uPROM, sNM, or an external SPI Flash. Follow the below steps to program the initialization data:	
1. Set up your fabric RAMk initialization data, if any, using the 'Fabric RAMs' tab 2. Define the storage location of the initialization data 3. Generate evenore the bitstream 4. Generate evenore the bitstream 5. Program the device	
Design initialization specification	
First stage (sWM) In the first stage, the initialization sequence de-asserts FABRIC_POR_N.	
Cecond stage (sNVM)	
In the second stage, the initialization sequence initializes the PCIe and XCVR blocks present in the design. Start address for second stage initialization client: 0x 00000000 sNVM start page: 0	
Third stage (sNVM/uPROM/SPLFlash)	
In the third stane, the initialization sequence initializes the Fabric RAMs present in the design.	
To save the initialization instructions in sNVM/UPROM/SPI-Flash, please use 'Fabric RAMs' tab to make your selection for each RAM client.	
I Start address for sNVM dients: 0x 00000000 sNVM start page: 0	
□ Start address for uPRCM clients: 0x 00000000	
Start address for SPI-Hash clients: 0x 00000400	
SPI-Flash Binding: SPI-Flash - No-binding Plaintext 💌 SPI Clock divider value: 6 💌	
Time Out (s): 128	
Auto Calibration Time Out (ms): 3000	
Custom configuration file:	1

3. On the Fabric RAMs tab, select

MIV_SS_0/MIV_RV32_C0_0/MIV_RV32_C0_0/u_opsrv_0/gen_tcm0.u_opsrv_TCM_0/tcm_ram_m acro.u_ram_0 from the list of logical instances, and click **Edit**, as shown in Figure 12, page 13. The MIV_SS_0/MIV_RV32_C0_0/MIV_RV32_C0_0/u_opsrv_0/gen_tcm0.u_opsrv_TCM_0/tcm_ram_m acro.u_ram_0 instance is the Mi-V processor's main memory. The System Controller initializes this instance with the imported client at power-up.

Fabric RAMs					
Clients					
Load design configuration Edit Initialize all clients from: Initialize all Clients from sNVM					
Filter out Inferred RAMs					
Logical Instance Name	PORTA Depth * Width	PORTB Depth * Width	Memory Content	Storage Type	Memory Source
1 MiV_SS_0/MIV_RV32_C0_0/MIV_RV32_C0_0/u_opsrv_0/gen_tcm0.u_opsrv_TCM_0/tcm_ram_macro.u_ram_0	65536x32	65536x32	PCIe_RP_Demo.hex	sNVM	Configurator
	1024x80	1024x80	No content	sNVM	Configurator

4. In the Edit Fabric RAM Initialization Client dialog box, click the Import button next to Content from file, as shown in the following figure.

Figure 13 • Edit Fabric RAM Initialization Client Dialog Box

🕑 Edit Fabric RAM In	tialization Client	?
lient name: MiV_SS		am_0
hysical Name: /u_ops	v_0/gen_tcm0.u_opsrv_TCM_0/tcm_ram_macro.u_ram_0/miv_rv32_ram_singleport_lp_R5C0/INS	ST_RAM1K20
 RAM Initialization Op 	tions	
C Initialized Content	from Synthesis	
Content Initialized	from configurator(using content editor option)	
Content from file:	PCIe_RP_Demo.hex	
imported Men	ory file location : PCIe_RP_Demo.hex	
	us	
	is a placeholder and will not be programmed?	
Optimize for: (Ĉ High S	peed 🕼 Low power	
Storage Type uPROM	•	

- and double-click it. **Note:** If any changes are applied to the Mi-V application code, rebuild the SoftConsole project in the release
 - 5. In the Edit Fabric RAM Initialization Client window, click OK.
 - 6. On the Fabric RAMs tab, click Apply, as shown in the following figure.

Figure 14 • Applying Fabric RAM Content

mode.

Design Initialization uPROM	sNVM SPI Flash Help	Fabric RAMs*				
Usage statistics LSRAM Memory Available Memory(Bytes): Used Memory(Bytes):	2437120 51200	Clients Load design configuration Edit Initialize all clients from: User Selection				
Free Memory(Bytes) :	2385920	Logical Instance Name	PORTA Depth * Width	PORTB Depth * Width	Memory Content	Storage
		1 MIV_SS_0/MIV_RV32_C0_0/MIV_RV32_C0_0/u_opsrv_0/gen_tcm0.u_opsrv_TCM_0/tcm_ram_macro.u_ram_0	65536x32	65536x32	PCIe_RP_Demo.hex	uPROM
		2 PCIe_RP_0/PCIe_AXI_SRAM_0	1024x80	1024x80	No content	sNVM

- 7. The initialization client for
 - $MIV_SS_0/MIV_RV32_C0_0/MIV_RV32_C0_0/u_opsrv_0/gen_tcm0.u_opsrv_TCM_0/tcm_ram_m$ acro.u_ram_0 instance is generated and stored in $\mu PROM$. This step can be verified by viewing the third stage client created in the $\mu PROM$ tab as shown in the following figure.

Figure 15 • Third Stage INIT Client

Design Initialization uPROM sNVM	PI Flash Fabric RAMs	
Apply Discard Hel		
Available memory(9-bit words): 52224	Add Edit Delete	Load design configuration
Used memory(9-bit words): 33024 Free memory(9-bit words): 19200	Client Name Start Address	9-bit words
	1 INIT_STAGE_3 0x00000000	33024
Apply Discard Help Usage statistics Available memory(9-bit words): 52224 Used memory(9-bit words): 33024 Free memory(9-bit words): 19200 Client Name Start Address 9-bit words Client Name Start Address 9-bit words I INIT_STAGE_3 0x0000000 33024		

The first and second stage clients are generated and stored in sNVM by default.

3.6 Generate Bitstream

To generate the bitstream, perform the following steps:

- On the Design Flow tab, double-click Generate Bitstream. When the bitstream is successfully generated, a green tick mark appears as shown in Figure 8, page 10.
- 2. Right-click **Generate Bitstream** and select **View Report** to view the corresponding log file in the **Reports** tab.

3.7 Run PROGRAM Action

After generating the bitstream, the PolarFire device must be programmed. To program the PolarFire device, perform the following steps:

1. Ensure that the following Jumper Settings are set on the board, which will be used as the Root Port device.

Jumper	Description	Default
J18, J19, J20, J21, and J22	Short pin 2 and 3 for programming the PolarFire FPGA through FTDI	Closed
J28	Short pin 1 and 2 for programming through the on-board FlashPro5	Open
J26	Short pin 1 and 2 for programming through the FTDI SPI	Closed
J4	Short pin 1 and 2 for manual power switching using SW3	Closed
J12	Short pin 3 and 4 for 2.5 V	Closed

Table 4 • Jumper Settings

2. Connect the power supply cable to the **J9** connector on the board.

3. Connect the USB cable from the Host PC to J5 (FTDI port) on the board.

4. Power on the board using the SW3 slide switch.

5. On the Libero in the Design Flow tab, double-click Run PROGRAM Action.

When the device is programmed successfully, a green tick mark appears as shown Figure 8, page 10. The device is successfully programmed, see Setting Up the Demo, page 17.

Figure 16 • Board Setup—Evaluation Kit

4 Setting Up the Demo

Setting up the demo involves the following steps:

- 1. Programming the PolarFire devices on the two evaluation boards
- 2. Connecting the two PolarFire Evaluation boards though the PCIe Adapter card

Throughout this chapter, the two boards are referred using the following labels for simplicity:

- Board A—board running the Root Port design
- Board B—board running the Endpoint design

4.1 Connecting the Two Boards

This section describes how to connect the two boards though the Microsemi PCIe Adapter Card.

To connect the boards, perform the following steps:

- 1. Ensure that the pins 1 and 2 of the J1 jumper on the PCIe adapter card are closed.
- 2. Ensure that the pins 1 and 3 of the J2 jumper on the PCIe adapter card are open.
- 3. Connect CON1 of the adapter card to CON3 (PCIe slot) of Board A.
- 4. Connect CON2 of the adapter card to CON3 (PCIe slot) of Board B.
- 5. Connect the USB cable from the Host PC to J5 (FTDI port) on Board A.
- 6. Connect the USB cable from the Host PC to J5 (FTDI port) on Board B.
- 7. Connect the power supply cable to the J3 connector of the PCIe adapter card.
- 8. Power on Board A and B using the SW3 slide switch.
- 9. Power-up the PCIe adapter card using the SW1 slide switch.

Board A and Board B power-up using the PCIe adapter card. After successfully connecting the two boards, the demo setup looks like the following figure:

Figure 17 • Demo Setup

5 Running the Demo

This chapter describes how to install and use the GUI to run the PCIe Root Port demo. This chapter is divided into the following sections:

- Installing the GUI
- Viewing the Enumeration Data
- Running the Control Plane Commands
- Running the Data Plane Commands

5.1 Installing the GUI

To install the GUI, perform the following steps:

- Extract the contents of the mpf_dg0802_df.rar file. From the mpf_dg0802_df\GUI_Installer folder, double-click the setup.exe file.
- 2. Follow the instructions displayed on the installation wizard.

After successful installation, PCIe_Root_Port_GUI appears on the Start menu of the host PC desktop.

5.2 Viewing the Enumeration Data

Before you begin, ensure that:

- 1. The PolarFire FPGA on one board is programmed with the PCIe Root Port design and the PolarFire FPGA on the other board is programmed with the PCIe Endpoint design
- 2. The two boards are connected through a Microsemi PCIe adapter card and powered-up.
- 3. LED 9, 10, and 11 are glowing on the Root Port board. This indicates that the PCIe link is up. Otherwise, power-cycle the boards again.

To start the GUI and view the enumeration data, perform the following steps:

- 1. From the task bar, click the Start button and select PCIe_Root_Port_GUI.
- 2. Click Connect to connect the GUI to the Root Port board as shown in the following figure.

Figure 18 • PCle Root Port GUI

C Microsemi	PolarFire	PCIe Root	Port Demo	Connect
Device Info Demo Controls	Config Space	PCIe Read/Write	DMA Operations	Memory Test
Device Vendor ID		BAR0 Ad	dress ×0	BAR0 Size(Bytes) ×0
Supported Width		BAR1 Ad	dress x ()	BAR1 Size(Bytes) x ()
Negotiated Width		BAR2 Ad	dress × 0	BAR2 Size(Bytes) x ()
Supported Speed		BAR3 Ad	dress × 0	BAR3 Size(Bytes) ×0
Negotiated Speed		BAR4 Ad	dress × 0	BAR4 Size(Bytes) x 0
Number of Bars 0		BAR5 Ad	dress x ()	BAR5 Size(Bytes) ×0
		Exit		

The GUI starts detecting the UART COM Port of the Root Port device.

- 3. After successfully connecting to the COM port, the Mi-V soft processor enumerates the PCIe EP device and sends the configuration space data to the GUI.
- 4. Click **Device Info** tab to view the Endpoint device information as shown in the following figure.

Figure 19 • Endpoint Device Information

С М	icrosemi. PolarFire I	PCIe Root Port Demo	Connected
Device Info	Demo Controls Config Space	PCIe Read/Write DMA Operations	Memory Test
l [Device Vendor ID 0x11AA	BAR0 Address x 7100000C	BAR0 Size(Bytes) × 10000
	Supported Width x4	BAR1 Address x 0	BAR1 Size(Bytes) × 0
	Negotiated Width x4	BAR2 Address x 7200000 C	BAR2 Size(Bytes) ×100000
	Supported Speed Gen2	BAR3 Address x 0	BAR3 Size(Bytes) x 0
	Negotiated Speed Gen2	BAR4 Address x 0	BAR4 Size(Bytes) x 0
L	Number of Bars 2	BAR5 Address x 0	BAR5 Size(Bytes) × 0
		Exit	

5. Click **Config Space** tab to view the basic Type 0 Configuration Settings of the Endpoint as shown in the following figure.

Figure 20 • Endpoint Config Space-Basic

evice Info Demo Controls	Config Space	PCIe Read/Write	DMA	Operations	Memory Test	
Basic Advanced Extended C	apability			Configuratio	n Description	
Туре 0 (Configuration Settir	igs				
Descriptor Name	Offset (0x)	Value(0x)	*			
Vendor ID	0x000	0x11AA				
Device ID	0x002	0x1556				
Command	0x004	0x6				
Status	0x006	0x10				
Revision ID	0x008	0x0				
Class Code	0x009	0x0				
Cache Line Size	0x00C	0x10				
Latency Timer	0x00D	0x0				
Header Type	0x00E	0x0	=			
BIST	0x00F	0x0				
Base Address 0	0x010	0x7100000C				
Base Address 1	0x014	0x0				
Base Address 2	0x018	0x7200000C				
Base Address 3	0x01C	0x0				
Base Address 4	0x020	0x0				
Base Address 6	0x024	0x0				
Expansion ROM Base Address	0x028	0x0				
Subsystem Vendor ID	0x02C	0x0				
Subsystem ID	0x02E	0x0				
Capabilities PTR	0x034	0x80	-			

6. Click Advanced tab to view the MSI Capabilities of the Endpoint as shown in the following figure.

Figure 21 • Endpoint Config Space-Advanced

🔍 Mic	rosemi	PolarFire	PCIe Root	Port Demo	Connected
Device Info D	emo Controls	Config Space	PCIe Read/Write	DMA Operations	Memory Test
Basic Advance	ed Extended C	apability		Configuratio	on Description
MSI Capability	Power Manage	ement Capability	PCIe Capability		^
		MSI Capability			
Descripto	or Name	Offset (0x)	Value		
Cap	ID	0xE0	0x5		
Next p	ointer	0xE1	0xF8		
Message	Control	0xE2	0xA5		
Message	Address	0xE4	0x190		
Message up	per Address	0xE8	0x0		
Messag	je data	0xEC	0x120		
					-
			Exit		

7. Similarly, click Power Management Capability and PCIe Capability tabs to view the relevant data.

5.3 Running the Control Plane Commands

In this demo, the Root Port initiates the following control plane operations:

- Control Endpoint LEDs
- Read DIP SW Status
- Read MSI count values
- BAR2 Memory read/write commands

5.3.1 Controlling Endpoint LEDs

Root Port can initiate the Endpoint LED glowing and walk through.

To issue LED Commands, perform the following steps:

- 1. Click Demo Controls tab.
- 2. Select any single LED. For example, select LED3 as shown in the following figure.

Figure 22 • Single LED Control

🔊 Mi	icrosemi	PolarFire	e PCIe Root	t Port Demo	Connected
Device Info	Demo Controls	Config Space	PCIe Read/Write	DMA Operations	Memory Test
LED 1 LED 2 LED 3 LED 4 LED 5 LED 6 LED 7 LED 8	D Controls	ON ON OFF OFF	ON ON OFF OFF	Inte No of MSI Requeste No of MSI Allocate Interrupt Counte Interrupt Counte Interrupt Counte	di di
Start LED Stop LED	ON/OFF Walk	Enable DIP Disable DIP	SW Session	Ena	ar Interrupt Count
			Exit		

The GUI initiates the LED glow request to the RISC-V processor, which passes this request to the PF_PCIE_0 block. PF_PCIE_0 sends the BAR2 MWr packet to the Endpoint.

As a result, LED6 on the Endpoint board glows.

3. Click Start LED ON/OFF Walk button as shown in Figure 23, page 21.

Figure 23 • LED ON/OFF Walk

🏷 Mi	icrosemi	PolarFire	PCIe Root	Port Demo	Connected
Device Info	Demo Controls	Config Space	PCIe Read/Write	DMA Operations	Memory Test
LED 1 LED 2 LED 3 LED 4 LED 5 LED 6 LED 7 LED 7	D Controls	ON ON OFF OFF	ON ON OFF OFF	Inter No of MSI Requeste No of MSI Allocate Interrupt Counter Interrupt Counter Interrupt Counter Interrupt Counter	d 4 d 4 1 1 2 1 3 1 4 1
Start LED	ON/OFF Walk	Enable DIP	SW Session	Enal	ble Interrupt Session
Stop LED	ON/OFF Walk	Disable DIP	SW Session	Clea	ar Interrupt Count
			Exit		

The GUI initiates the LED ON/OFF walk request. As a result, LED ON/OFF is executed from the first to the last LED and in the reverse order.

5.3.2 Reading Endpoint DIP SW Status

To read the DIP SW Status, perform the following steps:

1. Click Enable DIP SW Session button as shown in the following figure.

Figure 24 • DIP SW Status Option

The GUI initiates the DIP switch status read request. As a result, the DIP SW status on the Endpoint board is displayed as shown in Figure 25, page 22. Change the DIP SW positions on the Endpoint board and observe the same in GUI.

Figure 25 • Endpoint DIP SW Status

5.3.3 Reading MSI Count Values

In the demo, Root Port can read the MSI count values for push-button interrupts on the Endpoint board.

To read the MSI count values:

- 1. Click Enable Interrupt Session button as shown in Figure 26, page 22.
- Figure 26 Enable Interrupt Session Option

When the Interrupt session is enabled, the GUI sends the Enable Interrupt session request to the RISC-V processor. PF_PCIE_0 receives the number of MSI requested by the Endpoint. In the reference design, the Root Port allocates 4 types of MSI as shown in the following table.

Table 5 •	Allocated	MSIs
-----------	-----------	------

MSI Number	Interrupt Type on the Endpoint Board	Mapped Interrupt Counter on the GUI
1	SW10	Interrupt Counter1
2	SW9	Interrupt Counter2
3	SW8	Interrupt Counter3
4	SW7	Interrupt Counter4

2. Press switch and observe interrupt count.

Figure 27 • Interrupt Counter4

🚫 Mi	icrosemi	Pola	rFire	PCI	e Root	Port Demo	Connected
Device Info	Demo Controls	Config	Space	PCIe	Read/Write	DMA Operations	Memory Test
LE	D Controls		DIP S	witch St	atus	Inte	rrupt Counters
LED 1		ON	ON	ON	ON	No of MSI Requeste	d 4
LED 3						No of MSI Allocate	d 4
LED 4						Interrupt Counter	2 0
LED 6		OFF	OFF	OFF	OFF	Interrupt Counter	3 0
LED 7						Interrupt Counter	4 2
Start LED	ON/OFF Walk	En	able DIP	SW Sessi	on	Enal	ole Interrupt Session
Stop LED	ON/OFF Walk	Dis	able DIP	SW Sessi	ion	Clea	ar Interrupt Count
		-			Evit		

3. Click Clear Interrupt Count button to clear all of the Interrupt counters on the GUI.

5.3.4 Running BAR2 Memory Read/Write Commands

In the demo, the Root port can initiate BAR2 memory read/write commands for reading/writing to Endpoint LSRAM/DDR3/DDR4.

The **PCIe Read/Write** tab on the GUI is used to initiate these commands. The Endpoint LSRAM/DDR3/DDR4 memory is first read, and then a value can be entered in a specific location to initiate the write command.

To run BAR2 read/write, perform the following steps:

1. Select BAR2-LSRAM option and click Read button as shown in the following figure.

Figure 28 • BAR2-LSRAM Read Option

evice Info	Demo Controls	Config Space	PCIe Read/V	Vrite	DMA Operations	Memory Test	
BAR2-LSRA	M 🖱 BAR2-DDR3 🖱 E	IAR2-DDR4	PCIe	Offset	Address ×0	Note: All data is i	n hex form
	0x0		0x4	T	0x8	0xC	
0x000							
0x010							
0x020							
0x030							
0:050							
0x050							
0x070							
0x080							
0x090							
0x0x0							
0x0B0							
0x0C0							
0x0D0							
0x0E0							
0x0F0							
0x100							
0,420							
Read Progres	3					R	ead

2. Select any memory location and edit the value of that location. For example: See the following figure.

Figure 29 • BAR2-LSRAM Write

3. The edited memory location turns green and the value entered is written to the Endpoint LSRAM memory location as shown in Figure 30, page 24.

Figure 30 • BAR2-LSRAM Write Successful

s l	Microsemi	PolarFire	PCIe Root	Port Demo	Connected	
Device Inf	fo Demo Controls	Config Space	PCIe Read/Write	DMA Operations	Memory Test	
BAR2-LS	SRAM 🔘 BAR2-DDR3 🔘 E	AR2-DDR4	PCIe Offs	et Address ×0	Note: All data is in hex for	rmat
	0x0		0x4	0x8	0xC	•
0x000	0		2	3	4	Ξ
0×010	5		6	7	8	
0x020	9		С	В	С	
0x030	D		E	F	10	
0x040	11		12	13	14	
0x050	15		16	17	18	
0x060	19		1A	1B	1C	
0x070	1D		1E	1F	20	
0x080	21		22	23	24	
0x090	25		26	27	28	
0x0x0	29		2A	2B	2C	
0x0B0	2D		2E	2F	30	
0x0C0	31		32	33	34	
0x0D0	35		36	37	38	
0x0E0	39		3A	3B	3C	
0x0F0	3D		3E	3F	40	
0x100	41		42	43	44	
0x110	45		46	47	48	
0x120	49		4A	4B	4C	-
Read Prog	gress				Read	
			Exit			

- 4. Similarly change any other memory location also.
- 5. Click Read button to check whether the memory locations contain the latest values or not.
- 6. Similarly, run the BAR2-DDR3 and BAR2-DDR4 memory read/write.

5.4 Running the Data Plane Commands

In the demo, the Root port initiates the Endpoint DMA engines to perform the following data plane commands:

- Running DMA operations
- Running memory test

5.4.1 Running DMA Operations

When the Root Port initiates the DMA operation, the Mi-V soft processor activates the Endpoint DMA registers through BAR0. The Endpoint DMA engines can perform the following DMA operations:

- Root Port LSRAM/DDR4 to Endpoint LSRAM\DDR3\DDR4
 - Endpoint LSRAM\DDR3\DDR4 to Root Port LSRAM\DDR4

To run the DMA operations, perform the following steps:

- 1. Click DMA Operations tab as shown in Figure 31, page 25.
- 2. Do the following:

•

- Select the RP LSRAM -> EP LSRAM from the drop-down list.
- Select 64K from the Transfer Size (Bytes) drop-down.
- Set the Loop Count to 20
- Click Start transfer.

Figure 31 • Initiating RP LSRAM to EP LSRAM DMA

The GUI displays the corresponding throughput details and graph as shown in the following figure.

Figure 32 • RP LSRAM to EP LSRAM Throughput

C Microsemi	PolarFire	PCIe Root	Port Demo	Co	innected
Device Info Demo Controls	Config Space	PCIe Read/Write	DMA Operations	Memory Test	
RootPort Memory Type Continous DMA Transfer Type Selection	LSRAM RP LSRAM to EP LS	DDR4 700 SRAM 600			+ 1 9
Transfer Size(Bytes)	64K	500			
RP LSRAM to EP LSRAM	EP LSRAM to RP				
Throughput(MBps) 677	Throughput(MB	ips) 0 (aqi			
Avg Thruput(MBps) 678	Avg Thruput(MB	Bps) 0 € 200			
Loop Count 20	Start Transfer	DISPAN	1 2 4 6 8 No of	10 12 14 1 DMA Transfers	16 18 20
		RP LSRAM to E	P LSRAM Avg K	LSRAM to RP LSRAI	M Avg
		Exit			

- 3. Do the following to initiate another DMA transaction:
 - Select Both RP LSRAM <-> EP LSRAM from the drop-down list.
 - Select 64K from the Transfer Size (Bytes) drop-down.
 - Set the Loop Count to 20.
 - Click Start Transfer.
- 4. Similarly, select the RP LSRAM to EP DDR3 and RP LSRAM to EP DDR4 from the drop-down and observe the throughputs.
- 5. Select DDR4 as the Root Port Memory Type and perform DMA operations by selecting the Endpoint destination memory type.

5.4.2 Running Memory Test

The **Memory Test** tab provides the memory test feature, which is also a DMA operation. The **Memory Test** tab enables DMA transactions between Root Port and Endpoint memory type (LSRAM, DDR3, and DDR4). This feature provides data pattern options with which the Root Port memory is initialized and then DMA operation is performed.

In memory testing, the user application performs the following sequence of operations:

- 1. Initializes the Root Port memory with the specified data pattern
- 2. Performs the DMA from Root Port memory to Endpoint memory
- 3. Erases the data pattern in the Root Port memory
- 4. Performs the DMA from Endpoint memory to Root Port memory
- 5. Compares the data in Root Port memory with the selected data pattern

To run the memory test, perform the following steps:

- Select the DMA parameters like Transfer Size(Bytes), Pattern Type, Endpoint Memory Type, RootPort Memory Type, EndPoint Offset Address, and RootPort Offset Address as shown in the following figure.
- **Note:** The Root Port slave ATR3 is configured for 1 MB. Hence, the maximum Endpoint offset address is F80000 and the maximum Root Port address is 0x80000.

Figure 33 • Memory Test Feature

- 2. Click Memory Test.
- 3. Select option **DDR4** from the Root Port memory type and click **View Memory** as shown in the following figure to read the Root Port DDR4.

Figure 34 • The View Memory Option

🏷 Mi	icrosemi	Po	larFire	PCIe Ro	ot	Port De	emo			Connecte	id
Device Info	Demo Controls	Con	fig Space	PCIe Read/W	rite	DMA Oper	ations	Mem	ory Te	st	
Mem	ory Test				M	lemory Vie	w				
Transfer Size	(Bytes)		CostPort	Memory Type	Add ×0	ress]		View	Memory	
Incremental	•			0x0		0x4		0x8		0xC	
Initial Value ×0 EndPoint Men	погу Туре		0x000 0x010 0x020 0x030								E
LSRAM RootPort Mer	DDR3 DDR4		0x040 0x050 0x060 0x070								
EndPoint Offs	et Address		0x080 0x090 0x0A0								
Rootport Offs ×0	set Address		0x0C0 0x0D0 0x0E0								
Memory	Test		0x0F0 0x100								-
				Exit							

4. The GUI displays the data pattern written to the Root port DDR4 as shown in Figure 35, page 28.

Figure 35 • Root port DDR4 Memory Content

🏷 Mie	Connected Connected					ected				
Device Info	Demo Controls	Con	fig Space	PCIe Read/Wr	ite	DMA Oper	ations	Mem	ory Test	
Memo	ory Test				М	emory Vie	w			
Transfer Size(8	Bytes) ▼		Contemport	Memory Type	Addr ×0	ess		[View Memo	ry
Pattern Type				0x0		0x4		0x8	0xC	
Incrementar			0x000	0		1		2	3	
Initial Value			0x010	4		5		6	7	
×O			0x020	8		9		Α	В	=
EndPoint Mom	on Tuno		0x030	С		D		E	F	
Lifur onit intern	ory type		0x040	10		11		12	13	
● LSRAM ● L	DDR3 ODDR4		0x050	14		15		16	17	
RootPort Mem	югу Туре		0x060	18		19		1A	18	
C ISRAM	DDR4		0x070	1C		1D		1E	1F	
O LOIDIN	0.0010		0x080	20		21		22	23	
EndPoint Offse	et Address		0x090	24		25		26	27	
×0			0x0x0	28		29		2A	2B	
Pootport Offer	at Addrose		0x0B0	2C		2D		2E	2F	
A A A A A A A A A A A A A A A A A A A	et Auuress		0x0C0	30		31		32	33	
×U			0x0D0	34		35		36	37	
			0x0E0	38		39		3A	38	
Memory T	est PASS		0x0F0	3C		30		3E	3F	
			0×100	40		41		42	43	+
				Exit						

5. Select the **PCIe Read/Write** tab and click **Read** to view the data pattern written to the Endpoint LSRAM.

Figure 36 • Endpoint LSRAM Memory Content

evice Info	Demo Controls	Config Space	PCIe Read/Writ	e DMA Operations	Memory Test
BAR2-LSRA	M BAR2-DDR3 B	AR2-DDR4	PCIe Of	set Address ×0	Note: All data is in hex for
	0x0		0x4	0x8	0xC
0x000	0		1	2	3
0x010	4		5	6	7
0x020	8		9	A	В
0x030	C		D	E	F
0x040	10		11	12	13
0x050	14		15	16	17
0x060	18		19	1A	18
0x070	1C		1D	1E	1F
0x080	20		21	22	23
0x090	24		25	26	27
0x0x0	28		29	2A	2B
0x0B0	2C		2D	2E	2F
0x0C0	30		31	32	33
0x0D0	34		35	36	37
0x0E0	38		39	3A	3B
0x0F0	3C		3D	3E	3F
0x100	40		41	42	43
0x110	44		45	46	47
0x120	48		49	4A	4B
Read Progres	s				Read

5.5 PolarFire DMA Throughput Summary

The following table lists the throughput values observed during the continuous DMA mode.

Table 6 • Throughput Summary

DMA Transfer Type	DMA Size	Throughput (MBps)	Throughput Average (MBps)
RP LSRAM to EP LSRAM	512 K	1022	1022
EP LSRAM to RP LSRAM	512 K	779	779
RP LSRAM to EP DDR3	512 K	773	773
EP DDR3 to RP LSRAM	512 K	328	328
RP LSRAM to EP DDR4	512 K	998	998
EP DDR4 to RP LSRAM	512 K	391	391
RP DDR4 to EP LSRAM	512 K	540	540
EP LSRAM to RP DDR4	512 K	779	779
RP DDR4 to EP DDR3	512 K	540	540
EP DDR3 to RP DDR4	512 K	328	328
RP DDR4 to EP DDR4	512 K	540	540
EP DDR4 to RP DDR4	512 K	391	391

6 Appendix 1: Programming the Devices Using FlashPro Express

The Root Port design must be programmed on Board A and the Endpoint design must be programmed on Board B.

To program, perform the following steps:

- 1. Take Board A and ensure that the Jumper Settings are set as listed in Table 4, page 15.
- 2. Connect the power supply cable to the J9 connector on Board A.
- 3. Connect the USB cable from the Host PC to J5 (FTDI port) on Board A.
- 4. Power-up Board A using the SW3 slide switch.
- 5. On the host PC, launch the FlashPro Express software.
- 6. To create a new job, click New or

in the **Project** menu, select **New Job Project from FlashPro Express Job** as shown in the following figure.

Figure 37 • FlashPro Express Job Project

E FlashPro Express		🔛 FlashPro Express	
Project Edit View Programmer <u>H</u> elp		Project Edit View Programmer <u>H</u> elp	
Joh Drojecto		New Job Project from FlashPro Express Job	Ctrl+N
Job Projects		🚰 Open Job Project	Ctrl+0 ¹
New		× Close Job Project	
Open		🔛 Save Job Project	Ctrl+Shift+A
Recent Projects		Set Log File	►.
	or	Export Log File	
		Preferences	
		Execute Script	Ctrl+U
		Export Script File	
		Recent Projects	Þ
		Exit	Ctrl+Q

- 7. Enter the following in the New Job Project from FlashPro Express Job dialog box:
 - **Programming job file**: Click **Browse**, and navigate to the location where the .job file is located and select the file. The default location is:
 - <download_folder>\mpf_dg0802_df\Programming_Job.
 - FlashPro Express job project location: Click Browse and navigate to the location where you want to save the project.

Figure 38 • New Job Project from FlashPro Express Job

Rew Job Project from FlashPro Express Job		×
Programming job file:		
E:\12.0_designs\mpf_dg0802_liberosocv12p0_df\Programming_Job\RP_Demo_Top)	Browse
FlashPro Express job project name:		
RP_Demo_Top		
FlashPro Express job project location:		
E:\12.0_designs		Browse
Help	ОК	Cancel

- 8. Click **OK**. The required programming file is selected and ready to be programmed in the device.
- 9. The FlashPro Express window appears as shown in the following figure. Confirm that a programmer number appears in the Programmer field. If it does not, confirm the board connections and click **Refresh/Rescan Programmers**.

Figure 39 • Programming the Device

Project cait view Programmer Heip		
Refresh/Rescan Programmers		
Programmer	Ф ТБО ТБІ Ф	
1 E2001RUX6Y IDLE	IDLE	
PROGRAM		
RUN	IDLE	
Log		5 ×
🔳 Messages 🔞 Errors 🗼 Warnings 🌗 Info		
Embedded FlashPro5 programmer detected. programmer 'E2001RUX6Y' : FlashPro5		1
Created FlashPro Express Job Project.		•

10. Click **RUN**. When the device is programmed successfully, a **RUN PASSED** status is displayed as shown in the following figure. See Running the Demo, page 18 to run the PCIe Root Port demo.

🔛 FlashPro B	Express E:\12.0_designs\TVS_Demo\TVS_Demo.pro -	JTAG Programming Inte		-	×
Project Edit	View Programmer Help				
Refresh/Re	scan Programmers				
	Programmer	б МРЕЗООТ (Ф ТОО	¢		
1	E2001RUX6Y RUN PASSED	PASSED			
PROGRAM	•				
			1 PROGRAMMER(S) PASS	ED	
	KON				
Log					 đΧ
Message	s 🔞 Errors 🔺 Warnings 👔 Info				
programme: programme:	r 'E2001RUX61' : Scan and Check Chain PA r 'E2001RUX6Y' : device 'MPF300T' : Exec	ting action PROGRA			
programme:	r 'E2001RUX6Y' : device 'MPF300T' : EXPO	T ISC_ENABLE_RESUL] = 00000000		
programme:	r 'E2001RUX6Y' : device 'MPF300T' : Prog	amming FPGA Array	sNVM		
programme:	r 'E2001RUX6Y' : device 'MPF300T' : EXPO	T BITS component b	ream digest[256] = e628346f15f57b0bb57f2a	a9a7ba39a841126caa067b4873fa03d218c2fd0001c	
programme	r 'E2001RUX6Y' : device 'MPF300T' : EXPO	T sNVM component b	ream digest[256] = 79dfc8f8733ab3227a1519	990d92f5f1338fe8053c53c26cc7616cd593c8fd566	
programme:	r 'E2001RUX6Y' : device 'MPF300T' : EXPO r 'E2001RUX6Y' : device 'MPF300T' : ====	T EOB component bi	eam digest[256] = 2abf624bbe66171aabd794c	cd2686e8260b02ebbdd159f9f4e7657a6a7527d8a0	
programme	r 'E2001RUX6Y' : device 'MPF300T' : EXPO	T DSN[128] = 8b7bd	2cda4c59a5026455dc25bc8		
programme:	r 'F2001RUX6Y' · device 'MPF300T' · ==== r 'E2001RUX6Y' : device 'MPF300T' : Fini	hed: Fri Feb 01 11	56 2019 (Elapsed time 00:01:44)		
programme:	r 'E2001RUX6Y' : device 'MPF300T' : Exec	ting action PROGRA	SSED.		1
Chain Pro	gramming Finished: Fri Feb 01 11:44:56 2).)19 (Elapsed time O	:44)		
	0 - 0 - 0 - 0 - 0 - 0				
	0-0-0-0-0				-
					//

Figure 40 • FlashPro Express—RUN PASSED

- 11. Close **FlashPro Express** or in the **Project** tab, click **Exit**. Root port design is successfully programmed on Board A.
- 12. Similarly, program Board B with the Endpoint design. Browse PCIe_EP_Demo_EvalKit.job file from mpf_dg0756_df\Programming_Job location.

7 Appendix 2: DDR4 Configuration

The DDR4 subsystem is configured to access the 32-bit DDR4 memory through an AXI4 64-bit interface. The DDR4 memory initialization and timing parameters are configured as per the DDR4 memory on the PolarFire Evaluation kit. The following figure shows the general configuration settings for the DDR4 memory.

Figure 41 • PF_DDR4 Configurator—General

Configurator		- 🗆 X
PolarFire DDR4 (Pre-produ	uction)	
Microsemi:SystemBuilder:PF_DDR4:2.3.201		
	General Memory Initialization Memory Timing Controlle	er Misc.
PF_DDR4_UI_default_configuration	🗉 Тор	
Microsemi PolarFire Evaluation Kits PolarFire Evaluation Kit Physion MPF300T	Protocol DDR4	
MT40A1G8WE-083E	Generate PHY only	
	Clock	
	Memory Clock Frequency (MHz) 800.0	
	CCC PLL Clock Multiplier 8	
	CCC PLL Reference Clock Frequency (MHz) 100.000	
	User Logic Clock Rate	
	User Clock Frequency 200.0	
	L TOPONGY	
	Memory Format	
	DQ Width 32	
	SDRAM Number of Ranks 1	
	Enable address mirroring on odd ranks	
	DQ/DQS group size 8	
	Row Address width 15	
Apply New preset	Column Address Width 10	
	Bank Address Width 2	
	Bank Group Address Width 2	
	Enable DM	
	READ DBI enable Disabled	
	Enable Parity/Alert	
	Foable FCC	
		-
Help 🔹		OK Cancel

The following figure shows the initialization configuration settings for the DDR4 memory.

Figure 42 • PF_DDR4 Configurator—Memory Initialization

PolarFire DDR4 (Pre-producti	on)	
licrosemi:SystemBuilder:PF_DDR4:2.3.201		
<u>@</u>	General Memory Initialization Memory Timing Controller	Misc.
PF_DDR4_UI_default_configuration JEDEC	Mode Register 0	
- Microsemi PolarFire Evaluation Kits - PolarFire Evaluation Kit - MPF300T	Burst Length Fixed BL8	
MT40A1G8WE-083E	Read Burst Type Sequential	
	Memory CAS Latency 12	
	Mode Register 1	
	ODT Rtt Nominal Value RZQ/6 💌	
	Memory Additive CAS Latency Disabled	
	Output Drive Strength RZQ/7 💌	
	Mode Register 2	
	Low Power Auto Self Refresh Automatic	
	Memory Write CAS Latency 11	
	Dynamic ODT (Rtt_WR) Disabled	
	Mode Register 3	
	Fine Granularity Refresh Mode Normal mode (Fixed 1x)	
	Mode Register 4	
	Temperature Refresh Range Normal	
	Temperature Refresh Mode Disabled 💌	
	Internal VRef Monitor Disabled 💌	
	Self Refresh Abort Mode Disabled 💌	
	READ Preamble 20K V	
Apply New preset		
	Mode Register 5	
	CA Parity Latency Mode Disabled 💌	
	ODT Input Buffer for Power-down Disabled	
	Parked ODT Value(Rtt_Park) Disabled 💌	
	Mode Register 6	
	Vref Calibration Range Range 1(60% - 92.5%)	
	Vref Calibration Value 60	

The following figure shows the controller configuration settings for the DDR4 memory.

Figure 43 • PF_DDR4 Configurator—Controller

Configurator	- 0
PolarFire DDR4 (Pre-prod Microsemi:SystemBuilder:PF_DDR4:2.3.201	uction)
	General Memory Initialization Memory Timing Controller Misc.
 PF_DDR4_UI_default_configuration JEDEC Microsemi PolarFire Evaluation Kits PolarFire Evaluation Kit MPF300T MT40A1G8WE-083E 	Instance Select Instance Number 0 User Interface
	Fabric Interface AXI4 AXI Width 64 AXI ID Width 6
	Low Power Enable User Power Down
	Efficiency
	Enable Activate/Precharge look-ahead
	ODT Activation Settings on Write
Apply New preset	Enable Rank0 - ODT0 F Enable Rank0 - ODT1 F Enable Rank1 - ODT0 F Enable Rank1 - ODT1 F
	ODT Activation Settings on Read
	Enable Rank0 - ODT0 Enable Rank0 - ODT1 Enable Rank1 - ODT1 Enable Rank1 - ODT1
	Misc
	Enable RE-INIT Controls
Help 🔻	OK Cance

8 Appendix 3: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

- 1. Launch the Libero software
- 2. Select Project > Execute Script....
- 3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
- 4. Click Run.

After successful execution of TCL script, Libero project is created within TCL_Scripts directory.

For more information about TCL scripts, refer to \\mpf_dg0802_df\TCL_Scripts\readme.txt.

Refer to *Libero® SoC TCL Command Reference Guide* for more details on TCL commands. Contact Technical Support for any queries encountered when running the TCL script.

9 Appendix 4: References

This section lists documents that provide more information about the PCIe Endpoint and IP cores used in the reference design.

- For more information about PolarFire transceiver blocks, PF_TX_PLL, and PF_XCVR_REF_CLK, see UG0677: PolarFire FPGA Transceiver User Guide.
- For more information about PF_PCIE, see UG0685: PolarFire FPGA PCI Express User Guide.
- Fore more information about PF_CCC, see UG0684: PolarFire FPGA Clocking Resources User Guide.
- Fore more information about DDR3 memory, see UG0676: PolarFire FPGA DDR Memory Controller User Guide.
- For more information about Libero, ModelSim, and Synplify, see the *Microsemi Libero SoC PolarFire* web page.
- For more information about PolarFire FPGA Evaluation Kit, see UG0747: PolarFire FPGA Evaluation Kit User Guide.
- For more information about CoreAHBLite, see CoreAHBLite Handbook.
- For more information about CoreAHBtoAPB3, see CoreAHBtoAPB3 Handbook.
- For more information about CoreUART, see CoreUART Handbook.