AC466
Application Note

PolarFire FPGA Auto Update and In-Application
Programming

& Microsemi

a A8\ MicrocHIP company




& Microsemi

a G\MICHOCHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

51900466. 7.0 3/21


mailto:sales.support@microsemi.com
http://www.microsemi.com

& Microsemi

a @Mlcno:mn company

Contents
Revision History . . ... ... 1
11 ReVISION 7.0 . . .o 1
1.2 ReVISION B.0 . . ..o 1
1.3 ReVISION 5.0 . . . o 1
1.4 ReVISION 4.0 . . .o 1
1.5 ReVISION 3.0 . . . oo 1
1.6 ReVISION 2.0 . . . o 1
1.7 ReVISION 1.0 . . .o 1
PolarFire FPGA Auto Update and
In-Application Programming . ... ... . 2
21 PF_SYSTEM_SERVICES OVEIVIEW . . ..ottt e e e e e e e e 3
2.2 Design Requirements . ... ... . e 5
2.3 PrereqUISItES . .. .. 5
24 DemO DeSIgN . . o oot 6
241 Design Implementation . . ... ... ... . .. 8
2.5 Clocking Structure . . ... ... 18
Libero Design Flow . ... ... . 19
3.1 SYNENESIS . .o 20
3.2 Place and RoUte ... ... . 20
3.21 Resource Utilization . . . ... ... 20
3.3 Verify TimMINg ..o 21
34 Generate FPGA Array Data . . ... ... 21
3.5 Configure Design Initialization Data and Memories .. ............. .. .. . i 21
3.6 Configure Programming Options . . ... .. ... i e 24
3.7 Generate Bitstream . .. ... ... 25
3.8 Generating the SPI programming Images . . ... . 25
3.9 Export FlashPro EXpress Job . ... ... 26
3.10 Programming the DeviCe ... ... ... e 27
3.10.1  Programming the Device on the EvaluationBoard ............... ... ... ... ... ... ... 27
3.10.2 Programming the Device onthe Splash Board . .......... ... ... . ... ... ... ... ... ... 28
Serial Terminal Emulation Program Setup .............. .. .. ... .......... 30
Runningthe Demo . . . ... . 32
51 Programming On-board SPI Flash Using Libero . ... ... ... . . .. . . . . . i 33
5.2 Running Auto Update . . . ... . 34
5.3 Running Authentication . .. ... ... .. 34
54 Running Auto Programming . . . ... ...t 35
5.5 RUNNING AP . o 36

Appendix 1: Programming On-board SPI Flash Using the Fabric Logic Through
the Host Loader . . ... . 37

Appendix 2: Programming the Device and External SPI Flash Using
FlashPro EXpress ... ... e 39

Microsemi Proprietary AC466 Revision 7.0 iii



& Microsemi
a AS\MicrocHip company

8 Appendix 3: Runningthe TCL Script ... ... ... ... . .. 42

9 Appendix 4: References . .......... .. 43

Microsemi Proprietary AC466 Revision 7.0 iv



Figures

& Microsemi

a A8\ MicrocHiP company

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50

PF_SYSTEM_SERVICES IP Interfacing with Fabric User Logic ........................... 3
Firmware catalog .. ... ... e 4
PolarFire Programming Design Block Diagram .. .......... . . i 6
Accessing On-board SPI Flash Using Fabric . ........ ... . . . . . . 7
SPIFlash Memory .. ... 7
Top Level LIibero Design . . . . ...t e 8
PF_INIT_MONITOR Configuration . .......... ... e e e 9
PF_CCC_0 Input Clock Configuration . ............ .t 10
PF_CCC_0 Output Clock Configuration . . .......... .. e 11
Mi-V Configuration . .. ... ... e 12
Mi-V RV32 Configuration . ... ... ... .. 13
CoreGPIO_0 Configuration . . . ... ... 14
CoreSPI Configuration . ......... ... 15
MemMOry Map . . .o 16
CoreAPB3_0 Configuration . .. ... ... e 17
Clocking Structure . .. ... e 18
Libero Design Flow Options .. ... ... . e 19
Design and Memory Initialization . ....... .. .. . 21
Fabric RAMSs Tab . .. .. 22
Edit Fabric RAM Initialization Client .. ... ... . e 22
Apply Fabric RAM Content . .. ... .. 23
Clientinthe sSNVM Option ... ... . e e e e 24
Configure Programming Options . .. ... ... i e 24
Generate Bitstream—Configure Bitstream Options .. ...... ... .. .. ... ... ... ... ... ..... 25
Generating the .SPI Programming Images .. ........... .. . .. 26
Export FlashPro EXpress Job . ... ... e 27
Board Setup—Evaluation Kit . . ... .. . 28
Board Setup—Splash Kit . ... ... 29
COM Port NUMDEr . . e 30
Select Serial as the Connection Type . . .. ... i e e e 30
PUuTTY Configuration . .. ... ... . e e 31
Authentication and Programming Options ... ... .. e 32
Authentication Error ... ... .. e 32
Configure Programming Settings . ...... ... ... e 33
Configure Design Initialization Data and Memories Option . ............ ... ... ........... 33
SPIFIash Tab .. ..o 33
SPIFlash Programming . . ... ... . 34
Auto Update .. ... e 34
Successful Bitstream Authentication . ........ ... . 34
Successful IAP Image Authentication .. ... ... . . . 34
Notifying ERASE ACHON . . ... . 35
Successful Auto Programming . . ... ..ot e 35
Successful IAP at INndexX 2 . . ... 36
Successful AP by ADAress . . . . ..o 36
Erasing SPI Flash . . ... 37
Command Prompt Status . .......... . 38
FlashPro Express Job Project ... ... .. . . . 39
New Job Project from FlashPro Express Job . . ... .. 40
Programming the Device . ... ... ... 40
FlashPro Express—RUN PASSED ... ... . . e 41

Microsemi Proprietary AC466 Revision 7.0 v



Tables

& Microsemi

a AS\MicrocHip company

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8

System Services Descriptor . . ... ... 3
Design Requirements . .. ... ... e 5
/O SIgNals . . e 8
Resource Utilization—Evaluation Board . . .......... ... . 20
Resource Utilization—Splash Board . . . ....... ... .. . . 20
Programming Images . . ... .. 25
Jumper Settings—Evaluation Board . . ... ... ... . . 27
Jumper Settings—Splash Board . . . ... ... . 28

Microsemi Proprietary AC466 Revision 7.0 Vi



Revision History C Mic em’.

1

a AS\MicrocHip company

Revision History

1.1

1.2

1.3

1.4

1.5

1.6

1.7

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

Revision 7.0
Added Appendix 3: Running the TCL Script, page 42.

Revision 6.0

«  The following is a summary of the changes made in this revision.
*  Updated the document for Libero SoC v12.2.

Removed the references to Libero version numbers.

Revision 5.0

The document was updated for Libero SoC v12.0.

Revision 4.0

Merged Splash kit related content and updated the document for Libero SoC PolarFire v2.3 release.

Revision 3.0

The document was updated for Libero SoC PolarFire v2.2 release.

Revision 2.0

The document was updated for Libero SoC PolarFire v2.1 release.

Revision 1.0

The first publication of this document.

Microsemi Proprietary AC466 Revision 7.0 1



PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a AS\MicrocHip company

2 PolarFire FPGA Auto Update and
In-Application Programming

PolarFire® FPGAs support the SPI master programming mode for auto update and in-application
programming (IAP). In this programming mode, the programming images are stored in an external SPI
flash memory.

Auto update—on power-up, if the version of the update image is found to be different from the current
programmed version, the System Controller reads the update image bitstream from the external SPI
flash memory and programs the device.

IAP—the user application initiates the program action and the System Controller reads the bitstream
from the external SPI flash memory to program the device.

The System Controller supports fetching programming images from the SPI Flash device based on the
Index value or direct addressing. The SPI directory contains the start addresses of the programming
images.

The following components of PolarFire devices are programmable:

+  FPGA fabric
»  Secure non-volatile memory (sNVM)
*  User security settings (keys, passcodes, and locks)

This document explains how to use the accompanying design to demonstrate the auto update and IAP
features on the PolarFire Evaluation/Splash board.

The on-board 1 GB Micron SPI flash device is connected to System Controller SPI and can be
programmed using the fabric logic or Libero® SoC software.

This application note includes the Mi-V soft processor, which initiates the system service requests for the
device programming and enables the PF_SYSTEM_SERVICES core to access the System Controller.
For more information about the design implementation, and the necessary blocks and IP cores
instantiated in Libero SoC, see Demo Design, page 6.

This design can be programmed using any of the following options:

+ Using the pre-generated. job file: To program the device using the. job file provided along with
the design, see Appendix 2: Programming the Device and External SPI Flash Using FlashPro
Express, page 39.

» Using Libero SoC: To program the device using Libero SoC, see Libero Design Flow, page 19.
This design can be used as reference to build a fabric design with programming features.

Microsemi Proprietary AC466 Revision 7.0 2



PolarFire FPGA Auto Update and In-Application Programming

2.1

Figure 1«

& Microsemi

a A8\ MicrocHiP company

PF_SYSTEM_SERVICES Overview

System Controller actions are initiated by the fabric logic through the System Service Interface (SSI) of
the System Controller. The fabric logic requires the PF_SYSTEM_SERVICES for initiating the system
services. A service request interrupts to the System Controller is triggered when the fabric user logic
writes a 16-bit system service descriptor to the SSI. The lower seven bits of the descriptor specifies the
service to be performed. The upper nine bits specify the address offset (0-511) in the 2 KB mailbox RAM.
The mailbox address specifies the service-specific data structure used for any additional inputs or
outputs for the service. The fabric logic must write additional parameters to the mailbox before requesting
a system service. The following table lists the system service descriptor bits.

Table 1« System Services Descriptor

Descriptor Bit Value
15:7 MBOXADDR
6:0 SERVICEID

SSI consists of an asynchronous command-response interface that transfers a system service command
from the fabric master to the System Controller and the status from the System Controller to the fabric
master. The following figure shows how the PF_SYSTEM_SERVICES Interfaces with the fabric logic.

PF_SYSTEM_SERVICES IP Interfacing with Fabric User Logic

PolarFire FPGA

System Controller

Mailbox

Interface SsI

PF_SYSTEM_SERVICES

APB Slave

APB Interface

APB Master

User Logic (Fabric Master)

Fabric

The system services driver and the sample SoftConsole project are generated from Firmware Catalog as
shown in Figure 2, page 4.

Microsemi Proprietary AC466 Revision 7.0 3



PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a AS\MicrocHip company

The Mi-V soft processor is compatible with only SoftConsole v5.2 or later. The application files main. c
and hw_platform.h are modified to provide the programming user options, system clock frequency,

and APB peripheral addresses.

Figure 2+ Firmware catalog

<7 Firmware Catalog
File View Tools Help

View (52/160):

Search by all fields (52/52):

% Al I ‘; vault @] Web repositories | I

v display only the latest version of a core

@v

CoreTSE Driver [ Generate... 23100
CoreTimer Driver 23101
Removef It

CoreUARTapb Driver | et 3.2.101
CoreWatchdog Driver . 2.2.100
Hardware Abstraction Layer (HA| ‘@ Show details... 2.3.102
PolarFire PCle Driver Open documentation  * 1.0.100 (%)
PolarFire Serdes Driver
PolarFire User Crypto Driver

Narme / I Version I;
Core10100_AHBAPE Driver 4.0.102
Corel16550 Driver 2.3.100
CoreAl Driver 3,010
CoreAhbMvm Driver 2.1.102
CoreDDRTip_PF Driver 1.0.100
CoreGPIO Driver 3.2.101
Corel2C Driver 3.2.10
Corelnterrupt Driver 2.1.102
CorelPC Driver 2.1.101
CoreMACFilter Driver 21,100 f
CoreMMC Driver 2.0.100
CorePWM Driver 2.3.10
CoreSDLC Driver 2.1.100
CoreSP| Driver 3.2.101

- b o — .
Genelate sample project ety o SoftConsolev3.1 * PolarFire System Services

Documentation:
CoreSysServices PE Driver UG.pdf
CoreSysServices PE Driver RN.pdf

Description: Bare metal software driver for CoreSysServices_PF Soft IR
Supports all the services supported by CoreSysServices_PF Soft IP

Device and design information services
Design services

b, Mew cores are available for download — Download them now! I

[~

(%] Generate |

A

Microsemi Proprietary AC466 Revision 7.0



PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a AS\MicrocHip company

2.2 Design Requirements

The following table lists the resources required to run the design.

Table 2 » Design Requirements

Requirement Version

Operating System Windows 7, 8.1, or 10

Hardware

PolarFire Evaluation Kit (MPF300-EVAL-KIT) Rev D or later

PolarFire Splash Kit (MPF300TS-1FCG484E) Rev 2 or later

Host PC

Software

FlashPro Express Note: Refer to the readme. txt file provided

Libero SoC in thg design f|Ie§ for .the software
versions used with this reference

SoftConsole design.

Serial Terminal Emulation Program PuTTY or HyperTerminal

www.putty.org

Note: Any serial terminal emulation program can be used. PuTTY is used in this application note.

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

2.3 Prerequisites

Before you begin:

1. For demo design files download link:
For Evaluation kit:
http.//soc.microsemi.com/download/rsc/?f=mpf_ac466_eval df
For Splash kit:
http://soc.microsemi.com/download/rsc/?f=mpf_ac466_splash_df

2. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the
following location.
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads
The latest versions of ModelSim and Synplify Pro are included in the Libero SoC installation pack-
age.

Microsemi Proprietary AC466 Revision 7.0 5


https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads
www.putty.org
http://soc.microsemi.com/download/rsc/?f=mpf_ac466_splash_df
http://soc.microsemi.com/download/rsc/?f=mpf_ac466_eval_df

PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a A8\ MicrocHiP company

24 Demo Design

The following steps describe the data flow in the design:

1. The host PC sends the system service requests to CoreUARTapb block through the UART Interface.

2. The Mi-V soft processor initializes the System Controller using the PF_SYSTEM_SERVICES and
sends the requested system service command to the System Controller.

3. The System Controller executes the system service command by reading the bitstream images from
the external SPI flash and sends the relevant response to the PF_SYSTEM_SERVICES over the
mailbox interface.

4. The Mi-V processor receives the service response and forwards the data to the UART interface.

The following figure shows the block diagram of the PolarFire programming design.

Figure 3+ PolarFire Programming Design Block Diagram

SPI Flash Memory

System
Controller

g
SPI Directory
A A
Programming .
Mailbox
I

A4 A

On-board LEDs |« CoreGPIO PF_SYSTEM_SERVICES

Y A

APB Slave

A
APB Slave
;’II-V Soft g » CoreJTAGDEBUG
APB Slave rocessor
Host PC

PUTTY/SPI Loader |- g CoreUART

Microsemi Proprietary AC466 Revision 7.0 6



PolarFire FPGA Auto Update and In-Application Programming

Figure 4 »

Figure 5 «

& Microsemi

a A8\ MicrocHiP company

To initiate an auto update or IAP system service request, the on-board SPI flash must be programmed
with programming images. The fabric logic interfaces to the on-board SPI flash using the SPI controller
and PF_SPI macro. When the System Controller's SPI is enabled and configured as master, the System
Controller hands over the control of the SPI to the fabric on device power-up. The fabric logic programs
the on-board SPI flash with flash directory and programming images using the UART interface. The
programming images are transferred from the host PC using SPI flash loader (spi_loader.exe).

The on-board SPI flash can be programmed using fabric logic as shown in the following figure. For more
information, see Appendix 1: Programming On-board SPI Flash Using the Fabric Logic Through the Host

Loader, page 37.

Accessing On-board SPI Flash Using Fabric

PolarFire FPGA

SPI Flash Memory

<-

SPI Directory
Programming
Images

Host PC

SPI Loader ~7[C

(Programming
Images)

I —
> } PF_SPI
|
T
i
I
1
|
}CoreSPI
l
APB Slave i
|
S DR —— [
CoreUARTapb  [¢——» Mi-v
APB Soft Processor
Slave

—---- Loading programming files into SPI Flash memory from host PC

The following figure shows the SPI flash memory with directory and programming images.

SPI Flash Memory

0x00000000

0x00000004

0x00000400 (golden_image_v0.spi, Index 0)

0x00A00000 (update_image_v2.spi, Index 1)

0x00000008

0x01400000 (iap_image_v5.spi, Index 2)

0x00000400

golden_image_vO0.spi

0x00A00000

update_image_v2.spi

0x01400000

iap_image_v5.spi

1 KB SPI Flash
Directory

Microsemi Proprietary AC466 Revision 7.0 7



PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a A8\ MicrocHiP company

When System Controller receives programming or authentication system service from fabric user logic,
the System Controller fetches the programming images from the on-board SPI flash to execute the
service request. In this application note, the following system services are initiated on user request.

. Bitstream authentication
* |AP image authentication

*  Auto update
- IAP

For more information about the preceding services, see the UG0714: PolarFire FPGA Programming

User Guide.

241 Design Implementation
The following figure shows the top-level Libero design of the PolarFire system services design.
Figure 6« Top Level Libero Design
] = Jg
— 4 R
[T y —+ g ’T”t —
=] 1 = | >
_-wr’_ ‘ MIV_R¥32_ CD D CoreAPB3 0 D "]

COREJTAGDEBUG 0.0 | F
B = T

e | ———|

conelARTapb_0_0

N

The following table lists the important 1/0 signals of the design.

Table 3 « 1/0 Signals

Signal Description

REF_CLK_0O Input 50 MHz clock from the on-board 50 MHz oscillator
resetn On-board reset push-button for the PolarFire device

RX Input signals received from the serial UART terminal

TX Output signals transmitted to the serial UART terminal
GPIO_OUTI[3:0] On-board LED outputs

GPIO_IN[3:0] To interface on-board DIP switches

Microsemi Proprietary AC466 Revision 7.0 8


http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523

PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a AS\MicrocHip company

2411 PF_INIT_MONITOR

The PolarFire Initialization Monitor gets the status of device initialization. The following figure shows the
PF_INIT_MONITOR configuration.

Figure 7+ PF_INIT_MONITOR Configuration

B Configurator - m} X

PolarFire Initialization Monitor Configurator
Microsemi:5gCore:PF_INIT MONITOR:2.0.103
Bank Monitor Simulation Options l

E Simulation Options

FABRIC_POR._N assertion delay (ns) ’17
PCIE_INIT_DOME assertion delay {ns) ’47
USRAM_INIT_DONE asserton delay (ns) [5
SRAM_INIT_DONE assertion delay {ns) ’67

DEVICE_INIT_DONE assertondelay (ns) [7 (P F—I N IT—M O N ITO R—O N

E calibration monitor FABRIC_POR_Nf—
PCIE_INIT_DONE-
BANK_0_CALIB_STATUS assertion delay {ns) |1 USRAM_INIT_DONE|-
BANK_1_CALIB_STATUS assertion delay {ns) |1 SRAM_INIT_DONE}|—
BANK_2_CALIB_STATUS assertion delay (ns) |1 DEVICE_INIT_DONE[—
XCVE_INIT_DONE}-

BANK_4_CALIB_STATUS assertion delay (ns) |1
USRAM_INIT_FROM_SNVM_DONE[—
BANK_5_CALIE_STATUS assertion delay (ns) |1 USRAM_INIT_FROM_UPROM_DONE}|—
BANK_6_CALIB_STATUS assertion delay (ns) |1 USRAM_INIT_FROM_SPI_DONE|—
SRAM_INIT_FROM_SNVM_DONE|—

BANK_7_CALIB_STATUS assertion delay {ns) |1
SRAM_INIT_FROM_UPROM_DONE|-
RN st tg SRAM_INIT_FROM_SPI_DONE|—
BANK_0_VDDI_STATUS assertion delay (ns) | 1 AUTG:AL[B—DONE [

BANK_1_VDDI_STATUS assertion delay (ns) |1 p F IN IT M O N ITO R
BANK_2_VDDI_STATUS assertion delay (ns) |1 - -

BANK_4_VDDI_STATUS assertondelay fns) [1
BANK_S_VDDI_STATUS assertondelay fns) [1
BANK_6_VDDI_STATUS assertondelay fns) [1
BANK_7_VDDI_STATUS assertondelay fns) [1

Y Symbal |

Microsemi Proprietary AC466 Revision 7.0 9



PolarFire FPGA Auto Update and In-Application Programming c M. ’.

a A\ MicrocHIR company

241.2 PF_CCC_0 Configuration

The PolarFire Clock Conditioning Circuitry (CCC) block takes an input clock of 50 MHz from the on-board
oscillator and generates a 100 MHz fabric clock to the Mi-V processor subsystem and other peripherals.
The following figures show the input and output clock configurations.

Figure 8« PF_CCC_0 Input Clock Configuration

7 Configurator - U X

Clock Conditioning Circuitry (CCC)

Microsemi:SgCore:PF_CCC:2.1.104

Configuration |PLL-Single hd

CockOptionsPLL | Outputclocks |

Input Frequency

Input Frequency |50 MHz. I_ Backup Clock

Bandwidth High ¥| =0.893MHz

Delay Line

I_ Enable Delay Line

PF_CCC_O

= Reference Clock Delay c Feedback Clock Delay L OUTD_FABCLK D
iy PLL_LEXCK, 0

Delay Steps: |1 3: e PE_CCC

Power [ Jitter

® Mandimize VCO for Lowest Jitter  VCO = 4800 MHz

C Minimize VCO for Lowest Power

Feedback Mode

IPost—\dCD 'I

Features

4 | \smbd /T

Log

E] Messages m Errors A, Warnings “ Info

hd

Help hd | OK. | Cancel

Microsemi Proprietary AC466 Revision 7.0 10



PolarFire FPGA Auto Update and In-Application Programming O M. .
Icrosemi

a AS\MicrocHip company

Figure 9+ PF_CCC_0 Output Clock Configuration

Clock Conditioning Circuitry (CCC)

Microsemi:SgCorePF_CCC:21.104

|»

Configuraton [pLL-Singi Je -

dockon oumtcods |

.
For best results, put the highest frequency first.

Output Clock 0
[¥ Enabled
Requested Frequency 100 MHz © Actual Lower 100 MHz @ Actual Higher 100 MHz
Recuetedphase C— © ncutoner o oegess & acualtiher o vegess PF CCC 0
[ oynamicphase shiftng [ Expose Enable Port [ Enableypass [ReF_preDIV = OUTO_FABCLK_0|
REF_CLK_0 ¥
[ Global dock [ Global Clock (Gated) [~ Hsyoced [~ Dedicated Clock LK PLL_LOCK_0|
® Actual Higher
€ actaltiger  Degees
=]
Output Clock 2
|\ st
Log
(E) Messages €3 Errors varmings @) Info

241.3 Mi-V Soft Processor Configuration

The Mi-V soft processor default Reset Vector Address value is 0x8000_0000. After the device reset, the
processor executes the application from TCM, which is mapped to 0x80000000, hence the Reset Vector
Address is set to 0x80000000 as shown in the following figure.

TCM is the main memory of the Mi-V processor. It gets initialized with the user application from sNVM.

In the Mi-V processor memory map, the 0x8000_0000 to 8000_FFFF range is defined for TCM memory
interface and the 0x6000_0000 to Ox6FFF_FFFF range is defined for APB interface.

Microsemi Proprietary AC466 Revision 7.0 11



PolarFire FPGA Auto Update and In-Application Programming

Figure 10 « Mi-V Configuration
Mi-V RV32 Configurator
Microsemi:MiV:MIV_RV32:3.0.100

OConﬁguraﬁon l Memory Map l

- Extension Options
RISC-V Extensions: |I b o Multipler: |Fzbric
- Interface Options

AHB Master: |None ¥ AHE Mirrored I/F: [~ )
APB Master:| [aPB3 apB Mirrored 1/F: [ )

AXIMaster: |None ¥ axtmirored 1F: [~ )
Reset Vector Address

Upper 16hits (Hex): |0x8000 Lower 16hits (Hex): |0x0 (1)

- BootR.OM Options

BootROM: [ o Reconfigure BootROM: [ o

Tightly Coupled Memory (TCM) Options
[[cr:]~ € cm ars Slave (ras): I €@

Interrupt Options
External System IRQs: |0 ¥ o
Vectored Interrupts: [ (3]
System Timer Options
Internal MTIME: | 40 MTIME Prescaler: [100 (3]
InternalMTIME RQ: [ D
- Other Options
Debug: W o Register Forwarding: [ o

rrre [ B eon Deictars r &

Help ¥

& Microsemi

a AS\MicrocHip company

P

oK | Cancel

+  Memory depth: This field is set to 16384 words to accommodate an application of up to 64 KB into
TCM. The present application is below 50 KB so this can fit into either sSNVM or yPROM. In this
design, sNVM is selected as data storage client as shown in the following figure.

Microsemi Proprietary AC466 Revision 7.0

12



PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a A8\ MicrocHiP company

Figure 11 « Mi-V RV32 Configuration
Mi-V RV32 Configurator
Microsemi:MiV:MIV_RV32:3.0.100

o Configuration Memory Map l o]

AHE Master Address

Start Address: Upper 16bits (Hex): |0x2000 Lower 18bits (Hex): [0x0
End Address: Upper 16bits (Hex): |0xafff Lower 16bits (Hex): |0xffff

Start Address: Upper 16bits (Hex): W Lower 16bits (Hex): |0x0
End Address: Upper 16bits (Hex): ’W Lower 16bits (Hex): |0xffff

AXI Master Address

Start Address: Upper 16bits (Hex): |0xs000 Lower 16bits (Hex): [0x0

End Address: Upper 16bits (Hex): |0xafff Lower 16bits (Hex): |0uxffff
TCM Address =
Start Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |0x0
End Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |0xffff

TCM APE Slave Address

Start Address: Upper 16bits (Hex): |0x4000 Lower 16bits (Hex): [0x0

End Address: Upper 16bits (Hex): |0x4000 Lower 16bits (Hex): |0x3fff

BootROM Address

Source Start Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): [0x0
Source End Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |0x3fff

Destination Address: Upper 16bits (Hex): |0x4000 Lower 16bits (Hex): [0x0 J
Help ¥ OK | Cancel |
2414 CoreGPIO_0 Configuration

The CoreGPIO IP controls the on-board LEDs using GPIOs. It is connected to Mi-V soft processor as an
APB slave. The configuration settings of the COREGPIO_O IP are as follows:

In the Global Configurations pane:

+ APB Data width: Set to 32
The design uses 32-bit data width for APB read and write data.
*  Number of I/Os: Set to 4
The design controls 2 on-board LEDs for output and 2 DIP Switches for input.
+ /O Bit: The following list shows the sub-options under I/O Bit option.
*  Output on reset: Setto 0
+ Fixed Config: Yes
« 1/0O type: As shown in the following figure, first two 1/Os are configured as output and the last
two 1/Os are configured as input.
Note: The first two I/Os configured as output are used by the design and last two I/Os are not used.
The 1/Os are interfaced to on-board LEDS and DIP switches.

* Interrupt Type: Disabled
When I/O states change, no interrupt is required for the application.

The following figure shows the CoreGPIO_0 configuration.

Microsemi Proprietary AC466 Revision 7.0 13



PolarFire FPGA Auto Update and In-Application Programming O M. .
Icrosemi

a AS\MicrocHip company

Figure 12 + CoreGPIO_0 Configuration

W7 Configurator - O *

CoreGPIO Configurator

Microsemi:DirectCore:CoreGPI0:3.2.102

Configuration | -

—Global Configuration

APB Data Width: 32 - Mumber of Ij0s: |4 VI
Single-bit interrupt port: IDisabIed VI Qutput enable: IInternaI VI

el
Qutput on Reset: IE Fixed Config: ™ IfO Type: |Qutput = Interrupt Type: lm

~1fo bit 1
Qutput on Reset: IE Fixed Config: ™ IfO Type: |Qutput = Interrupt Type: lm

~1fobit 2
Qutput on Reset: IE Fixed Config: ™ 10 Type: lm Interrupt Type: lm

~1fobit 3

Qutput on Reset: ID VI Fixed Config: ™ 10 Type: IInput VI Interrupt Type: IDisabIed VI
A
Help '| OK I Cancel |

Microsemi Proprietary AC466 Revision 7.0 14



PolarFire FPGA Auto Update and In-Application Programming

2415

Figure 13 »

CoreSPI Configuration

& Microsemi

a AS\MicrocHip company

The CoreSPI is used to program the external SPI flash using Mi-V processor. PF_SPI macro interfaces
the fabric logic to the external SPI flash, which is connected to System Controller.

+  APB Data Width: select 32 as APB data width in the design. The default value is 8.
*  Mode: select Motorola Mode (default) as the target SPI slave supports Motorola mode. Mode 3 is

selected under Motorola Configuration.
. Frame Size: enter 8. The default value is 4.

*  FIFO Depth: enter 32 to store maximum frames (Tx and Rx) in FIFO. The default value is 4.

* Clock Rate: enter 16. The default value is 8.
The SPI clock becomes system clock/ 2*(16+1).

+ Keep SSEL active: enabled to keep the slave peripheral active between back to back data

transfers.
The following figure shows the CoreSPI configurator.

CoreSPI Configuration

CoreSPI Configurator

Microsemi:DirectCore:CORESPL:5.2.104
Configuration l

APB Data Width: 8 16 v 32
SPI Configuration

Mode: {* Motorola Mode " TIMode ™ NSC Mode

B Configurator —

Frame Size (4-32): |8

FIFO Depth (1-32): |32

Clock Rate (0-255): |16

Motorola Configuration

Mode: " Mode 0 " Mode 1 " Maode 2
Keep SSEL active W
TIMSC Configuration
Transfer Mode: &+ Normal " Custom
Free running dock r
Jumbo frames r
NSC Spedific Configuration |S{andard J

Testbench: |User ¥

License: RTL

Help =

o |

Cancel

Microsemi Proprietary AC466 Revision 7.0

15



PolarFire FPGA Auto Update and In-Application Programming O M. em’.

a AS\MicrocHip company

241.6 Design Memory Map

The Mi-V processor bus interface memory map is shown in the following figure.

Figure 14 » Memory Map

B vie — = X
l Q E Show Slaves [
Master/Bus/Bridge/Peripheral IStartAddress Range DRC

= top/MIV_RV32_C0_0
=} CoreAPB3_0_0/APB3mmaster
- coreUARTapb_0_0:APB_bif Ox&000_0000  0x0000_1000

- CoreGPIO_OUT_0:APB_bif 0x6000_1000  0x0000_1000
- CoreSysServices PF_0_0:APBSlave (x6000_2000  Cx0000_1000
----- Core_SPI_0:APB_bif 0x6000_3000  0x0000_1000

o |

Microsemi Proprietary AC466 Revision 7.0

16



PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a @MI:HGCHIP company

241.6.1 CoreAPB3 Configuration

The CoreAPB3 IP connects the peripherals, PF_SYSTEM_SERVICES, CoreSPI, CoreGPIO, and
CoreUARTapb as slaves. The configuration settings of COREAPB3 are as follows:

* APB Master Data bus width: 32-bit
The design uses 32-bit data width for APB read and write data.

*  Number of address bits driven by master: 16
The Mi-V processor accesses the slaves using the 16-bit. The final addresses for these slaves are
translated into 0x6000_0000, 0x6000_1000, 0x6000_2000 and 0x6000_3000.

. Enabled APB slave slots: Slot 0 for CoreUARTapb, Slot 1 for CoreGPIO, Slot 2 for
PF_SYSTEM_SERVICES, and Slot 3 for CoreSPI.

The following figure shows the CoreAPB3 configuration.

Figure 15« CoreAPB3_0 Configuration

CoreAPB3 Configurator

Microsemi:DirectCore:CoreAPB3:4.1.100

Configuration i

Data Width Configuration

APE Master Data Bus Width @ 32-bit ©) 16-bit ©) &-hit

Address Configuration

Mumber of address bits driven by master: [16 - ]
Position in slave address of upper 4 bits of master address: [[2?:24] (Ignored if master address width == 32 bits) - ]
Indirect Addressing: [Not in use - ]

Allocate memory space to combined region slave

sloto: [ Slot 12 [C] slet2: [ Slot3: [
Sot4: [ Slot 5[] Slota: [ set7: [
slots: [] slotg: [] Slot 10: [7] Slot 11: [7] i
Slot 12: ] Slot 13: O] Slot 14 [T] Slot 15: 7]

Enabled APE Slave Slots

Slot 0 Slot 1: Slot 2: Slot 3:

Sot4: [ Slot 5[] Slota: [ set7: [

Slota: [ Slotg: [ Slot 10: 7] Slot 11: [T]

Slot 12: ] Slot 13: O] Slot 14 [T] Slot 15: 7]
Testbench:
License: () Obfuscated @ RTL |
o] [ conc

Microsemi Proprietary AC466 Revision 7.0 17



PolarFire FPGA Auto Update and In-Application Programming

& Microsemi

a @Mlcno:mn company

2.5 Clocking Structure

The following figure shows the clocking structure of this design. The Mi-V processor supports up to
120 MHz. This design uses a 100 MHz system clock for configuring the APB peripherals.

Figure 16 » Clocking Structure

Clock Domain

Onboard 50 MHz Oscillator

|
|
|
|
|
|
|
|
|
50 MHz |
|
|
|
|
|
|
|
|
|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| A 4 |
| |
|

| PF_CCC_0 :
| |
| |
L |l ______ 1 |
| |
| 100 MHz | & |
| d |
| I |
I z I
| %’ |
| - |
| |7< |
| Mi-V (=) |
| |
| softprocessor CLK |
| |
| |
| |
| PCLK PCLK |
| CoreGPIO CoreUARTapb |
| |
| |
| |
I PF_SYSTEM_SER | CLK PCLK I
| VICES CoreSPI |
| |
| |

Microsemi Proprietary AC466 Revision 7.0 18



Libero Design Flow

3

Libero Design Flow

& Microsemi

a AS\MicrocHip company

Note:

Figure 17 »

The Libero design flow involves running the following processes in the Libero SoC:

Synthesis, page 20

Place and Route, page 20

Verify Timing, page 21

Generate FPGA Array Data, page 21

Configure Design Initialization Data and Memories, page 21
Configure Programming Options, page 24

Generate Bitstream, page 25

Export FlashPro Express Job, page 26

Programming the Device, page 27

To initialize the TCM in PolarFire using the system controller, a local parameter |_cfg_hard_tcm0_en, in
the miv_rv32 opsrv_cfg pkg.v file should be changed to 1’b1 prior to synthesis. See the 2.7 TCM
section in the MIV_RV32 Handbook.

The following figure shows these options in the Design Flow tab.

Libero Design Flow Options

| Tool

Ve
v

Te

-

-

-

-

Constraints
‘4 Manage Constraints
Implement Design
Q Open Netlist Viewer
S Synthesize
b Verify Post-Synthesized Design
+| Generate Simulation File
. Simulate
25 Place and Route
b Verify Post Layout Implementation
@ Verify Timing
Open SmartTime
[ [o} Verify Power
£% Open 55N Analyzer
Configure Hardware
Il Programming Connectivity and Interface
& Configure Programmer
& Select Programmer
Program Design
+[| Generate FPGA Array Data
+] Configure Design Initialization Data and Memories
+[] Generate Design Initialization Data
i Configure I/ States During JTAG Programming
» Configure Programming Options
@ Configure Security
'% Generate Bitstream
43 Run PROGRAM Action
» Program SPI Flash Image
Generate 5P| Flash Image
Run PROGRAM_SPI_IMAGE Action
Debug Design
+[] Generate SmartDebug FPGA Array Data
@ SmartDebug Design
=03, Identify Debug Design
Handoff Design for Production
@ Configure Permanent Locks for Production
4 Export Bitstream
4 Export FlashPro Express Job
# Fxnort loh Mananer Nata

Microsemi Proprietary AC466 Revision 7.0

19


https://www.microsemi.com/document-portal/doc_download/1244850-mi-vrv32imc

Libero Design Flow

& Microsemi

a A8\ MicrocHiP company

3.1 Synthesis

To synthesize the design, perform the following steps:
1.  On the Design Flow window, double-click Synthesis.
When the synthesis is successful, a green tick mark appears as shown in Figure 17, page 19.

2. Right-click Synthesis and select View Report to view the synthesis report and log files in the
Reports tab.
Note: Set the correct tool profile before you start Synthesis.

Note: top.srr andthe top compile netlist.log files are recommended to be viewed for debugging
synthesis and compile errors.

3.2 Place and Route

The Place and Route process requires the I/O, timing, and floor planner constraints. This design includes
following constraint files in the Constraint Manager window:

* The io_constraints.pdc file for the I/O assignments
+ The top_derived_constaints.sdc file for timing constraints
» timing_user_constraints.sdc file for creating the JTAG clock with 30 MHz frequency.

To Place and Route, on the Design Flow window, double-click Place and Route.
When place and route is successful, a green tick mark appears next to Place and Route.

Note: Thefile, top place and route constraint coverage.xml is recommended to be viewed for
place and route constraint coverage.

3.21 Resource Utilization

The resource utilization report is written to the top layout log.log file in the Reports tab ->
top reports -> Place and Route. It lists the resource utilization of the design after place and
route. These values may vary slightly for different Libero runs, settings, and seed values.

Table 4 Resource Utilization—Evaluation Board

Type Used Total Percentage
4LUT 14339 299544 4.79
DFF 8066 299544 2.69
I/O Register 0 510 0.00
Logic Element 15187 299544 5.07

Table 5 « Resource Utilization—Splash Board

Type Used Total Percentage
4LUT 14693 299544 4.91
DFF 8069 299544 2.69
I/O Register 0 242 0.00
Logic Element 15511 299544 5.18

Microsemi Proprietary AC466 Revision 7.0 20



Libero Design Flow

& Microsemi

a AS\MicrocHip company

3.3 Verify Timing

To verify timing, perform the following steps:

1. On the Design Flow window, double-click Verify Timing.
When the design successfully meets the timing requirements, a green tick mark appears as shown
in Figure 17, page 19.

2. Right-click Verify Timing and select View Report, to view the verify timing report and log files in the
Reports tab.

3.4 Generate FPGA Array Data

To generate the FPGA array data, perform the following steps:

1.  On the Design Flow window, double-click Generate FPGA Array Data.
2. Agreen tick mark is displayed after the successful generation of the FPGA array data as shown in
Figure 17, page 19.

3.5 Configure Design Initialization Data and Memories

The Configure Design Initialization Data and Memories step generates the TCM initialization client
and adds it to sSNVM, yPROM, or an external SPI flash, based on the type of non-volatile memory
selected. In this design, the TCM initialization client is stored in the sNVM.

This process requires the user application executable file (hex file) to initialize the TCM options on device
power-up. The hex file (application.hex)is available in the

DesignFiles Directory\Libero Project\hw project folder. When the hex file is imported, a
memory initialization client is generated for TCM options.

Follow these steps:

1. On the Design Flow window, double-click Configure Design Initialization Data and Memories.
The Design and Memory Initialization window opens as shown in the following figure.

Figure 18 « Design and Memory Initialization

Design Inmahzauonl uPROM ] sNVM ] SPL Flash] Fabric RAMSI

Apply | Discard | Help ‘

In design initialization, user design blocks such as LSRAM, pSRAM, transceivers, and PCle can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sNVM, or an external SPI Flash.

Fallow the below steps to program the initialization data:

1. Set up your fabric RAMs initialization data, if any, using the 'Fabric RAMs' tab
2. Define the storage location of the initialization data

3. Generate the initizlization dients

4, Generate or export the bitstream

5. Program the device

Design initialization specification
First stage (sMVM)
In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
Second stage (sNVM)

In the second stage, the initialization sequence initializes the PCle and XCVR blocks present in the design.

Start address for second stage initialization dient: 0x |0

Third stage (sMVM/UPROM/SPI-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.

To save the initialization instructions in sNYM/uPROM/SPI-Flash, please use 'Fabric RAMs' tab to make your selection for each RAM dient.
I ¥ Start address for sNVM dients: 0x_| 00000000 I sNVM start page: 0

I Start address for uPROM dients:

r 0
SPI-Flash Binding: SPI-Flash - No-binding Plaintext J SPI Clock divider value: |6
Time Out (s): 128 3:
Auto Calibration Time Out (ms): 3000

Custom configuration file: |

Microsemi Proprietary AC466 Revision 7.0 21



Libero Design Flow c - A
Microsemi
a AS\MicrocHip company

2. Select Fabric RAMs tab and select tcm_ram client from the list and click Edit as shown in the
following figure.

Figure 19 » Fabric RAMs Tab

Desian Intisization | uPROM | st | SPIFash FabricRaMs |

Apply | Discard | Help |
[Usage ~Cl
i iesd s Load design configuration | Edit... | Initisize all dients from: [Initaize all Clients fromstvm
Available Memor y(Bytes) 2437120 [ —
Used Memory(Bytes): 81920
Free M e 2355200 . PORTA PORTB
I Logical Instance Name Depth * Width| Depth * Width| Memory Content| Storage Type| Memory Source
1 | Core_SPI_0/Core_SPI_0/USPI/URKF/fifo_mem_q[8] 329 329 Initialized sNVIM Synthesis
2| Core_5PI_0/Core_SPI_0/USPI/UTXF/fifo_mem _q[] 329 329 Initialized SNVM Synthesis
cm_ram_macro.u_ram_0 application.hex Configurator
4| MIV_RV32_C0_0/MIV_RV32_C0_0/u_opsrv_0/u_core_0/u_expipe_0/gen_gpr_ram.u_gpr_0/gen_gpr.u_gpr_aray_B/mem{31:0] |3232 3232 No content sNVM Synthesis
. o 5| MIV_RV32_C0_0/MIV_RV32_C0_D/u_opsrv_0/u_core_0/u_expipe_0/gen_gpr_ram.u_gpr_0/gen_gpr.u_gpr_array_0/mem_1[31:0] | 32x32 3232 No content sNVIM Synthesis
sed space
] Free space
~USRAM Memory
Available Memor y(Bytes) 266112
Used Memory(Bytes): 768
Free Memory(Bytes) 265344
| Used space
] Free space

3. Inthe Edit Fabric RAM Initialization Client dialog box, select Content from file option, and locate
the application.hex file from DesignFiles directory\Libero Project\hw project
folder and Click OK as shown in the following figure.

Figure 20 » Edit Fabric RAM Initialization Clien
@ cdit

Client name: hI'-a'_R'-a'32_CIII_D.r'u_opsrv_l],-"gen_tcmD.u_opsrv_TCI'v]_lIl_-"tcm_ram_macro.u_ram_D

Physical Mame: IJ_."tcm_ram_macro.u_ram_ljlr'mi'v'_r'v'32_ram_singlep0rt_lp_R 16C0/INST_RAMIK20_IP
— RAM Initiglization Options

" Initialized Content from Synthesis
€ Content Initialized from configurator{using content editor option)

' Content from file:  |application.hex |

Imported Memory file location : application.hex

 Content filed with 0s

" No content (dient is a placeholder and will not be programmed)

Optimize for: ¢ High Speed € Low power

Storage Type |sMVM ¥

Help | oK I Close

Microsemi Proprietary AC466 Revision 7.0 22



Libero Design Flow O M. em’.

a AS\MicrocHip company

4. Click Apply as shown in the following figure.
Figure 21 » Apply Fabric RAM Content

Desian Initalization | UPROM |  shvM | SP1Fiash  Fabric Ras |

|
- Usage ~Ci
R s Load design configuration | Edit... | Initiaize all dients from: [Initiaize al Cients from sNVM 3
Available Memory(Bytes): 2437120 [ —
Used Memory(Bytes): 81920
Fesiarmndieh e Logical Instance Name mngfxmh o I:fﬂfmh Memory Content| Storage Type| Memory Source
1 | Core_SPI_0/Core_SPI_0/USPI/URKF/fifo_mem_q[g] 329 39 Initialized sNVM Synthesis
2 | Core_SP|_0/Core_SPI_O/USPI/UTXF/fifo_mem_q[8] 329 3 Initialized SNVM Synthesis
MIV_RV32_CO_0/u_ em0.u_opsrv_TCM 0/tcm_ram_macro.u_ram 0 65536x32 application.hex | sSNVM Configurator
4| MIV_RV32_CO_O/MIV_RV32_C0_0/u_opsrv_0/u_core_0/u_expipe_0/gen_gpr_ram.u_gpr_0/gen_gpr.u_gpr_array_0/mem[31:0] |32x32 33 No content sNVM Synthesis
- o 5| MIV_RV32_CO_O/MIV_RV32_CD_0/u_opsn_0/u_core_0/u_expipe_0/gen_gpr_ram.u_gpr_0/gen_gpr.u_gpr_array_0/mem_1[31:0] | 32x32 RN No content sNVM Synthesis
jsed space
[ ] Free space
“USRAM Memory
Available Memory(Bytes): 266112
Used Memory(Bytes): 768
Free Memory(Bytes) : 265344
| | Used space
[ ] Free space

5. Inthe Design Initialization tab, click Apply.
6. From Libero Design Flow, double-click Generate Design Initialization Data to generate design
initialization data.

After successful generation of the Initialization data, a green tick mark appears next to Generate
Initialization Data option as shown in the Figure 17, page 19.

The following Figure 22, page 24 shows the client in the sNVM after Generate Design Initialization
Data.

Microsemi Proprietary AC466 Revision 7.0 23



Libero Design Flow O M. em’.

a AS\MicrocHip company

Figure 22 « Client in the sSNVM Option

G‘ Libero - C:\Manish_acd66_comments\mpf_acd66_eval_df\Libero_Project\hw_project'\Liberc_Project.prjx
Project File Edit View Design Tools Help

Dswaxoed|

Design Flow 3 x Reports & X I StartPage & X Design and Memary Initialization & X | Eltop & %

Top Module{root): top

Desian Initalization | uPROM <M | SPI Fash | Fabric Rams

Active Synthesis Implementation: synthesis

Apply | Discard | Help |
-
| T_OOI I— Usage statistics —Clients
=+ b Create Design §
- B9 Create SmartDesign Available memory (n pages): 221 Add ... |V‘ Edit ... | Delete Load design configuration
Create HDL Used memary (in pages): 165
Create SmartDesign Testbench Free memory {in pages): 56 Client Name Start Page | 36-bit words
Bl Create HDL Testbench
5 b Verify Pre-Synthesized Design 1| INIT_STAGE_1_SMVM_CLIENT | 202 4384
= sirulate 2| INIT_STAGE_2_3 SNVM_CLIENT |0 37040
Constraints

Manage Constraints
¥ Implement Design
H Q Open Netlist Viewer
T Synthesize
» Verify Post-Synthesized Design
+Z] Generate Simulation File

B Simulate

Place and Route

Verify Post Layout Implementation
(h Verify Timing
Q} Open SmartTime

Verify Power

- % Qpen SSN Analyzer

Configure Hardware
Il Programming Connectivity and Interface
’ Configure Programmer
& Select Programmer

Program Design
~- o] Generate FPGA Array Data
1 Configure Design Initialization Data and Memories
+[| Generate Design Initialization Data
[ Cenfigure |70 States During JTAG Programming

-5, Configure Programming Options
a Configure Security

'% Generate Bitstream
& Run PROGRAM Action

» Program SPI Flash Image | | Used space
Generate SPI Flash Image u FEEsia=
Run PROGRAM_SPI_IMAGE Acticn d

Design Flow | Design Hierarchy | Stimulus Hierarchy I Catalog I Files 4|

3.6 Configure Programming Options

The Design version and user code (Silicon signature) are configured in this step. Double-click Configure
Programming Options to give values as shown in the following figure.

Figure 23 » Configure Programming Options

& Configure Programmer | P : _— % |
----- & Select Programmer ; |
» Program Design

+[1 Generate FPGA Array Data Design name:PROC_SUBSYSTEM

.,ﬂ i DE.SIQH I|f1|.t|a.llza.t|on Datﬂ o Design version {(number between 0 and 65535): |1
+[] Generate Design Initialization Data
Configure IO States During JTAG P Back Level version (number between 0 and 65535): I[J
- Configure Programming Options | ‘
onfigure Security Silicon signature (max length is 8 HEX chars):  Ox |123456?B
43 Generate Bitstream
5 Run PROGRAM Action [

P Program 5P Flash Image Help | OK I Cancel |

Generate 5P| Flash Image |

<

Microsemi Proprietary AC466 Revision 7.0 24



Libero Design Flow

& Microsemi

a AS\MicrocHip company

3.7 Generate Bitstream

To generate the bitstream, perform the following steps:

1. Right-click Generate Bitstream and select Configure Options... to select the bitstream
components—Custom security, Fabric, and sNVM.

Figure 24 « Generate Bitstream—Configure Bitstream Options

B Configure Bitstream *
Program
™ Custom security
¥ Fabric
¥ st
Help oK | Cancel |

2. On the Design Flow window, double-click Generate Bitstream. When the bitstream is successfully
generated, a green tick mark appears as shown in Figure 17, page 19.

3. Right-click Generate Bitstream and select View Report to view the corresponding log file in the
Reports tab.

3.8 Generating the SPI programming Images

The following programming images are generated and copied to external SPI flash memory.

Table 6 « Programming Images

Silicon Signature/ Image Indexin SPI Image Address in SPI

Image Name Version User Code Flash Directory Flash Memory
golden image v0.spi 0 N/A 0 0x00000400
update image v2.spi 2 0x23456789 1 0x00A00000
iap image v5.spi 5 0x56789ABC 2 0x01400000

Note: The golden image cannot contain any security or Silicon signature information.

Microsemi Proprietary AC466 Revision 7.0 25



Libero Design Flow

& Microsemi

a @MI:HGCHIP company

Figure 25 » Generating the .SPI Programming Images

3.9

B Export Bitstream *

Design settings -

Programming options set with the Configure Programming Options tool:

Design version - 1 Back Level version -0

Security options set with the Configure Security tool:
Encrypt bitstream with default key. Mo user keys or security settings are enabled.

Bitstream file(s)

Mame: |th Location: ldﬂ,l_ibero_Projecth'a'jroject\;\:lesigner\top\ﬁxport J
Existing files:
golden_image_vl.spi i‘
iap_image_vi.spi
Tlonpdl:tpp imane v2.sni j
Formats:
I~ eeD Support for ISP (JTAG and SPI Slave)
™ pat Support for Embedded ISP (TTAG and SPI Slave) [ Export separate ASCIIHEX file for debugging
I~ sTARL Support for ISP
™ Chain STAPL Support for ISP, Single Microsemi device in a JTAG chain
¥ sp1 Support for Auto Programming, Auto Update, and IAP Services
I~ svF Support for ISP Limit SVF file size...

o Export files for Microsemi In House Programming (IHP):  © Yes % No

File types:

| Fabric/sNVM

File to program at trusted facility v

=l
Help OK | Cancel |

Note: The golden image can not contain any security or Silicon signature information.

The .SPI programming images are generated using Export Bitstream option as shown in Figure 25,
page 26. Before generating the .SPI images modify the Design version and Silicon Signature as shown
in Configure Programming Options, page 24.

Export FlashPro Express Job

To generate .job file, perform the following steps:

On the Design Flow tab, double-click Export FlashPro Express Job and select Design and SPI Flash as
shown in figure. The exported job file contains the data contents to be programmed into PolarFire FPGA
and external SPI flash. This Job file is utilized in FlashPro Express software to program both Device and
external SPI flash as shown in Appendix 2: Programming the Device and External SPI Flash Using
FlashPro Express, page 39.

Microsemi Proprietary AC466 Revision 7.0 26



Libero Design Flow

Figure 26

3.10

3.101

& Microsemi

a AS\MicrocHip company

Export FlashPro Express Job

B Export FlashPro Express Job *

Design settings -
Programming options set with the Configure Programming Options tool:
Design version - 1 Back Level version -0
Security options set with the Configure Security tool:
Encrypt bitstream with default key. Mo user keys or security settings are enabled.
FlashPro Express Job file

Configured device chain with bitstream files and programmer settings will be induded in the programming job.

Mame: |th Location: ldﬂ,l_ibero_Projecth'a'jroject\;\:lesigner\top\ﬁxport

Existing files:

top.job
top_onlyFPGA.job

Program {JTAG programming interface):
W Design

¥ SPI Flash

Design bitstream file format: |PPD (*.ppd) hd o

Design bitstream file type:

| Fabric/sNVM |

File to program at trusted facility v

Zeroization actions:
I Like Mew (Erases all user data; device can be immediately reprogrammed by user)

I Unrecoverable (Erases all data and destroys reprogrammability; device must be scrapped) j

Help OK | Cancel |

Programming the Device
To program the device, see any of the following sections based on the board used.

*  Programming the Device on the Evaluation board
*  Programming the Device on the Splash board

Programming the Device on the Evaluation Board

After generating the bitstream, the PolarFire device must be programmed with the Auto Update and IAP
design.

To program the PolarFire device, perform the following steps:

1. Ensure that the following jumper settings are set on the board.

Table 7 « Jumper Settings—Evaluation Board

Jumper Description

J18, J19, J20, J21, and J22 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI

J28 Close pin 1 and 2 for programming through the on-board FlashPro5
J23 Open pin 1 and 2 for accessing external SPI Flash

J4 Close pin 1 and 2 for manual power switching using SW3

J12 Close pin 3 and 4 for 2.5V

Connect the power supply cable to the J9 connector on the board.
Connect the USB cable from the host PC to the J5 (FTDI port) on the board.
Power ON the board using the SW3 slide switch.

pOD

Microsemi Proprietary AC466 Revision 7.0 27



Libero Design Flow c M. em’.

Figure 27 »

3.10.2

a A\ MicrocHIR company
The following figure shows the board setup after these connections are made.

Bord Seup—EvaIuation Kit

-------

5. On the Libero Design Flow, double-click Run PROGRAM Action.

The device is successfully programmed and the on-board LEDs glow. A green tick mark appears next to
Run PROGRAM Action as shown in Figure 17, page 19.

Programming the Device on the Splash Board

After generating the bitstream, the PolarFire device must be programmed with the Auto Update and IAP
design.

To program the PolarFire device, perform the following steps:

1. Ensure that the following jumper settings are set on the board.

Table 8 « Jumper Settings—Splash Board

Jumper Description

J5, J6, J7, J8, and J9  Close pin 2 and 3 for programming the PolarFire FPGA through FTDI

J1 Close pin 1 and 2 for programming through FTDI chip
J10 Close pin 1 and 2 for programming through FTDI SPI

J4 Close pin 1 and 2 for manual power switching using SW1
J3 Open pin 1and 2 for 1.0V

J35 Open pin 1 and 2 for SPI master mode programming

2. Connect the power supply cable to the J2 connector on the board.
3. Connect the USB cable from the host PC to the J1 (FTDI port) on the board.
4. Power ON the board using the SW1 slide switch.

Microsemi Proprietary AC466 Revision 7.0 28



Libero Design Flow c M. em’.

a A\ MicrocHIR company

The following figure shows the board setup after these connections are made.

Figure 28 + Board Setup—Splash Kit

5. On the Design Flow window, double-click Run PROGRAM Action.

The device is successfully programmed and the on-board LEDs glow. A green tick mark appears next to
Run PROGRAM Action as shown in Figure 17, page 19.

Microsemi Proprietary AC466 Revision 7.0 29



Serial Terminal Emulation Program Setup

& Microsemi

a @MI:HGCHIP company

4 Serial Terminal Emulation Program Setup

The user application receives programming commands on the serial terminal through the UART

interface. This chapter describes how to set up the serial terminal program.

To setup PuTTY, perform the following steps:
Connect the USB cable from the host PC to the J5 (USB) port on the Evaluation board or J1 (USB)

1.

5.
6.

port on the Splash board.

Connect the power supply cable to the J9 connector on the Evaluation board or J2 connector on the

Splash board.

Power on the Evaluation board using the SW3 or Splash board using the SW1 slide switch.

From the host PC, click Start and open Device Manager to note the second highest COM Port
number and use that in the PuTTY configuration. In this example, COM Port 9 (COM9) is selected
as shown in the following figure. COM Port-numbers may vary.

Figure 29 »+ COM Port Number

v I Ports (COM & LPT)

ﬁ ECP Printer Port (LPT1)
& FlashPro5 Port (COM10)
ﬁ FlashPro5 Port (COMT)

FlashPro5 Port (COME)
FlashPro5 Port (COMY)

From the host PC, click Start, and then find and select the PuTTY program.
Select Serial as the Connection type as shown in the following figure.

Figure 30 « Select Serial as the Connection Type

7.
8.

@ PuTTY Cenfiguration

Category:

- Keyboard
- Bell

- Features
- Window

- Appearance
- Behaviour
- Translation
- Selection

- Colours

[=I- Connection

*
Basic options for your PuTTY session
Specify the destination you want to connect to
Serial line _S&d
Jcoms | 115200 |
Connection type:

(O Raw (O Telnet (O Rlogin () S5H

Load, save or delete a stored session
Saved Sessions

= |

Close window on exit:
O AMways O MNever (@ Only on clean exit

Open Cancel

Set the Serial line to connect to COM port number noted in Step 4.

Set the Speed (baud) to 115200 as shown in the following figure.

Microsemi Proprietary AC466 Revision 7.0

30



Serial Terminal Emulation Program Setup

Figure 31 »

& Microsemi

a AS\MicrocHip company

9. Set the Flow control to None as shown in the following figure and click Open.

PuTTY Configuration

@ PuTTY Cenfiguration

Category:

[=I- Session

. Logging
(- Terminal

- Keyboard
- Bell

- Features
- Window

- Appearance
- Behaviour
- Translation
- Selection
- Colours
[=I- Connection

. Proxy

- Telnet

- Rlogin

(- S5H

Options controlling local seral lines
Select a senal line

Serial line to connect to
Configure the serial line
Speed (baud)

Data bits

Stop bits

Parity

Flow control

Open

Cancel

PuTTY opens successfully, and this completes the serial terminal emulation program setup. See

Running the Demo, page 32.

Microsemi Proprietary AC466 Revision 7.0

31



Running the Demo

5

& Microsemi

a AS\MicrocHip company

Running the Demo

This section describes how to run the authentication, auto update, and IAP. The following procedure
assumes that the serial terminal is setup, for more information about setting up the serial terminal, see
Serial Terminal Emulation Program Setup, page 30.

The on-board 1 GB Micron SPI flash device is connected to System Controller SPI and can be
programmed using the Libero SoC PolarFire software or fabric logic. For more information about
programming the on-board SPI flash using Fabric Logic, see Appendix 1: Programming On-board SPI
Flash Using the Fabric Logic Through the Host Loader, page 37.

Before you begin:

1. Ensure that the device is programmed with the progamming appnote only FPGA v1.job file.
See Appendix 2: Programming the Device and External SPI Flash Using FlashPro Express,
page 39.

2. Connect the power supply cable to the J9 (Evaluation board) or J2 (Splash board) connector on the
board.

3. Connect the USB cable from the host PC to FTDI port J5 (Evaluation board) or J1 (Splash board) on
the board.

4. Ensure that on-board SW11 (Evaluation board) or SW8 (Splash board) DIP 1 is set to OFF.

5. Open pin 1 and 2 of the J23 jumper.

6. Power ON the Evaluation board using the SW3 or the Splash board using the SW1 slide switch.

After power-up, PuTTY displays the options as shown in the following figure. Observe the design
version 01 loaded onto the device.

Figure 32 « Authentication and Programming Options

EP COMS - PuTTY — ] X
Design Version(MSB first): 00 01
32bit USERCODE/Silicon Signature (MSB first): 12345678

#%%% PplarFire Programming Example #*#%#%¥%
Select option:
**AUTHENTICATICOH**
1. Bit-stream authentication
2. IAP image authentication
**DEVICE PROGRAMMING**
3. Auto programming
4. IAP Program by Index
5. IAP Program by address
6. Initiate Auto-Update

At this point, the on-board SPI Flash device is empty. Hence, selecting Option 1 or 2 returns
unsuccessful status codes as shown in the following figure.

Figure 33 » Authentication Error

EP COMS - PuTTY - | X

Eitstream authentication for image at address 0x1400000 i=s in progress...
fluthentication =status: 0B
====% PoplarFire Programming Example ==*%=
Select option:
**LOTHENTICATICON**
1. Bit-stream authentication
2. IAP image authentication
#**DEVICE PROGRAMMING**
3. Auto programming
4, IAP Program by Index
5. IAP Program by address
6. Initiate Auto-Update

Selecting option 4, 5, or 6 does not initiate any program operation as the on-board SPI flash is empty.

Microsemi Proprietary AC466 Revision 7.0 32



Running the Demo

& Microsemi

a @MI:HGCHIP company

5.1 Programming On-board SPI Flash Using Libero

Libero SoC Design Suite supports the on-board SPI Flash programming using JTAG. For more
information about the SPI Flash programming modes, see UG0714: PolarFire FPGA Programming User
Guide.

The external SPI flash can also be programmed through FlashPro Express software. See Appendix 2:
Programming the Device and External SPI Flash Using FlashPro Express, page 39 for more information.

To optimize the SPI flash programming time, change the TCK frequency value under Configure
Programmer as shown in the following figure.

Figure 34 + Configure Programming Settings

@, Verify Timing
Open SmartTime
[ [o} Verify Power
£% Open 55N Analyzer
b Configure Hardware

[ Programming Connectivity and In
.~ @ Configure Programmer_|
gk Select Programmer

» Program Design
+[| Generate FPGA Array Data
+] Configure Design Initialization Dat|
+[] Generate Design Initialization Data TCK Mode: Free Running Clock
{5t Configure I/0 States During JTAG
» Configure Programming Options
@ Configure Security

B Programmer Settings *

FlashPro ] FlashPro Lite FlashPro3 FlashPro4 | FlashPro5

i, ¥ setvpump

"% Generate Bitstream ¥ Force TCK Frequency
@ Run PROGRAM Action l—_|
=} » Program 5P Flash Image 4 | MHz L\\)
3 Generate SPI Flash Image é
‘3 Run PROGRAM_SPI_IMAGE Ac| 3 Set Defaults
» Handoff Design for Production
@ Configure Permanent Locks for Pr g

4 Export Bitstream 10
4 Export FlashPro Express Job Help  Jc OK | Cancel |
4 Export SPI Flash Image D
+| Export Pin Report

P TR Y3

To program the SPI flash using JTAG, perform the following steps:

1.

2.

Ensure that the jumper settings on the board are the same as those listed in Table 7, page 27 (for
Evaluation board) and Table 8, page 28 (for Splash board).

On the Design Flow window, select Program Design and then double-click Configure Design
Initialization Data and Memories.

Figure 35 » Configure Design Initialization Data and Memories Option

= » Program Design

[ +[| Generate FPGA Array Data
+] Configure Design Initialization Data and Memories
[ +[] Generate Design Initialization Data

In the Design and Memory Initialization page, select SPI Flash tab, as shown in Figure 36, page 33.
In SPI Flash Clients pane, select Add SPI Bitstream Client to add the required programming
images (.spi images), and click Apply. These images are provided at

mpf_ac466_eval/splash_df/Libero_Project/hw_project/designer/top/export.

Figure 36 « SPI Flash Tab
Desian Inifisization | LPROM | stivm Fabric RAMs |

I Apply I Discard |

Help |

W Enable Auto Update

Manufacturer: |MICRON h 0 Part No:

Usage statistics

Available memory (MB): 127
Used memory (MB): 27
Free memory (MB) : 100

SPI Flash Clients

Add... v| Edit... Delete

. Bypass Back Level
Type Index Content File Adetart Adiﬂd SESIQH Protection for
ress ress | Version | pecovery/Golden bitstream
~ galden_image_v0 SP1 Bitstream for Recovery/Golden |0 A AT S NE 0x400 0x91384f |0 Disabled

\golden_image_v0.spi

designer\PROC_SUBSYSTEM'\export
I iap_image_v5 SPI Bitstream for IAP Vap_image_v5.pi 0%14000... | Ox1d1344f|5 Disabled

Microsemi Proprietary AC466 Revision 7.0 33


http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523

Running the Demo

& Microsemi
a AS\MicrocHip company
5. Double-click Generate SPI Flash Image and double-click Run PROGRAM_SPI_IMAGE Action to
get the SPI flash programmed with the programming images as shown in the following figure.

Figure 37 » SPI Flash Programming

("4 = » Program SPI Flash Image
{3 Generate 5P| Flash Image
Run PROGRAM_SPI_IMAGE Action

At this point, the on-board SPI Flash device is programmed with the images.

5.2 Running Auto Update

To run auto update, perform the following steps:

1. Start the PUTTY and power-cycle the board. The auto update is initiated and update image
(update_image_v2.spi) gets programmed into the device.

Observe the design version 02 as shown in the following figure.
Figure 38 « Auto Update

EP COMS - PuTTY - | X

Design Version (MSB first):

32bit USERCODE/Silicon Signature (MSB first): 23456789
#%%% PplarFire Programming Example ##**%%

Select option:

**LOTHENTICATICON**

1. Bit-stream authentication

2. IAP image authentication

#**DEVICE PROGRAMMING**

3. Auto programming

4, IAP Program by Index

5. IAP Program by address

E. Initiate Auto-Update

5.3 Running Authentication

To run bitstream authentication, perform the following steps:

1. Press 1 to initiate the bitstream authentication.
After successful authentication, PuTTY displays the status code as shown in the following figure.

Figure 39 « Successful Bitstream Authentication

EP COMS - PuTTY - | X

Bitstream authentication for image at address 0x1400000 i=s in progress...
Authentication status: SUCCESS
#%%% PplarFire Programming Example ##**%%
Select option:
**LOTHENTICATICON**
1. Bit-stream authentication

2. IAP image authentication w

2. Press 2 to initiate the IAP image authentication.
After successful authentication, PUuTTY displays the status code, as shown in the following figure.

Figure 40 + Successful IAP Image Authentication

EP COMS - PuTTY - | X

IAP image authentication for image at index 2 is in progress...
Authentication status: SUCCESS
#%%% PplarFire Programming Example ##**%%
Select option:
**LOTHENTICATICON**
1. Bit-stream authentication W

This concludes the bitstream and IAP image authentication.

Microsemi Proprietary AC466 Revision 7.0 34



Running the Demo

& Microsemi

a AS\MicrocHip company

54 Running Auto Programming

To run Auto programming, perform the following steps:

1. Press 3in PUTTY. The PuTTY natifies to erase the device using FlashPro and power-cycle the
board as shown in the following figure.

Figure 41 « Notifying ERASE Action

EP COMS - PuTTY - | X

Erase the PolarFire device using the FlashPro ERASE action.
Next Power cycle the board to initiate AutoProgramming on Blank device.
#%%% PplarFire Programming Example ##**%%

Select option:

**AUTHENTICATION**

1. Bit-stream authentication

2. IAP image authentication

**DEVICE PROGRAMMING**

3. Auto programming

4, IAP Program by Index

5. IAP Program by address

6. Initiate Auto-Update

] v

2. Using FlashPro, erase the device and power-cycle the board.
All the LEDs stop glowing for a few seconds, which indicates that auto programming is in progress.
The highest programming image version is selected from the first two available images in external

SPI Flash for auto programming. In this case, it is version 2 (update_image_v2.spi).
PuUTTY displays the updated design version, as shown in the following figure.
Figure 42 « Successful Auto Programming

EP COMS - PuTTY - | X

Design Version (MSB first):

32bit USERCODE/Silicon Signature (MSB first): 23456789
#%%% PplarFire Programming Example ##**%%

Select option:

**LOTHENTICATICON**

1. Bit-stream authentication

2. IAP image authentication

#**DEVICE PROGRAMMING**

3. Auto programming

4, IAP Program by Index

5. IAP Program by address

E. Initiate Auto-Update

This concludes running the Auto programming feature.

Microsemi Proprietary AC466 Revision 7.0 35



Running the Demo

& Microsemi

a @MI:HGCHIP company

5.5 Running IAP

To run IAP, perform the following steps:

1. Press 4, IAP program by Index. After around 28 seconds, the IAP with image at index 2 is executed
successfully and the design version 05 is displayed as shown in the following figure.

Figure 43 + Successful IAP at Index 2

EP COMS - PuTTY - | X

IAP PROGEAM for image at index 2 is in progress...

It takes approximately 28 secondsE

Design Version (M5B first):

32pbit USERCODE/Silicon Signature (MSB first): 56789ABC
#%%% PplarFire Programming Example ##**%%

Select option:

**LOTHENTICATICON**

1. Bit-stream authentication

2. IAP image authentication

#**DEVICE PROGRAMMING**

3. Auto programming

4, IAP Program by Index

5. IAP Program by address w

2. Press 5, IAP program by address. After around 28 seconds, the IAP with the image at address
0x1400000 is executed successfully and the design version 05 is displayed as shown in the
following figure.

Figure 44 « Successful IAP by Address

EP COMS - PuTTY - | X

IAP PROGEAM for image at address 0x1400000 is in progress...
It takes approximately 28 5econd5§
Design Version (MSB first):
32pbit USERCODE/Silicon Signature (MSB first): 56789ABC
#%%% PplarFire Programming Example ##**%%
Select option:
**LOTHENTICATICON**
1. Bit-stream authentication
2. IAP image authentication
#**DEVICE PROGRAMMING**
3. Auto programming
4, IAP Program by Index w

This concludes running the IAP feature.

For information about programming the on-board SPI flash using the fabric logic, see Appendix 1:
Programming On-board SPI Flash Using the Fabric Logic Through the Host Loader, page 37.

Microsemi Proprietary AC466 Revision 7.0 36



Appendix 1: Programming On-board SPI Flash Using the Fabric Logic Through the Host

Loader

& Microsemi

a AS\MicrocHip company

6 Appendix 1: Programming On-board SPI
Flash Using the Fabric Logic Through
the Host Loader

To program the SPI flash, perform the following steps:

1.

Power OFF the Evaluation board using the SW3 slide switch or the Splash board using the SW1
slide switch. Close the PuTTY and set the on-board SW11 (Evaluation board) or SW8 (Splash
board) DIP 1 to ON.

Disconnect and connect the USB cable from the host PC to FTDI port J5 on the Evaluation board
and J1 on the Splash board. This ensures clearing off UART buffers.

Power ON the Evaluation board using the SW3 or the Splash board using the SW1 slide switch.
Locate the 1oad spi flash.bat batch file from the

$DesignFiles Folder\host pc_ tool pf folder.

Right-click 1oad _spi flash.bat batch file and edit it as follows to match the COM port number.
For example, COM Port 9 in this instance.

spi loader.exe 9 golden image v0.spi update image v2.spi iap image v5.spi
Double-click the 1oad spi flash.bat file to load the programming images—listed in the
following table—into external SPI flash. The application firmware writes the flash directory contents
into the external SPI flash along with programming images.

The command window prompts to press enter to erase and program the SPI Flash with programming
images.

The LED 4 blinks to indicate that the SPI Flash Erase operation is in progress. The command prompt
displays the status as shown in the following figure.

Figure 45 » Erasing SPI Flash

D:Yy

Bl CAWINDOWS system32\cmd.exe - O x

le_v5.spi

Serial port \\.\COM@ successfully reconfigured.

Ensure the PolarFire Kit is running .

Press 'Enter’ to Program the External SPI flash ..

If you want to run programming options, change the DIP switch-1 position to OFF and power cycle the board.

The External SPI flash is erasing...
Handshaking with PolarFire kit is in progress...

~
\host_pc_tool_pfrspi_loader.exe 9 golden_image_ve.spi update_image_v2.spi iap_imag

Microsemi Proprietary AC466 Revision 7.0 37



Appendix 1: Programming On-board SPI Flash Using the Fabric Logic Through the Host

Loader C MI'CI‘OSGmi

a AS\MicrocHip company

7. The SPI Flash programming operation starts and takes 20-30 minutes to complete. LED 5 blinks to
indicate that the SPI Flash programming operation is in progress.
When the SPI Flash programming operation completes successfully, LED 5 starts to glow.
The Command prompt shows the status and the time taken as shown in the following figure.

Figure 46 + Command Prompt Status

============Begin transaction Ack ‘b’ is received from the target=============
Requested address from the target =9527296

Requested returnbytes from the target =1296

bytes read from the file=1296

Remaining bytes =8

Sending the data to the target. ...l st e it e e
End of one transaction:fAck 'a' received from target for the data from the host

start time 22:54:23

end time 23:24:28

DONE press ctrl+c to terminate the application.

8. Close the application.

9. Set the on-board SW11 (Evaluation board) or SW8 (Splash board) DIP1 to OFF and open the
PuTTY terminal. Power cycle the board to select the programming options.

Microsemi Proprietary AC466 Revision 7.0 38



Appendix 2: Programming the Device and External SPI Flash Using FlashPro Express = .
& Microsemi

a AS\MicrocHip company
7 Appendix 2: Programming the Device and
External SPI Flash Using
FlashPro Express

This section describes how to program the PolarFire device with the .job programming file using
FlashPro Express. The .job files are available at the following design files folder location:

mpf acd466 eval df\Programming Job or mpf ac466 splash df\Programming Job

progamming appnote FPGA SPI images v1:contains both PolarFire device contents and SPI
images. When the file is selected for programming, the FlashPro express software programs the
PolarFire FPGA device and external SPI flash memory with programming images. The programming
takes nearly 30 minutes to complete.

progamming appnote only FPGA_ v1l:contains only PolarFire device contents.When the file
selected for programming, the FlashPro express software programs the PolarFire FPGA device only.

To program the device and external SPI flash, perform the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in Table 7, page 27 (for
Evaluation board) and Table 8, page 28 (for Splash board).
Note: The power supply switch must be switched off while making the jumper connections.

2. Connect the power supply cable to the J9 connector on the Evaluation board or J2 connector on the
Splash board.

3. Connect the USB cable from the host PC to the J5 (FTDI port) on the Evaluation board or J1 (FTDI
port) on the Splash board.

4. Power ON the Evaluation board using the SW3 slide switch or the Splash board using the SW1 slide
switch.

5.  On the host PC, launch the FlashPro Express software.

6. Click New or select New Job Project from FlashPro Express Job from Project menu to create a
new job project, as shown in the following figure.

Figure 47 « FlashPro Express Job Project

E FlashPro Express E FlashPro Express
Project Edit View Programmer Help Project | Edit View Programmer Help
_'] Mew Job Project from FlashPro Express Job Ctrl+N . h

Job Projects
== Open Job Project
¥ Close Job Project
Open... il Save Job Project Ctrl+Shift+A
Recent Projects .

Set Log File

or Export Log File
Preferences...
Execute Script Ctrl+U

Export Script File...
Recent Projects L4

Exit Ctrl+0Q

Microsemi Proprietary AC466 Revision 7.0 39



Appendix 2: Programming the Device and External SPI Flash Using FlashPro Express = .
& Microsemi

a AS\MicrocHip company

Enter the following in the New Job Project from FlashPro Express Job dialog box:

*  Programming job file: Click Browse, and navigate to the location where the .job file is located
and select the file. The default location is:
<download_folder>\mpf_ac466_eval_df\Programming_dJob.

* FlashPro Express job project location: Click Browse and navigate to the location where you
want to save the project.

Figure 48 « New Job Project from FlashPro Express Job

E Mew Job Project from FlashPro Express Job X

Programming job file:
‘mpf_ac466_eval_liberosocy12p0_dfProgramming_Job\programming_appnote_v1.job

FlashPro Express job project name:

o programming_appnote_v1

I FlashPro Express job project location: I

| E:\12.0_designs Browse. ..

Help oK | Cancel |

Click OK. The required programming file is selected and ready to be programmed in the device.
The FlashPro Express window appears as shown in the following figure. Confirm that a programmer
number appears in the Programmer field. If it does not, confirm the board connections and click
Refresh/Rescan Programmers.

Figure 49 » Programming the Device

Project Edit View Programmer Help

| Refresh/Rescan Programmers |

Programmer

&  weFsor i

<2 TDO ™I &2

j W v [e2001RUXEY

IDLE IDLE

I PROGRAM <2 I

RUN

IDLE

Log

[E]Messages &3 Errors i, Warnings i} Info

& X

Frbedded FlashPro5 programmer detected.
programmer "E2001RUX6Y"

Created FlashPro Express Job Project.

: FlashProS J

I

Microsemi Proprietary AC466 Revision 7.0 40



Appendix 2: Programming the Device and External SPI Flash Using FlashPro Express O M. em’.

a AS\MicrocHip company

10. Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as
shown in the following figure. See Running the Demo, page 32 to run the demo.

Figure 50 « FlashPro Express—RUN PASSED

Project Edit View Programmer Help

Refresh/Rescan Programmers |

O  wrnor 8

< TDO TOI <2

I I

Programmer

A iocAMMER@PESSED

-oa 8 x
[E] Messages €3 Errors i, Warnings i} Info |
programmer "E2001RUX6Y' : Scan and Check Chain PASSED. ;I

programmer "E2001RUX6Y" : device "MPF300T"
programmer 'E2001RUX6EY' : device 'MPF300T"
programmer "E2001RUK6Y' : device 'MPF300T"
programmer "E2001RUX6Y' : device "MPF300T"
programmer "E2001RUX6Y" : device "MPF300T"
programmer 'E2001RUX6EY' : device 'MPF300T"
programmer "E2001RUK6EY" device "MPF300T
programmer "E2001RUX6Y" deviece "MPF300T
programmer "E2001RUX6Y" : device "MPF300T"
programmer 'E2001RUX6EY' : device 'MPF300T"
Drogrammer 'F2OOIRIXEY' - deyice TMPFIOOTT
programmer "E2001RUX6Y' : device "MPF300T" Finished: Fri Feb 01 11:44:56 2019 (Elapaed time 00:01:44)
programmer "E2001RUX6Y' : device "MPF300T" Executing action PROGRAEM PASSED.

programmer "E2001RUXGY' : Chain programming PASSED.

Chain Programming Finished: Fri Feb 01 11:44:56 2019 (Elapsed time 00:01:44)

Executing action PROGRAEM

EXPORT ISC_ENABLE RESULT[32] = 00000000

EXPORT CRCERR[1] = 0

Programming FPGA Array and sNVM...

EXPORT BITS component bitstream digest[256] = e628346f15£5Th0bb57f2a%aTha3%a341126caa067b4873£a03d215c21d40001c
EXPORT Fabric component bitstream digest[25€] = 45abfS8f3e53ddee93e658b6c769ac04875a23b5394fedaldbeda9412919£5a5
EXPORT sNVM component bitstream digest[256] = T9dfc8f8733ab3227a151990d92£5f1338feB8053¢c53c26ccT616cd593cBd566
EXPORT EOB compeonent bitstream digest[256] = 2abf624bbeé6l7laabd794cd2é8628260b02ekkbdd159£9542T657agaT527d8a0

EXPORT DSN[128] = 8b7bdd8592cdad4c59a5026455dc25bel

0o-0-0-0-0-0

11. Close FlashPro Express or in the Project tab, click Exit.

Microsemi Proprietary AC466 Revision 7.0 41



Appendix 3: Running the TCL Script

& Microsemi

a AS\MicrocHip company

8 Appendix 3: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design
flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

1. Launch the Libero software

2. Select Project > Execute Script....

3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
4. Click Run.

After successful execution of TCL script, Libero project is created within TCL_Scripts directory.

For more information about TCL scripts, refer to mpf_ac466_eval_df/TCL_Scripts/readme.txt and
mpf_ac466_splash_df/TCL_Scripts/readme.txt.

Refer to Libero® SoC TCL Command Reference Guide for more details on TCL commands. Contact
Technical Support for any queries encountered when running the TCL script.

Microsemi Proprietary AC466 Revision 7.0 42


https://www.microsemi.com/document-portal/doc_download/1245481-libero-soc-v12-6-tcl-commands-reference-guide-for-smartfusion2-igloo2-and-rtg4

Appendix 4: References

9

& Microsemi

a @Mlcno:mn company

Appendix 4: References

This section lists the documents that provide more information about programming and other IP cores
used.

For more information about PolarFire FPGA programming, see UG0714: PolarFire FPGA
Programming User Guide.

For more information about the CoreJTAGDEBUG IP core, see CoreJTAGDebug HB.pdf.

For more information about the MIV_RV32 IP core, see MIV_RV32 Handbook from the Libero SoC
Catalog.

For more information about the CoreUARTapb IP core, see CoreUARTapb_HB.pdf.

For more information about the CoreAPB3 IP core, see CoreAPB3_HB.pdf.

For more information about the CoreGPIO IP core, see CoreGPIO_HB.pdf.

For more information about the PolarFire initialization monitor, see UG0725: PolarFire FPGA Device
Power-Up and Resets User Guide.

For more information about how to build a Mi-V processor subsystem for PolarFire devices, see
TUO775: PolarFire FPGA: Building a Mi-V Processor Subsystem Tutorial.

For more information about the PF_CCC IP core, see UG0684: PolarFire FPGA Clocking Resources
User Guide.

For more information about Libero, ModelSim, and Synplify, see Microsemi Libero SoC PolarFire
web page.

Microsemi Proprietary AC466 Revision 7.0 43


https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136530
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136530
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130958
http://soc.microsemi.com/ipdocs/CoreAPB3_HB.pdf
http://www.actel.com/ipdocs/CoreJTAGDebug_HB.pdf
https://www.microsemi.com/document-portal/doc_download/1244850-mi-vrv32imc
http://soc.microsemi.com/ipdocs/CoreGPIO_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136945

	1 Revision History
	1.1 Revision 7.0
	1.2 Revision 6.0
	1.3 Revision 5.0
	1.4 Revision 4.0
	1.5 Revision 3.0
	1.6 Revision 2.0
	1.7 Revision 1.0

	2 PolarFire FPGA Auto Update and In-Application Programming
	2.1 PF_SYSTEM_SERVICES Overview
	2.2 Design Requirements
	2.3 Prerequisites
	2.4 Demo Design
	2.4.1 Design Implementation
	2.4.1.1 PF_INIT_MONITOR
	2.4.1.2 PF_CCC_0 Configuration
	2.4.1.3 Mi-V Soft Processor Configuration
	2.4.1.4 CoreGPIO_0 Configuration
	2.4.1.5 CoreSPI Configuration
	2.4.1.6 Design Memory Map
	2.4.1.6.1 CoreAPB3 Configuration



	2.5 Clocking Structure

	3 Libero Design Flow
	3.1 Synthesis
	3.2 Place and Route
	3.2.1 Resource Utilization

	3.3 Verify Timing
	3.4 Generate FPGA Array Data
	3.5 Configure Design Initialization Data and Memories
	3.6 Configure Programming Options
	3.7 Generate Bitstream
	3.8 Generating the SPI programming Images
	3.9 Export FlashPro Express Job
	3.10 Programming the Device
	3.10.1 Programming the Device on the Evaluation Board
	3.10.2 Programming the Device on the Splash Board


	4 Serial Terminal Emulation Program Setup
	5 Running the Demo
	5.1 Programming On-board SPI Flash Using Libero
	5.2 Running Auto Update
	5.3 Running Authentication
	5.4 Running Auto Programming
	5.5 Running IAP

	6 Appendix 1: Programming On-board SPI Flash Using the Fabric Logic Through the Host Loader
	7 Appendix 2: Programming the Device and External SPI Flash Using FlashPro Express
	8 Appendix 3: Running the TCL Script
	9 Appendix 4: References

