
AC479
Application Note

Debugging PolarFire FPGA Using SmartDebug

51900479. 8.0 10/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary AC479 Revision 8.0 iii

Contents

1 Revision History . 1
1.1 Revision 8.0 . 1
1.2 Revision 7.0 . 1
1.3 Revision 6.0 . 1
1.4 Revision 5.0 . 1
1.5 Revision 4.0 . 1
1.6 Revision 3.0 . 1
1.7 Revision 2.0 . 1
1.8 Revision 1.0 . 1

2 Debugging PolarFire FPGA Designs Using SmartDebug . 2
2.1 Design Requirements . 3
2.2 Prerequisites . 3
2.3 Demo Design . 4

2.3.1 PF_CCC . 4
2.3.2 PF_INIT_MON . 4
2.3.3 reset_des_sync . 4
2.3.4 XCVR_Debug . 5
2.3.5 Fabric_Debug . 5
2.3.6 DDR Interface . 6

2.4 Clocking Structure . 8
2.5 Reset Structure . 8
2.6 Enabling FPGA Hardware Breakpoint (FHB) . 9
2.7 Programming the Device . 9
2.8 Debugging Using SmartDebug . 11

2.8.1 Launch SmartDebug from Libero . 11
2.8.2 View Device Status . 12
2.8.3 Debug FPGA Array . 12
2.8.4 Using FHB . 17
2.8.5 Debug µPROM . 23
2.8.6 sNVM Debug . 23
2.8.7 Debug TRANSCEIVER . 25
2.8.8 Debug DDR IO Margin . 36

2.9 Conclusion . 37

3 Appendix 1: Known Issues . 39
3.1 Data Traffic Errors on XCVR Lanes in CDR Mode . 39

4 Appendix 2: Place and Route . 40

5 Appendix 3: Running the TCL Script . 42

6 Appendix 4: References . 43

Figures

Figure 1 SmartDebug Top-Level Blocks . 4
Figure 2 XCVR_Debug Overall Design Blocks . 5
Figure 3 Fabric_Debug Overall Design Blocks . 5
Figure 4 DDR Interface Overall Blocks . 6
Figure 5 Simulating Pre-Synthesized Design . 6
Figure 6 AXI Master signal write operation . 7
Figure 7 DDR4 signals . 7
Figure 8 AXI Master signals read operation . 7
Figure 9 Clocking Structure . 8
Figure 10 Reset Structure . 8
Figure 11 Enabling FHB . 9
Figure 12 Board Setup (Evaluation kit) . 10
Figure 13 Programming the Device . 10
Figure 14 Launching SmartDebug Design . 11
Figure 15 SmartDebug Window Debug Options . 11
Figure 16 Device Status Report Sample . 12
Figure 17 Debug FPGA Array—Live Probes . 13
Figure 18 Debug FPGA Array—Active Probes . 14
Figure 19 Pseudo-static Signal Polling . 14
Figure 20 Debug FPGA Array—Memory Blocks . 15
Figure 21 Memory Blocks—Read Block . 16
Figure 22 Memory Blocks—Write Block . 16
Figure 23 Debug FPGA Array—Probe Insertion . 17
Figure 24 Event Counter . 18
Figure 25 Frequency Monitor . 19
Figure 26 User Clock Frequencies . 19
Figure 27 Select an FHB . 20
Figure 28 Adding FHB Trigger to Active Probes . 20
Figure 29 Selecting Clock Domains . 21
Figure 30 VCD to WLF Conversion . 22
Figure 31 Adding Signals . 22
Figure 32 Wave Window . 22
Figure 33 µPROM Debug . 23
Figure 34 sNVM Debug . 24
Figure 35 sNVM Debug—Client View . 24
Figure 36 Secured NVM Details . 25
Figure 37 sNVM Debug—Page View . 25
Figure 38 Configuration Report . 26
Figure 39 Debug TRANSCEIVER—Smart BERT . 27
Figure 40 Smart BERT—Error Counter . 27
Figure 41 Debug TRANSCEIVER—Loopback Modes . 28
Figure 42 Static Pattern Transmit . 28
Figure 43 Recommended Settings for Eye Monitor . 29
Figure 44 Debug TRANSCEIVER—Eye Monitor . 30
Figure 45 Eye Monitor GUI After Applying the Mask Using Apply Mask Button . 31
Figure 46 Register Access Tab . 32
Figure 47 Start Record Actions . 32
Figure 48 Saving the Recording . 33
Figure 49 Signal Integrity . 34
Figure 50 Optimize Receiver . 35
Figure 51 Eye Diagram after using Optimize Receiver . 36
Figure 52 DDR IO Margin Window . 37
Figure 53 Training Data . 37
Figure 54 I/O Attributes Tab . 40
Microsemi Proprietary AC479 Revision 8.0 iv

Figure 55 Editing with I/O Editor . 40
Figure 56 I/O Editor . 40
Figure 57 Placing the TX_PLL, XCVR_REF_CLK, and PF_XCVR Components (Evaluation kit) 41
Figure 58 Placing the TX_PLL, XCVR_REF_CLK, and PF_XCVR Components (SPLASH kit) 41
Figure 59 Constraint Files on the I/O Attributes Tab . 41
Figure 60 Place and Route . 41
Figure 61 Enabling FHB . 42
Microsemi Proprietary AC479 Revision 8.0 v

Microsemi Proprietary AC479 Revision 8.0 vi

Tables

Table 1 Design Requirements . 3
Table 2 Jumper Settings For Evaluation Kit . 9

Revision History

Microsemi Proprietary AC479 Revision 8.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 8.0
The following is a summary of the changes made in this revision.

• Updated for Libero SoC v2021.2.
• Updated Design Requirements, page 3.
• Added DDR Interface, page 6 in Demo Design, page 4.
• Updated Clocking Structure, page 8 and Reset Structure, page 8.
• Updated Enabling FPGA Hardware Breakpoint (FHB), page 9.
• Updated Programming the Device, page 9.
• Added information about applying eye mask on plotted eye diagram, see Eye Monitor, page 29.
• Added Register Access, page 31 and Start Record Actions, page 32.
• Added Debug DDR IO Margin, page 36.

1.2 Revision 7.0
Added Appendix 3: Running the TCL Script, page 42.

1.3 Revision 6.0
The following is a summary of the changes made in this revision.

• Updated the document for Libero SoC v12.2.
• Removed the references to Libero version numbers.

1.4 Revision 5.0
The following is a summary of the changes made in this revision.

• Updated the document for Libero® SoC v12.0
• The new FHB feature of SmartDebug was added, see Using FHB, page 17.
• Updated the supported Eye Scan Modes in Eye Monitor, page 29.

1.5 Revision 4.0
The following is a summary of the changes made in this revision.

• Converted this document from a tutorial (TU0804) to an application note (AC479).
• Updated the document for both Evaluation and SPLASH kits.
• Included the information from UG0743: PolarFire FPGA Debug User Guide.
• Updated the document for Libero® SoC PolarFire v2.3.

1.6 Revision 3.0
The document was updated for Libero SoC PolarFire v2.2.

1.7 Revision 2.0
The document was updated for Libero SoC PolarFire v2.1.

1.8 Revision 1.0
The first publication of this document.

Debugging PolarFire FPGA Designs Using SmartDebug
2 Debugging PolarFire FPGA Designs Using
SmartDebug

Design debug is a critical phase of the FPGA design flow. SmartDebug enables the debugging of
designs by providing verification and troubleshooting features at the hardware level. It provides access to
probe points, Non-Volatile Memory (NVM), fabric and fabric RAM blocks, transceivers, and the DDR
controller. These features enable designers to check the state of inputs and outputs in real-time, without
any design modification. For more information about SmartDebug features, see PolarFire SmartDebug
User Guide.

This application note provides a demo design to demonstrate how SmartDebug is used for debugging
Transceiver, DDR Memory, and Dual-Port SRAM (DPSRAM) in a PolarFire FPGA design.
Microsemi Proprietary AC479 Revision 8.0 2

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf

Debugging PolarFire FPGA Designs Using SmartDebug
2.1 Design Requirements
The following table lists the hardware and software requirements for this demo design.

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

2.2 Prerequisites
Before you begin:

1. Download and install Libero SoC (as indicated in the website for this design) from the following
location:
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads

2. Demo design files download link:
• http://soc.microsemi.com/download/rsc/?f=mpf_ac479_eval_df

Table 1 • Design Requirements

Requirement Description
Operating system 64-bit Windows 7 or 10

Hardware
PolarFire Evaluation Kit (MPF300T-1FCG1152I) Rev D or later

2 SMA-to-SMA cables with 5 Gbps support Only for Evaluation Kit

Software
Libero® SoC Note: Refer to the readme.txt file provided in the

design files for the software versions used
with this reference design.
Microsemi Proprietary AC479 Revision 8.0 3

http://soc.microsemi.com/download/rsc/?f=mpf_ac479_eval_liberosocv12p0_df
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads
http://soc.microsemi.com/download/rsc/?f=mpf_ac479_eval_df

Debugging PolarFire FPGA Designs Using SmartDebug
2.3 Demo Design
This section describes the fabric, DDR interface, and XCVR design blocks implemented in Libero SoC.

Figure 1 • SmartDebug Top-Level Blocks

Note: The FHB feature is not enabled in the demo design. To enable FHB debugging, provide the
"FHB_ENABLE" argument with the given tcl script. This creates the design without the DDR controller
block because FHB debugging is currently not supported for designs that include DDR controller. For
more information about enabling FHB debugging using the tcl script, see Appendix 3: Running the TCL
Script, page 42.

The top level block contains the following blocks:

1. PF_CCC, page 4
2. PF_INIT_MON, page 4
3. reset_des_sync, page 4
4. XCVR_Debug, page 5
5. Fabric_Debug, page 5
6. DDR Interface, page 6

2.3.1 PF_CCC
The PF_CCC block generates 125 MHz clock. Fabric_Debug logic works on this clock.

2.3.2 PF_INIT_MON
The PF_INIT_MON block checks the status of device initialization. When the initialization of SRAM and
µPROM is completed, the IP asserts DEVICE_INIT_DONE signal.

2.3.3 reset_des_sync
The reset_des_sync_0 block is an instantiation of CoreRESET_PF IP. It synchronizes the de-assertion of
asynchronous reset.
Microsemi Proprietary AC479 Revision 8.0 4

Debugging PolarFire FPGA Designs Using SmartDebug
2.3.4 XCVR_Debug
Figure 2 shows the IP blocks inside the XCVR_Debug block. The XCVR_Debug block demonstrates
SmartDebug's real-time Signal Integrity (SI) testing and debugging capabilities to test and debug the
PolarFire transceiver. The XCVR_Debug block contains CoreSmartBERT, TX_PLL, and
XCVR_REF_CLK IP cores. CoreSmartBERT implements the PolarFire transceiver in the PMA mode.

Figure 2 • XCVR_Debug Overall Design Blocks

Note: SmartBERT includes the PolarFire Transceiver, which interfaces to the SmartDEBUG tool through a user
control GUI to run the hardened PRBS generator and checkers. It also has fabric pattern generators and
checks with more features like error injection.

2.3.5 Fabric_Debug
Figure 3 shows the IP blocks inside the Fabric_Debug block.

Figure 3 • Fabric_Debug Overall Design Blocks

The Fabric_Debug block demonstrates the following FPGA fabric debug features of SmartDebug.

• FPGA array debugging capabilities using a counter that loads a counting pattern into the DPSRAM
instance. The data value of the DPSRAM block is the same as the address value of the block. On
the read side of the DPSRAM, a count checker (count_chk) ensures that the count progresses as
expected. If there is an error, the output (error) is driven high.

• µPROM debugging feature of SmartDebug using a µPROM instance.
• Live probes to monitor an internal user-selected point on the device in real time, and how to set

active probes for dynamic asynchronous read and write to a flip-flop or probe point. These features
help to quickly observe the output of the logic internally or quickly experiment to determine how the
logic is affected by writes to a probe point.

• Capabilities to read and modify fabric SRAM content in real-time.
µPROM: This is the embedded non-volatile PROM arranged in a single row at the bottom of the fabric
and is read only through the fabric interface. µPROM is programmed with the FPGA bitstream during
fabric programming. µPROM is used to store the initialization data for DPSRAM and µSRAM and other
user data. μPROM is initiated with the uprom.mem file.

µSRAM: This is the fabric RAM block that is accessed using the PF_SRAM_AHBL_AXI IP. Generally,
µSRAM is initialized with a user application executable at device power-up. In the example design,
µSRAM is initialized with the sram.hex file.
Microsemi Proprietary AC479 Revision 8.0 5

Debugging PolarFire FPGA Designs Using SmartDebug
2.3.6 DDR Interface
The DDR_Interface block demonstrates Debug DDR IO Margin feature in SmartDebug, select the
Debug DDR Memory option in the main SmartDebug window. Debug DDR Memory is available only for
DDR3/DDR4/LPDDR3 memory configurations on PolarFire and PolarFire SoC devices. This option is not
visible when DDR memory is not used in the design.

Note: For detailed information on DDR Debug, see PolarFire SmartDebug User Guide.

Figure 4 • DDR Interface Overall Blocks

2.3.6.1 Simulation Using Micron DDR4 SDRAM Model
Follow these steps to simulate the DDR4 Model:

1. The PolarFire Evaluation Kit features the DDR4 SDRAM from Micron with the part number
MT40A1G8WE083E. The DDR4 simulation model files are available at the design files path \<Libero
project directory>\stimulus.

2. For running simulation, select Simulate from Design Flow > Verify Pre-Synthesized Design as
shown in the following figure.

Figure 5 • Simulating Pre-Synthesized Design

The AXI_IF block initiates 1K reads and writes to DDR4 memory via the CMD_Decoder block. The
following figures show the simulation waveforms.
Microsemi Proprietary AC479 Revision 8.0 6

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 6 • AXI Master signal write operation

Figure 7 • DDR4 signals

Figure 8 • AXI Master signals read operation
Microsemi Proprietary AC479 Revision 8.0 7

Debugging PolarFire FPGA Designs Using SmartDebug
2.4 Clocking Structure
The reference design has two clock domains. As shown in the following illustration, clock domain 1, used
for transceiver debug, runs at 156.25 MHz, and clock domain 2, used for fabric debug, runs at 125 MHz.

Figure 9 • Clocking Structure

2.5 Reset Structure
Figure 10 shows the reset structure used in the design.

Figure 10 • Reset Structure

PF TX PLL

On-board 156.25 MHz
Crystal Oscillator

Transceiver Debug Fabric Debug

Clock Domain 1
(156.25 MHz)

Clock Domain 2
(125 MHz)

PF CCC

On-board 50 MHz
Crystal Oscillator

DDR_Interface

Clock Domain 2
(125 MHz)

SYS_RESET_N
(K22)

reset_des_sync

INIT_DONE

PLL_LOCKPF_CCC

PF_INIT_MON
DEVICE_INIT_DONE

PLL_LOCK_0

EXT_RST_N

FABRIC_RESET_N

Fabric_Debug
rst_n

XCVR_Debug
SYS_RESET_N

DDR_Interface

SYS_RESET_N
Microsemi Proprietary AC479 Revision 8.0 8

Debugging PolarFire FPGA Designs Using SmartDebug
2.6 Enabling FPGA Hardware Breakpoint (FHB)
Using tcl script, a Libero SoC project with FHB enabled can be created. A tcl script is provided in the
design files folder under the TCL_Scripts directory for creating a Libero SoC Project with FHB enabled.

Follow these steps to create the Libero project with FHB enabled:

1. Launch Libero SoC.
2. Select Project > Execute Script....
3. Select Browse and then select script.tcl from the downloaded TCL_Scripts directory.
4. In the Argument tab, provide the FHB_ENABLE argument.
5. Click Run.
After successful execution of the TCL script, Libero SoC project is created within TCL_Scripts directory.
This can be confirmed by going to Project > Project Settings as shown in Figure 11.

Figure 11 • Enabling FHB

2.7 Programming the Device
The following steps describe how to program the device on a PolarFire Evaluation Kit.

1. Ensure that the following jumper settings are followed.
Note: Power-down the board before making the jumper connections.

2. Connect the power supply cable to the J9 connector on the board.
3. Connect the USB cable from the Host PC to the J5 (FTDI port) on the board.
4. Power on the board using the SW3 slide switch.

Table 2 • Jumper Settings For Evaluation Kit

Jumper Description
J46 Short pin 1 and 2 for setting the Reference Clock to 125 MHz on-board

oscillator

J18, J19, J20, J21, and J22 Short pin 2 and 3 for programming the PolarFire FPGA through FTDI

J28 Short pin 1 and 2 for programming through the on-board FlashPro5

J4 Short pin 1 and 2 for manual power switching using SW3

J17 Short pin 1 and 2

J12 Short pin 3 and 4 for 2.5 V
Microsemi Proprietary AC479 Revision 8.0 9

Debugging PolarFire FPGA Designs Using SmartDebug
5. Switch OFF the DIP1 switch.
6. Connect TXN to RXN and TXP to RXP using 2 SMA to SMA cables as shown in Figure 12. The

following figure shows the board setup.
Figure 12 • Board Setup (Evaluation kit)

7. In the Design Flow window, select Run PROGRAM Action, as shown in the following figure. This
programs the design into the device.

Figure 13 • Programming the Device
Microsemi Proprietary AC479 Revision 8.0 10

Debugging PolarFire FPGA Designs Using SmartDebug
2.8 Debugging Using SmartDebug
To debug the device using SmartDebug, follow these steps:

• Launch SmartDebug from Libero, page 11
• View Device Status, page 12
• Debug FPGA Array, page 12
• Using FHB, page 17
• Debug µPROM, page 23
• sNVM Debug, page 23
• Debug TRANSCEIVER, page 25
• Debug DDR IO Margin, page 36

2.8.1 Launch SmartDebug from Libero
On the Design Flow window:

1. Select Generate SmartDebug FPGA Array Data to generate data for SmartDebug Design.
Once the data is generated, a green tick mark is seen on the left side of the option indicating that the
data generation is successful.

2. Open SmartDebug Design.
Figure 14 • Launching SmartDebug Design

The SmartDebug window is displayed, as shown in Figure 15.
Figure 15 • SmartDebug Window Debug Options
Microsemi Proprietary AC479 Revision 8.0 11

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.2 View Device Status
The View Device Status option provides the device status report. It summarizes the device information,
programmer information, design information, factory serial number, and security information, if any are
set. To view the device status report, click View Device Status in the SmartDebug window. The
following figure shows a sample of the device status information.

Figure 16 • Device Status Report Sample

2.8.3 Debug FPGA Array
The Debug FPGA Array provides an interface to probe the user logic implemented in the logic elements
(LEs) of the FPGA using active and live probes, read-write access to the fabric flip-flops, and read-write
access to the memories implemented using DPSRAMs/URAMs. Probe insertion allows the assignment
of the internal signals to the assigned or unassigned pins. These signals can be monitored using the
oscilloscope in real-time. The Debug FPGA Array supports the following four features:

• Live Probes, page 12
• Active Probes, page 13
• Memory Blocks, page 15
• Probe Insertion, page 17

2.8.3.1 Live Probes
Live Probes enables the monitoring of two internal signals at a time in the design without having to repeat
the place and route. PolarFire devices have two dedicated live probe channels (for example, pin H6 and
G6 of PolarFire MPF300TS device). For more information about Live Probes, see PolarFire SmartDebug
User Guide.
Microsemi Proprietary AC479 Revision 8.0 12

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf

Debugging PolarFire FPGA Designs Using SmartDebug
The following steps explain the procedure of adding probe point to a list:

1. Select the Live Probes tab in the right pane. The probe signals are displayed in the left pane.
2. Select the probe points that you want to add from the Hierarchical View or Netlist View in the left

pane.
3. Right-click on the selected points and click Add to add them to the Live Probes. You can also add

the selected probe points by clicking Add in the top-right corner of the left pane. The probes signals
can be filtered with the Filter option.

4. Select any of the added probes and assign it to either Channel A or Channel B (by clicking on
'Assign to Channel A' or 'Assign to Channel B') as shown in Figure 17.

5. When the assignment is complete, the probe name appears to the right of the button for that
channel, and SmartDebug configures the Channel A and Channel B I/Os to monitor the desired
probe points.

6. Once the probe points are assigned, the probes can be monitored by connecting the probe points
(for example, pin H6 and G6) to the oscilloscope.

Figure 17 • Debug FPGA Array—Live Probes

2.8.3.2 Active Probes
Active Probes enable reading or changing the values of probe points in a design through JTAG. Active
Probes dynamically and asynchronously read or write to any logic element register bit. Active probes are
useful for quick observation of an internal signal. For more information about Active Probes, see
PolarFire SmartDebug User Guide. To add probe points to a list, perform the following steps:

1. Select the Active Probes tab in the right pane. The probe signals are displayed in the left pane.
2. Select the probe points that you want to add from the Hierarchical View or Netlist View in the left

pane.
3. Right-click the selected points and click Add to add them to the Active Probes. You can also add

the selected probe points by clicking Add in the top-right corner of the left pane. The probes signals
can be filtered with the Filter option.

4. Click Read Active Probes to read the content of the registers added to the window.
Microsemi Proprietary AC479 Revision 8.0 13

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 18 • Debug FPGA Array—Active Probes

5. To use pseudo static signal polling, on the Active Probes tab, right-click any probe point and select
Poll, as shown in the following figure.

Static signal polling is used to check whether the logical bit value is changed to expected polled value.

Figure 19 • Pseudo-static Signal Polling
Microsemi Proprietary AC479 Revision 8.0 14

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.3.3 Memory Blocks
SmartDebug provides the Memory Blocks tab to dynamically and asynchronously read from and write to
a selected FPGA fabric SRAM block. For more information about the Memory Blocks tab, see PolarFire
SmartDebug User Guide.Using the Memory Blocks tab, user can select the required memory block for
performing the following:

• Reading
• Capturing a snapshot of the memory
• Modifying memory values, and then write the values back to that block
To read and write memory blocks, follow these steps:

1. Select the Memory Blocks tab in the right pane of the SmartDebug window.
2. View the memory blocks in the left pane in the Hierarchical View.
3. Select the memory block in the left pane and click select in the top-right corner of the pane.
4. Right-click the selected memory block and click Add.
The following figure shows the Memory Blocks tab in Debug FPGA Array window.

Figure 20 • Debug FPGA Array—Memory Blocks

5. Click Read Block. The specified memory block is read as shown in the following figure.
Microsemi Proprietary AC479 Revision 8.0 15

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 21 • Memory Blocks—Read Block

6. Enter a hexadecimal value in the memory block locations and click Write Block to write content into
memory.

Note: The counter logic writes to SRAM constantly. Before you write to SRAM using SmartDebug, ensure that
the A_WEN signal (DIP1 of SW11) is low. This prevents SRAM being overwritten by the counter logic.

7. Switch On DIP1, enter a hexadecimal value in the memory block location(s) and click Write Block to
write the modified value to the SRAM, as shown in Figure 22.

Figure 22 • Memory Blocks—Write Block

8. The error LED(F22) light turns on, indicating an error in the counting pattern.
9. Go to Active Probes tab, read the value of error signal, it should show '1'. To use static signal

polling, right-click error_c:Fabric_Debug_0/count_chk_0/error:Q and select Poll (Poll for 0), as
shown in Figure 19.
Microsemi Proprietary AC479 Revision 8.0 16

Debugging PolarFire FPGA Designs Using SmartDebug
10. Move DIP1 to off state to resume the write operation from the counter to the SRAM. This overwrites
the error that was injected into the SRAM. Check the status of LED, it must turn off. Hit the Poll for
0, User value match message should appear on the polling window. Close the Pseudo-static
signal polling window.

11. The content of the SRAM can be rechecked by clicking Read Block in the Memory Blocks tab.

2.8.3.4 Probe Insertion
Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be
routed to unused or used I/Os. Nets are selected and assigned to probes using the Probe Insertion tab
in SmartDebug. The rerouted design is reprogrammed automatically by Libero into the FPGA, where an
external logic analyzer or oscilloscope can be used to view the activity of the probed signal. Figure 23
shows the Probe Insertion tab in the Debug FPGA Array window.

Figure 23 • Debug FPGA Array—Probe Insertion

2.8.4 Using FHB
When FHB is enabled, an FHB instance is created on each clock domain of the design. Each FHB
instance gates its associated clock domain. You can add a trigger signal (countB[0]) to a live probe and
halt the design on the positive edge of the trigger.

When FHB is enabled the following options are enabled on the Live Probes tab:

• Event Counter—counts the transition of signals that are assigned to Channel A or Channel B
through the Live Probe feature. This feature tracks events from the board. When the Event Counter
is activated, and a signal is assigned to Channel A, the counter starts counting the rising edge
transitions. The counter must be stopped to get the final signal transition count. During the count,
you cannot assign another signal to Channel A/Channel B or go to any other tab on the window.

• Frequency Monitor—calculates the frequency of any signal in the design that can be assigned to
Live Probe Channel A or Channel B. You can enter the duration of monitoring the signal. The
accuracy of results increases as the monitor time increases. The unit of measurement is displayed in
MegaHertz (MHz). During the run, progress is displayed.

• User Clock Frequencies—shows the clock frequencies from the CCC block.
This section describes the following procedures:

• Use Event Counter, page 18
• Use Frequency Monitor, page 18
• Use User Clock Frequency, page 19
• Select FHB, page 19
Microsemi Proprietary AC479 Revision 8.0 17

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.4.1 Use Event Counter
This section describes the procedure to add a trigger signal (coutA[7]) to Live Probe, activate the event
counter to count the rising edge transitions of that signal.

Follow these steps:

1. Go to the Live Probes tab, and enter *coutA* in the filter box, then click Search.
2. Select coutA [7] to Cout[0] and click Add, as shown in Figure 24.

coutA [7] is used as the hardware break point trigger.
3. Select coutA [7]: Q, then click Assign to Channel A.
4. Click Activate Event Counter.
5. The count is updated every second, and is displayed as Total Events.
6. Click Stop button to stop counting as shown in Figure 24.

Note: When Event Counter is running, only the Stop button is enabled.

Figure 24 • Event Counter

2.8.4.2 Use Frequency Monitor
To use Frequency Monitor, perform the following steps:

1. Click Live Probe tab and assign a signal to Channel A, and then click Frequency Monitor tab.
2. Set 0.1 as Monitor Time(s) and select the Activate Frequency Monitor check box.
3. The Frequency Monitor stops when the specified monitor time is over. The result is displayed as

Frequency (MHz). The window and the tabs on the control panel are enabled. The Reset button is
also enabled to reset the Frequency to 0 to start over the next iteration. The progress bar is hidden
when the Frequency Monitor stops.
Microsemi Proprietary AC479 Revision 8.0 18

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 25 • Frequency Monitor

2.8.4.3 Use User Clock Frequency
All of the CCC clock frequencies are calculated by selecting the User Clock Frequencies tab as shown in
Figure 26. Live probes are temporarily unavailable till all the user clock frequencies are calculated and
displayed.

Figure 26 • User Clock Frequencies

Note: The design includes one clock frequencies from PF_CCC component.

2.8.4.4 Select FHB
To select an FHB, perform the following steps:

1. Go to the Live Probes tab and enter *coutB* in the filter box, then click Search.
2. Select coutB [0] and click Add as shown in Figure 27.

coutB [0] is used as the hardware break point trigger.
3. Select coutB [0]: Q, and click Assign to Channel A as shown in Figure 27.
Microsemi Proprietary AC479 Revision 8.0 19

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 27 • Select an FHB

4. Select the Active Probes tab, and search for *coutB*.
5. Select coutB [0] to coutB [7] by holding the Shift key and click Add as shown in Figure 28.

Figure 28 • Adding FHB Trigger to Active Probes

6. Select Operate on All Clock Domains as shown in the following figure.
Microsemi Proprietary AC479 Revision 8.0 20

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 29 • Selecting Clock Domains

7. Click Arm Trigger as shown in Figure 29. The counter halts on the next positive edge that occurs on
the signal connected to Channel A (coutB [0]) in Live Probes.

Note: If you require a certain number of clock cycles before halting the clock domain after triggering, a value
between 0 and 255 must be entered in Delay Cycles Before Halt before you click Arm Trigger. This
sets the FHBs to trigger after the specified delay from the rising edge trigger.

The FHB controls are highlighted in Figure 29, the following actions can be performed using them:

1. Provide custom delay cycles before the halt.
2. Force a selected clock domain or all clock domains to halt without waiting for a trigger from a live

probe signal, by clicking the Halt button.
3. When the clock domain is in the halted state (live probe halt or force halt), resume the clock domain

by clicking the Play/Resume button.
4. When the clock domain is in the halted state (live probe halt or force halt), advance the clock domain

by one clock cycle and hold the state of the clock domain by clicking the Step button.
5. Save the waveform view of the selected active probes by specifying the number of clock cycles to

capture in Export Waveform text box, and then clicking the Capture Waveform button. The waveform
is saved as a vcd file.

6. View the saved waveforms by importing the vcd file. The waveform file can be viewed in a waveform
viewer that supports the vcd format.

7. Click Close to close the Debug FPGA Array window. Click No when prompted for saving the active
probes to a file.
Microsemi Proprietary AC479 Revision 8.0 21

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.4.5 Opening VCD File in ModelSim
To view the signals which are exported by SmartDebug in the vcd file use the Modelsim Waveform
window:

1. Open ModelSim.
2. Go to the Transcript window and convert VCD to WLF format using the following the vcd2wlf

<file1.vcd> <file2.wlf> command as shown in Figure 30.
Figure 30 • VCD to WLF Conversion

Note: Conversion failures are mostly caused by non-existing instance path. Ensure that the specified instance
paths are correct.

3. Open the WLF file created using File menu -> Open -> file2.wlf.
4. Select window with wlf file name and add signals to the Waveform window as shown in Figure 31.

Figure 31 • Adding Signals

5. Open the Wave window. Observe that the error signal is not asserted indicating data written and
date read from DPSRAM is same as shown in Figure 32.

Figure 32 • Wave Window

Note: The Fabric_Debug block includes the match_out signal, which must always be high indicating that the
data expected from DPSRAM, and the data read from DPSRAM matches. But the provided design has a
bug due to which the match_out signal always toggles. Debug the match_data.v logic using the FHB
feature and find the route cause. Add match_out and mem_out of count_chk_0 block to Active probe and
export the signals. Observe when the match_out signal is asserted to 1'b0.
Microsemi Proprietary AC479 Revision 8.0 22

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.5 Debug µPROM
SmartDebug enables debugging µPROM and reading its µPROM contents. The clients added in the
design can be debugged using the SmartDebug Debug µPROM feature.

1. Click Debug µPROM in the SmartDebug window. The µPROM Debug window is shown in the
Figure 33.

2. Select MicroPROM_0 in the User Design View tab and then click Read from Device to read the
µPROM content. Check whether the content provided in uprom.mem file (part of design stimulus
files) matches with the data read from µPROM. You can check the highlighted locations 100 and 116
in Figure 33 to verify the content.

Figure 33 • µPROM Debug

Note: PolarFire devices have a single user programmable read only memory (µPROM) row located at the
bottom of the fabric, providing up to 459 Kb of non-volatile, read-only memory. The address bus is 16 bits
wide, and the read data bus is 9-bit wide. µPROM is used to store the configuration data, which is used
by Fabric logic to process.

2.8.6 sNVM Debug
sNVM Debug feature enables reading from the sNVM during debug. Debug Pass Key is required to carry
out SNVM_DEBUG instruction. This feature supports debugging of non-authenticated plain text,
authenticated plain text, and clients cipher authenticated.

1. Click Debug SNVM in the SmartDebug window.
2. Click Client View tab. The client view details are listed—Client Names, Start Page, Number of

Bytes, Write Cycles, Page Type, Used as ROM, and USK Status.
3. Select a client from the list in the Client View and click Read from Device as shown in the following

figure.
Microsemi Proprietary AC479 Revision 8.0 23

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 34 • sNVM Debug

Figure 35 shows the Client View window.

Figure 35 • sNVM Debug—Client View

4. Click View All Page Status to view the page status such as Write Cycle Count, Page Type, Use as
ROM, and Data Read Status as shown in the following figure.
Microsemi Proprietary AC479 Revision 8.0 24

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 36 • Secured NVM Details

5. Click Page View tab in the sNVM Debug window, Page view displays the client details of the
required pages. You can read pages from 0-220 in the page view.

6. Enter the Start page and End page in the respective boxes.
7. Click Check Page Status. The page status information is displayed as shown in Figure 37.

Figure 37 • sNVM Debug—Page View

2.8.7 Debug TRANSCEIVER
SmartDebug enables transceiver debugging, which includes checking lane functionality and health for
different settings of lane parameters. To access the debug transceiver feature, select Debug
TRANSCEIVER in the SmartDebug window. Debug Transceiver supports the following features:

• Configuration Report
• SmartBERT
• Loopback Modes
• Static Pattern Transmit
• Eye Monitor
Microsemi Proprietary AC479 Revision 8.0 25

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.7.1 Configuration Report
The Configuration Report feature creates a report that shows the physical location, Tx and Rx PLL lock
status, and data width of all enabled transceiver lanes. This report includes the following lane
parameters:

• Physical Location: Physical location of the transceiver lanes in the system.
• Tx PMA Ready: Tx lane of the transceiver is powered up and ready for transactions.
• Rx PMA Ready: Rx lane is powered up and ready for transactions.
• TX PLL: TX PLL of the transceiver is locked.
• RX PLL: RX PLL of the transceiver is locked.
• Data Width: Configured data width of the corresponding lanes in the transceiver.
The following figure shows Configuration Report tab.

Figure 38 • Configuration Report

Note: The initial status of RX PLL and RX CDR PLL status is inactive, the status changes to active when the
data is sent. SmartBERT is configured in CDR mode so the data must be sent to get the PLL Locked. Go
to the Smart BERT tab, select the XCVR instance and start the data transmission using the default PRBS
pattern. Then, the status changes to active.

2.8.7.2 SmartBERT
SmartBERT enables you to run diagnostic tests on the transceiver lanes. SmartBERT uses the PRBS
generator and checker functionality available in each transceiver lane to determine the bit error rate
(BER) of a lane. The various PRBS patterns supported are PRBS7(SmartBERT IP), PRBS9(SmartBERT
IP), PRBS15(SmartBERT IP), PRBS23(SmartBERT IP), and PRBS31(SmartBERT IP). Near-end
loopback can be performed using one of these PRBS patterns.

To run SmartBERT in Debug TRANSCEIVER, follow these steps:

1. Select the SmartBERT tab in the Debug TRANSCEIVER window.
2. Select LANE in the left pane.
3. Select the Pattern from the drop-down list.
4. Select the EQ-NearEnd check box to enable internal loop back, (this step can be ignored if external

loop back is enabled).
5. Click Start. It enables both transmitter and the receiver for a particular lane and for a particular

PRBS pattern. The following figure shows the Debug TRANSCEIVER window and the PRBS pattern
options for SmartBERT.
Microsemi Proprietary AC479 Revision 8.0 26

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 39 • Debug TRANSCEIVER—Smart BERT

When a SmartBERT IP lane is added, the Error Injection column is displayed in the right pane. The
error injection feature is provided to inject an error while running a PRBS pattern. This feature is
unavailable if regular lanes are added. Also, this feature is enabled only for SmartBERT IP supported
PRBS patterns.

6. Select Reset to clear the error count under Cumulative Error Counter. Error Count is displayed
when the lane is added.

The following figure shows the Smart BERT tab and status of the TXPLL, RXPLL, Lock to Data, Data
rate, and the BER.

Figure 40 • Smart BERT—Error Counter

2.8.7.3 Loopback Modes
Loopback modes perform the following types of loopback tests:

• EQ-Near End Loopback: Serialized data from PMA is looped from Tx to Rx internally before the
transmit buffer. This is called near-end serial loopback. EQ-Near End loopback supports data
transmission rates of up to 10.315 Gbps.

• EQ-Far End Loopback: Serialized data from Rx is looped back to Tx in PMA. This is called far-end
serial loopback. EQ-Far End loopback supports data transmission rates of up to 1.25 Gbps.

• CDR-Far End Loopback: De-serialized data from PCS Rx channel is looped back to Tx.
• No Loopback: Data is not looped internally.
To select Loopback mode, perform the following steps:

1. Select LANE in the left pane.
2. Select Loopback Mode and click on Apply to apply the loopback.
3. Go to SmartBERT tab, select LANE and choose any probes pattern and click Start.
4. Check the status of TX PLL, RX PLL, Lock to Data.
5. Click Stop to stop the pattern transmission for the selected lane.
Microsemi Proprietary AC479 Revision 8.0 27

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 41 • Debug TRANSCEIVER—Loopback Modes

2.8.7.4 Static Pattern Transmit
Static Pattern Transmit enables the selection of pattern to be transmitted on a specific transceiver (Tx)
lane. The following patterns are supported:

• Fixed pattern
• Max run length pattern
• User pattern
The user pattern is defined in the value column. It must be hex numbers and not greater than the
configured data width.

TX-PLL indicates lane lock onto TX PLL when a static pattern is transmitted. RX-PLL indicates RX PLL
lock when a static pattern is transmitted. Data Width displays the data width configured for a transceiver
lane.

To view static pattern transmit, perform the following steps:

1. Select the Static Pattern Transmit tab.
2. Select the Transceiver Hierarchy in the left pane of the window. The selected lane data is displayed

in the right pane. Select a pattern from the Pattern drop-down list.
3. Click Start. The static pattern for the selected lanes is transmitted.
4. The static pattern for the selected lanes is transmitted. Status of TX PLL and RX PLL should be

green.
5. Click Stop. The static pattern transmission is stopped for the selected lanes.

Figure 42 shows the Static Pattern Transmit tab.
Figure 42 • Static Pattern Transmit
Microsemi Proprietary AC479 Revision 8.0 28

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.7.5 Eye Monitor
Eye Monitor enables visualizing the eye diagram present within the receiver. This feature plots the
receive eye after the CTLE and Receiver functions. The diagram representation provides vertical and
horizontal measurements of the eye and BER performance measurements. Whenever PRBS/static
pattern transmission is in progress, click the Eye Monitor tab in the Debug TRANSCEIVER window to
see the eye monitor representation within the receiver.

In Libero SoC, the following types of Eye Scan modes are supported:

• Normal mode—in this mode, Eye Monitor performs a single eye scan and displays the Eye Diagram
on the Eye Monitor plot.

• Infinite Persistent Mode— in this mode, the Plot Eye button changes to Start Plot Eye. Select Start
Plot Eye to start infinite persistent eye monitoring. The Start Plot Eye button changes to Stop Plot
Eye and the infinite scanning and accumulation process begins. In every iteration, the eye is
cumulated with all previous eyes to make a single cumulative eye. This cumulative eye is displayed
with a color scheme on the Eye Monitor plot. The completed iteration number and the cumulative
BER is updated and displayed after every iteration, along with the cumulative eye. To stop
cumulative eye monitoring, click the Stop Plot Eye button. The process halts after the current
iteration completes.

• Design Initiated Eye Plots—in this mode, the Select Eye Output drop-down is enabled when an
Eye Plot log file is browsed and loaded in the Eye Monitor page. Click Browse File to load the Eye
Plot output files. If the loaded Design Initiated Eye Plot log file does not contain any eye output, it is
disabled. After selecting Eye output from the Select Eye Output drop-down, click Plot Eye to start
eye monitoring for the lane. Then the Eye diagram displays for the selected log file.

The following figure shows the recommended SI settings for the demo design. These settings are for
short reach and less lossy cables.

Figure 43 • Recommended Settings for Eye Monitor

For plotting the Eye Diagram, perform the following steps:

1. Go to EYE Monitor tab and Select LANE0.
2. Click Power on Eye Monitor.
3. Go to SmartBERT tab, select LANE0 and choose any probes pattern and click Start.
4. Go back to Eye Monitor tab and click Plot Eye to plot the eye.
The Eye Plot of the Signal in LANE0 is plotted.

Figure 44 shows the Eye Monitor tab.
Microsemi Proprietary AC479 Revision 8.0 29

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 44 • Debug TRANSCEIVER—Eye Monitor

After plotting the Eye diagram, user can use the Apply Mask option to know the best eye opening
with least errors. Both the Apply Mask and the Clear Mask options are disabled in the Default View.
Click Plot Eye to enable the Apply Mask option.

5. After selecting the Apply Mask option, the Clear Mask option is enabled and the Eye Mask for the
Eye Plot appears as shown in Figure 45.
Microsemi Proprietary AC479 Revision 8.0 30

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 45 • Eye Monitor GUI After Applying the Mask Using Apply Mask Button

2.8.7.6 Register Access
The Register Access tab enables the following operations:

• Register read and write
• Export all register operations. The exported register details are saved to a .csv file.
• Register hide
Figure 46 shows the register access tab.
Microsemi Proprietary AC479 Revision 8.0 31

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 46 • Register Access Tab

For detailed information about Register Access tab, see PolarFire SmartDebug User Guide.

2.8.7.7 Start Record Actions
The Start Record Actions option is used to record the register sequence of XCVR operations into a file.
This option is available at the top-right on the Debug Transceiver window as shown in Figure 47.

Figure 47 • Start Record Actions

This option is hidden in the Demo Mode. When this option is selected, the recording starts and the option
changes to Stop recording for stopping the recording. When Stop recording is selected, a window
pop-up prompts the user for the output to be saved to a .txt file as shown in. After saving the file, the
Debug TRANSCEIVER window goes to default state.
Microsemi Proprietary AC479 Revision 8.0 32

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 48 • Saving the Recording

For more information about this option, see PolarFire SmartDebug User Guide.
Microsemi Proprietary AC479 Revision 8.0 33

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.7.8 Signal Integrity
The Signal Integrity feature in SmartDebug works with Signal Integrity in the I/O Editor, allowing the
import and export of PDC files. The Signal Integrity pane appears in the following SmartDebug pages:

• SmartBERT
• Loopback Modes
• Static Pattern Transmit
• Eye Monitor
When a lane is selected in the SmartBERT, Loopback Modes, Static Pattern Transmit, or Eye Monitor
pages, the corresponding Signal Integrity parameters (configured in the I/O Editor or changed in
SmartDebug) are enabled, as shown in the following figure.

Figure 49 • Signal Integrity

2.8.7.8.1 Design Defaults
Click Design Defaults to load the signal integrity parameter options for the selected lane instance.
These are the signal integrity settings selected in the Libero design flow and reside in the STAPL file.

2.8.7.8.2 Export
Click Export to export the selected parameter options and other physical information to an external PDC
file. A popup box prompts to choose the location where you want the PDC file to be exported.

The exported content is in two set_io commands form—TXP and RXP ports of the selected lane
instance.

2.8.7.9 Optimize Receiver
SmartDebug uses the Receiver coefficients to optimize the settings for the overall signal integrity at the
receiver.

To run 'Optimize Receiver', perform the following steps:

1. In Debug Transceiver, go to Signal Integrity and click on Optimize Receiver.
2. In Optimize Receiver window the following settings

• Select Lanes to Optimize Receiver: Lane0
3. Click Optimize Receiver on selected Lanes.
Software based Optimizing Receiver process is successful on all selected lanes.
Microsemi Proprietary AC479 Revision 8.0 34

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 50 • Optimize Receiver
Microsemi Proprietary AC479 Revision 8.0 35

Debugging PolarFire FPGA Designs Using SmartDebug
2.8.7.9.1 Eye Monitor after Optimizing Receiver
After Optimizing Receiver, follow the steps mentioned in section Eye Monitor, page 29 for plotting the Eye
Diagram.

Figure 51 • Eye Diagram after using Optimize Receiver

2.8.8 Debug DDR IO Margin
To access the Debug DDR IO Margin feature, select Debug DDR Memory from the main SmartDebug
window. This option is available only for DDR3/DDR4/LPDDR3 memory configurations. This option is not
visible when DDR memory is not used in the design. The default view of the DDR IO Margin window.

Note: After programming the device, the LED11 glows, which indicates the completion of DDR transactions.
Microsemi Proprietary AC479 Revision 8.0 36

Debugging PolarFire FPGA Designs Using SmartDebug
Figure 52 • DDR IO Margin Window

Initially, all options in the DDR IO Margin GUI are disabled. Select the required DDR instances and click
Get Training Data. After this, a script is run for fetching the training data. After around two minute the
fetched information of the selected DDR Instance is displayed as shown in Figure 53.

Figure 53 • Training Data

2.9 Conclusion
This application note demonstrated capabilities of SmartDebug to observe and analyze many embedded
device features. Live probes give a real-time access to device test points, and internal logic states can be
accessed using active probes. The SmartDebug TRANSCEIVER utility assists FPGA and board
designers to validate signal integrity of high-speed serial links in a system and improve board bring-up
Microsemi Proprietary AC479 Revision 8.0 37

Debugging PolarFire FPGA Designs Using SmartDebug
time. This can be done in real-time without any design modifications. The PMA analog settings can be
tuned to optimize link performance and to match the design to the system.
Microsemi Proprietary AC479 Revision 8.0 38

Appendix 1: Known Issues

Microsemi Proprietary AC479 Revision 8.0 39

3 Appendix 1: Known Issues

This chapter lists known issues related to SmartDebug hardware design debug and provides
workarounds for each of the issues.

3.1 Data Traffic Errors on XCVR Lanes in CDR Mode
While plotting the eye using eye monitor, errors are introduced in data traffic on transceiver lanes
configured to use the CDR receiver path. The errors are introduced when Receiver and EM blocks are
turned off during normal operation to save power. This issue does not impact functionality. The
cumulative error count and BER values can be ignored when plotting the eye. A software update will be
provided in future Libero releases to fix the issue.

Appendix 2: Place and Route
4 Appendix 2: Place and Route

The place and route process requires the following steps to be completed:

• Selecting the already imported io_cons.pdc file.
• Placing the XCVR_Debug_0 block using the I/O Editor.
• Ensuring all the I/Os are locked.
To complete the place and route process, follow these steps:

1. On the I/O Attributes tab, select the check box next to the io_cons.pdc file, as shown in Figure 54,
page 40. The io_cons.pdc file contains the I/O assignment for reference clock, switches and
XCVR Lanes.

Figure 54 • I/O Attributes Tab

2. From the Edit drop-down list, select Edit with I/O Editor, as shown in Figure 55, page 40.
Figure 55 • Editing with I/O Editor

3. The I/O Editor will open as shown in Figure 56, page 40.
Figure 56 • I/O Editor

4. Select the XCVR View in the I/O Attribute editor. This view allows you to assign IO locations to
XCVR and reference clock.

5. Place TX_PLL, XCVR_REF_CLK, and XCVR_Debug as shown in Figure 57, page 41 for Evaluation
kit or Figure 58, page 41 for SPLASH kit.
Microsemi Proprietary AC479 Revision 8.0 40

Appendix 2: Place and Route
Figure 57 • Placing the TX_PLL, XCVR_REF_CLK, and PF_XCVR Components (Evaluation kit)

Figure 58 • Placing the TX_PLL, XCVR_REF_CLK, and PF_XCVR Components (SPLASH kit)

6. Select File > Commit to save the placement the close the I/O Editor (File > Exit).
7. Select the Constraint Manager Floor Planner. The constraint file (user.pdc) should be visible.

Ensure the file is checked to be used for Place and Route.
Figure 59 • Constraint Files on the I/O Attributes Tab

8. Double-click Place and Route from the Design Flow tab. When place and route is successful, a
green tick mark appears next to Place and Route as shown in Figure 60, page 41.

Figure 60 • Place and Route
Microsemi Proprietary AC479 Revision 8.0 41

Appendix 3: Running the TCL Script

Microsemi Proprietary AC479 Revision 8.0 42

5 Appendix 3: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design
flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

1. Launch the Libero SoC.
2. Select Project > Execute Script....
3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
4. In order to enable FHB provide argument FHB_ENABLE in the Arguments tab.

Figure 61 • Enabling FHB

5. Select Run.
After successful execution of TCL script, Libero project is created within TCL_Scripts directory.

For more information about TCL scripts, see the following readme:

• mpf_ac479_eval_df/TCL_Scripts/readme.txt
Refer to Libero® SoC TCL Command Reference Guide for more details on TCL commands. Contact
Technical Support for any queries encountered when running the TCL script.

https://www.microsemi.com/document-portal/doc_download/1245481-libero-soc-v12-6-tcl-commands-reference-guide-for-smartfusion2-igloo2-and-rtg4

Appendix 4: References

Microsemi Proprietary AC479 Revision 8.0 43

6 Appendix 4: References

This section lists documents that provide more information about the SmartDebug and IP cores used in
the reference design.

• For more information about SmartDebug, see PolarFire SmartDebug User Guide.
• For more information about PolarFire transceiver blocks, see PolarFire FPGA and PolarFire SoC

FPGA Transceiver User Guide.
• Fore more information about PF_CCC, see PolarFire FPGA and PolarFire SoC FPGA Clocking

Resources User Guide.
• For more information about Libero SoC, see the Microsemi Libero SoC PolarFire web page.
• For more information about PolarFire FPGA Evaluation Kit, see UG0747: PolarFire FPGA

Evaluation Kit User Guide.
• For more information about the Splash kit, see UG0786: PolarFire FPGA Splash Kit User Guide.
• For more information about PF_UPROM, PF_USRAM, and PF_DPSRAM, see Libero catalog.
• For more information about Identify RTL, see Synopsys Identify RTL User Guide.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137616
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1243602
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136765
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136765
http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_smartdebug_ug.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245816
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245816
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245810
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245810

	Contents
	Figures
	Tables
	1 Revision History
	1.1 Revision 8.0
	1.2 Revision 7.0
	1.3 Revision 6.0
	1.4 Revision 5.0
	1.5 Revision 4.0
	1.6 Revision 3.0
	1.7 Revision 2.0
	1.8 Revision 1.0

	2 Debugging PolarFire FPGA Designs Using SmartDebug
	2.1 Design Requirements
	2.2 Prerequisites
	2.3 Demo Design
	2.3.1 PF_CCC
	2.3.2 PF_INIT_MON
	2.3.3 reset_des_sync
	2.3.4 XCVR_Debug
	2.3.5 Fabric_Debug
	2.3.6 DDR Interface
	2.3.6.1 Simulation Using Micron DDR4 SDRAM Model

	2.4 Clocking Structure
	2.5 Reset Structure
	2.6 Enabling FPGA Hardware Breakpoint (FHB)
	2.7 Programming the Device
	2.8 Debugging Using SmartDebug
	2.8.1 Launch SmartDebug from Libero
	2.8.2 View Device Status
	2.8.3 Debug FPGA Array
	2.8.3.1 Live Probes
	2.8.3.2 Active Probes
	2.8.3.3 Memory Blocks
	2.8.3.4 Probe Insertion

	2.8.4 Using FHB
	2.8.4.1 Use Event Counter
	2.8.4.2 Use Frequency Monitor
	2.8.4.3 Use User Clock Frequency
	2.8.4.4 Select FHB
	2.8.4.5 Opening VCD File in ModelSim

	2.8.5 Debug µPROM
	2.8.6 sNVM Debug
	2.8.7 Debug TRANSCEIVER
	2.8.7.1 Configuration Report
	2.8.7.2 SmartBERT
	2.8.7.3 Loopback Modes
	2.8.7.4 Static Pattern Transmit
	2.8.7.5 Eye Monitor
	2.8.7.6 Register Access
	2.8.7.7 Start Record Actions
	2.8.7.8 Signal Integrity
	2.8.7.8.1 Design Defaults
	2.8.7.8.2 Export

	2.8.7.9 Optimize Receiver
	2.8.7.9.1 Eye Monitor after Optimizing Receiver

	2.8.8 Debug DDR IO Margin

	2.9 Conclusion

	3 Appendix 1: Known Issues
	3.1 Data Traffic Errors on XCVR Lanes in CDR Mode

	4 Appendix 2: Place and Route
	5 Appendix 3: Running the TCL Script
	6 Appendix 4: References

