

Microsemi SoftConsole v5.2

Release Notes

2 Microsemi SoftConsole v5.2 Release Notes

Table of Contents

Table of Contents ... 2

Microsemi SoftConsole v5.2 ... 5

Introduction .. 5

Overview ... 5

Key features ... 5

Features not supported ... 5

Quick start guide .. 6

Supported platforms .. 7

Free/Open source packages ... 9

Packages used .. 9

Installation .. 13

Windows .. 13

Installing ... 13

Linux .. 13

Before installing ... 13

Installing ... 14

After installing .. 14

Troubleshooting ... 17

Related Microsemi Tools/Resources ... 18

Libero SoC/Firmware Catalog ... 18

Firmware drivers .. 18

Hardware Abstraction Layers .. 18

Peripheral firmware drivers .. 18

Matching firmware to the target hardware ... 18

FlashPro JTAG programmer ... 19

SoftConsole v3.4 ... 19

SoftConsole v4.x .. 19

SoftConsole v5.1 RISC-V projects .. 19

Microsemi github .. 19

Workspaces .. 20

Example workspace... 20

Example projects ... 20

Example debug launch configurations .. 20

Creating a new workspace .. 20

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 3

Projects ... 21

Creating a new project ... 21

Project Settings .. 22

All CPU targets .. 22

Mi-V RISC-V targets .. 25

Cortex-M targets .. 25

SmartFusion2 Cortex-M3 targets .. 25

Adding source files to a project ... 25

Building a project ... 26

Debugging .. 27

Debug launch configurations ... 27

OpenOCD command line options and scripts ... 31

SmartFusion/SmartFusion2 DEVICE .. 32

Board scripts .. 32

Cortex-M1 Board Script ... 33

FlashPro JTAG speed ... 34

Other OpenOCD options ... 34

SoftConsole OpenOCD script parameters .. 34

Board configuration for FlashPro debugging ... 34

Using a debug session .. 34

Launching a debug session ... 34

Memory Monitor ... 34

Console view ... 34

Built-in serial terminal view .. 35

Debug using a specific FlashPro programmer .. 35

Debugging using a non FlashPro JTAG interface ... 36

How to connect to/debug a running program .. 37

Troubleshooting ... 37

Other Features ... 39

Cortex-M semihosting .. 39

Integer only newlib support .. 39

Static stack profiling ... 40

Known Issues ... 41

Reset/power cycle the target hardware before each Mi-V RISC-V debug session 41

Debug launch configuration settings differ for Cortex-M and Mi-V RISC-V .. 41

Mi-V RISC-V memory view prblems .. 41

Windows occasionally crashes when plugging FlashPro in/out .. 41

OpenOCD crashes when attempting to debug RISC-V .. 41

RISC-V C++ support .. 41

FlashPro programmers cannot be shared by applications .. 42

Invalid command name "arm" when debugging RISC-V ... 42

Initial startup may be slow ... 42

Flash Programming ... 42

Microsemi SoftConsole v5.2

4 Microsemi SoftConsole v5.2 Release Notes

Build Project context menu option sometimes disabled .. 42

Windows firewall and OpenOCD ... 42

Multiple debug sessions .. 42

Multiple SoftConsole installations and sessions .. 42

Memory Monitor fails to display ... 43

FlashPro JTAG debugging is unreliable on virtual machines .. 43

Unexpected “Invalid project path” warnings .. 43

“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3 43

“Error: Got exception …” when reading some RISC-V registers ... 43

OpenOCD error/info messages when debugging RISC-V .. 44

RISC-V GDB/MI fetches all 4162 registers.. 44

RISC-V traditional memory render problems .. 44

RISC-V envm download does not work ... 44

Debugging and multiple device JTAG chains .. 44

RISC-V target support ... 45

SoftConsole v3.4 or earlier workspaces/projects .. 45

SoftConsole v5.0 RISC-V projects and debug launch configurations ... 45

SmartFusion2 DPK unlocking .. 46

Other useful Documentation ... 48

Product Support ... 49

Customer Service .. 49

Customer Technical Support Center .. 49

Technical Support .. 49

Website ... 49

Contacting the Customer Technical Support Center .. 49

Email .. 49

My Cases ... 49

Outside the U.S. .. 50

ITAR Technical Support .. 50

Microsemi SoftConsole v5.2 Release Notes 5

Microsemi SoftConsole v5.2

Introduction
These are release notes for Microsemi SoftConsole v5.2.

This document uses <SoftConsole-install-dir> as a placeholder for the actual SoftConsole install directory.

Where this is mentioned substitute the actual SoftConsole install directory name (e.g.

C:\Microsemi\SoftConsole_v5.2 on Windows or $HOME/Microsemi_SoftConsole_v5.2 on Linux).

Overview

Key features

 Runs on Windows and Linux.

 Development/debug support for ARM® Cortex®-M and Microsemi Mi-V RISC-V CPUs/SoCs.

 Built using the latest industry standard stock free/open source components and tools for ARM® Cortex®-M

and RISC-V firmware development and debugging.

 Support for Microsemi SmartFusion® and SmartFusion2 ARM® Cortex-M3, Microsemi ARM® Cortex-M1 and

Microsemi Mi-V RISC-V firmware development and debugging.

 Uses OpenOCD for ARM Cortex-M and RISC-V debugging and SmartFusion/SmartFusion2/Fusion eNVM

programming/program download.

 Supports download to and debugging from SmartFusion eSRAM and eNVM, SmartFusion2 eSRAM, eNVM

and external RAM (MDDR), Cortex-M1 RAM and Fusion eNVM, and RISC-V RAM.

 Supports FlashPro JTAG programmer for debugging (FlashPro3/4/5 on Windows, FlashPro5 on Linux).

 Supports ARM Cortex-M semi-hosting redirection of standard/file I/O from target board to host debugger.

 Allows users to install arbitrary additional Eclipse plug-ins and features.

 Includes a built-in terminal emulator for connecting to a target board’s serial port.

 Supports newlib nano for Cortex-M and RISC-V providing an even more lightweight standard library

implementation ideal for resource constrained environments.

 Suitable for development and debug of bare metal and lightweight RTOS based embedded applications.

Features not supported

 Compatibility with SoftConsole v3.4 workspaces/projects/debug launch configurations. SoftConsole v3.4

workspaces/projects/debug launch configurations cannot be used with SoftConsole v4. SoftConsole v4

workspaces/projects/debug launch configurations cannot be use with SoftConsole v3.4.

 Compatibility with SoftConsole v5.1 RISC-V projects. Due to a change in the RISC-V Eclipse plugin support

between SoftConsole v5.1 and SoftConsole v5.2, SoftConsole v5.1 RISC-V projects will not work in

SoftConsole v5.2. Such projects must be recreated using the same project source files and settings in order

to work in SoftConsole v5.2.

 Debugging a CoreJTAGDebug/UJTAG Cortex-M1 or Mi-V RISC-V CPU that is in one device in a multiple

device JTAG chain.

 CentOS/Red Hat Enterprise Linux 6.9 32-bit and 64-bit are not supported in this release.

 Debugger driven download of programs to non-CFI external parallel flash memories.

 Launching Firmware Catalog from SoftConsole.

 Core8051/Core8051s firmware development and debugging. Use Keil C51 Development Tools with

Core8051/Core8051s ISD-51 support.

Microsemi SoftConsole v5.2

6 Microsemi SoftConsole v5.2 Release Notes

Quick start guide
1. Read these release notes in full.

2. Download the SoftConsole installer from the Microsemi website. Verify the downloaded file integrity using

the checksum file also provided.

3. Follow the installation instructions below for the relevant OS platform. If installing on Linux pay careful

attention to the pre-install and post-install instructions.

4. Run SoftConsole from the desktop shortcut or “Start” menu entries created by the installer. This will launch

SoftConsole and open the example workspace.

5. To use the example projects in the example workspace on an actual board it is necessary to update the

projects to match the target hardware – for example by generating the relevant HAL/CMSIS and firmware

drivers from Libero SoC or the Firmware Catalog and copying the generated files into the project.

6. The example projects come with default debug launch configurations for debugging. If necessary, modify the

settings passed to OpenOCD so that they match the actual target hardware.

7. Use the Microsemi website (https://www.microsemi.com/product-directory/product-support/4217-fpgas-socs-

support), Firmware Catalog (https://www.microsemi.com/products/fpga-soc/design-resources/design-

software/firmware-catalog) and/or the Microsemi github (https://github.com/RISCV-on-Microsemi-FPGA) to

obtain example/demo/reference design Libero and SoftConsole projects.

https://www.microsemi.com/product-directory/product-support/4217-fpgas-socs-support
https://www.microsemi.com/product-directory/product-support/4217-fpgas-socs-support
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog
https://github.com/RISCV-on-Microsemi-FPGA

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 7

Supported platforms
 Operating systems (32-bit and 64-bit versions except where noted)

NOTE: physical machines only recommended/supported - see the Known Issues section for details of issues

with virtual machines.

o Windows

 7

 8.1

 10

o Linux

 CentOS and Red Hat Enterprise Linux (RHEL)

 6.9 NOT supported in this release

 7.4 (64 bit only)

 Ubuntu

 14.04 LTS

 16.04 LTS

 openSUSE

 LEAP 42.3 (64 bit only)

 Debian

 9.2

 CPUs

o Microsemi Mi-V RISC-V CPU soft cores for PolarFire, RTG4, IGLOO2 and SmartFusion2 FPGAs

o Microsemi SmartFusion2 ARM Cortex-M3

o Microsemi SmartFusion ARM Cortex-M3

o Microsemi ARM Cortex-M1 for RTG4 and PolarFire FPGAs

o Microsemi ARM Cortex-M1 for M1 IGLOO, ProASIC3, ProASIC3L and Fusion FPGAs

 Boards

o Mi-V RISC-V CPU soft cores

 IGLOO2 RISC-V Creative Development Board (M2GL025)

 IGLOO2 Evaluation Kit (M2GL010)

 SmartFusion2 Security Evaluation Kit (M2S090)

 SmartFusion2 Advanced Development Kit (M2S150)

 RTG4 Development Kit (RT4G150)

 PolarFire Evaluation Kit (MPF300TS)

o SmartFusion2 ARM Cortex-M3

 SmartFusion2 FPGA Development Kits and Boards

o SmartFusion ARM Cortex-M3

 SmartFusion FPGA Kits

o Cortex-M1 for RTG4 and PolarFire FPGAs and RISC-V RV32IM

 RTG4 Development Kit (RT4G150)

 PolarFire Evaluation Kit (MPF300TS)

o Cortex-M1 for M1 FPGAs

 Fusion Embedded Development Kit (M1AFS1500)

 JTAG Debug

o Microsemi FlashPro3, FlashPro4 and FlashPro5 on Windows

o Microsemi FlashPro5 on Linux

o Olimex ARM-USB-TINY-H

https://www.microsemi.com/products/fpga-soc/mi-v-embedded-ecosystem/risc-v-cpu
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
https://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4
https://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/mi-v-embedded-ecosystem/arm-cortex-m1
https://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
http://soc.microsemi.com/products/ip/search/detail.aspx?id=652
https://www.microsemi.com/products/fpga-soc/fpga/igloo-overview
https://www.microsemi.com/products/fpga-soc/fpga/proasic3-overview
https://www.microsemi.com/products/fpga-soc/fpga/proasic3l
https://www.microsemi.com/products/fpga-soc/fpga/fusion
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/risc-v-creative-board
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/smartfusion2-advanced-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/rtg4-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/polarfire-kits
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#dhwr
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion#design-resources
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/rtg4-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/polarfire-kits
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/fusion/fusion-embedded-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#hardware
https://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#hardware
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY-H/

Microsemi SoftConsole v5.2

8 Microsemi SoftConsole v5.2 Release Notes

o Other JTAG debug probes supported by OpenOCD may be used but are not specifically tested or

supported

 Other software

o Microsemi Libero SoC

 Microsemi Libero SoC v11.8

 Microsemi Libero SoC PolarFire v1.1

 Microsemi Firmware Catalog v11.8

o Firmware (minimum required version)

 RISC-V Hardware Abstraction Layer (HAL) 2.1.0

 SmartFusion2 CMSIS Hardware Abstraction Layer 2.3.105

 SmartFusion CMSIS-PAL 2.4.102

 Cortex-M1 CMSIS Hardware Abstraction Layer 2.0.7

 (DirectCore) Hardware Abstraction Layer 2.3.102

http://openocd.org/doc/html/Debug-Adapter-Hardware.html
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 9

Free/Open source packages

Packages used

Microsemi SoftConsole uses several free and/or open source packages. Microsemi acknowledges and thanks those

organizations and individual developers who work on these projects and make them available to others for reuse

under the relevant license conditions. As mentioned previously all packages used are 32 bit.

Oracle Java SE

Version 8u151

Home page https://www.oracle.com/java/index.html

Documentation https://www.oracle.com/java/index.html

License Oracle Binary Code License Agreement for the Java SE Platform Products and JavaFX

http://www.oracle.com/technetwork/java/javase/terms/license/index.html

Notes Oracle Java SE provides the base Java platform on which Eclipse/CDT and other Eclipse

plugins run.

Credit/thanks to Oracle.

Eclipse/CDT

Version Eclipse 4.7.0 (Oxygen R) + CDT 9.3.0 for Eclipse Oxygen

Home page https://www.eclipse.org/downloads/packages/release/Oxygen/R

Documentation https://help.eclipse.org/oxygen/index.jsp

License Eclipse Public License v2.0

https://www.eclipse.org/legal/epl-2.0/

Notes Eclipse/CDT, in conjunction with the GNU MCU Eclipse plugins, provide the main

SoftConsole GUI Integrated Development Environment.

The Windows Eclipse/CDT starter.exe has been modified by Microsemi to allow for

graceful termination of OpenOCD launched from Eclipse.

There is a bug (https://bugs.eclipse.org/bugs/show_bug.cgi?id=526610) in the Windows

CDT whereby a DLL (libgcc_s_dw2-1.dll) required by CDT (specifically serial.dll) is

missing, Microsemi have bundled the missing DLL in order to work around this problem

until it is fixed.

Credit/thanks to the Eclipse/CDT developer community.

GNU MCU Eclipse Plugins

Version v4.1.1-SNAPSHOT-20171020

Home page https://gnu-mcu-eclipse.github.io/

Documentation https://gnu-mcu-eclipse.github.io/

License Eclipse Public License v1.0

https://gnu-mcu-eclipse.github.io/licenses/plug-ins/#eclipse-public-license

The copyright owner for all the GNU MCU Eclipse plug-ins is Liviu Ionescu and all rights

are reserved.

Notes Formerly GNU ARM Eclipse but renamed to GNU MCU Eclipse ever since the plugins

began supporting both ARM and RISC-V CPUs. The following GNU MCU Eclipse plugins

are used:

 GNU MCU C/C++ ARM Cross Compiler: provides specific support for ARM

targets by way of custom project properties pages and integration with the back-

https://www.oracle.com/java/index.html
https://www.oracle.com/java/index.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://www.eclipse.org/downloads/packages/release/Oxygen/R
https://help.eclipse.org/oxygen/index.jsp
http://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-2.0/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=526610
https://gnu-mcu-eclipse.github.io/
https://gnu-mcu-eclipse.github.io/
http://www.eclipse.org/legal/epl-v10.html
https://gnu-mcu-eclipse.github.io/licenses/plug-ins/#eclipse-public-license

Microsemi SoftConsole v5.2

10 Microsemi SoftConsole v5.2 Release Notes

end GNU ARM Embedded Toolchain.

 GNU MCU C/C++ RISC-V Cross Compiler: provides specific support for RISC-V

targets by way of custom project properties pages and integration with the back-

end RISC-V GNU toolchain.

 GNU MCU C/C++ OpenOCD Debugging: provides specific support for debugging

ARM and RISC-V targets using OpenOCD from within the Eclipse environment.

Credit/thanks to Liviu Ionescu.

GNU ARM Embedded Toolchain

Version Windows: 6-2017-q2-update

Linux: 5-2016-q3-update

Home page https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

Documentation https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

License https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q3-update/+download/license.txt

Notes Provides a full GCC based toolchain (including GCC, GDB, binutils, newlib, newlib nano

etc.) for ARM Cortex-M and Cortex-R targets.

Details of the specific versions of the individual tools in each release package can be found

on the ARM Developer website.

The Linux version of the tools is older than the Windows version of the tools because ARM

ceased providing 32 bit binary builds of the tools at the end of 2016.

Credit/thanks to ARM and the GNU ARM Embedded Toolchain development community.

ARM Cortex Microcontroller Software Interface Standard (CMSIS)

Version V4.5

Home page https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-

interface-standard.php

Documentation http://www.keil.com/pack/doc/CMSIS/General/html/index.html

License Apache 2.0 License:

http://www.keil.com/pack/doc/CMSIS/General/html/index.html#License

Notes Along with the Microsemi SmartFusion2 CMSIS Hardware Abstraction Layer and

SmartFusion CMSIS-PAL firmware packages provides a lightweight hardware abstraction

layer on which startup code and firmware drivers can operate.

Credit/thanks to ARM.

RISC-V GNU Toolchain

Version GCC 7.1.1 based RISC-V github (https://github.com/riscv/riscv-gnu-toolchain) as of 18th

October 2017 built using the GNU MCU Eclipse build script (https://gnu-mcu-

eclipse.github.io/toolchain/riscv/build-procedure/).

Home page https://github.com/riscv/riscv-gnu-toolchain

Documentation https://github.com/riscv/riscv-gnu-toolchain

License https://github.com/riscv/riscv-gnu-toolchain/blob/master/LICENSE

Notes The riscv64-unknown-elf prefixed tools support 32 and 64-bit bare metal targets and the

following multilibs:

 march=rv32i/mabi=ilp32

 march=rv32iac/mabi=ilp32

 march=rv32im/mabi=ilp32

 march=rv32ima/mabi=ilp32

 march=rv32imac/mabi=ilp32

 march=rv32imafc/mabi=ilp32f

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q3-update/+download/license.txt
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.keil.com/pack/doc/CMSIS/General/html/index.html
http://www.keil.com/pack/doc/CMSIS/General/html/index.html#License
https://github.com/riscv/riscv-gnu-toolchain
https://gnu-mcu-eclipse.github.io/toolchain/riscv/build-procedure/
https://gnu-mcu-eclipse.github.io/toolchain/riscv/build-procedure/
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain/blob/master/LICENSE

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 11

 march=rv64imac/mabi=lp64

 march=rv64imafdc/mabi=lp64d

The “native” mode of the tools is RV64GC in the absence of any -march/-mabi flags being

passed to the tools.

Microsemi have patched GDB to use ABI rather than canonical names at the GDB-MI

interface so that readable rather than “raw” register names appear in the Eclipse/CDT GUI.

Note that RISC-V Draft Privileged ISA Specification v1.10 CSR names and locations are

used here so if the target does not conform to this draft version of the specification then

some CSR accesses may not work as expected.

Credit/thanks to the RISC-V, GCC, LD, GDB, binutils, newlib and GNU MCU Eclipse

development communities.

OpenOCD

Version v0.10.0+dev + mods (see notes)

Home page http://openocd.org/

Documentation http://openocd.org/documentation/

License GNU General Public License v2

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Notes OpenOCD sits between GDB and the target hardware (JTAG debug probe, target board

and CPU) to allow for program download and debug on real hardware rather than a

simulated or emulated target. When debugging, Eclipse launches GDB and then uses

GDB’s GDB/MI (Machine Interface) to communicate with the debugger. Meanwhile GDB

communicates with OpenOCD using OpenOCD’s Remote Serial Protocol (RSP) interface.

GDB debug operations are translated into JTAG operations by OpenOCD which

communicates with the target hardware/CPU using JTAG via the relevant JTAG debug

probe. OpenOCD also has knowledge of specific CPU target debug frameworks (e.g. ARM

CoreSight, RISC-V Debug Module) so that it can communicate with and debug supported

CPUs.

The base OpenOCD v0.10.0 is supplemented by modifications by

 Microsemi – to add support for FlashPro, SmartFusion2/SmartFusion/Fusion

envm, finding scripts relative to OpenOCD bin directory, other fixes and

enhancements

 SiFive (https://www.sifive.com/) – to add support for RISC-V debugging via RISC-

V External Debug Support v0.11 and v0.13

Credit/thanks to the OpenOCD development community and to SiFive.

GNU ARM Eclipse Build Tools (Windows only)

Version v2.8-20161122

Home page https://gnu-mcu-eclipse.github.io/windows-build-tools/

Documentation https://gnu-mcu-eclipse.github.io/windows-build-tools/

License https://gnu-mcu-eclipse.github.io/licenses/tools/

make:

GNU General Public License v3

http://www.gnu.org/copyleft/gpl.html

BusyBox

GNU General Public License v2

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Notes Provides common Unix style utilities such as cp, echo, make etc. for Windows.

Credit/thanks to Liviu Ionescu and the original developers of make and BusyBox.

http://openocd.org/
http://openocd.org/documentation/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.sifive.com/
https://gnu-mcu-eclipse.github.io/windows-build-tools/
https://gnu-mcu-eclipse.github.io/windows-build-tools/
https://gnu-mcu-eclipse.github.io/licenses/tools/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Microsemi SoftConsole v5.2

12 Microsemi SoftConsole v5.2 Release Notes

Inno Setup (Windows only)

Version Inno Setup QuickStart Pack v5.5.9-unicode

Home page http://www.jrsoftware.org/isdl.php

Documentation http://www.jrsoftware.org/ishelp/

License Inno Setup License

http://www.jrsoftware.org/files/is/license.txt

Notes Inno Setup is used to create the SoftConsole installer for Windows.

Credit/thanks to Jordan Russell.

InstallJammer (Linux only)

Version v1.2.15

Home page http://www.installjammer.com/

Documentation http://installjammer.com/docs/

License GNU General Public License v2 with exception

http://installjammer.com/docs/

Notes InstallJammer is used to create the SoftConsole installer for Linux.

Credit/thanks to the InstallJammer development community.

http://www.jrsoftware.org/isdl.php
http://www.jrsoftware.org/ishelp/
http://www.jrsoftware.org/files/is/license.txt
http://www.jrsoftware.org/files/is/license.txt
http://www.installjammer.com/
http://installjammer.com/docs/
http://installjammer.com/docs/
http://installjammer.com/docs/

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 13

Installation

Windows

Installing

Refer to the Supported Platforms section for details of which Windows versions are supported.

The installer is a 32-bit executable GUI based program named Microsemi-SoftConsole-v5.1.0.14-

Windows-Installer.exe. It must be run with admin privileges. Run the installer and follow the GUI installer

wizard instructions on screen.

If the FlashPro drivers installer FPDrivers – InstallShield Wizard presents the Modify/Repair/Remove page then

select Modify or Repair and continue with the installation.

There may be a slight pause completing the SoftConsole installation after the FlashPro drivers installer has

completed – this is normal.

Linux

Refer to the Supported Platforms section for details of which Linux distributions and versions are supported.

Many of the commands below require root privileges using su, sudo or by logging in as root.

Before installing

SoftConsole is a 32-bit application therefore before it can be installed or run on a 64-bit system a few 32-bit

packages/libraries must be installed first.

Ubuntu/Debian 64 bit

1. dpkg --add-architecture i386

2. apt-get update

3. apt-get install libgtk2.0-0:i386

4. apt-get install libxtst6:i386

5. apt-get install lib32ncurses5

6. apt-get install libstdc++6:i386

CentOS/Red Hat Enterprise Linux 64 bit

1. yum install gtk2.i686

2. yum install libXtst.i686

3. yum install ncurses-libs.i686

openSUSE (64 bit)

1. zypper install gtk2-tools-32bit

2. zypper install libXtst6-32bit

3. zypper install libncurses5-32bit

4. zypper install libgthread-2_0-0-32bit

Notes:

1. Most platforms have the make and xdg-utils packages installed by default but it is advisable to make

sure that these are installed using the relevant package management command for the system in use:

<package-management-command> install make

<package-management-command> install xdg-utils

2. If, when installing the required 32-bit packages on CentOS/RHEL 64 bit, the following error occurs:

Error: Protected multilib versions ...

Microsemi SoftConsole v5.2

14 Microsemi SoftConsole v5.2 Release Notes

then first update the 64-bit package(s) before attempting to install the 32-bit package again. For example, if

the error occurs when attempting to install gtk2.i686 then do the following:

yum upgrade gtk2

yum install gtk2.i686

3. It is recommended that the Linux platform used to run SoftConsole has all available updates installed.

4. It may be possible to install and run SoftConsole on other Linux distributions or versions once the required

packages are installed. However, some earlier distributions (for example, CentOS/RHEL 5.11) may not

work and are not recommended or supported.

Installing

1. The installer is a 32-bit executable GUI based program named Microsemi-SoftConsole-v5.2.0.15-

Linux-x86-Installer.

2. Download the installer and ensure that the execute permission bit is set before attempting to run the

installer. If it is not, then set it as follows from the command line (the following assumes that the installer

has been downloaded to $HOME/Downloads):

cd ~/Downloads

chmod +x Microsemi-SoftConsole-v5.2.0.15-Linux-x86-Installer

3. Run the installer:

./Microsemi-SoftConsole-v5.2.0.15-Linux-x86-Installer

4. If errors of the following form appear:

can't invoke "winfo" command: application has been destroyed

 while executing

"winfo exists $info(Wizard)"

...

then run the installer in command line mode as follows:

./Microsemi-SoftConsole-v5.2.0.15-Linux-x86-Installer --mode console

5. Follow the installer GUI wizard or console mode instructions on screen. If the installer does not appear on

screen, then double check that all the required dependent packages/libraries were installed as explained

previously.

6. If necessary, run the installer in debug mode to diagnose problems with running it:

./Microsemi-SoftConsole-v5.2.0.15-Linux-x86-Installer --debugconsole

7. If, after installing, the desktop shortcuts do not appear or work correctly then log out and back in again first.

After installing

By default, USB devices are only accessible with root privileges. To debug using SoftConsole and FlashPro5 as a

non-root user some additional steps must be taken.

1. Copy the OpenOCD udev rules file and tell the udev substystem to load it. This rules file describes all USB

JTAG devices supported by OpenOCD to the system and makes them accessible by non-root users:

cd <SoftConsole-install-dir>/openocd/share/openocd/contrib

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 15

sudo cp 60-openocd.rules /etc/udev/rules.d

sudo udevadm trigger

In some cases it may be necessary to reboot for the changes to take effect.

2. If you previously used SoftConsole v4.x or 5.0 and installed the 99-openocd.rules file into

/etc/udev/rules.d then you can delete that file (as it is now redundant) and run udevadm trigger

again or reboot for the changes to take effect.

3. To check that FlashPro5 can be used without root privileges…

Connect a FlashPro5 JTAG programmer to the host machine and check that it is visible to the operating

system:

lsusb

Bus 001 Device 004: ID 1514:2008 Actel

If the FlashPro5 device (ID 1514:2008 (vendor ID 0x1514, product ID 0x2008)) does not appear then

double check that the previous instructions were carried out correctly.

4. To the JTAG end of the FlashPro5 connect a suitable board containing a Cortex-M1, SmartFusion or

SmartFusion2 Cortex-M3, or RISC-V CPU based SoC design. Power the board on. Make sure that the

board is configured for FlashPro JTAG debugging of the target CPU (depending on the board and

CPU/SoC in use some board switches/jumpers configuration may be required). Run OpenOCD from the

command line to ensure that the debug connection can be established to the target CPU/SoC.

cd <SoftConsole-install-dir>/openocd/bin

export LD_LIBRARY_PATH=`pwd`

./openocd -f board/microsemi-cortex-m1.cfg

OR

./openocd -c "set DEVICE M2S090" -f board/microsemi-cortex-m3.cfg

OR

./openocd -f board/microsemi-riscv.cfg

For Cortex-M1 the output should be similar to the following:

Open On-Chip Debugger

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

microsemi_flashpro tunnel_jtag_via_ujtag off

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: usb50266

Info : FlashPro port used: usb50266

Info : clock speed 6000 kHz

Info : JTAG tap: FPGA.tap tap/device found: 0x2353a1cf (mfg: 0x0e7

(GateField), part: 0x353a, ver: 0x2)

microsemi_flashpro tunnel_jtag_via_ujtag on

Info : JTAG tap: FPGA.tap disabled

http://openocd.org/doc/doxygen/bugs.html

Microsemi SoftConsole v5.2

16 Microsemi SoftConsole v5.2 Release Notes

Info : JTAG tap: FPGA.dap enabled

Info : Cortex-M1 IDCODE = 0x4ba00477

Info : FPGA.cpu: hardware has 2 breakpoints, 1 watchpoints

cortex_m auto_bp_type off

For Cortex-M3 the output should be similar to the following:

Open On-Chip Debugger

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

M2S090

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: S201Z7LB20, E200X3ID7

Info : FlashPro port used: S201Z7LB20

Info : clock speed 6000 kHz

Info : JTAG tap: M2S090.tap tap/device found: 0x1f8071cf (mfg: 0x0e7

(GateField), part: 0xf807, ver: 0x1)

Info : JTAG tap: M2S090.tap disabled

Info : JTAG tap: M2S090.dap enabled

Info : Cortex-M3 IDCODE = 0x4ba00477

Info : M2S090.cpu: hardware has 6 breakpoints, 4 watchpoints

For Mi-V RISC-V the output should be similar to the following:

Open On-Chip Debugger

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

microsemi_flashpro tunnel_jtag_via_ujtag off

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: S201Z7LB20, E200X3ID7

Info : FlashPro port used: S201Z7LB20

Info : clock speed 6000 kHz

Info : JTAG tap: FPGA.tap tap/device found: 0x1f8071cf (mfg: 0x0e7

(GateField), part: 0xf807, ver: 0x1)

microsemi_flashpro tunnel_jtag_via_ujtag on

Info : JTAG tap: FPGA.tap disabled

Info : JTAG tap: FPGA.dap enabled

Info : RISC-V IDCODE = 0x10e31913

Info : Examined RISCV core; XLEN=32, misa=0x40902223

halted at 0x80000b60 due to debug interrupt

5. Output of the following form or other errors (excluding any documented in the known issues section)

indicate a problem in which case double check that all the previous steps have been carried out correctly

and that the target hardware/board is correctly configured for debugging of the target CPU/SoC.

Info: FlashPro ports available: none

Info: FlashPro port used: usb

Error: InitializeProgrammer(usb) failed: Can not connect to the programmer

http://openocd.org/doc/doxygen/bugs.html
http://openocd.org/doc/doxygen/bugs.html

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 17

Troubleshooting

After performing the steps above SoftConsole should run when launched from the system menu or desktop

shortcut. If it does not then the most likely cause is some other missing package/library or configuration. In this case

run the following commands and check for any errors that arise. If necessary install any other packages that are

missing:

cd <SoftConsole-install-dir>/eclipse

./eclipse

cd <SoftConsole-install-dir>/openocd/bin

export LD_LIBRARY_PATH=`pwd`

./openocd -v

cd <SoftConsole-install-dir>/arm-none-eabi-gcc/bin

./arm-none-eabi-gdb --version

cd <SoftConsole-install-dir>/riscv-unknown-elf-gcc/bin

./riscv64-unknown-elf-gdb --version

Microsemi SoftConsole v5.2

18 Microsemi SoftConsole v5.2 Release Notes

Related Microsemi Tools/Resources

Libero SoC/Firmware Catalog

Use Microsemi Libero SoC v11.8 or later to create hardware designs and to export firmware drivers and example

projects.

For PolarFire FPGAs use Microsemi Libero SoC PolarFire v1.1 or later.

The Microsemi Firmware Catalog can be used to generate firmware drivers and example projects for use in

SoftConsole v5.1.

Firmware drivers

Hardware Abstraction Layers

The following firmware cores (or later versions if available) must be used and can be generated from Libero SoC or

from the Firmware Catalog.

 RISC-V Hardware Abstraction Layer (HAL) 2.1.0

 SmartFusion2 CMSIS Hardware Abstraction Layer 2.3.105

 SmartFusion CMSIS-PAL 2.4.102

 Cortex-M1 CMSIS Hardware Abstraction Layer 2.0.7

 (DirectCore) Hardware Abstraction Layer 2.3.102

Warning:

 If earlier versions of these firmware cores are used then there will be problems compiling, linking and/or

debugging.

Peripheral firmware drivers

Use Libero SoC or the Firmware Catalog to generate the latest available peripheral drivers for the target system.

Matching firmware to the target hardware

The firmware used in a SoftConsole project must match the target hardware. For SmartFusion and SmartFusion2

projects Libero SoC generates specific firmware files that must be used for the SoftConsole project to match and be

compatible with the target hardware.

The most convenient way to avoid mismatch problems is to ensure that Libero SoC is configured to use the

appropriate firmware repositories and the LIbero project is configured to use the latest versions of all firmware

drivers (including CMSIS/HAL). Then export the firmware from Libero and import/copy the generated files into the

SoftConsole project.

In some cases, the firmware project will define target specific details such as clock speeds, UART baud divisors etc.

that must match the target hardware for proper functionality.

Refer to the Libero SoC and Firmware Catalog documentation for more information about the firmware flows

supported by these tools.

Warning:

 Before importing/copying Libero SoC or Firmware Catalog generated firmware files into a SoftConsole

project it is advisable to manually delete all CMSIS, hal, drivers, riscv_hal and

drivers_config folders from the SoftConsole project leaving only the project specific custom source

files.

 For SmartFusion and SmartFusion2 projects the drivers_config folder must be generated/exported

from Libero SoC and copied/imported into the SoftConsole project every time that the Libero project is

modified to ensure that the SoftConsole project matches the target hardware.

 SoftConsole v3.4 workspaces or projects generated by Libero SoC or the Firmware Catalog are not

compatible with SoftConsole v5.1 and should not be used.

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 19

 SoftConsole v5.1 RISC-V projects are not compatible with SoftConsole v5.2 and must be recreated using

the same source files and equivalent project settings for use in SoftConsole v5.2.

FlashPro JTAG programmer

SoftConsole includes OpenOCD which uses a FlashPro JTAG programmer for debug access to the target

platform/CPU.

On Windows the FlashPro3/4/5 programmers are supported and the relevant drivers must be installed. On Linux,

only the FlashPro5 programmer is supported and the post-install configuration steps must be carried out to allow

access to the FlashPro5 programmer by non-root users.

SoftConsole v3.4

SoftConsole v3.4 workspaces, projects and debug launch configurations are not compatible with SoftConsole v5

and should not be used. They will not open or operate correctly. Existing SoftConsole v3.4 workspaces, projects

and debug launch configurations must be created anew in SoftConsole v5. However, this is not an onerous task

and is explained elsewhere in the release notes.

Similarly, SoftConsole v5 workspaces, projects and debug launch configurations are not compatible with
SoftConsole v3.4.

SoftConsole v4.x
SoftConsole v4.x workspaces, projects and debug launches will work in SoftConsole v5 but it is advisable to check
all configuration settings to ensure that they are appropriate.

SoftConsole v5.1 RISC-V projects
SoftConsole v5.1 RISC-V projects and debug launch configurations are not compatible with SoftConsole v5.2 and
must be recreated. This is because SoftConsole v5.2 uses different Eclipse plugins for RISC-V support than
SoftConsole v5.1 uses.

Microsemi github
The Microsemi github (https://github.com/RISCV-on-Microsemi-FPGA) is a useful reference for
example/demo/reference Mi-V RISC-V design Libero and SoftConsole projects and for other up to date information
about Microsemi Mi-V ecosystem resources.

https://github.com/RISCV-on-Microsemi-FPGA

Microsemi SoftConsole v5.2

20 Microsemi SoftConsole v5.2 Release Notes

Workspaces

Example workspace

SoftConsole includes an example workspace which is opened by default when you run SoftConsole. This example

workspace is located at:

<SoftConsole-install-dir>/extras/workspace.examples

This workspace contains several simple example projects and debug launch configurations that are ready to use

once the relevant projects have been updated to match the target hardware – for example by copying the Libero

SoC generated drivers_config folder into the project where applicable. It is also advisable to update these

example projects with the relevant CMSIS/HAL and firmware drivers generated from the Firmware Catalog.

It is advisable to make a copy of this example workspace and use the copy for experimentation. Note that the

SoftConsole uninstaller will delete some or all of this workspace in which case any changes made may be lost.

Refer to the README.txt for each example project for more information.

Example projects

 fpga-cortex-m1-blinky: LED blinker program for a system containing the encrypted HDL soft core

CoreCortexM1 (Microsemi:DirectCore:CoreCortexM1:<version>) in an RTG4 or PolarFire FPGA device.

 m1fpga-cortex-m1-blinky: LED blinker program for a system containing the pre placed and routed CortexM1

(Microsemi:DirectCore:CortexM1Top:<version>) in an M1 variant IGLOO, ProASIC3, ProASIC3L or Fusion

FPGA device.

 miv-rv32im-interrupt-blinky: interrupt driven LED blinker and UART echo program for a system containing the

Mi-V RISC-V soft processor that supports at least the M extension.

 miv-rv32im-systick-blinky: timer driven LED blinker and UART echo program for a system containing the Mi-

V RISC-V soft processor that supports at least the M extension.

 smartfusion-cortex-m3-blinky: LED blinker program for a SmartFusion Cortex-M3 system.

 smartfusion2-cortex-m3-blinky: LED blinker program for a SmartFusion2 Cortex-M3 system.

Example debug launch configurations

Debug launch configurations for each of the above projects. Remember to ensure that the OpenOCD command

lines parameters used in the debug launch configuration (Debugger tab > Other options) matches the target

hardware/board used. Also, remember to configure the target hardware for FlashPro debugging (e.g. JTAG_SEL

tied high and, if applicable, FlashPro/USB rather than RVI debug access enabled).

Be aware of the differences in debug launch configuration settings between Cortex-M1, SmartFusion Cortex-M3,

SmartFusion2 Cortex-M3 and Mi-V RISC-V targets.

When creating new debug launch configurations for other systems use the example debug launch configurations as

a guide or else copy the one that most closely matches the target system and reconfigure it as needed.

Creating a new workspace

To create a new empty workspace in SoftConsole select File > Switch Workspace > Other... and select a folder in

which to store the workspace. It is best if a new or empty folder is selected.

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 21

Projects

Creating a new project

1. Select File > New > C Project or C++ Project depending on the type of project required.

2. In the C/C++ Project page of the wizard enter the Project name, select Project type = Executable > Empty

Project (or Static Library > Empty Project for a library project)

3. Select the appropriate toolchain.

For a Cortex-M project select Toolchains = ARM Cross GCC.

For a Mi-V RISC-V project select Toolchains = RISC-V Cross GCC.

4. Click Next > to go to the next wizard page, Select Configurations.

Figure 1. New Project

Microsemi SoftConsole v5.2

22 Microsemi SoftConsole v5.2 Release Notes

5. The Select Configurations page of the wizard allows the configurations or build targets that the project will

support to be configured. By default, two configurations are created – Debug and Release. Should other

configurations be required these can be created using the Advanced settings… button which launches the

project Properties dialog in which additional configurations can be specified or properties for any or all

configurations can be changed. Normally the default Debug and Release configurations are sufficient. When

finished click the Next > button to go to the next wizard page, GNU ARM Cross Toolchain or GNU RISC-V

Cross Toolchain.

6. The GNU ARM Cross Toolchain or GNU RISC-V Cross Toolchain wizard page specifies the name and path

of the toolchain to be used to build the project. These should be correct by default but double check that the

values are as follows:

Cortex-M project:

Toolchain name = GNU Tools for ARM Embedded Processors (arm-none-eabi-gcc)

Toolchain path = ${eclipse_home}/../arm-none-eabi-gcc/bin

Mi-V RISC-V project:

Toolchain name = RISC-V GCC/Newlib (riscv64-unknown-elf-gcc)

Toolchain path = ${eclipse_home}/../riscv-unknown-elf-gcc/bin

7. Click Finish > to complete the creation of the new project.

Project Settings

Most of the project settings default to usable values. However, some project settings must be modified manually

depending on the target device/CPU. Use the example projects as a guide to creating new project while bearing in

mind that these are just simple functional examples and a real application may benefit from the use of some of the

many other configuration options and command line options that the underlying GCC tools support.

To modify the project settings right click on the project in the Project Explorer and select Properties from the context

menu. Then navigate to C/C++ Build > Settings.

Select Configuration = [All configurations] to configure settings applicable to all build targets (by default Debug and

Release) or else select a specific configuration (e.g. Configuration = Debug or Configuration = Release) to configure

settings applicable only to that build target.

Except where noted the settings below can be configured for all [All Configurations].

All CPU targets

Target Processor

The characteristics of the target CPU are configured in the project’s Properties > C/C++ Build > Settings > Tool

Settings > Target Processor section.

For Cortex-M projects these will default to ARM Family = cortex-m3 which is correct for SmartFusion2 and

SmartFusion2. For Cortex-M1 projects this should be changed to cortex-m1.

For Mi-V RISC-V projects the settings must be configured to match the target CPU characteristics so that the

underlying compiler tools are passed the correct --march=<arch> and --mabi=<abi> options, code is

generated in line with the supported and used extensions and the appropriate multilibs are linked.

The main options of relevance here are:

Architecture: specifies the base architecture – usually set to RV32I (--march=rv32i*)

Multiply extension (RVM): check if the target supports the M (hardware multiply/divide) extension

Atomic extension (RVA): check if the target supports the A extension

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 23

Floating point: specifies what hardware floating point extension the target supports

Compressed extension (RVC): check if the target supports the C extension

Integer ABI: specifies the integer ABI to be used – usually set to LP32 (-`-mabi=lp32)

Floating point ABI: specifies the floating-point ABI to be used

Code model: specifies the code model to be used

Linker Script

It is essential that the appropriate linker script is configured for the project. This will often be one of the example

linker scripts bundled with the relevant CMSIS/HAL firmware core which has been generated and imported/copied

into the project.

Cortex-M project:

select Tool Settings > Cross ARM GNU C/C++ Linker > General

Mi-V RISC-V project:

select Tool Settings > GNU RISC-V Cross C/C++ Linker > General

Click the Script files (-T) > Add... button and enter the linker script name into the Add file path dialog – e.g.:

 Mi-V RISC-V

"${workspace_loc:/${ProjName}/riscv_hal/microsemi-riscv-ram.ld}"

 SmartFusion2 Cortex-M3:

"${workspace_loc:/${ProjName}/CMSIS/startup_gcc/debug-in-microsemi-

smartfusion2-esram.ld}"

 SmartFusion Cortex-M3:

"${workspace_loc:/${ProjName}/CMSIS/startup_gcc/debug-in-actel-smartfusion-

envm.ld}"

 Cortex-M1:

"${workspace_loc:/${ProjName}/blinky_linker_config.ld}"

Notes:

 Refer to the relevant CMSIS/HAL documentation for more information about what example linker scripts are

available and the circumstances in which they are used.

 CMSIS/HAL bundled linker scripts are just examples that should be adapted as required to match the

requirements of a specific application.

 In some cases, different configurations/build targets will use different linker scripts.

Newlib-Nano

newlib is the standard library bundled with SoftConsole and it is optimized for use in resource/memory constrained

bare metal embedded firmware environments. newlib also comes with a “nano” version which is even smaller at the

cost of omitting some functionality which may be rarely used in such environments (e.g. the full range of *printf

formatting options etc.). In many cases it makes sense to use newlib-nano and only switch to the full blown newlib if

necessary because using newlib-nano can significantly reduce the compiled and linked programs which use

standard library features.

To use newlib-nano check the following option:

Cortex-M project:

Tool Settings > Cross ARM GNU C/C++ Linker > Miscellaneous > Use newlib-nano (--specs=nano.specs)

Mi-V RISC-V project:

Microsemi SoftConsole v5.2

24 Microsemi SoftConsole v5.2 Release Notes

Tool Settings > GNU RISC-V Cross C/C++ Linker > Miscellaneous > Use newlib-nano (--specs=nano.specs)

Create Extended Listing

An extended listing file (e.g. Debug/<project-name>.lst) is often useful for understanding the structure and

layout of the linked executable.

To enable generation of this file, check the Toolchains > Create extended listing checkbox.

Preprocessor Defines and Includes

If any preprocessor defines/symbols or includes are needed, then they can be specified under:

Cortex-M project:

Tool Settings > Cross ARM GNU C/C++ Compiler > Preprocessor > Defined symbols (-D)

Tool Settings > Cross ARM GNU C/C++ Compiler > Include paths (-I) or Include files (-include)

Mi-V RISC-V project:

Tool Settings > GNU RISC-V Cross C/C++ Compiler > Preprocessor > Defined symbols (-D)

Tool Settings > GNU RISC-V Cross C/C++ Compiler > Include paths (-I) or Include files (-include)

Depending on the target CPU and CMSIS/HAL used additional CMSIS/HAL related include paths may be required.

Refer to the relevant CMSIS/HAL documentation for more information.

Optimization Options

Most optimization options can be set at the project top level under Tool Settings > Optimization.

Other optimization settings, including Language standard (which defaults to GNU ISO C11 (-std=gnu11) or GNU

ISO 2011 C++ (-std=gnu++11)), can be specified under

Cortex-M project:

Tool Settings > Cross ARM GNU C/C++ Compiler > Optimization

Mi-V RISC-V project:

Tool Settings > GNU RISC-V Cross C/C++ Compiler > Optimization

“Fine grained” linking using -fdata-sections -ffunction-sections and -gc-sections is enabled by

default here and under

Cortex-M project:

Tool Settings > Cross ARM GNU C/C++ Linker > General > Remove unused sections (-Xlinker --gc-sections).

Mi-V RISC-V project:

Tool Settings > GNU RISC-V Cross C/C++ Linker > General > Remove unused sections (-Xlinker --gc-sections).

Library Dependencies

Where an application project depends on a static library project this dependency can be configured in the

application project’s properties so that building the application will ensure that the static library project is also built

and up to date if necessary.

Note: for this to work the same configuration/build target (e.g. Debug or Release) must be selected for both

projects: e.g. right click on each project and from the context menu select Build Configurations > Set Active >

Debug or Release or any other configuration/build target.

To configure such an application/library project dependency right click on the application project in Project Explorer

and from the context menu select Properties then Project References and check the library project(s) on which the

application project depends.

Print Size

By default, the Print Size build step is configured to output size information in “Berkeley” format. The alternative,

“SysV” format is often more informative and useful. To change this option right click on the project in Project

Explorer and from the context menu select

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 25

Cortex-M project:

Properties > C/C++ Build > Settings > Tool Settings > Cross ARM GNU Print Size > General

Mi-V RISC-V project:

Properties > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross Print Size > General

and select Size format = SysV instead of Berkeley.

Other Options

There are many other options that can be set if needed. Explore the SoftConsole project properties dialog and refer

to the relevant GNU/GCC tool documentation for more information on these.

Specifying Options for All Build Configurations

Some project settings can be set once for all configurations/build targets (e.g. Debug and Release). To do this

select Configuration = [All Configurations] before specifying the relevant options and applying/saving them.

Mi-V RISC-V targets

Do not use standard start files (-nostartfiles)

For RISC-V targets this option must be checked when using the Microsemi Mi-V RISC-V HAL (Hardware

Abstraction Layer) to avoid link errors:

Project > Properties > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C/C++ Linker > Do not use

standard start files (-nostartfiles)

Cortex-M targets

CMSIS

Cortex-M projects require an additional setting for the preprocessor to find the toolchain CMSIS header files

otherwise compilation will fail to find certain CMSIS header files.

Under Tool Settings > Cross ARM GNU C/C++ Compiler > Miscellaneous set Other compiler flags = --

specs=cmsis.specs.

SmartFusion2 Cortex-M3 targets

Production-Smartfusion2-Relocate-to-External-Ram.ld

For a SmartFusion2 Cortex-M3 program linked using the SmartFusion2 CMSIS Hardware Abstraction Layer

example linker script production-smartfusion2-relocate-to-external-ram.ld some additional settings

must be specified.

When this linker script is used the hex (Intel HEX or Motorola S-record) file generated by SoftConsole is normally

used as the input file to a Libero SoC eNVM Data Storage client which is used to program the production firmware

into eNVM.

If the following project settings are not configured then the eNVM Data Storage client will reject the hex file as

invalid.

Under Tool Settings > Cross ARM GNU Create Flash Image > General > Other flags enter --change-section-

lma *-0x60000000.

This has the effect of “normalising” addresses in the Cortex-M3 memory map view of eNVM (based at 0x60000000)

to the more restricted view of memory of the eNVM Data Storage client which only sees eNVM based at

0x00000000.

For more on this and other objcopy options see here: https://sourceware.org/binutils/docs/binutils/objcopy.html.

Adding source files to a project

Once the project has been created the required source files should be added.

https://sourceware.org/binutils/docs/binutils/objcopy.html

Microsemi SoftConsole v5.2

26 Microsemi SoftConsole v5.2 Release Notes

In most cases the best way to do this is to use Libero SoC to select the relevant firmware cores (including

CMSIS/HAL, SmartFusion/SmartFusion2 MSS peripheral drivers, DirectCore drivers etc.), generate these, export

the firmware files and then import or copy them into the SoftConsole project.

In fact, for SmartFusion and SmartFusion2 is it essential that at least the drivers_config folder is generated

by/exported from Libero SoC and imported/copied into the SoftConsole project every time that the hardware project

is changed. This is because the files in this folder contain information about the target platform that is essential to

the correct functioning on firmware on that hardware platform.

It is also possible to generate specific firmware cores/drivers from the Firmware Catalog and then import/copy them

into the SoftConsole project.

Refer to the Libero SoC and Firmware Catalog tools and documentation for more information on

generating/exporting firmware cores from these tools.

Warning: remember that any SoftConsole v3.4 workspaces or projects or SoftConsole v5.1 RISC-V projects

generated by Libero SoC or the Firmware Catalog cannot be used with SoftConsole v5.2.

When importing/copying firmware files generated by/exported from Libero SoC or the Firmware Catalog it is safest

to first manually delete all relevant folders from the SoftConsole project (e.g. CMSIS, hal, drivers,

drivers_config) and retain only the custom source files created for the project itself.

Firmware folders/files can be copied by dragging and dropping from a file manager on Windows or Linux or by using

the SoftConsole import facility. Right click on the project in the Project Explorer and from the context menu select

Import... then select General > File System and click Next >. Browse to and select the directory from which the

firmware files are to be imported (e.g. the firmware directory below a Libero SoC project directory), select the

required folders/files and click Finish to import the files.

Building a project

Once a project has been correctly configured and populated with the required firmware it can be built.

Select/click on the project in the Project Explorer and from the application menu select Project > Build

Configurations > Set Active and select the required configuration/build target – usually one of Debug or Release.

With the project still selected in the Project Explorer select Project > Build Project. The results of the build process

can be viewed in the Console view and the Problems view if there are any problems (e.g. errors or warnings).

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 27

Debugging

Debug launch configurations

To debug a program a debug launch configuration must be created. Most of the default settings for a debug launch

configuration can be left as they are but a few needs to be manually configured. Use the example projects and

debug launch configurations as a guide to creating new debug launch configurations.

1. Select the project in the Project Explorer and from the SoftConsole application menu select Run > Debug

Configurations...

2. In the Debug Configurations dialog select GDB OpenOCD Debugging and click on the New launch

configuration button which will create a new debug launch configuration for the previously selected project.

3. On the Main tab ensure that the C/C++ Application field contains the correct executable name. Note that

using forward slashes in paths here aids portability of projects and debug launch configurations between

Windows and Linux:

Figure 2. Debug launch configuration Main tab

Microsemi SoftConsole v5.2

28 Microsemi SoftConsole v5.2 Release Notes

4. On the Debugger tab, it is critical that the Config options field contains the correct command line

options/script to be passed to OpenOCD. The example settings here work for SmartFusion or SmartFusion2

targets where the program uses only eSRAM and/or eNVM – if the DEVICE setting is modified to match the

actual target device (SmartFusion A2FXXX or SmartFusion2 M2SXXX where XXX is the three-digit device

size designator). Further details about these options are provided elsewhere in this documentation.

--command "set DEVICE ..." is mandatory for SmartFusion and SmartFusion2 Cortex-M3 targets but

is optional for Cortex-M1 and Mi-V RISC-V targets.

For a Cortex-M1 target the Config options should be:

--file board/microsemi-cortex-m1.cfg

Figure 3. Debug Configuration Debugger tab for Cortex-M3

5. For a RISC-V target the Debugger tab settings must be configured as follows:

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 29

OpenOCD Setup > Config options:

--file board/microsemi-riscv.cfg

GDB Client Setup > Commands:

set mem inaccessible-by-default off

set arch riscv:rv32

Notes:

Use set arch riscv:rv64 if targeting a 64-bit RISC-V CPU.

Figure 4. Debug Configuration Debugger tab for Mi-V RISC-V

Microsemi SoftConsole v5.2

30 Microsemi SoftConsole v5.2 Release Notes

6. On the Startup tab the default settings should be configured as shown below and these are the default

settings so do not change them unless necessary and you understand what effect these changes will have.

Initialization Commands > Initial Reset must be checked and Type set to init. Enable ARM semihosting can

be enabled whether semi-hosting will be used or not – it should be disabled for Mi-V RISC-V targets since

they do not yet support semi-hosting.

Load symbols/executable should be configured as shown. Runtime Options > Debug in RAM should always

be disabled – even when targeting embedded or external RAM. Run/Restart Commands > Pre-run/Restart

reset must be disabled. Set breakpoint at main and Continue should normally be checked although can be

modified if, for example, an initial breakpoint somewhere other than main() is required or startup code

executed before main() needs to be debugged.

Figure 5. Debug launch configuration Startup tab

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 31

7. On the Common tab the Save as > Local file option is selected by default. This causes the debug launch

configuration to be saved into the workspace. However, if the Shared file option is selected (the default

name can be accepted) then the debug launch configuration instead gets saved into the project which aids

portability as it means that the debug launch configuration moves in tandem with the project (e.g. when

copying or exporting/importing the project).

`

Figure 6. Debug launch configuration Common tab

OpenOCD command line options and scripts

As explained above, it is important that the correct command line options/scripts are passed to OpenOCD via the

Debugger > Config options setting in the debug launch configuration. This section explains these settings.

Note:

 All --command ... settings mentioned below must be placed before the --file ... setting.

 Commands can be specified using --command ... or -c

 Multiple commands can be specified individually

--command "set DEVICE M2S090" --command "set JTAG_KHZ 1000"

or together separated by semi-colons

--command "set DEVICE M2S090; set JTAG_KHZ 1000"

Microsemi SoftConsole v5.2

32 Microsemi SoftConsole v5.2 Release Notes

SmartFusion/SmartFusion2 DEVICE

For SmartFusion and SmartFusion2 the target device must be specified using --command "set DEVICE

<devicename>".

For SmartFusion the target device must be set using --command "set DEVICE A2FXXX" where XXX is one of

060, 200 or 500.

For SmartFusion2 the target device must be set using --command "set DEVICE M2SXXX" where XXX is one of

005, 010, 025, 050, 060, 090 or 150.

Board scripts

The board script describes the relevant aspects of the target hardware to OpenOCD. A number of example scripts

are provided and are stored in <SoftConsole-install-dir>/openocd/share/openocd/scripts. The

following list enumerates these and outlines the context in which each of them can be used. Remember that the

target device must also be correctly specified in the debug launch configuration.

 SmartFusion/SmartFusion2 Cortex-M3

o board/microsemi-cortex-m3.cfg: for SmartFusion or SmartFusion2 programs that target

only eSRAM or eNVM.

 SmartFusion2 Cortex-M3 only

o board/microsemi-smartfusion2-eval-or-starter-kit-ddr.cfg: an example

script supporting a specific SmartFusion2 MDDR configuration on the SmartFusion2 Evaluation Kit,

Security Evaluation Kit or either of the Starter Kit boards. For use when downloading to/debugging

from MDDR.

o board/microsemi-smartfusion2-dev-kit-ddr.cfg: an example script supporting a

specific SmartFusion2 MDDR configuration on the SmartFusion2 Development Kit or Advanced

Development Kit boards. For use when downloading to/debugging from MDDR.

o board/microsemi-smartfusion2-dev-kit-ddr-ecc.cfg: an example script

supporting a specific SmartFusion2 MDDR configuration with ECC enabled on the SmartFusion2

Development Kit or Advanced Development Kit boards. For use when downloading to/debugging

from MDDR with ECC enabled.

 Cortex-M1

o board/microsemi-cortex-m1.cfg: for targeting Cortex-M1. Explained in the next section.

 Mi-V RISC-V

o board/microsemi-riscv.cfg: for targeting Mi-V RISC-V.

Note: For more information about SmartFusion2 MDDR external RAM support see elsewhere in this document

and in the <SoftConsole-install-dir>/extras/smartfusion2-mddr folder in the SoftConsole

installation.

The following outlines the normal correlation between the linker script used to link the program and the OpenOCD

board script used for debugging:

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 33

SmartFusion2 CMSIS Hardware Abstraction Layer

Linker script OpenOCD board script

debug-in-microsemi-smartfusion2-esram.ld

debug-in-microsemi-smartfusion2-envm.ld

board/microsemi-cortex-m3.cfg

debug-in-microsemi-smartfusion2-external-

ram.ld

board/microsemi-smartfusion2-eval-or-

starter-kit-ddr.cfg

board/microsemi-smartfusion2-dev-kit-

ddr.cfg

board/microsemi-smartfusion2-dev-kit-ddr-

ecc.cfg

production-smartfusion2-execute-in-place.ld

production-smartfusion2-relocate-to-

external-ram.ld

Not applicable – not for interactive debugging

SmartFusion CMSIS-PAL

Linker script OpenOCD board script

debug-in-actel-smartfusion-esram.ld

debug-in-actel-smartfusion-envm.ld

board/microsemi-cortex-m3.cfg

debug-in-external-ram.ld Not applicable – not yet supported

production-execute-in-place.ld

production-relocate-executable.ld

Not applicable – production flow, not for interactive

debugging

Hardware Abstraction Layer (Cortex-M1/DirectCore)

Linker script OpenOCD board script

ram-debug.ld board/microsemi-cortex-m1.cfg

boot-from-intel-flash.ld

boot-from-nvm.ld

Not applicable – production flow, not for interactive

debugging

run-from-nvm.ld

run-from-intel-flash.ld

Not applicable – not yet supported

Cortex-M1 CMSIS Hardware Abstraction Layer

Linker script OpenOCD board script

Refer to the Cortex-M1 CMSIS HAL documentation board/microsemi-cortex-m1.cfg

RISC-V Hardware Abstraction Layer (HAL)

Linker script OpenOCD board script

Refer to the Mi-V RISC-V HAL documentation board/microsemi-riscv.cfg

Cortex-M1 Board Script

Use the board/microsemi-cortex-m1.cfg board script when targeting a Cortex-M1 based system on chip.

Unlike SmartFusion/SmartFusion2 when targeting Cortex-M1 --command "set DEVICE ..." is not required.

If the Cortex-M1 system includes flash memory, then the board/microsemi-cortex-m1.cfg board script

needs to be modified (or copied and modified) to add this.

The Cortex-M1 can be configured to allow debugging using FlashPro “indirectly” via the FPGA’s UJTAG block or

“directly” via general I/O pins carrying the JTAG signals. The board script assumes the former (UJTAG) by default.

To override this and select “direct” debugging add the following:

--command "set FPGA_TAP N"

Microsemi SoftConsole v5.2

34 Microsemi SoftConsole v5.2 Release Notes

FlashPro JTAG speed

The SoftConsole OpenOCD scripts use a default JTAG clock speed of 6MHz. If this needs to be overridden, then it

can be specified (in kHz) alongside the target device – e.g. to use 1MHz (1000kHz):

--command "set DEVICE M2S090; set JTAG_KHZ 1000"

or

--command "set DEVICE M2S090" --command "set JTAG_KHZ 1000"

Warning: do not change the JTAG clock speed unless absolutely necessary and only if you understand the

implications and possible pitfalls of doing so.

Other OpenOCD options

In some cases, where OpenOCD debugging does not work as expected it may be useful to add the --debug n

(where n is a debug level between 0 and 3) or simply -d option to the debug launch configuration.

See also the OpenOCD User’s Guide for other OpenOCD options and commands:

http://openocd.org/documentation/.

SoftConsole OpenOCD script parameters

Several parameters can be used to configure/control how the SoftConsole OpenOCD scripts operate.

Refer to the comments in the example scripts for more details.

 <SoftConsole-install-dir>/openocd/share/openocd/scripts/interface/microsemi-

flashpro.cfg

 <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

cortex-m1.cfg

 <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

cortex-m3.cfg

 <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

riscv.cfg

Board configuration for FlashPro debugging

Debugging a Cortex-M3 target with the FlashPro JTAG programmer requires that JTAG_SEL is tied high and,

where applicable, FlashPro/USB rather than RVI debug access is enabled.

If JTAG_SEL is not configured correctly, then debugging will not work.

Using a debug session

Launching a debug session

Select the project in the Project Explorer, right click on it and from the context menu select Debug As > Debug

Configurations, select the relevant debug launch configuration and click Debug.

Memory Monitor

The default Memory Monitor view rendering is Hex which may render values in big-endian rather than little-endian

form. If this is the case, then switch to Traditional or Hex Integer rendering which renders values properly as little-

endian.

Console view

During a debug session SoftConsole can display several different consoles in the Console view. By default, the

OpenOCD console is displayed showing OpenOCD output:

http://openocd.org/documentation/

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 35

Figure 7. Debug session – OpenOCD console view

The highlighted Display Selected Console toolbar button allows different consoles to be selected:

Figure 8. Debug session – selecting a specific console view

The openocd and arm-none-eabi-gdb consoles are usually the ones of most interest. If semihosting is used the I/O

is done via the GDB console. The arm-none-eabi-gdb console must be the active console to manually enter GDB

commands.

Built-in serial terminal view

SoftConsole includes a built-in serial terminal view which obviates the need to run a separate serial terminal

emulator when connecting to a target board using a UART. The plug-ins used to implement this view are pre-

installed. Refer to this blog post for information on how to show and configure the terminal view (but skip the parts

dealing with plug-in installation as this is already done):

https://mcuoneclipse.com/2017/10/07/using-serial-terminal-and-com-support-in-eclipse-oxygen-and-neon/

In order for the serial terminal to list the relevant serial/COM ports, especially for USB serial ports, the relevant OS

drivers may need to be installed. Refer to the relevant hardware/board documentation for more details.

Debug using a specific FlashPro programmer

By default, SoftConsole will debug using the first FlashPro5 programmer that it detects. If there is no FlashPro5

connected, then it will use the first FlashPro3/4 that it detects.

When there is only one FlashPro programmer connected and not used by any other application then SoftConsole

will automatically use that. In some cases, more than one FlashPro programmer will be connected in which case

SoftConsole needs to be told which one to use for debugging.

A specific example of this is when using the M2S090 Security Evaluation Kit board. On this board J5 is the FlashPro

connector normally used for FlashPro programming of the FPGA and SoftConsole debugging. However, J18 is also

https://mcuoneclipse.com/2017/10/07/using-serial-terminal-and-com-support-in-eclipse-oxygen-and-neon/

Microsemi SoftConsole v5.2

36 Microsemi SoftConsole v5.2 Release Notes

an on-board SPI only FlashPro5 programmer which can be used for programming the FPGA but cannot be used for

SoftConsole debugging. J18 is also used for access to serial ports on the target design.

In this case if both J5 and J18 are connected to the host computer on which SoftConsole is running then

SoftConsole needs to be told to use the former for debugging.

When OpenOCD runs, it lists the FlashPro programmers that it finds and indicates which one it uses by default –

e.g:

Open On-Chip Debugger

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.sourceforge.net/doc/doxygen/bugs.html

M2S010

Info : only one transport option; autoselect 'jtag'

adapter speed: 2000 kHz

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: usb86709, S200XTYRZ3

Info : FlashPro port used: S200XTYRZ3

To use a specific FlashPro device when there is more than one connected in the debug launch configuration

change the following:

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

to this which specifies which FlashPro programmer/port to use for debugging:

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

--command "microsemi_flashpro port usb86709"

Note: The microsemi_flashpro_port command must appear after the board script has been specified

because this script sources the interface/microsemi-flashpro.cfg script.

Debugging using a non FlashPro JTAG interface

By default, the Microsemi OpenOCD board scripts (e.g. board/microsemi-cortex-m3.cfg) specify that a

FlashPro programmer will be used for debugging:

FlashPro

source [find interface/microsemi-flashpro.cfg]

Device

source [find target/microsemi-cortex-m3.cfg]

Board specific initialization

proc do_board_reset_init {} {

}

This is akin to assuming that all boards come with an on-board FlashPro programmer even if some use a

discrete/external programmer. This is the normal and recommended debugging setup.

In this case the debug launch configuration will look something like this:

http://openocd.sourceforge.net/doc/doxygen/bugs.html

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 37

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

However, it is possible to use any other JTAG probe that OpenOCD supports. As an example, to debug using the

Olimex ARM-USB-TINY-H

1. In the debug launch configuration put the following:

--command "set DEVCE M2S090; set FPGA_TAP N; set FLASHPRO N"

--file board/microsemi-cortex-m3.cfg

--file interface/ftdi/olimex-arm-usb-tiny-h.cfg

2. Ensure that the board's JTAG_SEL signal is tied low for RVI (for RVI debugging) rather than high (for

FlashPro debugging via the system controller).

3. Connect the Olimex ARM-USB-TINY-H programmer to the board's RVI connector and the USB end to the

computer. Ensure that the required drivers are installed. Debugging can now be done via the Olimex ARM-

USB-TINY-H device.

The same approach can be taken with other JTAG programmers supported by OpenOCD.

How to connect to/debug a running program

In some situations it is desirable to connect to a program already running on the target without resetting the target,

loading the program, executing from the startup code, breakpointing at main() etc. To enable this form of

debugging:

1. The program/project built must match the program running on the target – i.e. the same code, linker script

etc.

2. On the Startup page of the debug launch configuration...

3. Clear the Initial Reset checkbox

4. In the Initialization Commands text field enter monitor halt

5. Clear the Load Symbols and Executable > Load Executable checkbox

With these settings when the debug session is launched SoftConsole the program remains running and the

Suspend “pause” button can be used to halt it and thereafter normal debugging operations can be performed.

Troubleshooting

If the debug session fails to run as expected, then check the following:

a. On Linux was the udev rules file installed to grant non root access to users in the relevant group (usually

plugdev)?

b. Is a FlashPro device connected (FlashPro 5 on Linux, FlashPro3/4/5 on Windows)?

c. Is there more than one FlashPro device connected? If so SoftConsole may not be using the correct one. If

you want to use a specific one of several FlashPro devices connected, then you can add --command

"microsemi flashpro port <fp-port-name>" to the OpenOCD command line options.

d. On Windows did a previous FlashPro3/4 debug session fail leaving OpenOCD (openocd.exe) running

because abiactel.dll did not exit cleanly thus blocking access to the FlashPro device? Check Task

Manager/ProcessExplorer for openocd.exe and if it’s still running then unplug the FlashPro USB cable and

then reattach it and OpenOCD should terminate.

Microsemi SoftConsole v5.2

38 Microsemi SoftConsole v5.2 Release Notes

e. If the debug session starts but the program does not run/behave as expected, then check that the project

was updated to match the target hardware by having the Libero SoC generated firmware and

drivers_config copied in before rebuilding.

f. Ensure that the relevant CMSIS/HAL firmware core is used.

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 39

Other Features

Cortex-M semihosting

Semi-hosting allows I/O (e.g. file I/O, standard I/O etc.) operations on the target board to be redirected to the

SoftConsole host via OpenOCD and the debugger. For example, this allows stdio input and output to be performed

via the SoftConsole GDB console and allows the program running on the target to read/write files on the host

filesystem.

The I/O operations on the target are trapped by library code running on the target and redirected to the host. In

order to use semihosting a number of steps must be taken:

 Under Project > Properties > C/C++ Build > Settings > Tool Settings > Cross ARM C/C++ Linker >

Miscellaneous > Other linker flags add --specs=rdimon.specs in order to link the libraries required for

semi-hosting.

 The file CMSIS/startup_gcc/newlib_stubs.c clashes with the semihosting library support so must

be deleted from the project or excluded from the build (check Properties > C/C++ Build > Exclude resource

from build) otherwise the program will not link.

 The following code must be added (e.g. to main.c):

#include <stdio.h>

extern void initialise_monitor_handles(void);

int main()

{

 ...

 initialise_monitor_handles();

 ...

 iprintf("Hello, World\n");

 ...

}

 Programs that use semi-hosting must be run under the debugger and will not run standalone with no

debugger attached as they will hang in the library code that traps I/O operations and attempts to redirect

them to the host debugger.

 By default, semi-hosting output is buffered until a '\n' is output. This can be overridden to force character

granularity output using setvbuf(stdout, NULL, _IONBF, 0); but the output will be much slower

due to the overhead of many additional semi-hosting trap operations.

Integer only newlib support

SoftConsole bundles newlib standard library support (https://sourceware.org/newlib/).

It is often possible to build embedded programs in constrained resource (CPU, memory etc.) environments without

linking in any standard library overhead. However where standard library support must be used newlib offers a

couple of ways to reduce the overhead:

 Smaller integer only *iprintf() APIs (e.g. iprintf(), siprintf(), fiprintf() etc.) that avoid the significant

additional overhead of floating point support. Refer to the newlib documentation for more information.

 Nano newlib which is a cut down version of the standard newlib library. To use newlib-nano go to the project

properties and check the C/C++ Build > Settings > Tool Settings > Cross ARM C/C++ Linker >

Miscellaneous > Use newlib-nano (--specs=nano.specs) option.

https://sourceware.org/newlib/

Microsemi SoftConsole v5.2

40 Microsemi SoftConsole v5.2 Release Notes

Static stack profiling

GCC supports static stack usage analysis/profiling.

See here for more on this and add the relevant options to the project settings as required:

https://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Static-Stack-Usage-Analysis.html

https://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Static-Stack-Usage-Analysis.html

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 41

Known Issues
Know issues documented in this section are under active investigation to ascertain the root cause and to resolve the

underlying problems with the intention that these are resolved in a future release.

Reset/power cycle the target hardware before each Mi-V RISC-V debug session

At the moment, the debugger cannot effect a suitable Mi-V RISC-V CPU/SoC reset at the start of each debug session so one

debug session may be impacted by what went before – e.g. a previous debug session leaves the CPU in an ISR and a

subsequent debug session does not behave as expected because of this. To mitigate this problem, it is recommended that the

target hardware/board is power cycled or otherwise reset before each new debug session.

Debug launch configuration settings differ for Cortex-M and Mi-V RISC-V

Be aware that the debug launch configuration settings are different for Cortex-M and Mi-V RISC-V targets as explained above.

The default settings may not automatically match the target CPU. Care must be taken to ensure that the correct configuration

settings are applied especially on the Debugger tab. The easiest way to avoid problems is to use the example workspace

debug launch configurations as a guide or copy the appropriate one and then customise and specific settings.

Mi-V RISC-V memory view prblems

When using the Memory Monitor or Memory Browser views to view memory in a Mi-V RISC-V system warnings such as the

following may appear in the debug/OpenOCD log view – these can be ignored for the moment.

Warn : negative acknowledgment, but no packet pending
Warn : keep_alive() was not invoked in the 1000ms timelimit. GDB alive packet not sent!
(1001). Workaround: increase "set remotetimeout" in GDB

or

Info : dtmcontrol_idle=5, dmi_busy_delay=8278771, ac_busy_delay=0

In some cases, the memory view may not display the memory contents correctly displaying, instead, question marks. This will

be fixed in a

Windows occasionally crashes when plugging FlashPro in/out

It has been observed in some cases that plugging a FlashPro JTAG programmer in/out of a Windows machine can

sporadically/occasionally cause it to “Blue Screen” (“Blue Screen of Death” or “BSOD”). When this happens, the error is often

a PAGE_FAULT_IN_NONPAGED_AREA in ftdibus.sys but in some cases a different cause may be displayed.

OpenOCD crashes when attempting to debug RISC-V

In some cases, OpenOCD may crash when attempting to debug a RISC-V target. This happens when the debug session

would fail anyway due to everything not being order for it to work – for example, the target board is not connected or powered

up or the wrong target board is connected. In some cases, such a crash may necessitate closing SoftConsole and restarting it

in order for a subsequent debug session to work.

RISC-V C++ support

Mi-V RISC-V C++ projects have not been extensively tested within the SoftConsole Eclipse/CDT environment. The underlying

RISC-V GNU toolchain does support C++ but the SoftConsole IDE may not yet properly support C++ projects.

Microsemi SoftConsole v5.2

42 Microsemi SoftConsole v5.2 Release Notes

FlashPro programmers cannot be shared by applications

Due to limitations of the FlashPro driver/library software support used by FlashPro client applications (e.g. SoftConsole

OpenOCD, SmartDebug, Identify etc.) FlashPro programmers cannot be shared and used at the same time by multiple

applications and only one application can use a specific FlashPro programmer at any one time.

Invalid command name "arm" when debugging RISC-V
If the debug launch configuration option Startup > Initialization Commands > Enable ARM semihosting is checked/enabled

when debugging a RISC-V target, then the following error will be displayed by OpenOCD but this can be safely ignored or the
Enable ARM semihosting option simply unchecked/disabled:

invalid command name "arm"

Initial startup may be slow

SoftConsole may be slow to start up when run for the first time after installation. The splash screen may be displayed for a

period of time before the GUI proper appears. Please be patient if this happens. It is a once off issue that does not happen on

subsequent launches.

Flash Programming

OpenOCD has been enhanced to add support for program download to and debugging from SmartFusion eNVM,

SmartFusion2 eNVM and Fusion eNVM.

OpenOCD supports programming CFI (Common Flash Interface) external flash parts but not non-CFI external flash.

No unlocking or locking of eNVM pages is carried out when downloading to eNVM. eNVM pages to be modified are expected

and assumed to be unlocked.

Build Project context menu option sometimes disabled

Sometimes the Build Project option in the context menu that appears when right clicking on a project is disabled when it

should be enabled. This seems to be a CDT bug. If this happens right click on another node in the Project Explorer tree view

and then back onto the project in question and it will be re-enabled. Alternatively use the Build toolbar (hammer) icon to select

and build a specific project build target.

Windows firewall and OpenOCD

On Windows if there is a firewall in use then the first time that a debug session is run the firewall may prompt that it is blocking

OpenOCD. Allow the firewall to unblock it and save this as the default setting if necessary.

Multiple debug sessions

For a particular SoftConsole application instance, only one debug session should be active at any one time. If a deliberate or

inadvertent attempt is made to run more than one debug session, then SoftConsole may not work properly and it may be

necessary to exit and restart SoftConsole for further debugging to work properly.

Multiple SoftConsole installations and sessions

It is possible to install multiple versions of SoftConsole side by side and they will not interfere with each other – e.g. if you

needed SoftConsole v5.1 installed for CoreRISCV_AXI4 development and SoftConsole v5.2 installed for Mi-V RISC-V

development. It is also possible to run more than one instance of SoftConsole at the same time. It is also possible to run more

than one OpenOCD debug session at the one time if each uses a separate FlashPro JTAG device and the second and

subsequent OpenOCD instance is configured appropriately,

OpenOCD uses the following ports by default:

Port 3333 for its GDB (Remote Serial Protocol) interface

Port 4444 for its Telnet interface

Port 6666 for its Tcl interface

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 43

A second (and subsequent) OpenOCD instance must be configured to use different/unique ports. The GDB (Remote Serial

Protocol) and Telnet ports can be configured in the SoftConsole GUI and changed from their defaults of 3333 and 4444

respectively – e.g. to 3334 and 4445 respectively for a second simultaneous OpenOCD debug session. However, the Tcl port

must be configured as follows:

--command "tcl_port 6667"

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

Memory Monitor fails to display

There have been unconfirmed reports that in some cases an attempt to configure/enable a Memory Monitor will fail and the

debug session may not operate correctly subsequently. If this happens then exit and restart SoftConsole.

FlashPro JTAG debugging is unreliable on virtual machines

FlashPro JTAG debugging is unreliable on virtual machines so it is recommended that only physical machines and not virtual

machines be used for SoftConsole debugging.

Unexpected “Invalid project path” warnings

Warnings of the following form may appear for no obvious reason.

Invalid project path: Duplicate path entries found (/fpga-cortex-m1-blinky [Include path]

base-path:fpga-cortex-m1-blinky isSystemInclude:true)

Invalid project path: Include path not found (smartfusion2-cortex-m3-blinky\#undef

__ARM_FEATURE_CRYPTO)

Deleting these warnings may eliminate them. But if they continue to appear then just ignore them for now.

“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3

When debugging a SmartFusion2 Cortex-M3 target where the SmartFusion2 envm boot area does not contain a valid Cortex-

M3 program (for example zeroized or garbage envm contents), one or more instances of the following message may appear in

the OpenOCD log:

Info : DAP transaction stalled (WAIT) - slowing down

This arises because if the Cortex-M3 boots from zeroized or garbage envm it can end up in a double fault/lockup/reset cycle

and the debugger may experience delays while trying to reset it. However, the debugger will reset the target and these

messages can be safely ignored.

“Error: Got exception …” when reading some RISC-V registers
Not all RISC-V registers are implemented in all RISC-V targets. For example, RISC-V targets with no hardware floating point
support (no F, D or Q extension support) do not implement any FPU (Floating Point Unit) registers. Similarly, not all
Control/Status Registers (CSRs) are implemented in all cases. When an attempt is made to read a register that does not exist
then OpenOCD will display a message of the form:

Error: Got exception 0xffffffff when reading register ...

Such error messages can be safely ignored.

Microsemi SoftConsole v5.2

44 Microsemi SoftConsole v5.2 Release Notes

OpenOCD error/info messages when debugging RISC-V
When debugging a RISC-V target the following error/info messages may appear but the debug session proceeds without
problems. These messages can be safely ignored for now.

Info : RISC-V IDCODE = 0x10e31913

Info : dtmcontrol_idle=5, dmi_busy_delay=1, ac_busy_delay=0

Info : dtmcontrol_idle=5, dmi_busy_delay=2, ac_busy_delay=0

Info : dtmcontrol_idle=5, dmi_busy_delay=3, ac_busy_delay=0

Info : dtmcontrol_idle=5, dmi_busy_delay=4, ac_busy_delay=0

Error: Unable to execute program 0123ed74

Info : Disabling abstract command reads from CSRs.

...

Info : accepting 'gdb' connection on tcp/3333

Error: Unable to execute program 0123f554

Error: failed to execute program, abstractcs=0x0e000001

Error: exiting with ERROR_FAIL

...

RISC-V GDB/MI fetches all 4162 registers
The current GDB/MI implementation fetches all 4162 RISC-V registers every time. This includes 32 integer registers, 32
floating point registers (even where the target does not support hardware floating point capabilities), pc (program counter), priv
(privilege register) and 4096 CSRs (Control and Status Registers). This bulk transfer of registers can sometimes cause
problems with debugging (e.g. latencies when single stepping or scrolling through the registers) but some of these problems
have been mitigated through configuration. This problem will be addressed or mitigated further in a future release.

RISC-V traditional memory render problems
The aforementioned bulk transfer of all 4162 registers causes a specific problem with the traditional memory render “Show
local variables and registers” feature:

https://wiki.eclipse.org/CDT/User/NewIn90#Show_local_Variables_and_Registers_in_the_traditional_memory_render

If this option is enabled then the memory view will appear blank, SoftConsole will start using a significant amount of CPU
resources, further debugging will most likely not be possible and it is necessary to restart SoftConsole to rectify the problem.

For this reason, the Window > Preferences > C/C++ > Debug > Traditional Memory Rendering > Show cross reference option
documented in the above link is disabled by default and should not be enabled when debugging RISC-V.

RISC-V envm download does not work
RISC-V program download to and debug from (SmartFusion2/IGLOO2, SmartFusion, Fusion) envm does not work. This will
be rectified in a future release.

Debugging and multiple device JTAG chains

Debugging a particular SmartFusion or SmartFusion2 Cortex-M3 in a multiple device JTAG chain can be achieved through

judicious and appropriate customization of the OpenOCD board script to include a description of other device TAPs in the

JTAG chain.

For example, make a copy of the <SoftConsole-install-

dir>/openocd/share/openocd/scripts/board/microsemi-riscv.cfg board script and modify it to declare any

device TAPS before and/or after the device containing the CPU which is to be debugged. The following example describes a

three M2S090 device chain where the middle device contains the Cortex-M3 to be debugged:

FlashPro

source [find interface/microsemi-flashpro.cfg]

Ignore leading device

https://wiki.eclipse.org/CDT/User/NewIn90#Show_local_Variables_and_Registers_in_the_traditional_memory_render

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 45

jtag newtap M2S090_0 tap -irlen 8 -expected-id 0x0f8071cf -ignore-version

Want to debug the Cortex-M3 in this device

source [find target/microsemi-cortex-m3.cfg]

Ignore trailing device

jtag newtap M2S090_2 tap -irlen 8 -expected-id 0x0f8071cf -ignore-version

Board specific initialization

proc do_board_reset_init {} {

}

Debugging a particular UJTAG/CoreJTAGDebug connected Cortex-M1 or Mi-V RISC-V in a multiple device JTAG chain is not

yet possible.

Where there are multiple UJTAG/CoreJTAGDebug connected Cortex-M1 and/or Mi-V RISC-V CPUs in a single device it is

possible to debug any one of these at a time by specifying the appropriate IRCODE configured in CoreJTAGDebug for the

relevant CPU. E.g.:

--command "set UJ_JTAG_IRCODE 0x34" --file board/microsemmi-cortex-m1.cfg

or

--command "set UJ_JTAG_IRCODE 0x56" --file board/microsemmi-riscv.cfg

The default UJ_JTAG_IRCODE used by board/microsemi-cortex-m1.cfg is 0x33 and by board/microsemi-

riscv.cfg is 0x55.

RISC-V target support

SoftConsole v5.2 primarily supports software development and debug for Microsemi Mi-V RISC-V soft CPU cores and comes

bundled with the set of multilibs (for specific architecture/abi configurations) detailed earlier in the document. However it should

be possible to develop and debug with any other RISC-V implementation that is covered by the bundled multilibs and which

adheres to the RISC-V User-Level ISA (Instruction Set Architecture) v2.2 (https://riscv.org/specifications/) and the RISC-V

Draft Privileged ISA Specification v1.10 (https://riscv.org/specifications/privileged-isa/).

SoftConsole and the underlying RISC-V GCC development/debug tools are configured to use RISC-V Draft Privileged ISA

Specification v1.10 names and locations for CSRs (Control and Status Registers) so may not work correctly for RISC-V

implementations that adhere to any earlier draft version of that specification.

SoftConsole v3.4 or earlier workspaces/projects

SoftConsole v3.4 or earlier workspaces, projects and debug launch configurations are not compatible with this version of

SoftConsole and must be recreated.

SoftConsole v5.0 RISC-V projects and debug launch configurations

Due to changes to the Eclipse Plugin for RISC-V GNU Toolchain since SoftConsole v5.0 was released it is possible that RISC-

V projects created using SoftConsole v5.0 may not work correctly in SoftConsole v5.1. For this reason it is recommended that

existing projects created in SoftConsole v5.0 or any pre-release version of SoftConsole v5.x are recreated in SoftConsole

v5.1. Note that SoftConsole v5.1 RISC-V debug launch configurations require -f board/microsemi-riscv.cfg whereas

some pre-release versions of SoftConsole v5.x used a different board script name (for example -f board/microsemi-

riscv-rv32im.cfg). If there are any problems using existing RISC-V debug launch configurations then recreate them using

one of the example workspace RISC-V debug launch configurations as a guide.

https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa/

Microsemi SoftConsole v5.2

46 Microsemi SoftConsole v5.2 Release Notes

SmartFusion2 DPK unlocking

SmartFusion2 provides an option to lock down Cortex-M3 debug access using a DPK (Debug PassKey). If this is enabled in

the Libero design, then SoftConsole/OpenOCD needs to specify the DPK for debugging to work. To do this the 256-bit DPK

must be passed to OpenOCD as a 64-hex digit string as follows:

--command "set DPK 0x0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF"

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

There is a known issue with some or all SmartFusion2 devices whereby the DPK unlock only works if the MSS is reset after
the DPK unlock operation has been executed and this does not happen automatically. If debug access does not work even
though the correct DPK was specified as above, then it may be necessary to add some logic to the design to reset the MSS on
detection of the DPK unlock operation at the UJTAG level. This logic is outlined below.

module trigger1(UDRCK, URSTB, UDRUPD, MSSRESET_N, UIREG);

input UDRCK, URSTB, UDRUPD;

output MSSRESET_N;

input [7:0] UIREG;

reg MSSRESET_N;

reg [1:0] state;

parameter CHECK = 2'b01, HIGH = 2'b10;

always @ (posedge UDRCK or negedge URSTB)

 begin

 if (!URSTB)

 begin

 MSSRESET_N <= 1;

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 47

 state <= CHECK;

 end

 else

 begin

 case(state)

 CHECK:

 begin

 if ((UIREG[7:0] == 8'h0A) && (UDRUPD == 1))

 begin

 MSSRESET_N <= 0;

 state <= HIGH;

 end

 else

 begin

 MSSRESET_N <= 1;

 state <= CHECK;

 end

 end

 HIGH:

 begin

 MSSRESET_N <= 1;

 state <= CHECK;

 end

 default:

 begin

 MSSRESET_N <= 1;

 state <= CHECK;

 end

 endcase

 end

 end

endmodule

Microsemi SoftConsole v5.2

48 Microsemi SoftConsole v5.2 Release Notes

Other useful Documentation
1. Microsemi github: https://github.com/RISCV-on-Microsemi-FPGA

2. RISC-V specifications: https://riscv.org/specifications/

3. Erich Styger’s “MCU on Eclipse” blog (http://mcuoneclipse.com/): Useful tips and tricks for using

Eclipse/CDT, GNU ARM Eclipse, GNU Tools for ARM Embedded Processors, OpenOCD etc. The

Compendium page is a good place to find posts/articles relevant to Eclipse, OpenOCD etc.

4. The websites and documentation links for the various open source components used in SoftConsole are

also useful references. These are listed elsewhere in this document.

https://github.com/RISCV-on-Microsemi-FPGA
https://riscv.org/specifications/
http://mcuoneclipse.com/
http://mcuoneclipse.com/compendium/

Microsemi SoftConsole v5.2

Microsemi SoftConsole v5.2 Release Notes 49

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service,

Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains

information about contacting Microsemi SoC Products Group and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update

information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can

help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer

Technical Support Center spends a great deal of time creating application notes, answers to common design cycle

questions, documentation of known issues and various FAQs. So, before you contact us, please visit our online

resources. It is very likely we have already answered your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-

support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home

page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by

email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or

phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly

monitor the email account throughout the day. When sending your request to us, please be sure to include your full

name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

http://www.microsemi.com/index.php?option=com_content&view=article&id=2112&catid=1731&Itemid=3022
http://www.microsemi.com/index.php?option=com_content&view=article&id=2112&catid=1731&Itemid=3022
http://www.microsemi.com/soc
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
file:///C:/Documents%20and%20Settings/alim/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/BPCDM203/soc_tech@microsemi.com
http://www.microsemi.com/soc/mycases/

Microsemi SoftConsole v5.2

50 Microsemi SoftConsole v5.2 Release Notes

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email

(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and corporate

contacts.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR),

contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR drop-down list.

For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/mycases/
http://www.microsemi.com/soc/ITAR/

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor

and system solutions for communications, defense & security, aerospace and industrial

markets. Products include high-performance and radiation-hardened analog mixed-signal

integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and

synchronization devices and precise time solutions, setting the world's standard for time; voice

processing devices; RF solutions; discrete components; security technologies and scalable

anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as

custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and

has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

XXXXXXXX-12Nov2017

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or

the suitability of its products and services for any particular purpose, nor does Microsemi assume any

liability whatsoever arising out of the application or use of any product or circuit. The products sold

hereunder and any other products sold by Microsemi have been subject to limited testing and should not

be used in conjunction with mission-critical equipment or applications. Any performance specifications are

believed to be reliable but are not verified, and Buyer must conduct and complete all performance and

other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not

rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s

responsibility to independently determine suitability of any products and to test and verify the same. The

information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the

entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly

or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such

information itself or anything described by such information. Information provided in this document is

proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this

document or to any products and services at any time without notice.

http://www.microsemi.com/
mailto:sales.support@microsemi.com

	Table of Contents
	Key features 5
	Features not supported 5
	Quick start guide 6
	Packages used 9
	Windows 13
	Linux 13
	Libero SoC/Firmware Catalog 18
	Firmware drivers 18
	FlashPro JTAG programmer 19
	SoftConsole v3.4 19
	SoftConsole v4.x 19
	SoftConsole v5.1 RISC-V projects 19
	Microsemi github 19
	Example workspace 20
	Creating a new workspace 20
	Creating a new project 21
	Project Settings 22
	Adding source files to a project 25
	Building a project 26
	Debug launch configurations 27
	OpenOCD command line options and scripts 31
	Board configuration for FlashPro debugging 34
	Using a debug session 34
	Troubleshooting 37
	Cortex-M semihosting 39
	Integer only newlib support 39
	Static stack profiling 40
	Reset/power cycle the target hardware before each Mi-V RISC-V debug session 41
	Debug launch configuration settings differ for Cortex-M and Mi-V RISC-V 41
	Mi-V RISC-V memory view prblems 41
	Windows occasionally crashes when plugging FlashPro in/out 41
	OpenOCD crashes when attempting to debug RISC-V 41
	RISC-V C++ support 41
	FlashPro programmers cannot be shared by applications 42
	Invalid command name "arm" when debugging RISC-V 42
	Initial startup may be slow 42
	Flash Programming 42
	Build Project context menu option sometimes disabled 42
	Windows firewall and OpenOCD 42
	Multiple debug sessions 42
	Multiple SoftConsole installations and sessions 42
	Memory Monitor fails to display 43
	FlashPro JTAG debugging is unreliable on virtual machines 43
	Unexpected “Invalid project path” warnings 43
	“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3 43
	“Error: Got exception …” when reading some RISC-V registers 43
	OpenOCD error/info messages when debugging RISC-V 44
	RISC-V GDB/MI fetches all 4162 registers 44
	RISC-V traditional memory render problems 44
	RISC-V envm download does not work 44
	Debugging and multiple device JTAG chains 44
	RISC-V target support 45
	SoftConsole v3.4 or earlier workspaces/projects 45
	SoftConsole v5.0 RISC-V projects and debug launch configurations 45
	SmartFusion2 DPK unlocking 46

	Microsemi SoftConsole v5.2
	Introduction
	Overview
	Key features
	Features not supported
	Quick start guide

	Supported platforms
	Free/Open source packages
	Packages used

	Installation
	Windows
	Installing

	Linux
	Before installing
	Installing
	After installing
	Troubleshooting

	Related Microsemi Tools/Resources
	Libero SoC/Firmware Catalog
	Firmware drivers
	Hardware Abstraction Layers
	Peripheral firmware drivers
	Matching firmware to the target hardware

	FlashPro JTAG programmer
	SoftConsole v3.4
	SoftConsole v4.x
	SoftConsole v5.1 RISC-V projects
	Microsemi github

	Workspaces
	Example workspace
	Example projects
	Example debug launch configurations

	Creating a new workspace

	Projects
	Creating a new project
	Project Settings
	All CPU targets
	Target Processor
	Linker Script
	Newlib-Nano
	Create Extended Listing
	Preprocessor Defines and Includes
	Optimization Options
	Library Dependencies
	Print Size
	Other Options
	Specifying Options for All Build Configurations

	Mi-V RISC-V targets
	Do not use standard start files (-nostartfiles)

	Cortex-M targets
	CMSIS

	SmartFusion2 Cortex-M3 targets
	Production-Smartfusion2-Relocate-to-External-Ram.ld

	Adding source files to a project
	Building a project

	Debugging
	Debug launch configurations
	OpenOCD command line options and scripts
	SmartFusion/SmartFusion2 DEVICE
	Board scripts
	Cortex-M1 Board Script
	FlashPro JTAG speed
	Other OpenOCD options
	SoftConsole OpenOCD script parameters

	Board configuration for FlashPro debugging
	Using a debug session
	Launching a debug session
	Memory Monitor
	Console view
	Built-in serial terminal view
	Debug using a specific FlashPro programmer
	Debugging using a non FlashPro JTAG interface
	How to connect to/debug a running program

	Troubleshooting

	Other Features
	Cortex-M semihosting
	Integer only newlib support
	Static stack profiling

	Known Issues
	Reset/power cycle the target hardware before each Mi-V RISC-V debug session
	Debug launch configuration settings differ for Cortex-M and Mi-V RISC-V
	Mi-V RISC-V memory view prblems
	Windows occasionally crashes when plugging FlashPro in/out
	OpenOCD crashes when attempting to debug RISC-V
	RISC-V C++ support
	FlashPro programmers cannot be shared by applications
	Invalid command name "arm" when debugging RISC-V
	Initial startup may be slow
	Flash Programming
	Build Project context menu option sometimes disabled
	Windows firewall and OpenOCD
	Multiple debug sessions
	Multiple SoftConsole installations and sessions
	Memory Monitor fails to display
	FlashPro JTAG debugging is unreliable on virtual machines
	Unexpected “Invalid project path” warnings
	“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3
	“Error: Got exception …” when reading some RISC-V registers
	OpenOCD error/info messages when debugging RISC-V
	RISC-V GDB/MI fetches all 4162 registers
	RISC-V traditional memory render problems
	RISC-V envm download does not work
	Debugging and multiple device JTAG chains
	RISC-V target support
	SoftConsole v3.4 or earlier workspaces/projects
	SoftConsole v5.0 RISC-V projects and debug launch configurations
	SmartFusion2 DPK unlocking

	Other useful Documentation
	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

