
UG0787
User Guide

PolarFire FPGA Block Flow
NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

 PolarFire FPGA Block Flow User Guide

 1

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does Microsemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must
conduct and complete all performance and other testing of the products, alone and together with,
or installed in, any end-products. Buyer shall not rely on any data and performance specifications
or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other IP rights, whether with regard to such information itself or
anything described by such information. Information provided in this document is proprietary to
Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization
devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions;
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet
ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

5-02-00787-2/08.18

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi Corporation. All
rights reserved. Microsemi and
the Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks
and service marks are the
property of their respective
owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

 PolarFire FPGA Block Flow User Guide

 2

Table of Contents

Table of Contents... 2

Block Flow - Overview ... 4
Block Features ... 4
HDL Supported .. 4
Synthesis Tools Supported .. 4
Nested Blocks .. 4

Creating Blocks - Options and Settings .. 5
Synthesis Tool Settings ... 5
Synthesis .. 5
Publish Options/Settings .. 6

Publishing Blocks After Synthesis or Layout ... 7
Publish After Synthesis .. 7
Publish After Layout ... 7
Published Content .. 7

Guidelines for Creating Blocks .. 8
Macros/IPs Not Supported in Blocks ... 8
Synthesis Tool and Globals Management ... 8
Place and Route and Globals Management .. 8
Blocks and DRC ... 9
Blocks and Floorplanning ... 9
Architecture Limitations - Managing Blocks and Globals... 9

Import the Block .. 11

Create a Top Level Design that Uses Blocks .. 12

Constraints Management .. 13

Hierarchical Structure Resolution in Top Level Projects 14
Duplicate Block Definition .. 14
Conflicting Definitions in top.v and Your Imported Block File .. 14
Resolving top.v and Block Instantiations ... 14

EDIF Netlist in the Top Level Design.. 15

Synthesis .. 16

Resolving Place and Route Conflicts ... 17

 PolarFire FPGA Block Flow User Guide

 3

Synthesis Options to Resolve Place and Route Conflicts ... 17

Block and Block-related PDC Commands ... 19
move_block .. 19
set_block_options .. 20
define_region ... 22
assign_region ... 24

Publish Block - Configuration Options .. 26

 PolarFire FPGA Block Flow User Guide

 4

Block Flow - Overview

Block Flow is a bottom-up design methodology that enables you to use design blocks (“components” in
generic terms) as building blocks for your top-level design. These building blocks may have already
completed layout and been optimized for timing and power performance for a specific Microsemi device.
Using these blocks as part of your top-level design can cut down design time as well as improve timing and
power performance. Block advantages include:
• Focus on the timing of critical blocks and ensure the timing across the blocks meets requirements

before proceeding to integrate your blocks at the top level.
• Changes in other blocks have no impact on your own block; you can re-use your block without re-

optimizing for timing closure.
• The block can be re-used in multiple designs.
• Shorter verification time; you need to re-verify only the portion of the design that has changed.

Block Features
• A Block can be synthesized, simulated, and placed-and-routed the same way as a regular design.
• You can lock the placement and routing of the Block to ensure repeatable performance.
• Performance, placement and routing can be fixed absolutely; however these rules can be relaxed

gradually, if necessary, to ensure that you can integrate the Block into your top level project.
Use blocks when:
• You have multiple team members working on different parts of the same design.
• The design is congested (uses 90% or more of the resources on a given die).
• You have difficulty meeting timing by doing the design in its entirety. Blocks enable you to

compartmentalize the design and optimize sections before you optimize the entire design.
• You want to re-use some elements of your design.
• You want to use the identical elements multiple times in a single design.
• You want to make small changes in your design and expect to keep most of the design unchanged

with guaranteed performance.
You cannot use Blocks with all families, they are family and die specific; if your Block has I/Os it is also
package specific.

HDL Supported
• Verilog
• VHDL

Synthesis Tools Supported
• Synplify Pro

Nested Blocks
Nested blocks (blocks instantiated inside other blocks) are supported. When publishing, only one file will be
published that contains all the required information (including the nested block).

 PolarFire FPGA Block Flow User Guide

 5

Creating Blocks - Options and Settings

To enable Block Creation for a new project, from the Project menu, choose New Project. Check the Enable
Block Creation checkbox.
In an existing project, from the Project menu, choose Project Settings. Click Design Flow and check the
Enable Block Creation checkbox.

Synthesis Tool Settings
In Synplify Pro, the I/O Insertion option is disabled when the block is synthesized. Libero automatically
disables I/O insertion for you before invoking Synplify Pro.

Synthesis
During Synthesis, Libero SoC software adds BLOCK_INTERFACE_I* instances to the block. These
instances are virtual buffers added to:
• Improve timing values for the block.
• Provide you with a clear interface to floorplan
• Help with clustering constraints

 PolarFire FPGA Block Flow User Guide

 6

The BLOCK_INTERFACE_I* instances are removed when the block is published.

Figure 1 · Creating and Publishing Design Blocks

Publish Options/Settings
Use the Publish Block – Configuration Options dialog box to configure the block for Publication.

 PolarFire FPGA Block Flow User Guide

 7

Publishing Blocks After Synthesis or Layout

You can publish your block after Synthesis or Layout.

Publish After Synthesis
If you publish a block after Synthesis but before Layout, a netlist is exported for the block when published.
No Place and Route information or Region Constraint information is included in the block when published. A
Warning message appears when you publish a block before Place and Route.

Publish After Layout
If you publish a block after Layout, the Placement, Routing and/or Region Constraint information will be
published along with the netlist. You can always open the configurator and change the options to publish
what you want. All macros must be locked or assigned to regions in order to publish the Placement
information.

Published Content
Libero exports the <design>.cxz file to <project folder>/designer/<design_block_name>/export folder when a
block is published. The <design>.cxz file is a zip file that contains the following files:
• <design_block_name>_syn.v | <design_block_name>_syn.vhd -- A timing shell file passed to

synthesis tools when the top-level design is synthesized. The block is marked and treated as a black
box when the top-level design is synthesized.

• <design_block_name>_sim.v | <design_block_name>_sim.vhd -- A structural HDL netlist for
postsynthesis simulation of the block.

• header_report.log - A log file that contains Header Information on what and how a block is published ,
including the options you selected to configure the publication.

• <design_block_name>_compile_netlist_resources.xml -- Compile Report detailing resource usage,
device info, and a list of high-fanout nets.

• <design_block_name>_gp_report.xml -- Global Placement and Routing Report
• <design_block_name>_compile_netlist_combinational_loops.xml -- Combinational Loops Report
• <design>.cdb – Internal proprietary file containing the optimized netlist , placement, routing or timing

constraint information
• <design_block_name>.sdc - contains the SDC constraints for the block to be used for Timing

Verifications.
The <design_block_name>.cxz file is your published block. You can move it to another folder, transfer it to
other team members, etc. This is the file you import into your top-level design when you want to instantiate
the block.

 PolarFire FPGA Block Flow User Guide

 8

Guidelines for Creating Blocks

Macros/IPs Not Supported in Blocks
When creating a Block for instantiation in a top-level design, please note that the following types of macros
are not allowed: TBD.

Synthesis Tool and Globals Management
The synthesis tool may promote all clocks to globals. Keep in mind the number of globals you need in your
top level design and the number of globals allowed in the device (8 or 16 depending on device size) you are
targeting. You may need to reduce or limit the number of globals in your block by adding row globals or plan
to share globals in the top-level design with the block. To add a row global, you can add it directly to your
HDL (RCLKINT).

Place and Route and Globals Management
The Place and Route tool has an option for you to limit the number of row-globals used for block creation.

Figure 2 · Place and Route Block Creation Option

 PolarFire FPGA Block Flow User Guide

 9

This option is available only when the Block Creation option is turned on (Project > Project Settings > Design Flow >
Enable Block Creation).

To use this option, from the Design Flow window, right-click Place and Route and choose Configure
Options. The Layout Options dialog box appears and displays the default number of row-global resources
for the technology family. Enter a value to restrict the number of row-global resources available in every half-
row of the device. During Place and Route of the block, the tool will not exceed this capacity on any half-row.
The default value displayed is the maximum number of row-globals. If you enter a value lower than the
maximum capacity (the default), the layout of the block will be able to integrate with the rest of the design if
the remaining row-global capacity is consumed.

Blocks and DRC
Regular DRC rules are applied to blocks as in the regular Libero design flow. For example, some DRC rules
assume that some pins must be connected to the power nets. These rules are enforced on the blocks in the
block flow just as in the regular design flow.

Blocks and Floorplanning
When creating a block, floorplanning is essential if you plan to publish placement information. Before
running Layout on the block, you must floorplan the design block. You can use Chip Planner or PDC
commands for floorplanning.
If you do not create a region and constrain the Block to the region (floorplanning) or lock the macros before
place and route, a Warning message appears when you publish the Block. It warns you that not all macros
in the Block have been constrained to regions or locked and therefore only your design netlist is exported
when the Block is published.

Floorplanning with PDC Commands
You can use the define_region PDC command to create a rectangular or rectilinear region, and then use the
assign_region PDC command to constrain all the macros to that region.
Floorplanning reduces the risk of placement conflicts of the blocks at the top level.
If you do not constrain your Block placement, its components may be placed anywhere on the die.
It is also important to consider the placement of all Block Interface Instances at the boundaries of Block
regions. This facilitates the interconnection of the Block to the top-level design. If the Block is highly
optimized (densely packed) there may be no routing channels available to connect to any internal Block
Interface Instances. Placing all interfaces at Block boundaries helps you eliminate routing congestion and
failure.

Floorplanning with Chip Planner
Refer to Chapter 5 of Chip Planner for details on how to use the Chip Planner for floorplanning.

Architecture Limitations - Managing Blocks and Globals
Architecturally, the silicon has 8 or 16 globals per device, depending on the device size. If you create a block
for use in a top level design and you know that the top level design will use close to the maximum number of
Globals for the device, it is good practice to minimize the number of Globals when you create the block.
Examine the Global Report to see how many Globals have been used for the block. To reduce the number
of Globals used in the block, you may consider clock sharing and the use of Row Globals for the block.
To add an internal global on a port, you can use either the Synplify constraints editor (SCOPE) or an SDC
file.
For example, to add a CLKINT after a CLK port, the command is:
define_attribute {n:CLK} syn_insert_buffer {CLKINT}

You may instantiate multiple instances of the same block or multiple blocks in the top-level design.
Microsemi recommends that you create a new project for your top-level design. To do so:

1. From the Project menu choose New Project.

https://coredocs.s3.amazonaws.com/Libero/pf_2_0_0/Tool/chipplanner_ug.pdf

 PolarFire FPGA Block Flow User Guide

 10

2. Deselect the Enable Designer Block Creation checkbox.
3. Choose the Family/Die/Package for the new project for the top-level as follows :
• If the block is a Netlist only and was not published with place and route information, choose the same

Family as the block for the new project. Choose any Die and Package.
• If the block contains placement information, choose the same Family and Die as the block for the new

project, and choose any Package.
• If the Netlist contains I/O and Placement Information, choose the same Family, Die and Package as

the block for the new project.

 PolarFire FPGA Block Flow User Guide

 11

Import the Block

1. From the File menu choose Import > Blocks.
2. Browse to the directory that contains your <design_block_name>.cxz file and select it.
3. Click Open.

<design_block_name> is imported into the top_level project. Version control is not supported for imported
blocks. If you import the same block twice, the existing block is overwritten by the new one.
The files will be imported under <design>\component\work\<design_block_name>.
Review the files in the above directory to view Block Reports.

 PolarFire FPGA Block Flow User Guide

 12

Create a Top Level Design that Uses Blocks

Use SmartDesign or HDL to create your top level design. If you use HDL you can create HDL for the top
level or import a top-level HDL file.

Figure 3 · Instantiating Blocks in your Top Level Design

 PolarFire FPGA Block Flow User Guide

 13

Constraints Management

When a block with PDC constraints are imported into the top level design, the block’s PDC constraints are
captured and stored in two files:
• <top_level_module>.block.io.pdc for the IO PDC constraints
• <top_level_module>.block.fp.pdc for the floorplanning PDC constraints.

The <top_level_module>.block.io.pdc is displayed in the I/O Attributes tab of the Constraint Manager on
top of any other IO PDC files.
The <top_level_module>.block.fp.pdc is displayed in the Floor Planning tab of the Constraint Manager on
top of any other floorplanning PDC files.
See the Libero SoC Constraint Management chapter of PolarFire FPGA Design Flow User Guide for more
information.
Note: Do not modify these block PDC files at the top level. If these PDC files need to be modified, go back

to the project where the blocks are created and published. Make the floorplanning modifications and
publish the block. Re-import the block into the top level. You may need to remove any duplicate
blocks, if any, at the top level after the re-import.

https://coredocs.s3.amazonaws.com/Libero/pf_2_0_0/Tool/pf_des_flow_ug.pdf

 PolarFire FPGA Block Flow User Guide

 14

Hierarchical Structure Resolution in Top
Level Projects

If you import multiple conflicting definitions for your *.v files, Libero resolves the conflicts as shown below.

Duplicate Block Definition
If you import two versions of your block file you must choose which one you want to use. For example:

1. Import top.v and block1.v files as HDL (File > Import HDL Source Files) into the top level project.
2. Import <block1> (File > Import > Blocks).

Libero recognizes a duplicate definition of <block1>; one from the HDL and another in the imported block
file. The Design Hierarchy tab shows a <block1>.cxf and <block1>.v file under Duplicate Modules; Libero
uses the HDL <block1> by default.
To override the default behavior and select the Block definition, right-click the <block1>.cxf file and choose
Use This File. When you update the behavior the Block icon appears in the Design Hierarchy.

Conflicting Definitions in top.v and Your Imported Block File
You can introduce a conflict if you import a top.v file and a block file. Libero does not support HDL definition
of low level blocks inside top level HDL files and subsequent importing of block files. For example, the
following will cause an error:

1. Import a top.v file (File > Import HDL Source Files) that contains a definition for <top> and a module
definition for <block1>.

2. Import the block <block1> (File > Import > Blocks).
Libero passes two duplicate files to your synthesis tool because the definition for <block1> is duplicated. To
continue, you must remove the definition of <block1> from top.v and then re-import it.

Resolving top.v and Block Instantiations
Libero integrates your top.v file and block file if there is no definition for the block file in top.v. For example:

1. Import your top.v (File > Import HDL Sources Files) that contains instantiations but no definition of
<block1>.

2. Import <block1> (File > Import> Blocks).
Libero resolves the hierarchy for you and puts <block1> under top.v.

 PolarFire FPGA Block Flow User Guide

 15

EDIF Netlist in the Top Level Design

If the Top Level design is in EDIF, you must convert the EDIF to HDL and then import the HDL into Libero.
To convert the Top Level EDIF to HDL:

1. Write a Tcl script. For example:
set_device -fam PolarFire

read_edif -file {E:\top.edn}

write_verilog -file {E:\top.v} –skip_empty_modules 1

write_vhdl -file {E:\top.vhd}

-skip_empty_modules 1 is to instruct the tool not to insert module ## definition for
the empty modules in the HDL created.

2. From the Windows Command Prompt or the Linux shell, run rwnetlist as follows (this executable is

located in the same location as Libero):
rwnetlist --script "E:/run_export_netlist.tcl”

 PolarFire FPGA Block Flow User Guide

 16

Synthesis

Libero passes the block timing to your synthesis tool when the top level is synthesized. This timing shell
enables the synthesis tool to produce more accurate timing numbers for top level synthesis.
The timing shell also instructs the synthesis tool to treat the design block as a black box; this is done
automatically - no action is required.
Use the Synthesis tool options (Design Flow > Synthesize > Configure Options) for "Resolving Place and
Route Conflicts" on page 17 of blocks.

 PolarFire FPGA Block Flow User Guide

 17

Resolving Place and Route Conflicts

To resolve Place and Route conflicts at the top-level:
• Examine the <design_block_name>_compile_netlist_resources.xml Report. Identify the cause of the

problem and manually place and constrain the placement with Chip Planner or with PDC commands.
• If you instantiate a block (published with placement) multiple times then placement between multiple

block instances will overlap. To remove overlapping, move the block placement of one or more
instances to another area using the PDC command move_block. Put the move_block command inside
the NDC file and associate the NDC file with Synthesis (Constraint Manager> Netlist Attributes)

• The software enforces Global sharing. If there is a Global driving a CLKINT in the block it will be
deleted. Reduce the number of Globals at the top level by sharing Global Clock resources. Globals in
the Blocks may also be re-routed (not preserved).

Synthesis Options to Resolve Place and Route Conflicts
If there are multiple blocks instantiated in your top level design, the software uses the Synthesis Options to
resolve the conflicts. These options appear only if there are blocks in your design. Use the synthesis options
(Design Flow > Synthesize > Configure Options) to resolve Placement and/or Routing conflicts.

Placement
Error if conflict - The Layout tool errors out if any instance from a designer block is unplaced. This is the
default option.

Resolve conflict
• Keep non-conflicting placement - If some instances get unplaced for any reason, the non-conflicting

elements remaining are preserved but not locked (you can move them).
• Keep and lock non-conflicting placement - If some instances get unplaced for any reason, the

remaining non-conflicting elements are preserved and locked.
• Discard placement from all blocks – Placement information will be discarded from all blocks even if

there is no conflict.

Routing
Error if conflict - The Layout tool errors out if any preserved net routing in a designer block is deleted.

Resolve conflict
• Keep non-conflicting routing- If a nets' routing is removed for any reason, the routing for the non-

conflicting nets is preserved but not locked (so that they can be rerouted). This is the default option.
• Keep and lock non-conflicting routing- If the routing is removed for any reason, the remaining non-

conflicting nets are preserved and locked; they cannot be rerouted. This is the default option.
• Discard routing from all blocks – Routing information will be discarded from all blocks even if there

is no conflict.

https://coredocs.s3.amazonaws.com/Libero/pf_2_0_0/Tool/chipplanner_ug.pdf

 PolarFire FPGA Block Flow User Guide

 18

Figure 4 · Synthesis Options Dialog Box

 PolarFire FPGA Block Flow User Guide

 19

Block and Block-related PDC Commands

move_block and set_block_options are two PDC commands available specifically for working with design
blocks at the top level.
Use the move_block and set_block_options commands to make changes in your Top-Level design. See the
respective help topics for more information.
In the top level design, put the move_block and set_block_options commands in an NDC file (Design Flow
Window > Manage Constraints > Open Manage Constraints View > Netlist Attributes > New > Create
New Compile Netlist Constraints NDC) and associate the NDC file with Synthesis.
define_region and assign_region are two PDC commands especially useful for floor planning. See their
respective help topics for more information.

move_block
PDC command; moves a design block from its original, locked placement by preserving the relative
placement between the instances. You can move the Block to the left, right, up, or down.

move_block -inst_name instance_name -up y -down y -left x -right x -non_logic value

Arguments
-inst_name instance_name

Specifies the name of the instance to move. If you do not know the name of the instance, run a Compile
report or look at the names shown in the Block tab of the Chip Planner.
-up y

Moves the block up the specified number of rows. The value must be a positive integer.
-down y

Moves the block down the specified number of rows. The value must be a positive integer.
-left x

Moves the block left the specified number of columns. The value must be a positive integer.
-right x

Moves the block right the specified number of columns. The value must be a positive integer.
-non_logic value

Specifies what to do with the non-logic part of the block, if one exists. The following table shows the
acceptable values for this argument:

Value Description

move Move the entire block.

keep Move only the logic portion of the block (COMB/SEQ) and keep the rest
locked in the same previous location, if there is no conflict with other blocks.

 unplace Move only the logic portion of the block (COMB/SEQ) and unplace the rest
of it, such as I/Os and RAM.

Description
This command moves a block from its original, locked position to a new position.

https://coredocs.s3.amazonaws.com/Libero/pf_2_0_0/Tool/chipplanner_ug.pdf

 PolarFire FPGA Block Flow User Guide

 20

You can move the entire block or just the logic part of it. You must use the -non_logic argument to specify
what to do with the non-logic part of the block. You can find placement information about the block in the
Block report. From the Tools menu in the designer software, choose Reports > Block > Interface to
display the report that shows the location of the blocks.
The -up, -down, -left, and -right arguments enable you to specify how to move the block from its original
placement. You cannot rotate the block, but the relative placement of macros within the block will be
preserved and the placement will be locked. However, routing will be lost. You can either use the
ChipPlanner tool or run a Block report to determine the location of the block.
The -non_logic argument enables you to move a block that includes non-logic instances, such as RAM or
I/Os that are difficult to move. Once you have moved a part of a block, you can unplace the remaining
parts of the block and then place them manually as necessary.
Note: Microsemi recommends that you move the block left or right by increments of 12. If not, placement

may fail because it violates clustering constraints. Also, Microsemi recommends that you move the
block up or down by increments of three.

Exceptions
• You must import this PDC command as a source file, not as an auxiliary file.
• You must use this PDC command if you want to preserve the relative placement and routing (if

possible) of a block you are instantiating many times in your design. Only one instance will be
preserved by default. To preserve other instances, you must move them using this command.

Examples
The following example moves the entire block (instance name instA) 12 columns to the right and 3 rows up::
move_block -inst_name instA -right 12 -up 3 -non_logic move

The following example moves only the logic portion of the block and unplaces the rest by 24 columns to the
right and 6 rows up.
move_block -inst_name instA –right 24 –up 6 –non_logic unplace

See Also
set_block_options

set_block_options
PDC command; overrides the compile option for placement or routing conflicts for an instance of a block.

set_block_options -inst_name instance_name -placement_conflicts value -routing_conflicts
value

Arguments
-inst_name instance_name

Specifies the block instance name. If you do not know the name of the instance, run a Block Report
(Design > Reports > Blocks > Interface) or look at the names shown in the Block tab of the Chip
Planner.
-placement_conflicts value.

Specifies what to do when the software encounters a placement conflict. The following table shows the
acceptable values for this argument:

Value Description

error Compile errors out if any instance from a Designer block becomes unplaced
or its routing is deleted. This is the default compile option.

https://coredocs.s3.amazonaws.com/Libero/pf_2_0_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_0_0/Tool/chipplanner_ug.pdf

 PolarFire FPGA Block Flow User Guide

 21

Value Description

resolve If some instances get unplaced for any reason, the non-conflicting elements
remaining are also unplaced. Basically, if there are any conflicts, nothing
from the block is kept.

keep If some instances get unplaced for any reason, the non-conflicting elements
remaining are preserved but not locked. Therefore, the placer can move
them into another location if necessary.

 lock If some instances get unplaced for any reason, the non-conflicting elements
remaining are preserved and locked.

discard Discards any placement from the block, even if there are no conflicts.

-routing_conflicts value

Specifies what to do when the software encounters a routing conflict. The following table shows the
acceptable values for this argument:

Value Description

error Compile errors out if any route in any preserved net from a Designer block is
deleted.

resolve If a route is removed from a net for any reason, the routing for the non-
conflicting nets is also deleted. Basically, if there are any conflicts, no routes
from the block are kept.

keep If a route is removed from a net for any reason, the routing for the non-
conflicting nets is kept unlocked. Therefore, the router can re-route these
nets.

 lock If routing is removed from a net for any reason, the routing for the non-
conflicting nets is kept as locked, and the router will not change them. This
is the default compile option.

 discard Discards any routing from the block, even if there are no conflicts.

Description
This command enables you to override the compile option for placement or routing conflicts for an
instance of a block.

Exceptions
You must import this PDC command as a source file, not as an auxiliary file.
If placement is discarded, the routing is automatically discarded too.

Examples
This example makes the designer software display an error if any instance from a block becomes unplaced
or the routing is deleted:
set_block_options -inst_name instA -placement_conflicts ERROR -routing_conflicts ERROR

 PolarFire FPGA Block Flow User Guide

 22

See Also
move_block

define_region
PDC command; defines either a rectangular region or a rectilinear region.

define_region -region_name <region_name> -type <inclusive|exclusive|empty> -x1 <integer> -y1
<integer> -x2 <integer> -y2 <integer> [-color <integer>] [-route <true|false>]

Note: The -color and -route parameters are optional.

Arguments
-region_name region_name

Specifies the region name. The name must be unique. Do not use reserved names such as “bank0” and
“bank<N>” for region names. If the region cannot be created, the name is empty. A default name is
generated if a name is not specified in this argument.
-type <inclusive|exclusive|empty>

Specifies the region type. The default is inclusive. The following table shows the acceptable values for this
argument:

Region Type
Value

Description

Empty Empty regions cannot contain macros.

Exclusive Only contains macros assigned to the region.

Inclusive Can contain macros both assigned and unassigned to the
region.

-x1 -y1 -x2 -y2

Specifies the series of coordinate pairs that constitute the region. These rectangles may or may not
overlap. They are given as x1 y1 x2 y2 (where x1, y1 is the lower left and x2 y2 is the upper right corner in
row/column coordinates). You must specify at least one set of coordinates.
-color value

Specifies the color of the region. The following table shows the recommended values for this argument:

Color Decimal Value

 16776960

 65280

 16711680

 16760960

 255

 16711935

 65535

 PolarFire FPGA Block Flow User Guide

 23

Color Decimal Value

 33023

 8421631

 9568200

 8323199

 12632256

-route value

Specifies whether to direct the routing of all nets internal to a region to be constrained within that region. A
net is internal to a region if its source and destination pins are assigned to the region. You can enter one
of the following values:

Constrain
Routing Value

Description

true Constrain the routing of nets within the region as well as the
placement.

false Do not constrain the routing of nets within the region. Only constrain
the placement. This is the default value.

Note: Local clocks and global clocks are excluded from the -route option. Also, interface nets are

excluded from the –route option because they cross region boundaries.
An empty routing region is an empty placement region. If -route is "yes", no routing is allowed inside the
empty region. However, local clocks and globals can cross empty regions.
An exclusive routing region is an exclusive placement region (rectilinear area with assigned macros) along
with the following additional constraints:
• For all nets internal to the region (the source and all destinations belong to the region), routing must be inside

the region (that is, such nets cannot be assigned any routing resource which is outside the region or crosses the
region boundaries).

• Nets without pins inside the region cannot be assigned any routing resource which is inside the region or crosses
any region boundaries.

An inclusive routing region is an inclusive placement region (rectilinear area with assigned macros) along
with the following additional constraints:
• For all nets internal to the region (the source and all destinations belong to the region), routing must be inside

the region (that is, such nets cannot be assigned any routing resource which is outside the region or crosses the
region boundaries).

• Nets not internal to the region can be assigned routing resources within the region.

Description
Unlocked macros in empty or exclusive regions are unassigned from that region. You cannot create empty
regions in areas that contain locked macros.

 PolarFire FPGA Block Flow User Guide

 24

Use inclusive or exclusive region constraints if you intend to assign logic to a region. An inclusive region
constraint with no macros assigned to it has no effect. An exclusive region constraint with no macros
assigned to it is equivalent to an empty region.
Note: If macros assigned to a region exceed the area's capacity, the region’s Properties Window displays

the overbooked resources (over 100 percent resource utilization) in red.

Examples
The following example defines an empty rectangular region called UserRegion1 with lower-left co-ordinates
(100,46) and upper-right co-ordinates (102,50).
define_region -region_name UserRegion1 -type empty -x1 100 -y1 46 -x2 102 -y2 50

The following example defines an inclusive rectilinear region with the name UserRegion2. This region
contains two rectangular areas, one with lower-left co-ordinates (12,39) and upper-right co-ordinates (23,41)
and another rectangle with lower-left co-ordinates (12,33) and upper-right co-ordinates (23,35).
define_region -region_name UserRegion2 -type exclusive -x1 12 -y1 39 -x2 23 -y2 41 -x1 12
-y1 33\
-x2 23 -y2 35

The following examples define three regions with three different colors:
define_region -region_name UserRegion0 -color 128 -x1 50 -y1 19 -x2 60 -y2 25

define_region -region_name UserRegion1 -color 16711935 -x1 11 -y1 2 -x2 55 -y2 29

define_region -region_name UserRegion2 -color 8388736 -x1 61 -y1 6 -x2 69 -y2 19

See Also
assign_region

assign_region
PDC command; constrains a set of macros to a specified region.

assign_region -region_name region_name -inst_name macro_name+

Arguments
region_name

Specifies the region to which the macros are assigned. The macros are constrained to this region.
Because the define_region command returns a region object, you can write a simpler command such as
assign_region [define_region]+ [macro_name]+.
macro_name

Specifies the macro(s) to assign to the region. You must specify at least one macro name. You can use
the following wildcard characters in macro names:

Wildcard What It Does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

The region must be created before you can assign macros to it. If the region creation PDC command and
the macro assignment command are in different PDC files, the order of the PDC files is important.
You can assign only hard macros or their instances to a region. You cannot assign a group name. A hard
macro is a logic cell consisting of one or more silicon modules with locked relative placement.
The macro name must be a name with full hierarchical path.

Notes:

 PolarFire FPGA Block Flow User Guide

 25

• The region must be created before you can assign macros to it. If the region creation PDC command
and the macro assignment command are in different PDC files, the order of the PDC files is important.

• You can assign only hard macros or their instances to a region. You cannot assign a group name. A
hard macro is a logic cell consisting of one or more silicon modules with locked relative placement.

• The macro name must be a name with full hierarchical path.

Examples
In the following example, two macros are assigned to a region:
assign_region -region_name UserRegion1 -inst_name “test_0/AND2_0 test_0/AND2_1”

In the following example, all macros whose names have the prefix des01/Counter_1 (or all macros whose
names match the expression des01/Counter_1/*) are assigned to a region:
assign_region -region_name User_region2 -inst_name des01/Counter_1/*

 PolarFire FPGA Block Flow User Guide

 26

Publish Block - Configuration Options

To view this dialog box you must first Enable Block Creation in the Libero SoC Project Settings or New
Project Creation Wizard. After Block Creation is enabled Publish Block appears in the Design Flow
window. Expand Publish Design, right-click Publish Block and choose Export.

Publish Block Configuration
Publish Placement- Check this box to publish the placement information for the Block. Note that you must
assign all macros to regions or lock them in order to Publish Placement.
If checked, the published Block can only be instantiated and used in a top level design with the same family
and device. If the Block contains I/Os, the published Block can only be instantiated and used in a top level
design with the same family, device and package.
If unchecked, only a netlist is published for the block. The published block can be instantiated and used in a
top level design for any device and package in the same device family as the block.
Publish Routing - Check this box to retain the routing information with the block when published.
Publish Region - Check this box to retain the region constraint information with the block when published.

Language
Select your Block Hardware Description Language (Verilog or VHDL). The default is the Preferred HDL type
set in your Project Settings.

	Table of Contents
	Block Features 4
	HDL Supported 4
	Synthesis Tools Supported 4
	Nested Blocks 4
	Synthesis Tool Settings 5
	Synthesis 5
	Publish Options/Settings 6
	Publish After Synthesis 7
	Publish After Layout 7
	Published Content 7
	Macros/IPs Not Supported in Blocks 8
	Synthesis Tool and Globals Management 8
	Place and Route and Globals Management 8
	Blocks and DRC 9
	Blocks and Floorplanning 9
	Architecture Limitations - Managing Blocks and Globals 9
	Duplicate Block Definition 14
	Conflicting Definitions in top.v and Your Imported Block File 14
	Resolving top.v and Block Instantiations 14
	Synthesis Options to Resolve Place and Route Conflicts 17
	move_block 19
	set_block_options 20
	define_region 22
	assign_region 24

	Block Flow - Overview
	Block Features
	HDL Supported
	Synthesis Tools Supported
	Nested Blocks

	Creating Blocks - Options and Settings
	Synthesis Tool Settings
	Synthesis
	Publish Options/Settings

	Publishing Blocks After Synthesis or Layout
	Publish After Synthesis
	Publish After Layout
	Published Content

	Guidelines for Creating Blocks
	Macros/IPs Not Supported in Blocks
	Synthesis Tool and Globals Management
	Place and Route and Globals Management
	Blocks and DRC
	Blocks and Floorplanning
	Architecture Limitations - Managing Blocks and Globals

	Import the Block
	Create a Top Level Design that Uses Blocks
	Constraints Management
	Hierarchical Structure Resolution in Top Level Projects
	Duplicate Block Definition
	Conflicting Definitions in top.v and Your Imported Block File
	Resolving top.v and Block Instantiations

	EDIF Netlist in the Top Level Design
	Synthesis
	Resolving Place and Route Conflicts
	Synthesis Options to Resolve Place and Route Conflicts
	Placement
	Routing

	Block and Block-related PDC Commands
	move_block
	Arguments
	Description
	Exceptions
	Examples
	See Also

	set_block_options
	Arguments
	Description
	Exceptions
	Examples
	See Also

	define_region
	Arguments
	Description
	Examples
	See Also

	assign_region
	Arguments
	Examples

	Publish Block - Configuration Options

