Reliability Monitoring and Outgoing Quality Report

Q3 & Q4 2019 – CBU & DCS

September 2020

1 Revision History

1.1 Revision 1.0

Revision 1.0 is Initial Release of this document published in September 2020.

Contents

1	Revision History	. 2
	I.1 Revision 1.0	. 2
2	NTRODUCTION	. 6
3	SCOPE	.6
	3.1 General	. 6
4	DEFINITIONS	.7
5	REFERENCES	. 8
	5.1 Standards	. 8
	5.2 Reliability Procedures	. 8
6	A RESULTS FROM Q2 2019 RELIABILITY MONITORING	.9
7	HTOL FAILURE RATE CALCULATION	10
8	OPM CALCULATIONS	11
9	Q3 & Q4 2019 RELIABILITY MONITORING & OUTGOING QUALITY	12
	9.1 HTOL Data by Process	12
	9.2 Temperature Cycle Data by Package	14
	9.3 THB/HAST/UHAST Data by Package	15
10	MECHANICAL AOQL LEVEL	16
11	ELECTRICAL AOQL LEVEL	17

Figures

Figure 1	HTOL FIT Rate Trend (60% Confidence level) – 0.13um LV, 90nm 65nm, 55nm, 40nm & 28nm processes	13
Figure 2	Temperature Cycling Data Trend (all technologies) – Cumulative Rate	14
Figure 3	THB Data Trend (all technologies) – Cumulative Rates	15
Figure 4	Mechanical AOQL Trend Chart	16
Figure 5	Electrical AOQL Trend Chart	17

Tables

Table 1	AOQL Sampling Plan	11
Table 2	High Temperature Operating Life (HTOL) Data	12
Table 3	Temperature Cycle Data	14
Table 4	THB / HAST / UHAST Data	15

2 INTRODUCTION

Reliability of Microsemi CBU & DCS products are ensured via initial process and product qualification and through ongoing reliability monitoring. The reliability activities and results for each quarter are summarized in the Reliability Monitoring and Outgoing Quality Report for that quarter. This report also monitors the mechanical and electrical average outgoing quality levels of Microsemi CBU & DCS products. Historical reliability and AOQL results are provided in a graphical format.

3 SCOPE

3.1 General

This document contains the Reliability Monitoring and Outgoing Quality Results for the second quarter of 2019 (i.e., from 1/7/2019 to 31/12/2019).

4 **DEFINITIONS**

Word	Definition
AOQL	Average Outgoing Quality Level
Assem. X	Single letter code used to identify device assembler
CABGA	Chip Array Ball Grid Array
CAR	Corrective Action Request
DPTM	Double Poly, Triple Metal
EOS	Electrical Over-Stress
ESD	Electro-Static Discharge
Fab X	Single letter code used to identify wafer foundry
Fails	Number of devices failing test
FRR	Failure Request Report
Legacy Devices	Devices inherited by Microsemi CBU & DCS (PMC-Sierra then) from Sierra Semiconductor
Lot #	Wafer fab lot #
MQFP	Metric Quad Flat Pack
Package	Pin count and style of package
PAR	Preventive Action Request
PBGA	Plastic Ball Grid Array
PLCC	Plastic Leaded Chip Carrier
Process	Minimum geometry, # of polysilicon layers, # of metal layers, presence of ESD Implant on wafer process
Process #	Foundry dependent process code
Qty.	Quantity of devices tested
RR #	Microsemi ESC division number which references full record of reliability results
SAM	Scanning Acoustic Microscopy
SMQFP	Slugged Metric Quad Flat Pack
SPDM	Single Poly, Double Metal
SPMQFP	Thermally enhanced (Spreader) Metric Quad Flat Pack
SPPM	Single Poly, Penta Metal
SPTM	Single Poly, Triple Metal
TEBGA	Thermally Enhanced Ball Grid Array
TMCL	Thermal Cycles

5 **REFERENCES**

5.1 Standards

Туре	Test Name	Standard
Latch	Latch-up	JESD78 (100 mA Class II)
ESD-HBM	ESD	JESD22-A114-B
ESD-CDM	ESD-CDM	JESD22-C101-C
XRAY	XRAY	MIL STD 883D 2012.6
Flam.	Flammability	UL94 V0
Solder	Solderability	MIL STD 883D Method 2003.7
Solvents	Resistance to Solvents	MIL STD 883D 2015.8
Dim.	Physical Dimensions	MIL STD 883D Method 2016
Bond	Bond Strength	MIL STD 883D 2011.7 Cond. D
Shear	Die Shear	MIL STD 883D2019.5
РС	Pressure Cooker	JESD22-A102-B
Cond	Pre Conditioning	JESD-22 (A113)
T/C TMCL	Temperature Cycling	JESD22-A104-B Cond.B (-55 to 125°C), Cond C (-65 to 150°C)
HTOL	Operating Life	JESD22-A108-B (Tj =145°C for static, and 125°C for Dynamic)
HAST	Highly Accelerated Stress Test	JESD22-A110-B (Ta= 130C, 85% RH)
тнв	Temperature-Humidity Bias	JA113 (Ta= 85 C. 85% RH)
T/S	Thermal Shock	MIL STD 883D 1011.9 -55 to 125
Moisture	Moisture Content	PMC-1940702
AOQL	Acceptable Outgoing Quality Level	Mil-105D

5.2 Reliability Procedures

- PMC-1930103 IC Qualification Plan
- PMC-1931208 Procedure for Statistical Techniques
- PMC-1930504 Product Failure Analysis Procedure
- PMC-1940220 Reliability Monitoring Plan for ICs

6 FA RESULTS FROM Q2 2019 RELIABILITY MONITORING

2019 Q2 Reliability Monitoring:

One device from 28nm node failed functional tests after 1000 hours of HTOL test.

ATE datalog showed no power rails or OS pins issues, and FA result revealed no anomaly being observed at package level, thus it is not related to device assembly issue.

Such observation is typically attributed to random early life failure.

7 HTOL FAILURE RATE CALCULATION

$$FailRate = \frac{ChiSq}{2 \times N \times t \times AF}$$

Where: ChiSq = Chi Squared Distribution; function of CL (confidence level) and number of failures:

- FailRate = FIT rate = # of failures / billion device-hours
- N = Number of units HTOL tested
- t = Duration of HTOL testing
- AF = Acceleration Factor = AF(T) x AF(V)
- AF(T) = Temperature Acceleration Factor from Test to Use Conditions
- AF(V) = Voltage Acceleration Factor

$$AF(T) = \exp\left[\frac{Ea}{k}\left(\frac{1}{Tuse} - \frac{1}{Tstress}\right)\right]$$

Where: Ea = 0.7eV

- k = Boltzmann's constant
- Tuse = 55C = 328 K
- Tstress = 140 C (413 K) for static HTOL and 125 C (398 K) for dynamic HTOL

$$AF(V) = \exp[\beta \times (Vstress - Vuse)]$$

Where: β = 10.9 (0.13um), 12.3 (90nm), 13.4 (65nm), 7.00 (55nm), 20.8 (40nm), 20.8 (28nm) according to fab reliability data

- Vstress = stress voltage
- Vuse = use voltage

8 DPM CALCULATIONS

Microsemi CBU & DCS calculates the DPM (Defects Per Million) based on the number of samples selected for QA testing from every lot. The sampling plan is based on the MIL-105D-STD and Microsemi samples for a 0.1% AOQL

Table 1 AOQL Sampling Plan

AOQL	0.1%					
Lot Size	Sample Size	Accept	Reject			
2-8	all	0	1			
9-15	all 0		1			
16-25	all	0	1			
26-50	all	0	1			
51-90	all	0	1			
91-150	125	0	1			
151-280	125	0	1			
281-500	125	0	1			
501-1200	125	0	1			
1201-3200	125	0	1			
3201-10000	125	0	1			
10001-150K	200	0	1			

To calculate DPM:

$$DPM = \frac{TotalNumberofFails}{TotalSampleSize} \times 1,000,000$$

9 Q3 & Q4 2019 RELIABILITY MONITORING & OUTGOING QUALITY

The following pages contain the Reliability Monitoring and Outgoing Quality Results for third & fourth quarters of 2019.

9.1 HTOL Data by Process

 Table 2 High Temperature Operating Life (HTOL) Data

Technology	No. of Quarters of Data Included	No. of Samples	Device Hours at Burn-in Temperature	Device Hours at Tj=55 deg C	Failures in Quarter ପ3 & ପ4	Total Cumulative Failures Observed	FIT RATE (60% Confidence Level)	FIT RATE (90% Confidence Level)	Test Condition	
0.35 um SPTM & DPTM	53	8,385	7,864,172	7.3673E+08	0	2	4.22	7.22	A, Vstress=3.63V	
0.25 um SPTM & DPTM	29	2,728	2,723,000	2.7230E+06	0	0	4.03	10.12	A, Vstress=2.75V	
0.25 um LV	31	8,355	1,191,932	4.7571E+09	0	8	1.98	2.73	B, Vstress=3.3V	
0.18um LV	44	28,958	5,855,325	3.3082E+09	0	13	4.42	5.73	B, Vstress=2.0V	
0.18 um G	48	4,888	4,710,544	1.9966E+09	0	1	1.01	1.95	B, Vstress=1.89V	
0.13um G	30	3,140	3,140,000	1.2471E+09	0	3	3.35	5.36	B, Vstress=1.38V	
0.13um LV	55	9,725	3,487,341	1.3851E+09	0	3	3.01	4.82	B, Vstress=1.45V	
90nm	59	2,114	2,114,000	1.9160E+09	0	4	2.73	4.17	B, Vstress=1.20V	
65nm	25	1,120	1,120,000	1.2653E+09	0	0	1.60	3.07	B, Vstress=1.25V	
55nm	15	1,099	1,099,000	3.2499E+08	0	0	2.82	7.09	B, Vstress=1.10V	
40nm	32	1269	1,269,000	4.1545E+09	0	0	0.22	0.55	B, Vstress=1.08V	
28nm	15	787	787,000	2.5757E+09	0	4	2.03	3.10	B, Vstress=1.08V	

Test Condition A: JESD22-A108-B. Tj = 140°C for static HTOL and 125°C for dynamic HTOL. FIT Rates and Device Hours Calculated using Tj = 55°C, Ea = 0.7 eV; voltage acceleration not included in FIT rate.

Test Condition B: JESD22-A108-B. Tj = 125°C for dynamic HTOL. FIT Rates and Device Hours Calculated using Tj = 55°C, Ea = 0.7 eV

Figure 1 HTOL FIT Rate Trend (60% Confidence level) – 0.13um LV, 90nm 65nm, 55nm, 40nm & 28nm processes.

9.2 Temperature Cycle Data by Package

Package	No. of Quarters of Data Included	Total Samples	Device Cycles	Failures in Quarters Q3 & Q4	Total Cumulative Failures Observed	Failure Rate %/1000 Dev-Cycle	Test Condition	Note
QFN/ QFP/ EPAD	80	9,194	1.0286E+08	0	7	0.0068%	В	
BGA	88	20,411	1.9835E+07	0	31	0.1563%	В	
FCBGA	67	8,309	8.3090E+06	0	3	0.0361%	В	
HSBGA	51	3,359	3.3590E+06	0	1	0.0298%	В	
TBGA	45	4,410	1.2878E+07	0	1	0.0078%	В	

Table 3 Temperature Cycle Data

Test Condition B: JESD22-A104-B, Condition B; -55 to +125 °C, 1000 cycles. This test condition is applied on all devices except for devices with smqfp package and devices with mask sets of TM4093B, TM7098C and TM2555D. For these devices a test point at 400 cycles is used as a failure criteria gate.

Test Condition C: JESD22-A104-B, Condition C; -65 to +150 °C, 500 cycles

Figure 2 Temperature Cycling Data Trend (all technologies) – Cumulative Rate

9.3 THB/HAST/UHAST Data by Package

Package	No. of Quarters of Data Included	Total Samples	Device Hours	Failures in Quarter Q3 & Q4	Total Cumulative Failures Observed	Failure Rate %/1000 Dev-Hours
QFP	90	17,870	1.6770E+07	0	11	0.0656%
BGA	87	13,482	1.2595E+07	0	5	0.0397%
FCBGA	53	8,238	3.8816E+06	0	3	0.0773%
HSBGA	42	2,480	1.6851E+06	0	3	0.1780%
TBGA	8	400	4.0000E+05	0	0	0.0000 %

Table 4 THB / HAST / UHAST Data

Figure 3 THB Data Trend (all technologies) – Cumulative Rates

10 MECHANICAL AOQL LEVEL

Test Conditions: Package Drawings as per PMC-1970340, PMC-1960133, PMC-2020755, PMC-2001184.

No mechanical QA failures in Q3 & Q4 2019.

Figure 4 Mechanical AOQL Trend Chart

11 ELECTRICAL AOQL LEVEL

Test Conditions: Per device specific QA test work instructions. No electrical QA failures in Q3 & Q4 2019.

Figure 5 Electrical AOQL Trend Chart

a **Міскосні**р company Microsemi 2355 W. Chandler Blvd. Chandler, AZ 85224 USA Within the USA: +1 (480) 792-7200 Fax: +1 (480) 792-7277

www.microsemi.com © 2020 Microsemi and its corporate affiliates. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation and its corporate affiliates. All other trademarks and service marks are the property of their respective owners.

Microsemi's product warranty isset forth in Microsemi's Sales Order Terms and Conditions. Information contained in this publication is provided for the sole purpose of designing with and using Microsemi products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is your responsibility to ensure that your application meets with yourspecifications. THIS INFORMATIONIS PROVIDED "AS IS." MICROSEMI MAKESNOREPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TOTHE INFORMATION, INCLUDING BUTNOT LIMITED TOITS CONDITION, QUALITY, PERFORMANCE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROSEMI BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE WHATSOEVER RELATED TO THIS INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROSEMI HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TOTHE FULLEST EXTENT ALLOWEDBY LAW, MICROSEMI'S TOTAL LIABILITY ON ALL CLAIMS IN RELATED TO THIS INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, YOU PAID DIRECTLY TO MICROSEMI FOR THIS INFORMATION. Use of Microsemi devices in life support, mission-critical equipment or applications, and/or safety applications is entirely at the buyer'srisk, and the buyer agreesto defend and indemnify Microsemi from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microsemi intellectual property rights unless otherwise stated.

Microsemi Corporation, a subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), and its corporate affiliates are leading providers of smart, connected and secure embedded control solutions. Their easy-to-use development tools and comprehensive product portfolio enable customersto create optimal designs which reduce risk while lowering total system cost and time to market. These solutions serve more than 120,000 customers across the industrial, automotive, consumer, aerospace and defense, communications and computing markets. Headquartered in Chandler, Arizona, the company offers outstanding technical support along with dependable delivery and quality. Learn more at www.microsemi.com.

ESC-2201327