DG0783 Demo Guide PolarFire FPGA: High-Speed Data Transfer in 8b10b Mode Using the LiteFast IP

а 🔨 Міскоснір сотралу

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

©2021 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Contents

1	Instant Instant <thinstant< th=""> <th< th=""></th<></thinstant<>
2	ligh-Speed Data Transfer Using the LiteFast IP 2 1 Design Requirements 2 2 Prerequisites 3 3 Demo Design 3 2.3.1 Design Implementation 4 2.3.2 IP Configuration 6 4 Clocking Structure 23 5 Simulating the Design 23 2.5.1 Simulation Flow 26
3	iberoDesign Flow281Synthesize282Place and Route293.2.1Resource Utilization293Verify Timing304Generate FPGA Array Data305Design and Memory Initialization306Generate Bitstream317Run PROGRAM Action32
4	unning the Demo
5	sing LiteFast For Board-to-Board Data Transfer
6	ppendix 1: Programming the Device Using FlashPro Express
7	ppendix 2: Running the TCL Script
8	ppendix 3: References

Figures

Figure 1	Hardware Implementation Block Diagram	. 4
Figure 2	LiteFast Top-Level Design	
Figure 3	UART_IF_0 Sub-Blocks	
Figure 4	LiteFast_Transmitter_0 Sub-Blocks	
Figure 5	Transceiver_IF_0 Sub-Blocks	
Figure 6	LiteFast_Receiver_0 Sub-Blocks	
Figure 7	PF_CCC_C0_0 Clock Options PLL	
Figure 8	PF_CCC_C0_0 Output Configuration	. 8
Figure 9	COREUART_0 Configurator	
Figure 10	LiteFast_C0_0 Configurator	
Figure 11	COREFIFO_C0_0 Configurator	
Figure 12	PF_TX_PLL Configurator	
Figure 13	PF_XCVR_REF_CLK Configurator	
Figure 14	PF_XCVR_0 Configurator	
Figure 15	PF_CLK_DIV_Configurator	
Figure 16	LiteFast_C1_0 Configurator	
Figure 17	COREFIFO_C3_0 Configurator	
Figure 18	COREFIFO_C4_0 Configurator	
Figure 19	COREFIFO_C1_0 Configurator	
Figure 20	COREFIFO_C2_0 Configurator	
Figure 21	PF_OSC Configurator	
Figure 22	PolarFire Initialization Monitor Configurator	
Figure 23	Clocking Structure	
Figure 24	Testbench and LiteFast Reference Design Interaction	24
Figure 25	Simulating the Design	
Figure 26	Simulation Waveform with No Errors	
Figure 27	Simulation Waveform With Payload Error	
Figure 28	Simulation Waveform With CRC Error	
Figure 29	Libero Design Flow Options	
Figure 30	Starting I/O Editor	
Figure 31	I/O Editor XCVR View	
Figure 32	Design and Memory Initialization	
Figure 33	Generating XCVR Initialization Client	
Figure 34	XCVR Initialization Client Created	
Figure 35	Board Setup	32
Figure 36	Detecting the COM Port and Host Connection Status	
Figure 37	Starting the LiteFast Demo	
Figure 38	Overall Status	
Figure 39	Enabling Payload Error	
Figure 40	Checking Payload Error Status	
Figure 41	Enabling CRC Error	
Figure 42	Checking CRC Error Status	
Figure 43	Data Transfer Between Board A and B	
Figure 44	Board Setup	
Figure 45	New project window	38

Tables

Table 1	Design Requirements	2
	I/O Signals	
Table 3	Simulation Signals	25
Table 4	Resource Utilization	<u>29</u>
	Jumper Settings	32
Table 6	Jumper Settings	37

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 3.0

The following is a summary of the changes in revision 3.0 of this document.

- Updated the document for Libero v2021.2.
- Updated Table 1, page 2, Table 2, page 6, and Table 4, page 29.
- The following list of figures are replaced.
 - Figure 2, page 4 through Figure 6, page 6
 - Figure 7, page 7
 - Figure 8, page 8
 - Figure 10, page 10
 - Figure 12, page 12
 - Figure 13, page 13
 - Figure 16, page 15
 - Figure 17, page 17
 - Figure 19, page 19
 - Figure 20, page 20
 - Figure 45, page 38
- Removed information about PF_OSC_0, see PF_OSC_0 from this document.
- Added information about PF_CLK_DIV_C0_0, see PF_CLK_DIV_C0_0, page 14.
- Updated information about COREFIFO, see COREFIFO, page 16.
- Added Figure 18, page 18.
- Added information about LiteFast_XCVR_Top, see LiteFast_XCVR_Top, page 21.
- Updated information in chapter Programming the Device Using FlashPro Express, see Appendix 1: Programming the Device Using FlashPro Express, page 37.
- Added Appendix 2: Running the TCL Script, page 39.

1.2 Revision 2.0

A note about an inconsistent 125 MHz oscillator that does not supply 125 MHz constantly on few PolarFire Evaluation boards was added, see Table 2, page 6.

1.3 Revision 1.0

The first publication of this document.

2 High-Speed Data Transfer Using the LiteFast IP

This document describes how to run the LiteFast IP demo on the PolarFire Evaluation Board using the LiteFast GUI application. The GUI application is packaged along with the design files. The reference design is built using the PolarFire high-speed transceiver block in 8b10b mode and the LiteFast IP core. It operates in loopback mode because the TX and RX transceiver lanes are manually looped back on the board. This setup facilitates a standalone demo that does not require another board.

Microsemi's LiteFast IP core implements a serial, point-to-point, and light-weight protocol for high-speed serial communication. LiteFast IP creates a high-speed serial link by connecting to the transceiver block available in Microsemi's PolarFire[®] device. The high-speed transceiver block handles data rates ranging from 250 Mbps to 12.7 Gbps. The transceiver (PF_XCVR) module integrates several functional blocks to support high-speed serial data transfer within the FPGA.

The LiteFast IP supports data widths of 16, 32, and 64 bits and supports multiple transceiver lanes. In the reference design, the LiteFast IP is configured to 32-bit data width and single lane.

For more information about the LiteFast design implementation, and the necessary blocks and IP cores instantiated in Libero SoC PolarFire, see Demo Design, page 3.

The reference design can be programmed using any of the following options:

- Using the pre-generated .job file: To program the device using the .job file provided along with the reference design, see Appendix 1: Programming the Device Using FlashPro Express, page 37.
- Using Libero SoC PolarFire: To program the device using Libero SoC PolarFire, see Libero Design Flow, page 28.

The reference design can be used on two Microsemi PolarFire boards to implement a full-duplex data transfer application. For more information about the implementation of LiteFast IP for data transfer between two boards, see Using LiteFast For Board-to-Board Data Transfer, page 36.

2.1 Design Requirements

The following table lists the hardware and software design requirements for running this demo design.

Table 1 • Design Requirements

Requirement	Version		
Operating System	Windows 7,	8.1, or 10	
Hardware			
PolarFire Evaluation Kit (MPF300-EVAL-KIT) – PolarFire evaluation board – 12 V/5 A wall-mounted power adapter – USB 2.0 A-male to mini-B cable for UART and programming	Rev B or late	ər	
2 SMA-to-SMA cables (not provided with the kit)			
Software			
FlashPro Express	Note:	Refer to the readme.txt file	
Libero SoC PolarFire		provided in the design files for the software versions used with this	
ModelSim		reference design.	
Synplify Pro			

Table 1 • Design Requirements (continued)

IP	
LiteFast IP core	
PF XCVR IP core	
PF_TX_PLL	
PF_XCVR_REF_CLK	
CoreUART	
COREFIFO	

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only. Open the Libero design to see the latest updates.

2.2 **Prerequisites**

Before you start:

- 1. Download the reference design files from the following location: http://soc.microsemi.com/download/rsc/?f=mpf_dg0783_df
- Download and install Libero SoC PolarFire v2021.1 on the host PC from the following location. https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polar-fire#downloads

The latest versions of ModelSim and Synplify Pro are included in the Libero SoC PolarFire installation package.

2.3 Demo Design

In the reference design:

- 1. The UART_IF_0 block interfaces with the GUI. This block receives RX signals to start and stop the LiteFast demo. This block drives the Counter_0 and the Count_Checker_0 blocks when the start signal is received. When a CRC error or payload error is selected on the GUI, the UART_IF_0 block receives that RX signal and passes it to the Counter_0 block for error injection.
- 2. The Counter_0 block acts as the application that transfers 32-bit parallel data to the LiteFast_tx_0 block.
- 3. The LiteFast_tx_0 block is the instantiation of LiteFast IP, configured as transmitter. It receives the 32-bit data, converts the data to LiteFast frames and forwards the data to the PF_XCVR_0 block.
- 4. The PF_XCVR_0 (transceiver) IP block receives the data on its TX lane, encodes the data in 8b10b format, and serializes the data. The encoded and serialized data is looped back to the RX lane.
- 5. PF_XCVR_0 decodes the data in 8b10b format, deserializes the data on its RX lane, and then sends the decoded data to the LiteFast_rx_0 block, which is the instantiation of LiteFast IP configured as receiver.
- 6. The Count_Checker_0 block generates 32-bit data in sync with Counter_0, and compares this data with the 32-bit data received from the LiteFast_rx_0 block. This block also sends the number of TX words transmitted, status of serial link, CRC error, and payload error to the UART IF 0 block.
- 7. The UART_IF_0 block forwards these status and error information on its TX interface to the GUI for display.

The following figure shows the hardware implementation of the high-speed data transfer using the LiteFast IP.

2.3.1 Design Implementation

The following figure shows the top-level Libero design of the high-speed data transfer using LiteFast IP.

Figure 2 • LiteFast Top-Level Design

The sub-blocks of UART_IF_0 block are shown in the following figure.

Figure 3 • UART_IF_0 Sub-Blocks

The sub-blocks of LiteFast_Transmitter_0 block are shown in the following figure.

The sub-blocks of Transceiver_IF_0 block are shown in the following figure.

Figure 5 • Transceiver_IF_0 Sub-Blocks

The sub-blocks of LiteFast_Receiver_0 block are shown in the following figure.

The following table lists the important I/O signals of the design.

Table 2 • I/O Signals

Signal	Description		
Input Signals			
PADs_IN	Transceiver LANE0_RXD_P and LANE0_RXD_N on the board		
REF_CLK_PAD_P_0 and REF_CLK_PAD_N_0	This is the differential reference clock generated from the on-board 125 MHz oscillator		
RX	This is the input signal received by the UART interface from the GUI		
ТХ	This is the output data received by the GUI from the UART interface		
Output Signals			
PADs_OUT	LANE0_TXD_P and LANE0_TXD_N looped back to LANE0_RXD_P and LANE0_RXD_N using SMA cables		

2.3.2 IP Configuration

The following sections describe the user-defined blocks, IP blocks, and their configurations for each toplevel block.

2.3.2.1 UART_IF_0 block

The UART_IF_0 block contains the PF_CCC, CoreUART, Reset_Synchronizer_0, and FabUART modules. These modules are described in the following sections.

2.3.2.1.1 PF_CCC_C0_0

The PF_CCC_C0_0 block provides 125 MHz output fabric clock to COREUART_C0_0 and FabUART_0 modules, which are fabric blocks. The following figures shows the input and output configurations of PF_CCC_C0_0.

Figure 7 •	PF	CCC	C0 0	Clock	Options	PLL
------------	----	-----	------	-------	---------	-----

Configuration PLL-Single	
Clock Options PLL Output Clocks	
Input Frequency	
Input Frequency 160 MHz Backup Clock Bandwidth Medium-Low = 0.519 MHz	
Delay Line	
Enable Delay Line	PF_CCC_0
Reference Clock Delay Feedback Clock Delay Delay Steps: 1	-REF_CLK_0 OUT0_FABCLK_0- PLL_LOCK_0- PF_CCC
Power / Jitter	
Maximize VCO for Lowest Jitter VCO = 5000 MHz	
C Minimize VCO for Lowest Power	
E Feedback Mode	
Post-VCO 💌	
Features	
Integer Mode	()
	Symbol
Log	
🗏 Messages 😵 Errors 🗼 Warnings 🕕 Info	
Help 🔻	OK Cancel

Figure 8 • PF_CCC_C0_0 Output Configuration

Configuration PLL-Single Clock Options PLL Output Clocks Clock Options For best results, put the highest frequency first. Clock Options	
Output Clock 0	
✓ Enabled	
Requested Frequency 125 MHz C Actual Lower 125 MHz C Actual Higher 125 MHz Requested Phase 0 Degrees C Actual Lower 0 Degrees C Actual Higher 0 Degrees	PF_CCC_0
□ Dynamic Phase Shifting □ Expose Enable Port □ Global Clock □ Global Clock (Gated) □ HS I/O Clock □ Dedicated Clock	-REF_CLK_0 OUT0_FABCLK_0- PLL_LOCK_0-
 Output Clock 1 	PF_CCC
Enabled	
Requested Frequency 160 MHz C Actual Lower MHz C Actual Higher MHz Requested Phase 0 Degrees C Actual Lower Degrees C Actual Higher Degrees	
✓ Dynamic Phase Shifting ✓ Expose Enable Port ✓ Global Clock ✓ Global Clock (Gated) ✓ HS I/O Clock ✓ Dedicated Clock	
Output Clock 2	Symbol /
] Messages 🔇 Errors 🔺 Warnings 🕕 Info	

2.3.2.1.2 COREUART_C0_0

User inputs from the GUI are received by the COREUART module, which converts this serial input data to parallel data and forwards the data to the FabUART module for further processing. Both COREUART_C0_0 and FabUART_0 modules run at the same frequency. Hence, the TX and RX FIFO options are disabled in the COREUART_C0_0 configurator as shown in Figure 9, page 9. For more information about CoreUART, see *HB0095: CoreUART Handbook*.

For more information about PF_CCC, see UG0684: PolarFire FPGA Clocking Resources User Guide.

2.3.2.1.3 Reset_Synchronizer_0

The Reset_Synchronizer_0 block is a two stage synchronizer, which synchronizes the PLL_LOCK_0 signal.

Figure 9 • COREUART_0 Configurator

Configuration	
Core Configuration	
TX FIFO:	Disable TX FIFO 🔻
RX FIFO:	Disable RX FIFO 🔻
RX Legacy Mode:	Disabled
FIFO Implementation:	In RAM 👻
Baud Value Precision	
Enabled Extra Precision	n: 🔽
Testbench: User 💌	
License: 🔘 Obfuscated	RTL

2.3.2.1.4 FabUART_0

The FabUART module drives the Counter_0 and Count_Checker_0 modules, and receives the data and error information from the Count_Checker_0 module. The FabUART module passes this data to the CoreUART, which converts this parallel data to serial and forwards the data to the GUI. It is a user-defined module.

2.3.2.2 LiteFast_Transmitter_0

This block contains the Counter_0, LiteFast_tx_0, Synchronizer_0, and the COREFIFO_0 modules. These modules are described in the following sections.

2.3.2.2.1 Counter_0

The counter_0 module implements a 32-bit counter that transmits incremental data to the LiteFast_tx_0 module at each clock cycle.

2.3.2.2.2 LiteFast_C0_0

LiteFast_C0_0 is the instantiation of the LiteFast IP configured as transmitter. This IP core receives the incremental data from Counter_0 and converts that data to LiteFast frames. These frames are sent to the Transceiver_IF_0 block over a single lane. The following figure shows this data width and lane configuration.

Figure 10 • LiteFast_C0_0 Configurator

Configuration	ו	
g_DATA_WID:	32	_
g_LANE_NUM:	1	_
LiteFast_Mode:	Transmitter Only	•
License	Obfuscated	
Help 🔻	ОК	Cancel

2.3.2.2.3 Synchronizer

The Synchronizer block is a two stage synchronizer, which synchronizes the clock domain crossing signals.

2.3.2.2.4 COREFIFO_C0_0

The COREFIFO_C0_0 IP is used for clock domain crossing of the crc_err_en_tx_i, payload_error_i, and start_i signals from UART_IF_CLK domain to LANE0_TX_CLK. The following figure shows the COREFIFO_C0_0 configuration. For more information about CoreFIFO, see *HB0379: CoreFIFO Handbook*.

Configuration
FIFO Operation
Controller Type : With 64x12 uSRAM V Clocks : Dual Clock V
Memory Pipeline : Pipelined \checkmark Synchronizer Stages : 2 \checkmark
ECC: Disabled
Reset Type : Asynchronous Reset \checkmark Optimized for : High Speed \checkmark
Prefetch (Single Clock Cycle Read) FWFT (First-Word Fall-Through)
Clock, Enable and Reset
Read Enable : Active High V Write Enable : Active High V
Read Port
Width : 3 Depth : 32
Write Port
Width : 3 Depth : 32
Data Handshake
Read Data Valid Write Acknowledgement
Disable Reads when FIFO is Empty Disable Writes when FIFO is Full
Flags
Almost EMPTY Almost EMPTY Threshold : 4
Almost FULL Almost FULL Threshold : 60
Underflow Overflow
Write Count Read Count
Testbench : User

Figure 11 • COREFIFO_C0_0 Configurator

License : RTL

2.3.2.3 Transceiver_IF_0

This block contains the PF_TX_PLL_C0_0, PF_XCVR_REF_CLK_C0_0, and the PF_XCVR_C0_0 modules. These modules are described in the following sections.

2.3.2.3.1 PF_TX_PLL_C0_0

The PF_TX_PLL IP block provides the reference clock to the transceiver lane. This block is configured as shown in the following figure.

Figure 12 • PF_TX_PLL Configurator

	Transmit PLL
10GBASE-R	
10GBASE-KR	Clock Inputs/Outputs
SGMI	
QSGMII	Configure Tx PLL in Integer Mode
CPRI Rate 1	Desired Output Bit Clock 12700.000 Mbps Desired Output Bit Clock Frequency 635
CPRI Rate 2	
CPRI Rate 3	Reference Clock Frequency 125 MHz
CPRI Rate 4	Reference Clock Source Dedicated
CPRI Rate 5	Bandwidth Low V
CPRI Rate 6	
CPRI Rate 7	Clock Options
CPRI Rate 8	Cock options PF_TX_PLL_0
SDI 3G	C Normal Mode
- SDI HD	PEE CIV PLL_LOCK-
- SDI SD	CLKS_TO_XCVR
Interlaken 6.25G	Jitter Cleaning Mode 10G SyncE 32Bit PF_TX_PLL::PF_TX_PLL_C
Interlaken 10G	Enable Jitter Attenuation PLL at power-up
XAUI	Jitter Attenuation PLL Reference Clock Frequency 125
Apply New preset	Jitter Attenuation PLL Reference Clock Source Dedicated
	Enable Dynamic Reconfiguration Interface (DRI)
	Symbol /
Log	
🔳 Messages 🥸 Errors 🗼 Warning	s 🕕 Info
Help 👻	OK Cance

2.3.2.3.2 PF_XCVR_REF_CLK_C0_0

The PF_XCVR_REF_CLK IP block provides the reference clock to PF_TX_PLL and CDR PLL. This block is configured as shown in the following figure.

Figure 13 • PF_XCVR_REF_CLK Configurator

	Enable fabric clock output	_XCVR_REF_CLK_0 REF_CLK_PAD_P REF_CLK_PAD_N PF_XCVR_REF_CLK
--	----------------------------	--

2.3.2.3.3 PF_XCVR_C0_0

The PolarFire high-speed transceiver (PF XCVR) is a hard IP block that supports high-speed data rates ranging from 250 Mbps to 12.7 Gbps. In this demo, the transceiver block (PF_XCVR) is configured in 8b10b mode on lane 0 with a CDR reference clock of 125 MHz to support 12.7 Gbps data rate.

PolarFire Transmit PLL (PF_TX_PLL) is used to send the reference clock feed to the transceiver. The dedicated reference clock (PF_XCVR_REF_CLK) drives the PF_TX_PLL to generate the desired output clock for the 12.7 Gbps data rate. For more information about the PolarFire Transceiver, see *UG0677: PolarFire FPGA Transceiver User Guide*.

The following figure shows the PF_XCVR_C0_0 configuration.

Figure 14 • **PF_XCVR_0** Configurator

<u></u>						1	-	
10GBASE-R	General							
10GBASE-KR	Transceiver mode	Tx and Rx (Full Duplex)	-	Enhanced receiver managem	ent			
SGMI	Number of lanes	1			On-Demand and First Lock			
QSGMII								
CPRI Rate 1	PMA Settings							
CPRI Rate 2	TX data rate	12700	Mhos o	BX data rate	12700 Mbps			
CPRI Rate 3		12700	Mbps 🚯		And and a second se	n		
CPRI Rate 4	TX clock division factor	1	<u> </u>	RX CDR lock mode	Lock to data			
CPRI Rate 5 CPRI Rate 6	TX PLL base data rate	12700.000	Mbps	RX CDR reference clock source	Dedicated			
- CPRI Rate 5	TX PLL bit clock frequency	6350.000	MHz	RX CDR reference clock frequent	ry 125.00 • MHz			PF_XCVR_0
- CPRI Rate 7				RX JA clock frequency	317.5 MHz			-CTR_CAR MARCATO
SDI 3G								
- SDI HD	PCS Settings							PLANE JULY LANE JULY LANE TO THE PLANE OF TH
SDISD	TX PCS-Fabric interface width	22	• bits	RX PCS-Fabric interface width	32 v bits			LANSCRIPTOTORY GARAGE CONTRACTORY CONTRACT
Interlaken 6.25G								PLANE JOS LANE JO, EGIP
Interlaken 10G	TX FPGA interface frequency	317.5	MHz	RX FPGA interface frequency	317.5 MHz			A CANE THA ANY IS LANE TO CAN A CAN
- XAUI 👻	PMA Mode							PE XCVR
test. I recent I	Enable CDR Bit-slip p	ort						
Apply New preset	8b10b Encoding/Decoding							
	64b6xb Gear Box							
	64b66b			C 64b67b				
	Enable Disparity			Enable BER monitor state r	nachine			
	Enable Scrambler/De	escrambler		Enable 32 bits data width				
	Soft PIPE Interface							
	Protocol	PCIe Gen1 (2.5 Gbps)	-					
	E Clocks and Resets						-	Symbol /
q	- I BUNC AND ROCOTC							

2.3.2.3.4 PF_CLK_DIV_C0_0

This block divides the input clock from PF_OSC_C0_0 by a factor of 4 and provides 40 MHz clock which is used as cntrl_clk to the PF_XCVR_C0_0.

Figure 15 • PF_CLK_DIV_Configurator

Configuration	
divider 4 Enable BIT_SLIP port Enable synchronous reset	PF_CLK_DIV_0 CLK_IN CLK_OUT PF_CLK_DIV
Help 👻	OK Cancel

2.3.2.4 LiteFast_Receiver_0

This block contains the LiteFast_C1_0, COREFIFO, and Count_Checker_0 modules. These modules are described in the following sections.

2.3.2.4.1 LiteFast_C1_0

LiteFast_C1_0 is the instantiation of the LiteFast IP configured as receiver. This block recognizes the LiteFast frame, and extracts the user data (payload) from that frame and forwards it to the Count_Checker_0 block.

Figure 16 • LiteFast_C1_0 Configurator

Configuration	n	
g_DATA_WID:	32	
g_LANE_NUM:	1	
LiteFast_Mode:	Receiver Only	•
License	Obfuscated	
Help 🔻	ОК	Cancel

2.3.2.4.2 COREFIFO

The LiteFast_Receiver block contains the following instances of COREFIFO:

- COREFIFO_C3_0 stores the storage capacity of the LiteFast_C1_0 block instantiated on the receiving board, and sends this data to the LiteFast_C0_0 block on the transferring board for preventing excess transfer of frames.
- COREFIFO_C4_0 stores the storage capacity of the LiteFast_C1_0 block instantiated on the transferring board for preventing excess transfer of frames. The following figure shows the COREFIFO configuration.

Figure 17 • COREFIFO_C3_0 Configurator

nfiguration					
FIFO Operation					
Co	ntroller Type : V	Vith 64x12 uSRAM 🛛 🗸		Clocks :	Dual Clock \lor
Men	mory Pipeline : P	Vipelined V	Synchronizer S	Stages : 2	~
	ECC : E	Disabled 🗸 😪			
	Reset Type : A	synchronous Reset	~	Optimized for	r: High Speed 🗸
Prefetch (Single C	lock Cycle Read)	FWFT (First-	Word Fall-Through)		
Clock, Enable and Re	set				
	Read Enable : A	Active High \sim	Write En	nable : Act	tive High 🗸 🗸
Read Port					
	Width : 8		D	epth : 32	
Write Port					
	Width : 8		D	epth : 32	
Data Handshake					
Read Data Valid		Write Acknow	vledgement		
Disable Reads whe	en FIFO is Empty	Disable Write	when FIFO is Full		
lags					
Almost EMPTY	Alm	ost EMPTY Threshold :	4		
Almost FULL	A	Imost FULL Threshold :	60		
Underflow	Overflow				
Write Count	Read Count				

Testbench :	User	~
License :	RTL	

Figure 18 • COREFIFO_C4_0 Configurator

nfiguration				
FIFO Operation				
Controller Type :	With 64x12 uSRAM V	c	ocks : Dual Clock	
Memory Pipeline :	Pipelined V	Synchronizer Stage	5: 2 ~	
ECC :	Disabled 😔			
Reset Type :	Asynchronous Reset	∨ Optin	ized for : High Speed	~
Prefetch (Single Clock Cycle Read)	FWFT (First-)	Word Fall-Through)		
Clock, Enable and Reset				
Read Enable :	Active High \sim	Write Enable	: Active High \sim	
Read Port				
Width :	8	Depth	: 32	
Write Port				
Width :	8	Depth	: 32	
Data Handshake				
Read Data Valid	Write Acknow	vledgement		
Disable Reads when FIFO is Empty	Disable Writes	when FIFO is Full		
Flags				
Almost EMPTY Al	most EMPTY Threshold :	4		
Almost FULL	Almost FULL Threshold :	60		
Underflow Overflow				
Write Count Read Cou	nt			
Testbench : U	ser 🗸 🗸			
License : RT	i.			

 COREFIFO_C1_0 is used for clock domain crossing of the clear_i and start_i signals from UART_IF_CLK domain to LANE0_RX_CLK. The following figure shows the COREFIFO_C1_0 configuration.

Figure 19 • COREFIFO_C1_0 Configurator

onfiguration
FIFO Operation
Controller Type : With 64x12 uSRAM V Clocks : Dual Clock V
Memory Pipeline : Pipelined \lor Synchronizer Stages : 2 \lor
ECC : Disabled ~
Reset Type : Asynchronous Reset \checkmark Optimized for : High Speed \checkmark
Prefetch (Single Clock Cycle Read)
Clock, Enable and Reset
Read Enable : Active High \checkmark Write Enable : Active High \checkmark
Read Port
Width: 2 Depth: 32
Write Port
Width: 2 Depth: 32
Data Handshake
Read Data Valid Write Acknowledgement
Disable Reads when FIFO is Empty Disable Writes when FIFO is Full
Flags
Almost EMPTY Almost EMPTY Threshold : 4
Almost FULL Threshold : 60
Underflow Overflow
Write Count Read Count
Testbench : User 🗸
License : RTL

• COREFIFO_C2_0 is used for clock domain crossing of the data_tx_o bus, data_rx_o bus, crc_error_o, error_o, lock_o, and rx_val_o signals from LANE0_RX_CLK domain to UART_IF_CLK. The following figure shows the COREFIFO_C2_0 configuration.

Figure 20 • COREFIFO_C2_0 Configurator

With 1Kx20 LSRAM	 Close 	cks : Dual Clock 🗸
Pipelined \checkmark	Synchronizer Stages	: 2 ~
Disabled \checkmark		
Asynchronous Reset	Optimize	ed for : High Speed V
d) FWFT (First-	Word Fall-Through)	
Active High 🗸 🗸	Write Enable :	Active High \checkmark
36	Depth :	512
36	Depth :	512
Write Acknow	wledgement	
ty Disable Write	s when FIFO is Full	
Almost EMPTY Threshold :	4	
Almost FULL Threshold :	1020	
w		
ount		
	Pipelined ✓ Disabled ✓ Asynchronous Reset ✓ d) □ FWFT (First: Active High ✓ 36 ✓ 36 ✓ 36 ✓ Active High ✓ 36 ✓ Active Disable Write ✓ Almost EMPTY Threshold : Almost FULL Threshold :	Pipelined Synchronizer Stages Disabled Optimiz Asynchronous Reset Optimiz d) FWFT (First-Word Fall-Through) Active High Write Enable : 36 Depth : 36 Depth : 36 Depth : 36 Depth : Almost EMPTY Threshold : 4 Almost FULL Threshold : 1020

2.3.2.4.3 Count_Checker_0

The Count_Checker_0 block contains a 32-bit checker that checks the incoming data with the selfgenerated data. Error signal is asserted whenever there is a mismatch between the estimated data and captured data. It is a user-defined module.

2.3.2.5 LiteFast_XCVR_Top

All the above blocks are instantiated in this module. This block also contains PF_OSC_C0_0 and PF_INIT_MONITOR_C0_0. These blocks are described in the following section.

2.3.2.5.1 PF_OSC_C0_0

This on-chip oscillator provides a clock to the PF_CCC_C0_0 block in the UART_IF and to the PF_CLK_DIV_C0_0 in the Transceiver_IF. In the reference design, PF_OSC_C0_0 is configured to provide a 160 MHz clock through a global buffer, as shown in the following figure.

Figure 21 • **PF_OSC Configurator**

Configuration Configuration I60 MHz RC Oscillator Enable RCOSC_160MHZ to Global F Enable RCOSC_160MHZ to Clock Divider Enable RCOSC_160MHZ to NGMUX	
2 MHz RC Oscillator Enable RCOSC_2MHZ to Global Enable RCOSC_2MHZ to Clock Divider Enable RCOSC_2MHZ to NGMUX	PF_OSC_0 RCOSC_160MHZ_GL- PF_OSC
Help •	Symbol /OKCancel

2.3.2.5.2 PF_INIT_MONITOR_C0_0

This initialization monitor asserts the DEVICE_INIT_DONE signal when the device initialization is done, and this signal is used to reset the transceiver.

Figure 22 • PolarFire Initialization Monitor Configurator

2.4 Clocking Structure

In the reference design, there are two clock domains. The on-board 125 MHz crystal oscillator drives the XCVR reference clock, which provides clock source to the Counter_0, LiteFast_tx_0, XCVR_0, LiteFast_rx_0, and Checker_0 blocks. The on-chip 160 MHz RC oscillator drives the UART_IF_0 block.

The following figure shows the clocking structure in the reference design.

Figure 23 • Clocking Structure

2.5 Simulating the Design

Before you start:

- 1. Start Libero SoC PolarFire and select Project -> Tool Profiles....
- 2. In the **Tool Profiles** window, select **Synthesis** and **Simulation** on the **Tools** panes and select the latest active installation directory paths for these two tools.
- 3. In the **Project** menu, click **Open Project**. The **Open Project** dialog box opens.
- 4. Browse the mpf_dg0783_df\Libero_Project\PF_LiteFast_8b_10b design files folder and select the PF_LiteFast_8b_10b PRJX file. Then, click Open. The PolarFire LiteFast project opens in Libero SoC PolarFire.
- 5. Download the following IP cores from Libero SoC PolarFire->Catalog:
 - LiteFast
 - PF XCVR
 - PF_TX_PLL
 - PF_XCVR_REF_CLK
 - COREUART

The following figure shows the interaction between testbench and the design. Table 3 lists the simulation signals.

Figure 24 • Testbench and LiteFast Reference Design Interaction

Signal	Description
From Testbench to DUT	
SYSCLK	125 MHz system clock
start_o	This signal starts the Counter and Checker
payload_err_o	This signal injects payload error in the Counter generated data
crc_err_o	This signal injects CRC error in the LiteFast frames generated by the LiteFast_tx_0 module
clear_o	This signal disables payload error and CRC error
From DUT to Testbench	
data_out_o	This is the Counter generated data passed to LiteFast_tx_0
LANE0_RX_VAL	This output signal of the PF_XCVR indicates that the XCVR has received and validated the LiteFast idle frames
LANE0_TX_CLK_STABLE	This output signal of the PF_XCVR indicates that the LANE0_TX_CLK is locked to transmitter frequency (TX PLL)
LANE0_TX_DATA	This data bus transmits LiteFast frames to Transceiver
LANE0_RX_DATA	This data bus receives LiteFast frames from Transceiver
rx_val_o	This is the registered version of LANE0_RX_VAL signal in LANE0_RX_CLK domain
lock_o	This signal asserts high when the counter and checker data match
error_o	This signal asserts high when the counter and checker data mismatch
data_tx_o	This output bus of the LiteFast_rx_0 contains the de-framed data passed to the Count_Checker_0
data_rx_o	This is the Count_Checker_0 generated data for comparing with the data_tx_o

Table 3 •Simulation Signals

In the **Design Flow** tab, double-click **Simulate** under **Verify Pre-Synthesized Design** to simulate the design. The **Simulate** option is highlighted in the following figure.

Figure 25 • Simulating the Design

iteFast_X0	.VR_Top
Тоо	
4	Create Design
	SD Create SmartDesign
	Create HDL
	🔛 Create SmartDesign Testbench
	Create HDL Testbench
	4 Verify Pre-Synthesized Design
	🗮 Simulate

When the Simulation is initiated, ModelSim compiles all the design source files, testbench, and the stimulus, and launches the waveform window to show the simulation signals.

2.5.1 Simulation Flow

The following steps describe the LiteFast testbench simulation flow:

- 1. At 0 ns, the testbench drives the 125 MHz system clock to the DUT.
- 2. At ~172 ns, the testbench asserts the LANE0_TX_CLK_STABLE signal. This indicates that PF_TX_PLL in the DUT has locked to 317.5 MHz.
- 3. The LiteFast IP sends IDLE character (K28.5) to XCVR.
- 4. The K28.5 character (0x00000BC) is looped back from TX lane to RX lane.
- 5. The receiver PLL locks (LANE0_RX_CLK_R) to 317.5 MHz and then, the K28.5 character asserts the LANE0_RX_VAL signal high at ~26939 ns.
- 6. The Counter_0, LiteFast_tx_0, LiteFast_rx_0, and Count_Checker_0 come out of reset because of the LANE0_RX_VAL assertion.
- 7. At 27000 ns, the testbench drives the start_o (UART_IF_0 output) signal high.
- 8. The Counter_0 starts sending incremental data starting from 0 to LiteFast_tx_0, which sends that data to PF_XCVR_0.
- 9. The LiteFast_rx_0 receives the data from the external loopback and the Count_Checker_0 compares the received data. Figure 26, page 26 shows the simulation waveform with no errors.

Figure 26 • Simulation Waveform with No Errors

10. At 33000 ns, the testbench drives the payload_err_o high. As a result, lock_o goes low and error_o goes high, which indicates that the Counter_0 generated data does not match the Count_Checker_0 generated data. The following figure shows these signals.

- 11. At 34000 ns, the testbench drives the payload_err_o signal low.
- 12. At 39000 ns, the testbench drives the crc_err_o high for simulating the CRC error. As a result, the crc_error_o signal goes high, which indicates the presence of CRC checksum error. The following figure shows these signals.

13. At 40000 ns, the testbench drives the crc_err_o signal low and the clear pulse high, which clears all the errors.

Note: The data_rx_o, data_tx_o, rx_val_o, lock_o, error_o, and crc_error_o signals are uninitialized when COREFIFO_3 is in reset. As a result, these uninitialized states appear as glitches in the waveform. This behavior does not impact the design.

This concludes the testbench simulation flow of the LiteFast reference design.

3 Libero Design Flow

This chapter describes the Libero design flow, which involves the following steps:

- Synthesize
- Place and Route
- Verify timing
- Generate FPGA Array Data
- Design and Memory Initialization
- Generate Bitstream
- Run PROGRAM Action

The following figure shows these options in the **Design Flow** tab.

Figure 29 • Libero Design Flow Options

3.1 Synthesize

To synthesize the design:

- Double-click Synthesize from the Design Flow tab. When the synthesis is successful, a green tick mark appears as shown in Figure 29, page 28.
- 2. Right-click **Synthesize** and select **View Report** to view the synthesis report and log files in the **Reports** tab.

We recommend viewing the LiteFast_XCVR_Top.srr and the LiteFast_XCVR_Top_compile_netlist.log files for debugging synthesis and compile errors.

3.2 Place and Route

To place and route the design:

1. From **Design Flow**, double-click **Manage Constraints** and click the **Edit with I/O Editor** option from the **I/O Attributes** tab as shown in the following figure.

Figure 30 • Starting I/O Editor

2. Place TX_PLL, XCVR_REF_CLK, and PF_XCVR TX and RX lane using the **I/O Editor** as shown in the following figure.

Design View	🗗 🗙 XCVR View (active) 🗗 🛛 F	In View 🗗 🛛 Port View 🗗	Chip Canvas - Macro Manipulation Mode	8 Package View 8	Memory View & IOD View &	
Logical Ø	<u>ब</u> र ए २ २ २ २ ३	1. 9			Physical View	
D LiteFast_XCVR_Top d @ Dimitives @ LiteFast_XCVR_top d @ LiteFast_XCVR_top d @ LiteFast_XCVR_top d @ error_obolf d @			PAD_P (A PAD_N (A PAD_Y (A PAD_Y (A PAD_Y (A PAD_Y (A	227) 23 REFCLK	Q2_TXPL0	Q2_LANE3 -62 TX (AH34,AH33) Q2_LANE2 -62 TX (AH34,AH33) Q2_LANE2 -62 TX (AF34,AF33) Q2_LANE2 -62 TX (AF34,AF33) Q2_LANE2 -62 TX (AF34,AF33) Q2_LANE2 -62 TX (AF34,AF33) Q2_LANE1 -62 TX (AF34,AF33) Q2_LANE1 -62 TX (AF34,AF33) Q2_LANE1 -62 TX (AF34,AF33) Q2_LANE1 -62 TX (AF34,AF33) Q2_LANE3 -62 TX (AF34,AF33)
			PAD_P (A PAD_N (A	A27) 🔯 REFCLK	Q0_TXPLL1	PCIE1
	PF_XCVR_REF_CIK_0[1]0	PF TX PLL 0/bcpil isnt 0	PAD_P (PAD_N (PAD_N (PAD_N (PAD_N (PAD_N (Q0_TXPLL_SSC	Q0_LANE1 - SI TX (Y30,Y29) Q0_LANE1 - SI TX (Y34,Y33) - SI TX (Y30,Y29)
	REPCLK_D		NCBT_ELK_0 TK_RL_RM_ELK_0 ADLIB:XCVR_8B10B1 PAD_P (127) 🕅 REFCLK	Q1_TXPLL0	PCIE0

- Double-click Place and Route from the Design Flow tab.
 When place and route is successful, a green tick mark appears as shown in Figure 29, page 28.
- 4. Right-click **Place and Route** and select **View Report** to view the place and route report and log files in the **Reports** tab.

We recommend viewing the LiteFast_XCVR_Top_place_and_route_constraint_coverage.xml file for place and route constraint coverage.

3.2.1 Resource Utilization

The resource utilization report is written to the LiteFast_XCVR_Top_layout_log.log file in the **Reports** tab -> LiteFast_XCVR_Top report -> Place and Route. The following table lists the resource utilization of the design after place and route. These values may vary slightly for different Libero runs, settings, and seed values.

Туре	Used	Total	Percentage
4LUT	1961	299544	0.65
DFF	1586	299544	0.53
I/O Register	0	1530	0.00
Logic Element	2314	299544	0.77

Table 4 • Resource Utilization

3.3 Verify Timing

To verify timing:

- 1. Double-click **Verify Timing** from the **Design Flow** tab.
 - When the design successfully meets the timing requirements, a green tick mark appears as shown in Figure 29, page 28.
- 2. Right-click **Verify Timing** and select **View Report** to view the verify timing report and log files in the **Reports** tab.

3.4 Generate FPGA Array Data

Double-click Generate FPGA Array Data from the Design Flow window.

A green tick mark is displayed after the successful generation of the FPGA array data as shown in Figure 29, page 28.

3.5 Design and Memory Initialization

This option is used to create the non-PCIe XCVR initialization client, which is used in the reference design. When the PolarFire device powers up, the transceiver block is initialized by the initialization client generated during the design and memory initialization stage in the design flow.

To create the XCVR initialization client:

1. Double-click **Design and Memory Initialization** from the **Design Flow** window. The Design and Memory Initialization window opens as shown in the following figure.

Figure 32 • Design and Memory Initialization

- 2. In the Third Stage pane, select uPROM as the non-volatile memory, retain the default start address (0x00000000), and then click **Generate initialization clients** as shown in the following figure.
- **Note:** The default start address 0x0000000 is retained because there are no other initialization clients specified in the uPROM.

Figure 33 • Generating XCVR Initialization Client

esign Initialization \u00ed vPROM \u00ed sNVM \u00ed SPI Flash \u00ed Fabric RAMs \u00ed Cenerate initialization clents \u00ed Discard \u00ed Help \u00ed Help \u00ed related as an option using data stored in the non-volatile storage memory. Help \u00ed heintabilization data can be stored in uPROM, sNVM, or an external SPI Flash. \u00ed south as LSRAM, µSRAM, µSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. He initialization data can be stored in uPROM, sNVM, or an external SPI Flash. \u00ed south as LSRAM, µSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Logicate the initialization data, if any, using the 'Fabric RAMs' tab Leffen the storage location of the initialization data. Generate the nublication dents .use option the liststream	Design Initialization UPROM \circ SPI Flash \circ RAMs Generate initialization dent: Discard In begins initialization, user design blocks such as Stored in LPROM, stVM, or an external SPI Flash. Biologic RAMs initialization data: Los Setup our flash initialization data: Los Setup initialization secupence asserts FABRIC_POR_N waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sWM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization clent: 0x 0000000 Third stage (uPROM/sWM/SPI-Flash) In the third stage initialization clent: 0x 0000000 Third stage (uPROM/sWM/SPI-Flash) In the third stage initialization clent: 0x 0000000 SpI Clock divider value: 1 Start address for third stage initialization dent: 0x 0000000 Third stage initialization dent: 0x 0000000 Start address for third stage initialization dent: 0x 00000000 Ther		
Generate initialization, user design blocks such as LSRAM, uSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Bedgin initialization, user design blocks such as LSRAM, uSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Bedgin initialization data can be stored in uPROM, stWM, or an external SPI Flash. Bedgin initialization data can be stored in uPROM, stWM, or an external SPI Flash. Bedgin initialization data can be stored in uPROM, stWM, or an external SPI Flash. Description of the initialization data: Description of the initialization data: Description of the initialization data: Description of the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (stWM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization dent: 0x Oppomotion Third stage (stROM/stWM/SPI-Flash) In the third stage initialization dent: 0x 00000000 First address for third stage initialization clent: 0x 00000000 SPI Clock divider value: with In the third stage initialization clent: 0x 00000000 SPI Clock divider value: <t< th=""><th>Generate initialization, user design blocks such as LSRAM, LSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Velocity of the block stored in uPROM, stVM, or an external SPI Flash. Velocity of the initialization data: 0. Setup our flashin cAMs initialization sequence asserts FABRIC_POR_N waits for I/Os and Banks to be up and asserts GPI0_ACTIVE and HSI0_ACTIVE. Second stage (sNM) In the second stage, the initialization sequence initializes the PCIE blocks present in the design. Start address for second stage initialization clent: 0x 00000000 Third stage (MROM/MM/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV</th><th>eports 🗗 🗙 🛛 StartPage 🗗 🗙</th><th>Count_Checker.v 🗗 🗙 Constraint Manager 🗗 🗙 Design and Memory Initialization 🗗 🗙</th></t<>	Generate initialization, user design blocks such as LSRAM, LSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Velocity of the block stored in uPROM, stVM, or an external SPI Flash. Velocity of the initialization data: 0. Setup our flashin cAMs initialization sequence asserts FABRIC_POR_N waits for I/Os and Banks to be up and asserts GPI0_ACTIVE and HSI0_ACTIVE. Second stage (sNM) In the second stage, the initialization sequence initializes the PCIE blocks present in the design. Start address for second stage initialization clent: 0x 00000000 Third stage (MROM/MM/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV	eports 🗗 🗙 🛛 StartPage 🗗 🗙	Count_Checker.v 🗗 🗙 Constraint Manager 🗗 🗙 Design and Memory Initialization 🗗 🗙
Generate initialization, user design blocks such as LSRAM, uSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Bedgin initialization, user design blocks such as LSRAM, uSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Bedgin initialization data can be stored in uPROM, stWM, or an external SPI Flash. Bedgin initialization data can be stored in uPROM, stWM, or an external SPI Flash. Bedgin initialization data can be stored in uPROM, stWM, or an external SPI Flash. Description of the initialization data: Description of the initialization data: Description of the initialization data: Description of the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (stWM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization dent: 0x Oppomotion Third stage (stROM/stWM/SPI-Flash) In the third stage initialization dent: 0x 00000000 First address for third stage initialization clent: 0x 00000000 SPI Clock divider value: with In the third stage initialization clent: 0x 00000000 SPI Clock divider value: <t< td=""><td>Generate initialization, user design blocks such as LSRAM, LSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Velocity of the block stored in uPROM, stVM, or an external SPI Flash. Velocity of the initialization data: 0. Setup our flashin cAMs initialization sequence asserts FABRIC_POR_N waits for I/Os and Banks to be up and asserts GPI0_ACTIVE and HSI0_ACTIVE. Second stage (sNM) In the second stage, the initialization sequence initializes the PCIE blocks present in the design. Start address for second stage initialization clent: 0x 00000000 Third stage (MROM/MM/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV</td><td></td><td></td></t<>	Generate initialization, user design blocks such as LSRAM, LSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Velocity of the block stored in uPROM, stVM, or an external SPI Flash. Velocity of the initialization data: 0. Setup our flashin cAMs initialization sequence asserts FABRIC_POR_N waits for I/Os and Banks to be up and asserts GPI0_ACTIVE and HSI0_ACTIVE. Second stage (sNM) In the second stage, the initialization sequence initializes the PCIE blocks present in the design. Start address for second stage initialization clent: 0x 00000000 Third stage (MROM/MM/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV/MV		
Resign initialization, user design blocks such as LSRAM, USRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Bolt point fails attain data (and be stored in UPROM, SIVM, or an external SPI Flash. Setup your fails attain data (be stored in UPROM, SIVM, or an external SPI Flash. Cenerate the initialization data (be stored in UPROM, SIVM, or an external SPI Flash. Cenerate the initialization data (be stored in UPROM, SIVM, or an external SPI Flash. First stage (SIVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sIVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization deter: 0x 0000000 Third stage, (uPROM/SIVM/SPI-Flash) In the third stage initialization sequence initializes non-PCIE XCVR blocks and Fabric RAMs present in the design. Start address for stage initialization deter: 0x 0000000 SPI Clock divider value: 1 v Start address for third stage initialization clent: 0x 0000000 There out (c): 128 v	In design initialization, user design blocks such as LSRAW, USRAW, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory. Being initialization data can be stored in URROW, stWW, or an external SPI Flash. Being initialization data can be stored in URROW, stWW, or an external SPI Flash. Comment the initialization data is: Comment the initialization data: Comment the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sWM) In the scond stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization client: Ox Common the initialization sequence initializes non-PCIE XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: Ox Common Comment Comme		
he initialization data can be stored in UPROM, sWM, or an external SPI Flash.	The initialization data can be stored in JPROM, sNVM, or an external SPI Flash. For your for his below steps to program the initialization data: Second stage to respon the bilistream First stage (sNVM) First stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the first stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization clent: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization clent: 0x 0000000 Start address for third stage initialization clent: 0x 0000000 Third stage initialization clent: 0x 00000000 Third stage initialization clent: 0x 00000000 Third stage initialization clent: 0x 0000000 Third stage initialization clent: 0x 00000000 Sec	Generate initialization dients Discard	Help
We below steps to program the initialization data: set up your fabric RAMs initialization data; if any, using the Tabric RAMs' tab beffer the storage location of the initialization data compare the initialization dents compare the initialization dents compare the initialization specification First stage (aNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (aNVM) In the second stage, the initialization sequence initializes the PCIE blocks present in the design. Start address for second stage initialization dent: 0x 00000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIE XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization dent: 0x 00000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization dent: 0x 0000000 SPI Clock divider value: 1 * Start address for third stage initialization dent: 0x 00000000 SPI Clock divider value: 1 * Start address for third stage initialization dent: 0x 00000000	Color the below steps to program the initialization data: 1. Set up your fabric RAMs initialization data, if any, using the Fabric RAMs' tab 2. Other the storage location of the initialization data 3. Generate roy copyort the bitstream 5. Program the device Design initialization specification First stage (sNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Thrid stage (uPROM/sNVM/SPI-Flash) In the third stage initialization client: 0x 0000000 Thrid stage initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x 0000000 Spit Clock divider value: 1 v Start address for third stage initialization client: 0x 0000000 Time Out (s): 128 ·	n design initialization, user design blocks su	ich as LSRAM, JSRAM, transceiver configurations, and PCIe can be initialized as an option using data stored in the non-volatile storage memory.
- Set up your fabric RAMs initialization data, if any, using the Tabric RAMs' tab - Center the stronge location of the mitialization data - Generate re-sport the bilstream - Program the device Design initialization specification First stage (aNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (aNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization dient: 0x 0000000 Third stage (uPROM/sNUM/SPI-Flash) In the third stage initialization dient: 0x 0000000	1. Set up your fabric RAMs' initialization data, if any, using the Fabric RAMs' tab 2. Other the storage location of the initialization data 3. Generate respond the bitstream 5. Program the device Design initialization specification First stage (sNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage (uPROM/sPI-Flash) In the third stage (uPROM/sPI-Flash) In the third stage (uPROM/sPI-Flash) Start address for third stage initialization client: 0x 0000000		
before the storage location of the initialization data compare the initialization set of the initialization data compare to export the bitstream First stage (sNVM) First stage (sNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPI0_ACTIVE and HSI0_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization dient: 0x C sNVM C External SPI-Filash (Non-authenticated) SPI Clock divider value: Tme Out (s): Iza	2. Define the storage location of the initialization data 3. Generate the initialization dents 3. Program the device Design initialization specification First stage (sNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization dent: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization dent: 0x 0000000 C External SPI-Flash (Non-authenticated) Start address for third stage initialization clent: 0x 0000000 The Out (s): 128	ollow the below steps to program the initial Set up your fabric RAMs initialization data	ization data: a. Jranu, using the 'Fabric RAMS' tab
	4. Generate or export the bitstream 5. Program the device Design initialization specification First stage (sNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization sequence initializes non-PCIE XCVR blocks and Fabric RAMs present in the design. Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization dent: @uPROM © External SPI-Flash (Non-authenticated) SPI Clock divider value: I value Start address for third stage initialization clent: 0x 00000000	2. Define the storage location of the initialization	ation data
Design initialization specification First stage. (sNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPI0_ACTIVE and HSI0_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization sequence initializes non-PCIE XCVR blocks and Fabric RAMs present in the design. Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization client: 0x 0000000 C External SPI-flash (Non-authenticated) SPI Clock divider value: 1 Start address for third stage initialization client: 0x 0000000	Design initialization specification First stage (sNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization sequence initializes non-PCIE XCVR blocks and Fabric RAMs present in the design. Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization sequence initializes non-PCIE XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x 0000000 C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 Start address for third stage initialization client: 0x 0000000 Time Out (s): 128 1		
First stage (aNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPI0_ACTIVE and HSI0_ACTIVE. Second stage (aNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization client: Or OWNOW C stremal SPI-Flash (Non-authenticated) SPI Clock divider value: 1 * Start address for third stage initialization client: 0x Outprovide	First stage (sNVM) In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization clent: © uPROM © sNVM © External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 Start address for third stage initialization clent: 0x 00000000	. Program the device	
In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (dNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization client: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization client: 0x 0000000 C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 Tme Out (s): 128	In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization dient: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x 0000000 C strike address for third stage initialization client: 0x 0000000 Time Out (s): 128	Design initialization specification	
In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (dNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization client: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage initialization client: 0x 0000000 C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 Tme Out (s): 128	In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE. Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization dient: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x 0000000 C strike address for third stage initialization client: 0x 0000000 Time Out (s): 128	First stage (sNVM)	
Second stage (stVVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization client: 0x 00000000 Third stage (uPROM/stVM/SPI-Flash) In the third stage, the initialization client: 0x uPROM C stvrmal SPI-Flash (Non-authenticated) SPI Clock divider value: 1 * Start address for third stage initialization client: 0x Tme Out (s): 128	Second stage (sNVM) In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization dient: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x 0000000 C SNVM C External SPI-Flash (Non-authenticated) Start address for third stage initialization client: 0x 0000000		
In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization client: 0x 00000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0 w PROM C External SPI-flash (Non-authenticated) SPI Clock divider value: 1 * Start address for third stage initialization client: 0 w 00000000 Time Out (s): 128 *	In the second stage, the initialization sequence initializes the PCIe blocks present in the design. Start address for second stage initialization dient: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization dient: 0x uPROM C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 v Start address for third stage initialization client: 0x 00000000 Time Out (s): 128	In the first stage, the initializatio	in sequence asserts FABRIC_POR_N, waits for I/Os and Banks to be up and asserts GP10_AC11VE and H510_AC11VE.
Start address for second stage initialization client: 0x 00000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x 0000000 C stylend C stylend Start address for third stage initialization client: 0x 0000000 Time Out (s): 128	Start address for second stage initialization client: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x uPROM C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 v Start address for third stage initialization client: 0x 0000000 Time Out (s): 128 +	Second stage (sNVM)	
Start address for second stage initialization client: 0x 00000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x 0000000 C stylend C stylend Start address for third stage initialization client: 0x 0000000 Time Out (s): 128	Start address for second stage initialization client: 0x 0000000 Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: 0x uPROM C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 v Start address for third stage initialization client: 0x 0000000 Time Out (s): 128 +	In the second stage, the initializy	tion company initialized the DCTs blocks present in the design
Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client: C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: Start address for third stage initialization client: Time Out (s): 128	Third stage (uPROM/sNVM/SPI-Flash) In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client		
In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client	In the third stage, the initialization sequence initializes non-PCTe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization dient: C sNVM C External SPI-Flash (Non-authenticated) Start address for third stage initialization client: Start address for third stage initialization client: Trme Out (s): 128	Start address for second stage initializa	abon client: Ux 0000000
In the third stage, the initialization sequence initializes non-PCIe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization client	In the third stage, the initialization sequence initializes non-PCTe XCVR blocks and Fabric RAMs present in the design. Memory type for third stage initialization dient: C sNVM C External SPI-Flash (Non-authenticated) Start address for third stage initialization client: Start address for third stage initialization client: Trme Out (s): 128	Third stage (uPROM/sNVM/SPI-Flash) -	
Memory type for third stage initialization client C uPROM C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 v Start address for third stage initialization client: 0x 00000000	Memory type for third stage initialization client: C uPROM C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: I v Start address for third stage initialization client: 0x 00000000 Time Out (s): 128 +	To also also de se also internet	
C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 • Start address for third stage initialization client: 0x 00000000 Time Out (s): 128 -	C sNVM C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 v Start address for third stage initialization client: 0x 00000000		
C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 v Start address for third stage initialization client: 0x 00000000 Time Out (s): 128 -	C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 Start address for third stage initialization client: 0x 00000000 Time Out (s): 128	Henory type for third stage initializatio	
Start address for third stage initialization client: 0x 00000000	Start address for third stage initialization client: 0x 00000000		
Time Out (s): 128	Time Out (s): 128		C External SPI-Flash (Non-authenticated) SPI Clock divider value: 1 💌
		Start address for third stage initialization	on dient: 0x 0000000
Custom configuration file:	Custom configuration file:	Time Out (s): 128	
		Custom configuration file:	

3. The XCVR initialization client is created in the uPROM tab as shown in the following figure.

Figure 34 • XCVR Initialization Client Created

Design Initialization / uPROM / sNVM	SPI Flash Fabric RAMs
Apply Discard Help Usage statistics	Clients
Available memory(9-bit words): 52224	Add Edit Delete Load design configuration
Used memory(9-bit words): 768 Free memory(9-bit words): 51456	Client Name Start Address 9-bit words
	1 INIT_STAGE_3 0x0000000 768

The generation of XCVR client was successful. When the device is programmed the XCVR initialization client is written to the uPROM.

3.6 Generate Bitstream

To generate the bitstream:

- Double-click Generate Bitstream from the Design Flow tab. When the bitstream is successfully generated, a green tick mark appears as shown in Figure 29, page 28.
- 2. Right-click **Generate Bitstream** and select **View Report** to view the corresponding log file in the **Reports** tab.

3.7 Run PROGRAM Action

After generating the bitstream, the PolarFire device must be programmed. Follow these steps to program the PolarFire device:

1. Ensure that the jumper settings on the board are same as listed in the following table.

Table 5 • Jumper Settings

Jumper	Description	Default
J18, J19, J20, J21, J22	Close pin 2 and 3 for programming the PolarFire FPGA through FTDI	Closed
J28	Close pin 2 and 3 for programming through the on-board FlashPro5	Open
J26	Close pin 1 and 2 for programming through the FTDI SPI	Closed
J27	Close pin 1 and 2 for programming through the FTDI SPI	Closed
J4	Close pin 1 and 2 for manual power switching using SW3	Closed
J12	Close pin 3 and 4 for 2.5 V	Closed
J46	Close pin 1 and 2 for setting the Reference Clock to 125 MHz on board oscillator	Closed

- 2. Connect the power supply cable to the J9 connector on the board.
- 3. Connect the USB cable from the Host PC to the J5 (FTDI port) on the board.
- 4. Power on the board using the SW3 slide switch.
- 5. Connect TXN to RXN and TXP to RXP using the 2 SMA to SMA cables as shown in the following figure.

Figure 35 • Board Setup

6. Double-click Run PROGRAM Action from the Libero > Design Flow tab.

Right-click **Run Program Action** and select **View Report** to view the corresponding log file in the **Reports** tab.

When the device is successfully programmed, a green tick mark appears as shown in Figure 29, page 28. See Running the Demo, page 33 to run the LiteFast standalone demo.

4 Running the Demo

This chapter describes how to install and use the GUI to run the LiteFast demo. The following procedure assumes that:

- 1. The PolarFire Evaluation board is connected
- 2. The PolarFire FPGA is programmed with the LiteFast design

To run the LiteFast demo:

- 1. Extract the contents of the mpf dg0783 df.zip file.
- 2. From the <code>mpf_dg0783_df\GUI_Installer</code> folder,
 - double-click the setup.exe file.
- 3. Follow the instructions displayed on the installation wizard.
- 4. After successful installation, LiteFast_IP_Demo appears on the Start menu of the host PC desktop.
- 5. From the Start menu, click LiteFast_IP_Demo.
- 6. Double-click the LiteFast_GUI application from the installation directory to start the GUI application.
- The GUI detects the COM port number and automatically connects to the board, as shown in the following figure. Port numbers may vary. The Host Connection status changes to a green tick mark as shown in the following figure.

Figure 36 • Detecting the COM Port and Host Connection Status

8. Click the Start button to start the LiteFast demo.

Figure 37 • Starting the LiteFast Demo

The Serial Link, Rx Lock, PayLoad Error, and CRC Error changes to a green tick mark as shown in the following figure.

Figure 38 • Overall Status

9. Click the Disabled button in the **Payload Error** area as shown in the following figure to inject payload error in the Counter generated data.

Figure 39 • Enabling Payload Error

C Microse	^{mi} LiteFast I	P Demo
>>>	сом58 💽 🛹	Stop
CRC Error	TX Words	Host Connection
Disabled	RX Words	Serial Link
Payload Error	4795	9 🗸 Rx Lock
Disabled	Error Counter	V PayLoad Error
		0 🧹 CRC Error

The Rx Lock and Payload Error status changes to a red cross mark as shown in the following figure.

Figure 40 • Checking Payload Error Status

10. Click Disabled button in the **CRC Error** area as shown in the following figure to inject CRC error in the Counter generated data.

Figure 41 • Enabling CRC Error

The CRC Error status changes to a red cross mark as shown in the following figure.

Figure 42 • Checking CRC Error Status

- 11. TX Words displays the number of transmitted data words. This number rolls over after 65535 words.
- 12. RX Words displays the number of received data words. This number rolls over after 65535 words.
- 13. Error Counter displays the packet loss.
- **Note:** Error counter may not exactly co-relate to TX words and RX words due frequency gap between LiteFast transmitter IP and the CoreUART IP.

This concludes running the LiteFast IP Demo.

5 Using LiteFast For Board-to-Board Data Transfer

This section describes how to implement the LiteFast IP for board-to-board data transfer.

Suppose, there are two Microsemi boards (Board A and B) running different applications (Application A and B). The following figure outlines the LiteFast transmitter and receiver designs in Board A and B for implementing a full-duplex data transfer.

Figure 43 • Data Transfer Between Board A and B

Note: The depth of the FIFO must be defined based on the user application.

The following steps describe how to implement full-duplex data transfer between board A and B:

- 1. Program the reference design on both board A and B.
- 2. Connect TXDP and TXDN of board A to RXDP and RXDN of board B using two SMA cables.
- 3. Connect TXDP and TXDN of board B to RXDP and RXDN of board A using two SMA cables.
- 4. Install the LiteFast GUI on two separate Host PCs (A and B).
- 5. Connect Host PC A to board A and Host PC B to board B using USB cables.
- 6. Power-up board A and B.
- 7. Start the LiteFast GUI on Host PC A and B.
- 8. Click Start on both the instances of the GUI running on Host PC A and B.
- The number of TX Words displayed on the GUI running on Host PC A matches the number of RX Words displayed on the GUI running on Host PC B. Similarly, the number of TX Words displayed on the GUI running on Host PC B matches the number of RX Words displayed on the GUI running on Host PC A.

This concludes the full-duplex data transfer demo.

6 Appendix 1: Programming the Device Using FlashPro Express

This chapter describes how to program the PolarFire device with the .job programming file using Flashpro Express. The .job file is available at the following design files folder location:

mpf_dg0783_df\Programming_File

Follow these steps:

1. Ensure that the jumper settings on the board are same as listed in the following table.

Table 6 • Jumper Settings

Jumper	Description	Default
J18, J19, J20, J21, J22	Close pin 2 and 3 for programming the PolarFire FPGA through FTDI	Closed
J28	Close pin 2 and 3 for programming through the on-board FlashPro5	Open
J26	Close pin 1 and 2 for programming through the FTDI SPI	Closed
J27	Close pin 1 and 2 for programming through the FTDI SPI	Closed
J4	Close pin 1 and 2 for manual power switching using SW3	Closed
J12	Close pin 3 and 4 for 2.5 V	Closed
J46	Close pin 1 and 2 for setting the Reference Clock to 125 MHz on board oscillator	Closed

2. Connect the power supply cable to the **J9** connector on the board.

3. Connect the USB cable from the Host PC to J5 (FTDI port) on the board.

- 4. Power on the board using the SW3 slide switch.
- 5. Connect **TXN** to **RXN** and **TXP** to **RXP** using the 2 SMA to SMA cables as shown in the following figure. The following figure shows the board setup.

Figure 44 • Board Setup

- 6. On the host PC, start the FlashPro Express software.
- 7. Click **New Project** to create a new project.
 - In the New Project window, do the following, and click OK:
- 8. Browse the job file in the design files.
- 9. Choose the location of the FlashPro Express project.

Figure 45 • New project window

🔛 New Job Project from FlashPro Express Job	×
Programming job file:	
$st_XCVR_Design\designer\LiteFast_XCVR_Top\export\LiteFast_XCVR_Top.job$	Browse
FlashPro Express job project name:	
LiteFast_XCVR_Top	
FlashPro Express job project location:	
D:\	Browse
Help OK	Cancel

10. Click **OK** to program the device.

FlashPro Express programs the .job file through the programmer type connected to the board.

7 Appendix 2: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

- 1. Launch the Libero software
- 2. Select Project > Execute Script....
- 3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
- 4. Click Run.

After successful execution of TCL script, Libero project is created within TCL_Scripts directory.

For more information about TCL scripts, refer to mpf_dg0783_df/TCL_Scripts/readme.txt.

Refer to *Libero*® SoC TCL Command Reference Guide for more details on TCL commands. Contact Technical Support for any queries encountered when running the TCL script.

8 Appendix 3: References

This section lists documents that provide more information about the LiteFast standard and IP cores used in the reference design.

- For more information about LiteFast IP, see UG0701: LiteFast IP User Guide.
- For more information about PF_CCC, see UG0684: PolarFire FPGA Clocking Resources User Guide.
- For more information about CoreFIFO, see HB0379: CoreFIFO Handbook.
- For more information about CoreUART, see HB0095: CoreUART Handbook.
- For information about PolarFire transceiver blocks, PF_TX_PLL, and PF_XCVR_REF_CLK, see UG0677: PolarFire FPGA Transceiver User Guide.
- For more information about Libero, ModelSim, and Synplify, see the Microsemi Libero SoC PolarFire web page.