
AC464
Application Note

PolarFire FPGA: Implementing Data Security Using
User Cryptoprocessor

51900464. 10.0 3/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary AC464 Revision 10.0 iii

Contents

1 Revision History . 1
1.1 Revision 10.0 . 1
1.2 Revision 9.0 . 1
1.3 Revision 8.0 . 1
1.4 Revision 7.0 . 1
1.5 Revision 6.0 . 1
1.6 Revision 5.0 . 1
1.7 Revision 4.0 . 1
1.8 Revision 3.0 . 1
1.9 Revision 2.0 . 1
1.10 Revision 1.0 . 1

2 Implementing Data Security Using User Cryptoprocessor . 2
2.1 User Cryptoprocessor . 2
2.2 Design Requirements . 5
2.3 Prerequisites . 5
2.4 Design Description . 5

2.4.1 Clocking Structure . 7
2.4.2 Hardware Implementation . 8
2.4.3 Software Implementation . 11
2.4.4 TCM Initialization from SPI Flash . 15

2.5 Programming the PolarFire Device and SPI Flash . 19
2.5.1 Tera Term Setup . 20

2.6 Running the Demo . 21
2.6.1 Running Tera Term Macro Script . 26

3 Appendix 1: Running UserCrypto Sample Projects . 29

4 Appendix 2: User Cryptoprocessor Simulation . 33

5 Appendix 3: Running the TCL Script . 34

Microsemi Proprietary AC464 Revision 10.0 iv

Figures

Figure 1 PF_CRYPTO Macro . 3
Figure 2 Crypto Configurator . 3
Figure 3 Reference Design Block Diagram . 6
Figure 4 Clocking Structure . 7
Figure 5 CoreAHBL2AHBL_Bridge Configurator . 9
Figure 6 Mi-V Processor Subsystem with User Cryptoprocessor . 10
Figure 7 Design Resource Utilization—Evaluation Kit . 10
Figure 8 User Crypto CAL Driver . 11
Figure 9 CALCONFIGH . 11
Figure 10 SoftConsole Project Directory Structure . 12
Figure 11 Peripheral Base Address . 12
Figure 12 Linker Script . 13
Figure 13 Linker Script (Continued) . 13
Figure 14 RISC-V Flash Image Setting . 14
Figure 15 Configure Design Initialization Data and Memories . 15
Figure 16 Fabric RAMs . 15
Figure 17 Edit Fabric RAM Initialization Client . 16
Figure 18 Design Initialization . 16
Figure 19 Generate Design Initialization Data . 17
Figure 20 sNVM Client Verification . 17
Figure 21 Adding Dummy Client . 17
Figure 22 Dummy Client Parameters . 18
Figure 23 Dummy Client . 18
Figure 24 Board Setup—Evaluation . 19
Figure 25 Program SPI Flash Image . 20
Figure 26 Select Serial as the Connection Type . 20
Figure 27 Tera Term Configuration . 20
Figure 28 Tera Term General Setup . 21
Figure 29 Application Menu . 21
Figure 30 Application Menu—Enter 128-bit Key . 22
Figure 31 Application Menu—Nonce . 22
Figure 32 Application Menu—Additional Authentication Data . 22
Figure 33 Application Menu—Input Data to Encrypt and Authenticate . 23
Figure 34 Application Menu—Number of Octets in authentication Field . 23
Figure 35 Application Menu—Encrypted and Authentication Data . 23
Figure 36 Application Menu Decryption—Enter 128-bit Key for AES Decryption . 24
Figure 37 Application Menu Decryption—Nonce . 24
Figure 38 Application Menu—Additional Authentication Data . 24
Figure 39 Application Menu—Input Data to Encrypt and Authenticate . 25
Figure 40 Application Menu—Encrypted and Authentication Data . 25
Figure 41 Application Menu—AES CCM Decryption Result . 25
Figure 42 Tera Term Macro Script to Test AES Service . 26
Figure 43 Executing Macro Script . 27
Figure 44 Selecting Macro Script File . 27
Figure 45 Macro Script Execution Result . 28
Figure 46 Firmware Catalog—Sample Projects . 30
Figure 47 Generate Sample Project . 30
Figure 48 Import Options . 31
Figure 49 Select An Import Source . 31
Figure 50 Import Dialog . 32
Figure 51 Importing RV32_Message_Authentication Project . 32
Figure 52 SoftConsole Workspace—Sample Projects . 32
Figure 53 Libero Project settings—VSIM Command for User Cryptoprocessor Simulation 33
Figure 54 User Cryptoprocessor Simulation . 33

Microsemi Proprietary AC464 Revision 10.0 v

Tables

Table 1 PF_CRYPTO Port List . 3
Table 2 Resource Requirements . 5
Table 3 IP Cores Used in the Reference Design . 8
Table 4 System Memory Map . 9
Table 5 SPI Clock Divider Value . 16
Table 6 Jumper Settings—Evaluation Board . 19
Table 7 Algorithm . 29

Revision History

Microsemi Proprietary AC464 Revision 10.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 10.0
Added Appendix 3: Running the TCL Script, page 34.

1.2 Revision 9.0
In this revision, information about Prerequisites was updated.

1.3 Revision 8.0
The following is a summary of the changes made in this revision.

• Updated the document for Libero SoC v12.2.
• Removed the references to Libero version numbers.
• Added information about enabling protection for SPI Flash client. For more information, refer to TCM

Initialization from SPI Flash, page 15.

1.4 Revision 7.0
The following is a summary of the changes made in this revision.

• Information about how to unlock the sNVM pages was added. See Adding a Dummy Client to Unlock
the sNVM Pages, page 17.

• Updated the document for Libero SoC v12.1.

1.5 Revision 6.0
Updated the document for Libero SoC v12.0.

1.6 Revision 5.0
The document was updated for Libero SoC PolarFire v2.3 release.

1.7 Revision 4.0
The document was updated for Libero SoC PolarFire v2.2 release.

1.8 Revision 3.0
The document was updated for Libero SoC PolarFire v2.1 release.

1.9 Revision 2.0
The following is a summary of the changes made in this revision.

• Information about initializing the SRAM component with the HEX file was added, see TCM
Initialization from SPI Flash, page 15.

• The document was updated to include features and enhancements introduced in the Libero SoC
PolarFire v2.0 release.

1.10 Revision 1.0
The first publication of this document.

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 2

2 Implementing Data Security Using User
Cryptoprocessor

PolarFire® FPGAs represent the industry's most advanced security programmable FPGAs.

Data security protects application data—stored, communicated, or computed at run-time—from being
copied, altered, or corrupted. PolarFire devices have a dedicated crypto processor, referred as User
Cryptoprocessor, for data security applications.

This application note describes User Cryptoprocessor features, how to build a Libero and SoftConsole
project to perform cryptographic operations using the User Cryptoprocessor as a coprocessor to a host
general purpose processor.

2.1 User Cryptoprocessor
The User Cryptoprocessor is an Athena TeraFire® EXP-F5200B cryptography microprocessor. It
provides complete support for the Commercial National Security Algorithm (CNSA) Suite and beyond,
and includes Side-Channel Analysis (SCA) resistant cryptography using patented leakage reduction
countermeasures. These countermeasures provide strong resistance against SCA attacks such as
Differential Power Analysis (DPA) and Simple Power Analysis (SPA). The User Cryptoprocessor is
available in PolarFire "S" grade devices.

The User Cryptoprocessor supports numerous cryptographic algorithms, including the following:

• AES with 128-, 192-, and 256-bit key sizes in ECB, CBC, CFB, OFB, CTR, and GCM modes
• AES key wrap and unwrap
• SHA1, SHA2-224, SHA2-256, SHA2-384, and SHA2-512
• AES-CMAC and AES-GMAC
• HMAC-SHA
• True random number generation (non-deterministic random bit generator plus NIST SP800-90A

deterministic random bit generator)
• RSA, DSA, and modular exponentiation (Diffie-Hellman) with key sizes up to 4096-bits
• EC key pair generation, point validation, point multiplication (EC Diffie-Hellman), and ECDSA for

• NIST P-curves: P-192, P-224, P-256, P-384, and P-521
• Brainpool curves: P-256, P-384, and P-512

• Key-tree function
The User Cryptoprocessor is a hard block in PolarFire FPGAs and its maximum operating frequency is
189 MHz. It is accessible to a soft processor in the FPGA fabric through the AHB-Lite slave interface for
control and primary data input and output. The User Cryptoprocessor has built-in DMA to offload the
main processor from doing data transfers between the User Cryptoprocessor and the user memory. The
DMA functionality is accessible through an AMBA AHB-Lite master interface. The Libero SoC design
suite provides a PF_CRYPTO macro in Catalog, which must be integrated with the user design to use
the User Cryptoprocessor. The following figure shows the input and output ports of the PF_CRYPTO
macro.

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 3

Figure 1 • PF_CRYPTO Macro

Figure 2, page 3 shows the crypto configurator used to enable Complete interrupt, Alarm interrupt,
BusError interrupt, and DRI. If the frequency of the crypto block is greater than or equal to 125 MHz,
select the Use embedded DLL in the fabric interface option for removing clock insertion delay. The
Embedded DLL Jitter Range can be set to Low, Medium_Low, Medium_High, or High according to the
crypto clock jitter specification. For more information, see DS0141: PolarFire FPGA Datasheet for
embedded DLL jitter tolerance ranges.

Figure 2 • Crypto Configurator

The following table lists and describes the PF_CRYPTO ports. The control and status signals initiate
action and obtain status. Corresponding control and status signals are also accessible through the
dynamic reconfiguration interface (DRI). Contact Microsemi tech-support for information on how to use
DRI.

Table 1 • PF_CRYPTO Port List

Port Name Direction Description
AHB_SLAVE AHB-Lite slave interface.

AHB_MASTER AHB-Lite master interface.

DRI_SLAVE Control and status signals are accessible through the DRI.

HCLK Input AHB bus clock.

HRESETN Input AHB bus reset. Asserts the functional reset of the User Cryptoprocessor block
and zeroizes all the internal RAM and registers as PURGE signal.

PURGE Input When the signal is set to '1', it initializes the Zeroization of User
Cryptoprocessor internal RAM and registers. For normal operation, this signal
must be tied low. The PURGE input is level sensitive, and if the PURGE pin is
still asserted when a purge operation completes, another purge operation is
initiated.

START Input External execution initiation input when the User Cryptoprocessor operates in
the standalone configuration without a host processor connected to the bus
interface. Asserting the START signal causes the User Cryptoprocessor to
initiate execution. During execution, the status of the User Cryptoprocessor is
reflected by the BUSY and DLL_LOCK ports. This signal must be tied low when
the User Cryptoprocessor is used as a coprocessor.

www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136519

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 4

Microsemi provides an Athena TeraFire Cryptographic Applications Library (CAL) to access User
Cryptoprocessor functions. TeraFire CAL is a C language library that provides functions to access
symmetric key, elliptic curve, public key, hash, random number generation, and message authentication
code algorithms. It is available for download in the Microsemi Firmware Catalog software. The user
application running on the main processor must include CAL APIs to perform the cryptographic
operations on the User Cryptoprocessor.

For information about User Cryptoprocessor, supported cryptographic functions and their CAL API
descriptions, email FPGA_marketing@microchip.com to request Athena TeraFire Cryptographic
Algorithm Library (CAL) Users Guide.

STALL Input Stalls the User Cryptoprocessor for a clock cycle, to introduce variance in the
external signatures. The STALL input is expected to be generated by a LFSR
circuit in the fabric and asserted randomly for a single cycle to achieve the
required stall rates. The STALL input must not be asserted until at least three
clock cycles after the HRESETN is de-asserted and the DLL has indicated
LOCK for three cycles.

BUSY Output Execution status signal.

COMPLETE Output Asserted to indicate that the User Cryptoprocessor has completed an operation.
This signal can be connected to the host microprocessor as an interrupt request
signal, enabling the User Cryptoprocessor to interrupt the processor when it
completes an operation.

ALARM Output Asserted to indicate an uncorrectable memory error condition. An uncorrectable
memory error causes the crypto core to perform a reset and purge. This reset
terminates any in-progress operation. For most CAL operations, the
CALPKTrfRes() function is used to complete the operation and generates a
hardware fault code in the event of an alarm.

BUS_ERROR Output Asserted when a HRESP response error is detected by the User
Cryptoprocessor AHB master. Once set, a reset is required to clear.

DLL_LOCK Output DLL lock status.

Table 1 • PF_CRYPTO Port List (continued)

Port Name Direction Description

mailto:FPGA_marketing@microchip.com

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 5

2.2 Design Requirements
The following table lists the hardware and software required to perform cryptographic operations using
the User Cryptoprocessor.

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

2.3 Prerequisites
Email FPGA_marketing@microchip.com to request the project design files. This design is targeted for
PolarFire Evaluation kit only.

Download and install Libero SoC (as indicated in the website for this design) on the host PC from the
following location:
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads

Note: The latest versions of ModelSim, Synplify Pro, and FTDI drivers are included in the Libero SoC
installation package.

2.4 Design Description
Microsemi offers a freely available RISC-V processor IP core called Mi-V and software tool chain to
support Mi-V processor-based designs. In this reference design, a Mi-V soft processor core is used as
the main processor and the User Cryptoprocessor as the coprocessor.

RISC-V, a standard open Instruction Set Architecture (ISA) under the governance of the RISC-V
Foundation, offers numerous benefits, including enabling the open source community to test and
improve cores at a faster pace than closed ISAs.

The Libero design provided with this application note shows how to integrate the User Cryptoprocessor
in a Mi-V processor subsystem. The SoftConsole project shows how to integrate and build a TeraFire
CAL driver into a Mi-V processor application project. A similar process can be used to integrate the User
Cryptoprocessor and its CAL driver into other general purpose processor subsystem environments.

The Mi-V application provided with the reference design demonstrates the Advanced Encryption
Standard (AES) algorithm features of the User Cryptoprocessor. It provides a user interface on the host
PC using the UART. The user can download and run the other User Crypto sample projects available in
the Firmware catalog to explore using the User Cryptoprocessor cryptographic algorithms.

Each PolarFire FPGA has 56 KB of secure non-volatile memory (sNVM), which can be used for storing
cryptographic keys. The sNVM pages are accessible through system services for read/write. The
reference design integrates CoreSysServices_PF IP for sNVM read/write.

Table 2 • Resource Requirements

Requirement Version
Host PC Operating system Windows 7, 8.1, or 10

Hardware
PolarFire Evaluation Kit (MPF300TS-1FCG1152) Rev D or later

Software
Libero SoC1

1. Libero Evaluation, Gold, Platinum, or Standalone license is required to use PolarFire ‘S’ grade devices.

See the readme.txt file provided in the design files for the
software versions used with this reference design.SoftConsole

Tera Term

mailto:FPGA_marketing@microchip.com
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 6

The following figure shows a block diagram of the reference design.

Figure 3 • Reference Design Block Diagram

JTAG I/F
CoreJTAGDebug

PF_CCC

CoreReset_PF

Push Button
Reset

JTAG
Header

MIV_RV32

CoreAHBLite

SRAM Buffer
CoreAHBtoAPB 3

CoreAPB3

System Services

CoreAHBLtoAHBL_Bridge
(Slave-to-Master Path)

PF_CRYPTO

CoreAHBLtoAHBL_Bridge
(Master-to-Slave Path)

M1

S2

S

M

S1

S0S1

sys_clk
External

OSC

crypto_clk

PF_INIT_
Monitor

RESETN
Init Done

Lock

CoreUARTapb

S0

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 7

2.4.1 Clocking Structure
In the reference design, there is two clock domain. The on-board 50 MHz crystal oscillator is connected
to the PF_CCC block which generates 100 MHz and 180 MHz clocks.

The 180 MHz crypto clock is connected to PF_CRYPTO and COREAHBL2AHBL_BRIDGE blocks.

The 100 MHz system clock is connected to COREAHBL2AHBL_BRIDGE, Mi_V_RV32_AHB,
SRAM_Buffer, CoreAHBLite, COREAHBTOAPB3, System Services, and CoreUARTapb blocks.

The following figure shows the clocking structure.

Figure 4 • Clocking Structure

PF_CCC

On-board 50 MHz Crystal
Oscillator

Clocking Structure

PROC_SUBSYSTEM_0

S
YS

_C
LK

10
0

M
H

z

C
R
YP

TO
_C

LK
18

0
M

H
z

COREAHBL2AHBL_
BRIDGE

SRAM_Buffer

COREAHBTOAPB3

CoreUARTapb

MiV_RV32

CoreAHBLite

PF_CRYPTO

CRYPTO_CLK SYS_CLK

SystemServices

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 8

2.4.2 Hardware Implementation
To build a Mi-V subsystem for PolarFire FPGAs, use the Libero SoC design suite to create an FPGA
design using the Mi-V processor core and peripheral cores. The following table lists the IP cores used in
the reference design.

Configure and connect the IP cores listed in Table 3, page 8, then run the Libero design flow to create a
programming file. For more information about how to build a Mi-V processor subsystem for PolarFire
devices, see TU0775: PolarFire FPGA: Building a Mi-V Processor Subsystem Tutorial. This Mi-V
processor subsystem can be extended to integrate a User Cryptoprocessor into the system.

The MIV_RV32 processor core comprises of an instruction fetch unit, an execution pipeline, and a data
memory system. In the Mi-V processor memory map, the 0x8000_0000 to 0x8000_FFFF range is
defined for the TCM memory interface, and the 0x6000_0000 to 0x6FFF_FFFF range is defined for the
AHBLite I/O interface. The MIV_RV32 processor's reset vector address is set to 0x80000000. The
processor’s reset vector address is configurable. The MIV_RV32's reset is an active-low signal, which
must be de-asserted in sync with the system clock through a reset synchronizer. For more information
about the MIV_RV32 core, see MIV_RV32 Handbook from Libero Catalog.

The MIV_RV32 processor accesses the application execution memory using the TCM options. The
MiV_RV32 processor is configured to provide a 64 KB memory slot beginning at address 0x8000_0000.

The MIV_RV32 processor directs the data transactions between addresses 0x60000000 and
0x6FFF_FFFF to the AHBL interface. The AHBL interface is connected to the CoreAHBLite_0 bus to
communicate with peripherals connected to its slave slots. The CoreAHBLite_0 bus instance is
configured to provide 16 slave slots, each of size 64 KB. The sixteen 64 KB slots consume a total
address space of 16*64*1024 = 2^20 bytes and can be addressed using a 20-bit address bus. The
CoreAHBLite_0 bus, using only the lower 20-bits of the MMIO bus address and maps the connected
peripherals within the address range. The User Cryptoprocessor, UART peripheral, System Services,
and LSRAM memory are connected to the CoreAHBLite_0 bus.

Table 3 • IP Cores Used in the Reference Design

IP Core Description
MIV_RV32 Mi-V soft processor

CoreJTAGDEBUG Facilitates the connection of Joint Test Action Group (JTAG) compatible soft core
processors to the JTAG header for debugging. It provides fabric access to the JTAG
interface using UJTAG macro.

PF_INIT_monitor System Controller uses this macro to check the status of device initialization. The
device initialization includes SRAM initialization from µPROM/sNVM/SPI Flash. The
DEVICE_INIT_DONE signal is used as a reset.

CoreAHBLite Multi-master AHB-Lite bus

COREAHBL2AHBL_BRIDGE AHB to AHB bridge connects two AHB-Lite buses clocked by asynchronous clocks.
This is required because the User Cryptoprocessor clock is different than the rest of
the Mi-V processor subsystem clock.

PF_CRYPTO Macro to access hard User Cryptoprocessor

PF_SRAM_AHBL_AXI PolarFire LSRAM. Used as system memory for Mi-V processor.

CoreAHBtoAPB3 Bridge between AHB master and APB slave.

CoreUARTapb UART Controller with APB interface

PF_CCC Macro to access PolarFire CCC block. It is used to synthesize 100 MHz and 180
MHz clock frequencies from the CCC with an on-board 50 MHz reference clock.

CoreSysServices_PF The CoreSysServices_PF provides access to the System Services supported by the
PolarFire device. These are System Controller actions initiated from the user design
using the CoreSysServices.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136945
https://www.microsemi.com/document-portal/doc_download/1244850-mi-vrv32imc

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 9

Note: To initialize the TCM in PolarFire using the system controller, a local parameter l_cfg_hard_tcm0_en, in
the miv_rv32_opsrv_cfg_pkg.v file should be changed to 1’b1 prior to synthesis. See the 2.7 TCM
section in the MIV_RV32 Handbook.

The following table summarizes the memory map of the reference design.

In this reference design, the User Cryptoprocessor clock (crypto_clk) is configured to operate at 180 MHz
and the clock for the rest of the Mi-V subsystem (sys_clk) operates at 100 MHz. This reference design
uses the CoreAHBL2AHBL_Bridge IP to provide clock domain crossing between sys_clk and crypto_clk.

The CoreAHBL2AHBL_Bridge IP functions as a bridge between the AHB master and AHB slave where
master and slave operate in two clock domains that are asynchronous in nature. The following figure
shows the CoreAHBL2AHBL_Bridge IP Configurator. This IP can be configured by setting the Select
bridge Mode option to either Master-to-Slave Path or Slave-to-Master Path.

Figure 5 • CoreAHBL2AHBL_Bridge Configurator

The CoreAHBL2AHBL_Bridge_0 is configured in the Slave-to-Master path to connect the User
Cryptoprocessor to the Mi-V processors peripheral MMIO bus for control and primary data input and
output. In this configuration, the sys_clk must be connected to the bridges slave interface clock (hclk_s0)
and the crypto_clk must be connected to the bridge's master interface clock (hclk_m0).

The CoreAHBL2AHBL_Bridge_1 is configured in the Master-to-Slave path to connect the User
Cryptoprocessors AHB master port to the Mi-V processors peripheral bus for DMA transactions. In this
configuration, the sys_clk must be connected to the bridges master interface clock (hclk_m0) and the
crypto_clk must be connected to the bridges slave interface clock (hclk_s0).

The following figure shows the SmartDesign view of the Mi-V processor subsystem with a User
Cryptoprocessor.

Table 4 • System Memory Map

Component Description Memory Map
PF_CRYPTO_0 User Cryptoprocessor 0x62000000 to 0x6200FFFF

SystemServices_0 System Services 0x60001000 to 0x60001FFF

CoreUARTapb_0 UART peripheral 0x60000000 to 0x60000FFF

RAM_Buffer_0 Memory buffer for User Cryptoprocessor 0x61000000 to 0x61FFFFFF

https://www.microsemi.com/document-portal/doc_download/1244850-mi-vrv32imc

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 10

Figure 6 • Mi-V Processor Subsystem with User Cryptoprocessor

For more details on component configurations and connections, see the provided Libero project.

2.4.2.1 FPGA Resource Utilization
The following figures show the reference design resource utilization report under Synthesize in Design
Flow window.

Figure 7 • Design Resource Utilization—Evaluation Kit

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 11

2.4.3 Software Implementation
For information about how to create and build a SoftConsole project for the Mi-V processor subsystem,
see TU0775: PolarFire FPGA: Building a Mi-V Processor Subsystem Tutorial.

To use User Cryptoprocessor services in the application, download the PolarFire User Crypto CAL driver
from the firmware catalog and add the driver to the SoftConsole project. The User Crypto CAL driver
contains config_user.h file for driver configuration. In the config_user.h file, define the
PKX0_BASE macro as the base address of the User Cryptoprocessor according to the Libero design.

Figure 8 • User Crypto CAL Driver

Browse and add the config_user.h file to GNU RISC-V Cross C Compiler -> Preprocessor for both
debug and release configurations as shown in the following figure.

Figure 9 • CALCONFIGH

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136945

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 12

The following figure shows the intended directory structure for a project based on MIV_RV32 using
SoftConsole. This project uses the User Crypto Library (CAL) and CoreUARTapb drivers. CoreUARTapb
drivers rely on the MIV_RV32 HAL to access the hardware. The content of the drivers directory results
from generating the driver source files for each peripheral in the project using Firmware Catalog. The
contents of the HAL and miv_rv32_hal directories result from generating the source files for the
MIV_RV32 HAL from the Firmware Catalog.

Figure 10 • SoftConsole Project Directory Structure

The UART peripheral base address, System Services base address and system clock frequency are
provided in the hw_platform.h file.

Figure 11 • Peripheral Base Address

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 13

2.4.3.1 Linker Script Update
A sample linker script file (miv-rv32-ram.ld) is provided along with the MIV_RV32 HAL files. This
linker script assumes that the SRAM is connected to the Mi-V processor memory space. The start
address and size of the memory space must correspond with the Libero design.

A crypto_ram user section is defined in the linker script (see the following figure) to map the User Crypto
input and output buffers to a common memory located on the Mi-V processor AHBL interface. The
common memory is located at address 0x61000000.

Figure 12 • Linker Script

Figure 13 • Linker Script (Continued)

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 14

2.4.3.2 RISC-V Flash Image Setting
As shown in Figure 14, page 14, add the --change-section-lma *-0x80000000 command to
remove the non-linear address (the first line) of the HEX file.

Figure 14 • RISC-V Flash Image Setting

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 15

2.4.4 TCM Initialization from SPI Flash
This section describes how to load the user application hex image file into the TCM from SPI flash using
System Controller.

To configure Design Initialization Data and Memories, perform the following steps:

1. Copy the RV32_GNU_SC5_CCM_Services.hex file from
<Download_Directory>\mpf_ac464_eval\SoftConsole\RV32_GNU_SC5_CCM_Services\Debug
folder and place it in <Download_Directory>\mpf_ac464_eval\Libero_Project

2. Double-click Configure Design Initialization Data and Memories from the Design Flow window
as shown in the following figure.

Figure 15 • Configure Design Initialization Data and Memories

3. Click the Fabric RAMs tab and select the TCM instance that needs to be initialized and click Edit,
as shown in the following figure. In this design, TCM instance must be initialized with the user
application.

Figure 16 • Fabric RAMs

4. Double-click the TCM instance to add initialization client and storage location. In the Edit Fabric
RAM Initialization Client dialog, select the Content from file option, locate the
RV32_GNU_SC5_CCM_Services.hex file from the Libero Project folder, select Storage Type as
SPI-Flash, and then click OK, as shown in the following figure.

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 16

Figure 17 • Edit Fabric RAM Initialization Client

5. Click Design Initialization tab, ensure SPI-Flash - Binding Encrypted with Default Key is
selected for SPI-Flash Binding type as shown in the following figure. SPI clock divider value must
be set to 6. Refer to note given below for more information. In this reference design, the initialization
client is stored in the SPI flash in encrypted format with authentication. When this option is selected,
the design initialization client file (<root>_uic.bin) is encrypted with the default encryption key. When
Default key is selected, the user does not need to specify any other details. Enable user security
protection using UEK1/UEK2 for the SPI-Flash client if required.

Figure 18 • Design Initialization

Note: The SPI clock divider value specifies the required SPI SCK frequency to read the initialization data from
SPI Flash. The SPI Clock divider value must be selected based on the external SPI Flash operating
frequency range.

Table 5 • SPI Clock Divider Value

SPI Clock Divider Value SCK Frequency
1 80 MHz

2 40 MHz

4 20 MHz

6 13.3 MHz

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 17

6. Click Generate Initialization clients under the Design Initialization tab to generate the External
SPI-Flash (Non-authenticated), client.

7. When the initialization clients are generated, the Generate Initialization clients status window is
displayed as shown in the following figure.

Figure 19 • Generate Design Initialization Data

8. Select the SPI Flash tab to verify that the SPI flash client is generated as shown in the following
figure.

Figure 20 • sNVM Client Verification

Configuration of Design Initialization Data and Memories is successfully completed.

Note: In the scenario where a PolarFire device is first programmed with a design with an sNVM client, and then
reprogrammed with a (different) design without an sNVM client, upon completion of programming with
the second design, the sNVM client will not be erased. In such a case, if there are sNVM pages that are
locked, writes to those pages using a system service call fails. There is no programming action to erase
sNVM completely. To work around this issue, create a dummy sNVM client (filled with 0's) in the second
design.

2.4.4.1 Adding a Dummy Client to Unlock the sNVM Pages
In this design, the AES key provided by the user is stored in the sNVM at page#4 using system service
call. Hence, a dummy client to clear the sNVM page needs to be added to sNVM configurator. To add a
dummy client, perform the following steps:

1. In the Libero Design Flow window, double-click Configure Design Initialization Data and
Memories.

2. In the Design and Memory Initialization page, select the sNVM tab.
3. In sNVM Clients pane, click Add... > Add PlainText NonAuthenticated Client. as shown in the

following figure.
Figure 21 • Adding Dummy Client

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 18

4. In the Add PlainText NonAuthenticated client window, select Content filled with 0s radio button
and enter:
• Client name: Clear_sNVM
• Start page (decimal): 4
• Number of bytes (decimal): 256

5. Click OK to create a dummy client.
Figure 22 • Dummy Client Parameters

The following figure shows the dummy client added to sNVM Clients pane.

Figure 23 • Dummy Client

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 19

2.5 Programming the PolarFire Device and SPI Flash
This section describes how to program the PolarFire device and SPI Flash.

To program the PolarFire device, perform the following steps:

1. Ensure that the jumpers on the evaluation board are set as specified in the following tables.

2. Connect the power supply cable to the J9 connector on the evaluation board.
3. Connect the USB cable from the host PC to J5 (FTDI port) on the evaluation board.
4. Power on the evaluation board using the SW3 slide switch.
The following figure shows the PolarFire Evaluation Kit set up to be programmed.

Figure 24 • Board Setup—Evaluation

5. Open the Libero project.
6. Click Run PROGRAM Action to program the device.

Table 6 • Jumper Settings—Evaluation Board

Jumper Description
J18, J19, J20, J21, and J22 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI

J28 Close pin 1 and 2 for programming through the on-board FlashPro5

J26 Close pin 1 and 2 for programming through the FTDI SPI

J27 Close pin 1 and 2 for programming through the FTDI SPI

J23 Open pin 1 and 2 for programming SPI Flash

J4 Close pin 1 and 2 for manual power switching using SW3

J12 Close pin 3 and 4 for 2.5 V

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 20

7. Double-click Run Program_SPI_IMAGE Action to program the SPI flash. A green tick mark is
displayed after the successful generation as shown in the following figure.

Figure 25 • Program SPI Flash Image

2.5.1 Tera Term Setup
The user application provides a user interface on the Tera Term terminal through the UART interface.

To set up the Tera Term program, perform the following steps:

1. Ensure that the USB cable connects the host PC to the J5 (USB) port on the PolarFire Evaluation
board.

2. Start Tera Term.
3. Select Serial as the Connection type.
4. Set the Serial Port to the second highest COM port number from the drop-down list as shown in the

following figure. For example, COM9: FlashPro5 Port [COM9] in this instance.
Figure 26 • Select Serial as the Connection Type

5. In the Tera Term window, go to Setup > Serial port..., set;
• Baud rate: 115200
• Transmit delay: 5 msec/char and 5 msec/line
Rest of the serial port settings must be at default state as shown in the following figure and click OK.

Figure 27 • Tera Term Configuration

6. In the Tera Term window, go to Setup > General..., set the Language to English and click OK, as
shown in the following figure. This setup is required for running the Tera Term macro script.

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 21

Figure 28 • Tera Term General Setup

This completes the Tera Term program setup.

2.6 Running the Demo
After the device is programmed, power cycle the board. The application prints the menu on the Tera Term
program through the UART interface, as shown in following figure.

Figure 29 • Application Menu

Use the following test vector to verify the AES CCM encryption and decryption operation:

• AES Key = 404142434445464748494A4B4C4D4E4F
• Nonce = 101112131415161718191A1B
• Additional authentication data (AAD) = 000102030405060708090A0B0C0D0E0F10111213
• Input data to Encrypt and authenticate =

202122232425262728292A2B2C2D2E2F3031323334353637
To run the demo, perform the following steps:

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 22

1. Press '1' to perform CCM AES-128 encryption using the User Cryptoprocessor. The application
prompts to enter a 128-bit key, as shown in the following figure. The application securely stores the
AES key into sNVM using System Service function call.

Figure 30 • Application Menu—Enter 128-bit Key

2. Enter the AES key provided in the test vector and press Enter. The application prompts for Nonce,
as shown in the following figure.

Figure 31 • Application Menu—Nonce

3. Enter the Nonce provided in the test vector and press Enter. The application prompts to enter AAD,
as shown in the following figure.

Figure 32 • Application Menu—Additional Authentication Data

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 23

4. Enter the AAD provided in the test vector and press Enter. The application prompts to enter input
data to encrypt and authenticate, as shown in the following figure.

Figure 33 • Application Menu—Input Data to Encrypt and Authenticate

5. Enter the input data to encrypt and authenticate provided in the test vector and press Enter. The
application prompts to enter the number of octets in the authentication field, as shown in the
following figure.

Figure 34 • Application Menu—Number of Octets in authentication Field

6. Press '2' for Encrypted and Authentication data. The result of the CCM AES encryption is printed on
the Tera Term program, as shown in the following figure. Observe that the result is matched with the
test vector, as shown in the following figure.

Figure 35 • Application Menu—Encrypted and Authentication Data

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 24

7. Press any key to continue to evaluate the AES operation. The application prints the AES
encryption/decryption menu again on Tera Term program.

8. Press '2' to perform AES CCM decryption using User Cryptoprocessor. The application prompts to
enter 128-bit key, as shown in the following figure.

Figure 36 • Application Menu Decryption—Enter 128-bit Key for AES Decryption

9. Enter the key provided in the preceding test vector and press Enter. The application prompts for
Nonce.

Figure 37 • Application Menu Decryption—Nonce

10. Enter the Nonce provided in the test vector and press Enter. The application prompts to enter AAD,
as shown in the following figure.

Figure 38 • Application Menu—Additional Authentication Data

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 25

11. Enter the AAD provided in the test vector and press Enter.The application prompts to enter input
data to encrypt and authenticate, as shown in the following figure.

Figure 39 • Application Menu—Input Data to Encrypt and Authenticate

12. Enter the input data to encrypt and authenticate provided in the test vector and press Enter. The
application prompts to enter the number of octets in authentication field, as shown in the following
figure.

Figure 40 • Application Menu—Encrypted and Authentication Data

13. Enter '2' to proceed. The result of the AES CCM decryption is printed on the Tera Term program, as
shown in the following figure. Observe that the result is matched with the test vector.

Figure 41 • Application Menu—AES CCM Decryption Result

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 26

2.6.1 Running Tera Term Macro Script
Each sample project contains Tera Term macro script (.ttl) file to test the cryptographic algorithms used in
the sample project. The Tera Term macro script contain commands to pass required input test vectors. It
also contains the expected output for each input test vector for user verification. The following figure
shows the Tera Term macro script available in the sample projects provided in the design file.

Note: Tera Term Macros in this design do not work with Windows 10 build 14393.0. You must update to
Windows 10 build 14393.0.105 or later.

Figure 42 • Tera Term Macro Script to Test AES Service

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 27

To run the Tera Term script, perform the following steps:

1. On the Control menu, click Macro, as shown in the following figure.
Figure 43 • Executing Macro Script

2. In the Open macro window, select the RV32_CCM_msg_auth.ttl file available in the sample
project provided with the design files and click Open as shown in the following figure.

Figure 44 • Selecting Macro Script File

Implementing Data Security Using User Cryptoprocessor

Microsemi Proprietary AC464 Revision 10.0 28

Tera Term executes the script and the results are printed on the Tera Term. Compare the output of the
AES encryption and decryption service with the test vectors provided in the macro script. The following
figure shows the result of the macro script execution.

Figure 45 • Macro Script Execution Result

This concludes the demo of User Crypto AES service. Terminate the SoftConsole debugger session.

To run other User Crypto sample projects, see Appendix 1: Running UserCrypto Sample Projects,
page 29.

Appendix 1: Running UserCrypto Sample Projects

Microsemi Proprietary AC464 Revision 10.0 29

3 Appendix 1: Running UserCrypto Sample
Projects

The Firmware Catalog contains sample projects to show how to use User Crypto (CAL) APIs in the user
application. You can use the sample projects to evaluate various cryptographic features supported by the
User Cryptoprocessor on PolarFire devices. This section provides instructions on how to run UserCrypto
sample projects with the provided Libero design.

The following table list the UserCrypto algorithms demonstrated in the sample projects. For more
information about the sample projects, refer README.txt, file available in the sample projects.

Note: CCM is used to provide assurance of the confidentiality and the authenticity of computer data by
combining the techniques of the Counter (CTR) mode and the Cipher Block Chaining-Message
Authentication Code (CBC-MAC) algorithm.

Table 7 • Algorithm

Algorithm Parameters and Modes
AES AES-ECB-256 encrypt

AES-ECB-256 encrypt

AES-CCM-128

GMAC AES-GCM-256, 128-bit tag

HMAC HMAC-SHA-256, 256-bit key

CMAC AES-CMAC-256

KEY TREE 128-bit nonce + 8-bit optype

SHA SHA-256

ECC ECDSA SigGen, P-384/SHA-384, DPA

IFC (RSA) Encrypt, RSA-3072, e=65537

Decrypt, RSA-3072, CRT, DPA

FFC (DH) SigGen, DSA-3072/SHA-384, DPA

Key Agreement (KAS), DH-3072

NRBG Instantiate: strength, s = 256, 384-bit nonce,
384-bit personalization string

Generate: (no add input, no prediction
resistance) s = 256

Appendix 1: Running UserCrypto Sample Projects

Microsemi Proprietary AC464 Revision 10.0 30

To run the sample projects, perform the following steps:

1. Download the sample project from Firmware Catalog by right-clicking on PolarFire UserCrypto
Driver and select a sample project available through Generate Sample Project > RISC-V >
SoftConsole 5.3 > project name, as shown in the following figure.

Figure 46 • Firmware Catalog—Sample Projects

Note: CCM Services sample project is provided with the design files. Generate other sample projects and
import into the SoftConsole workspace.

2. Click OK to generate the selected sample project to a local folder on the host PC.
Figure 47 • Generate Sample Project

Appendix 1: Running UserCrypto Sample Projects

Microsemi Proprietary AC464 Revision 10.0 31

3. In the SoftConsole, go to File and select Import as shown in the following figure.
Figure 48 • Import Options

4. Select import source as Existing Projects into Workspace and click Next, as shown in the
following figure.

Figure 49 • Select An Import Source

Appendix 1: Running UserCrypto Sample Projects

Microsemi Proprietary AC464 Revision 10.0 32

5. In the Import dialog, click Browse.. to locate the generated sample project in the local PC folder and
click OK, as shown in the following figure.

Figure 50 • Import Dialog

6. Ensure that the generated project is selected and click Finish to import the generated sample
project in a SoftConsole workspace, as shown in the following figure.

Figure 51 • Importing RV32_Message_Authentication Project

7. The new sample project is imported in the SoftConsole workspace, as shown in the following figure.
Figure 52 • SoftConsole Workspace—Sample Projects

8. See Software Implementation, page 11 to make necessary changes to the imported sample project.
9. After making necessary changes, right-click on the imported sample project and click Build Project

to build the project.
10. Start the SoftConsole debugger to run the project.See Running Tera Term Macro Script, page 26 for

running the macro script provided in the sample project.

Appendix 2: User Cryptoprocessor Simulation

Microsemi Proprietary AC464 Revision 10.0 33

4 Appendix 2: User Cryptoprocessor
Simulation

Microsemi Libero SoC provides a PLI simulation library for the User Cryptoprocessor to show the
functional behavior of the User Cryptoprocessor. The PLI library for User Cryptoprocessor is available at
<Libero_Installation_Directory>/Designer/lib/modelsimpro/pli. The PLI library must be passed to the
ModelSim using VSIM command for User Cryptoprocessor simulation. The VSIM command can be set in
Libero Project settings under Simulation options.

• VSIM command for Windows:
-pli <$Libero_Installation_Directory>/Designer/lib/modelsimpro/pli/pf_crypto_win_me_pli.dll

• VSIM command for Linux:
-pli <$Libero_Installation_Directory>/Designer/lib/modelsimpro/pli/pf_crypto_lin_me_pli.so

Edit <Libero_Installation_Directory> to match the location of Libero SoC on the host PC.

In the following figure, the Libero installation folder is C:/Microsemi/Libero_SoC.

Figure 53 • Libero Project settings—VSIM Command for User Cryptoprocessor Simulation

The simulation steps include:

1. Generating the top-level component, which includes the Mi-V processor system with PF_CRYPTO
core in it.

2. Build a Mi-V application with required User Cryptoprocessor functions. User Cryptoprocessor
functions are accessible through Athena TeraFire CAL driver.

3. Import the Mi-V application hex file into the designated TCM for execution.
4. Create a testbench for the complete processor system.
5. Simulate the complete processor system to execute the imported application image. You can

observe that the Mi-V processor sends the commands and data to the User Cryptoprocessor, and
the User Cryptoprocessor responds with the result, as shown in the following figure.

Figure 54 • User Cryptoprocessor Simulation

Appendix 3: Running the TCL Script

Microsemi Proprietary AC464 Revision 10.0 34

5 Appendix 3: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design
flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

1. Launch the Libero software
2. Select Project > Execute Script....
3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
4. Click Run.
After successful execution of TCL script, Libero project is created within TCL_Scripts directory.

For more information about TCL scripts, refer to mpf_ac464_df/TCL_Scripts/readme.txt.

Refer to Libero® SoC TCL Command Reference Guide for more details on TCL commands. Contact
Technical Support for any queries encountered when running the TCL script.

https://www.microsemi.com/document-portal/doc_download/1245481-libero-soc-v12-6-tcl-commands-reference-guide-for-smartfusion2-igloo2-and-rtg4

	1 Revision History
	1.1 Revision 10.0
	1.2 Revision 9.0
	1.3 Revision 8.0
	1.4 Revision 7.0
	1.5 Revision 6.0
	1.6 Revision 5.0
	1.7 Revision 4.0
	1.8 Revision 3.0
	1.9 Revision 2.0
	1.10 Revision 1.0

	2 Implementing Data Security Using User Cryptoprocessor
	2.1 User Cryptoprocessor
	2.2 Design Requirements
	2.3 Prerequisites
	2.4 Design Description
	2.4.1 Clocking Structure
	2.4.2 Hardware Implementation
	2.4.2.1 FPGA Resource Utilization

	2.4.3 Software Implementation
	2.4.3.1 Linker Script Update
	2.4.3.2 RISC-V Flash Image Setting

	2.4.4 TCM Initialization from SPI Flash
	2.4.4.1 Adding a Dummy Client to Unlock the sNVM Pages

	2.5 Programming the PolarFire Device and SPI Flash
	2.5.1 Tera Term Setup

	2.6 Running the Demo
	2.6.1 Running Tera Term Macro Script

	3 Appendix 1: Running UserCrypto Sample Projects
	4 Appendix 2: User Cryptoprocessor Simulation
	5 Appendix 3: Running the TCL Script

