Contents

1 Revision History ... 1
 1.1 Revision 1.0 ... 1

2 Introduction ... 2
 2.1 Identify Flow ... 2

3 Using Identify ME with Libero SoC .. 4
 3.1 Step 1: Create a Libero SoC Project 4
 3.2 Step 2: Create an Identify Implementation 6
 3.3 Step 3: Launch Identify Instrumentor 8
 3.4 Step 4: Instrument the Design 9
 3.5 Step 5: Change the Implementation View (Optional) 11
 3.6 Step 6: Launch and View the New Implementation (Optional) 11
 3.7 Step 7: Organize Instrumented EDIF in Libero SoC 11
 3.8 Step 8: Launch Identify Debugger 14
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Identify Flow Diagram</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Libero Start Page</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Libero New Project</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Tool Profiles</td>
<td>5</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Configure Identify Launch in Synplify Pro</td>
<td>6</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Identify Instrumentor Set to Integrated Mode</td>
<td>6</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Select New Identify Instrumentor</td>
<td>7</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Identify Implementation under Synthesis Folder</td>
<td>7</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Launching Identify Instrumentor</td>
<td>8</td>
</tr>
<tr>
<td>Figure 10</td>
<td>SRS Instrumentation</td>
<td>8</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Launching Identify Instrumentor</td>
<td>9</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Instrumentation with Identify Instrumentor</td>
<td>10</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Running Final Synthesis on Instrumented Design</td>
<td>10</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Re-Launching Identify in Synplify Pro</td>
<td>11</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Importing .EDN File in Libero SoC</td>
<td>12</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Libero Compile, Place and Route, Generate Programming, and Run Program Action</td>
<td>13</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Set Identify Debugger Profile within Libero</td>
<td>14</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Set Identify Debugger Profile within Libero</td>
<td>15</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Identify Debugger</td>
<td>16</td>
</tr>
</tbody>
</table>
1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.0

Revision 1.0 is the first publication of this document.
Synopsys Identify ME is an RTL debugger that allows you to probe internal signals of the design directly from the programmed FPGA in the original RTL code or in a waveform viewer.

Identify consists of two separate tools: instrumentor and debugger. The instrumentor compiles and inserts the required logic into the original RTL to create an instrumented design that allows probing of internal signals. The debugger communicates to the FlashPro, FlashPro Lite, and FlashPro3/4/5 programmer through JTAG to get the probed signal values.

This tutorial describes how to use Identify ME instrumentor and debugger within Libero® System-on-Chip (SoC) flow. It also describes how Identify instrumentor works with Synplify Pro.

2.1 Identify Flow

The following diagram shows the debug flow with Identify. Before synthesis, the RTL design is instrumented using the Identify ME instrumentor. Instrumentation is a process of creating instrumented HDL sources that can be used to debug the design in the Identify ME debugger.

The instrumentor allows you to:
1. Set the sample signals
2. Trigger points for conditional sampling
3. Watchpoints for allowing specific event-driven sampling of the signals within the design

Once this is done, the Identify ME debugger communicates with the instrumented source and captures the operation of the device through the flash device programmer. The sampled signal values can be viewed directly in the RTL or on a waveform viewer.

Figure 1 • Identify Flow Diagram
3 Using Identify ME with Libero SoC

3.1 Step 1: Create a Libero SoC Project

1. Download and install Libero SoC v11.8 on the host PC.
2. Start Libero SoC v11.8, and in the **Project** menu, click **New Project** or click **New** from the start page as shown in the following figure.

Figure 2: Libero Start Page
The New project window is displayed as shown in the following figure.

Figure 3 • Libero New Project

3. Select the project settings and click **Finish** to create a new project.
4. From the **Projects** menu, click **Tool Profiles** and select **Synplify Pro** (for Libero SoC Platinum customers) as the synthesis tool.

Figure 4 • Tool Profiles
3.2 Step 2: Create an Identify Implementation

1. After running synthesis with the non-instrumented design in Synplify Pro, create an Identify implementation.
2. In the SynplifyPro window, from the Options menu click Configure Identify Launch as shown in the following figure.

Figure 5 • Configure Identify Launch in Synplify Pro

3. Select the location to install the Identify debugger as shown in the following figure.

Figure 6 • Identify Instrumentor Set to Integrated Mode
4. Right-click on the existing synthesis implementation and select **New Identify Implementation** as shown in the following figure.

Figure 7 • **Select New Identify Instrumentor**

SynplifyPro creates the new implementation at default location:

```
<Libero_Project_Location>\synthesis\synthesis_1
```

Figure 8 • **Identify Implementation under Synthesis Folder.**

Note: You can edit **Implementation Name** in the **Implementation Results** tab. Must not change the defined Results Directory path as shown in the preceding figure.

Note: The Identify implementation folder must be under synthesis folder of Libero project. This is required for Libero to pick the correct identify instrumented synthesis netlist.
3.3 Step 3: Launch Identify Instrumentor

1. After creating a new Identify implementation, right-click on synthesis_1 and select Identify Instrumentor as shown in the following figure.

Figure 9 • Launching Identify Instrumentor

2. Click Ok in the SRS Instrumentation dialog box.

Figure 10 • SRS Instrumentation
Identify Instrumentor is integrated with SynplifyPro and is launched as shown in the following figure.

Figure 11 • Launching Identify Instrumentor

1. You can instrument the design in Identify Instrumentor by selecting a sample clock and sample trigger signals.

Note: In the Identify Instrumentor window, the signals available for instrumentation will have an icon in front of it as shown in the following figure. To choose the sample clock, right-click on the signal name and select **Sample Clock**. In the same way, select sample and trigger signals.

3.4 Step 4: Instrument the Design

1. You can instrument the design in Identify Instrumentor by selecting a sample clock and sample trigger signals.

Note: In the Identify Instrumentor window, the signals available for instrumentation will have an icon in front of it as shown in the following figure. To choose the sample clock, right-click on the signal name and select **Sample Clock**. In the same way, select sample and trigger signals.
2. From the **File** menu, select **Save Project Instrumentation** to save and instrument the design.
3. Close the Instrumentor and run the final synthesis in Synplify Pro as shown in the following figure.

Figure 13 • Running Final Synthesis on Instrumented Design

4. Synplify Pro maps the design into logic gates.
3.5 **Step 5: Change the Implementation View (Optional)**

You can change the implementation view in Synplify Pro directly by clicking on the implementation. Synplify Pro allows multiple implementation views at the same time.

3.6 **Step 6: Launch and View the New Implementation (Optional)**

You can re-launch Identify from Synplify Pro by right-clicking on **Identify implementation** and selecting **Launch Identify** from the list as shown in the following figure.

![Figure 14 • Re-Launching Identify in Synplify Pro](image)

3.7 **Step 7: Organize Instrumented EDIF in Libero SoC**

1. The Libero SoC tool automatically selects the *.edn netlist from the Identify implementation folder (synthesis_1) and you can run **Compile** and Place and Route for it.
2. Alternatively, if you have multiple netlist in the design, they can be organized as shown in the following figure.

 In the Libero Design Flow window, right-click on **Compile** and select Organize input files and Organize Source files.
As shown in the preceding figure, you can check/add an instrumented *.edn file.

3. After assigning/checking the input file, you can generate the programming file by clicking the Generate programming file.
4. Program the part by running Programming action as shown in the following figure.

Figure 16 • Libero Compile, Place and Route, Generate Programming, and Run Program Action
3.8 Step 8: Launch Identify Debugger

1. After programming the device with the instrumented design, you can invoke the Identify Debugger through the Libero Design Flow.

2. Click **Identify Debug Design** and click **Edit Profiles** as shown in the following figure.

Figure 17 • Set Identify Debugger Profile within Libero

3. The created *.prj* file by SynplifyPro/Identify Instrumentor is opened in the Identify Debugger
4. Set the cable type as **Microsemi_BuiltinJTAG** as shown in the following figure.

Figure 18 • Set Identify Debugger Profile within Libero
5. Click the **Run** button. The Identify debugger stops when a trigger condition occurs and displays the signal values in the GTKWaveform Viewer as shown in the following figure.

Figure 19 • Identify Debugger

Note: For using different features and options within the Identify Instrumentor and Debugger tool, see *Synopsys Identify ME Tutorial.*