
Synopsys®, Inc.
690 East Middlefield Road
Mountain View, CA 94043 USA
Website: www.synopsys.com
Synplify Pro® for Microsemi Edition Release Notes
Version L-2016.09M-G5, November 2016

Publication Version 01

Release Note Topics
About the Release . 2

Feature and Enhancement Summary . 2

Feature and Enhancement Descriptions . 4
RAM Primitives Support . 4
DSP Block Inference . 5
URAM Inference for Sequential Shift Registers . 5
Identify Tool Device Support . 7

Recommended Versions of Compatible Tools . 7

Platforms . 8

Documentation . 8

Known Problems and Solutions . 8
Identify Tool Known Problems and Solutions . 9

Limitations . 10
FPGA Synthesis Limitations . 10
Identify Tool Limitations . 10
Compiled 16 November 2016 1

http://www.synopsys.com/home.aspx

About the Release

This L-2016.09M-G5 release includes software features and enhancements for the
Synplify Pro® Microsemi Edition product. For the complete summary of features and
enhancements contained in this release and the previous releases, see Feature and
Enhancement Summary below.

Feature and Enhancement Summary

The following table highlights the L-2016.09M-G5 features:

Feature Description

RAM Primitives Support RAM1K20 and RAM64x12 are supported for PolarFire.
See RAM Primitives Support, on page 4.

DSP Block Inference
Support

MACC_PA inference is supported for PolarFire.
See DSP Block Inference, on page 5.

Wide MUX inference
Support

Wide MUXs are implemented using ARI1 primitives.

Support for URAM
Inference for Sequential
Shift Registers

Synplify Pro is enhanced to support URAM inference for
sequential shift registers. By default, seqshift is implemented
using URAM. The syn_srlstyle attribute is used to override the
default behavior of seqshift implementation.
This support is available for the PolarFire technology only.
See URAM Inference for Sequential Shift Registers, on page 5.

SLE Enhancement Synplify Pro supports the packing of enable signal with higher
priority than the reset signal (synchronous) into SLE. The tool is
enhanced to support the packing of synchronous reset signal into
SLE using the SLn pin, when the fanout limit >= 6.

PolarFire RAM1K20 and
RAM64x12
Enhancements

The tool is enhanced to support the packing of enable signal on
the read address register into RAM1K20 (A_REN) and RAM64x12
(R_ADDR_EN).

Compiler Enhancements Compiler enhancements include the following:
SystemVerilog support for the `begin_keywords and `end_keywords
directives. Specifies a pair of directives—`begin_keywords and
`end_keywords—to identify keywords reserved within a block of
source code, based on a specific version of IEEE Std 1364 or
IEEE Std 1800.
Language Support Reference->Verilog Language Support->Support
for Verilog Language Constructs->Compiler Directives

Use the new SYN_COMPATIBLE=DC macro to ensure compatibility
of Synopsys tools such as Design Compiler (DC) with the
synthesis software.
Command Reference->User Interface Commands->Implementation
Options Command->Compiler Directives and Design Parameters
Compiled 16 November 2016 2

New HDL Analyst® Tool Beta
A new version of the next-generation schematic analysis tool is
enabled by default. To go back to the original HDL Analyst tool,
click the button in the upper right of the tool window or deselect
the option
HDL Analyst->Use New HDL Analyst (Beta). This version includes
usability improvements, better performance and support for
designs that generate large netlists.
User Guide->Analyzing with HDL Analyst->Working in the
Schematic (Beta)

Beta
The HDL Analyst also uses new Tcl and find commands.
Command Reference->Tcl Commands->analyst and Tcl
Commands->design

Launch an Independent
Help

Launch the help system independently of the tool, by running
installDirectory/bin/fpga_help.exe. It is recommended that you use
help instead of PDFs, because help is designed as an integrated
system and includes additional navigational aids. You can
double-click on the executable to start it on Windows.

Identify Features

Identify Graphical User
Interface Changes

Minor changes to the graphical user interface include:
• The RTL Instrumentor status panel is rearranged and renamed to

Control Panel.

• The Instrumentor Search dialog box is replaced with the Search
panel in the main view, and the Search icon has been removed.

The Identify Instrumentor User Guide has been updated to reflect
these changes.

Identify Debugger Stand-
alone Installation Package

The Identify debugger executable is packaged and installed
separately.

Identify Device Support See Identify Tool Device Support on page 7.
Compiled 16 November 2016 3

Feature and Enhancement Descriptions

This section contains a summary of the features and enhancements for this release.

• RAM Primitives Support, on page 4

• DSP Block Inference, on page 5

• URAM Inference for Sequential Shift Registers, on page 5

RAM Primitives Support

The tool is enhanced to support RAM primitives in the PolarFire device:

• RAM1K20 (LSRAM) is supported for both inference and instantiation.

The following configurations are supported for inference:

– True dual-port configuration

– Two independent data ports

– Non-ECC—1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1 on each port

– Two-port configuration

– Read from port A and write to port B

– Non-ECC—512x40, 1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1 on each port

– ECC—512x33 on both ports

Generates SB_CORRECT and DB_DETECT flags

– Write operations

– 3 modes—simple write, write feed-through, read before write

– Limitations

– Asymmetric RAM is not supported in this release

– RAM initialization is not supported in this release

• RAM64x12 (USRAM) is supported for both inference and instantiation.

The following configurations are supported for inference:

– The RAM64x12 block contains 768 memory bits and is a two-port memory providing
one write port and one read port. Write operations to the RAM64x12 memory are
synchronous. Read operations can be asynchronous or synchronous for setting up the
address and reading out the data.

– There is one read-data port and one write-data port.

– Both read-data and write-data ports are configured to 64x12.
Compiled 16 November 2016 4

DSP Block Inference

The DSP block inference feature allows the synthesis tool to infer MACC_PA block for
PolarFire devices. The following structures are supported:

• Add-mult—adder followed by a multiplier

• Multipliers

• Mult-adds —multiplier followed by an adder

• Mult-subs —multiplier followed by a subtractor

• Mult-acc—multiplier followed by an accumulator

• Wide multiplier inference

• MATH block inferencing across hierarchy

• DOTP Support

MACC_PA block supports DOTP mode when:

– Width of the multiplier inputs is less than or equal to 9-bits for signed multiplication.

– Width of the multiplier inputs is less than or equal to 8-bits for unsigned
multiplication.

By default, the synthesis software maps the multiplier to DSP blocks if all inputs to the
multiplier are more than 2-bits wide. Otherwise, the multiplier is mapped to logic. You can
override this default behavior using the syn_multstyle attribute.

URAM Inference for Sequential Shift Registers

By default, seqshift is implemented using URAM. The syn_srlstyle attribute is used to override
the default behavior of seqshift implementation.

syn_srlstyle Values

syn_srlstyle Syntax

Value Description

Registers seqshifts are inferred as registers

URAM seqshift is inferred as RAM64x12

FDC define_attribute {object} syn_srlstyle {registers|uram }
define_global_attribute syn_srlstyle {registers|uram }

Verilog object /* synthesis syn_srlstyle = "registers | uram " */ ;

VHDL attribute syn_srlstyle : string;
attribute syn_srlstyle of object : signal is "registers | uram ";
Compiled 16 November 2016 5

Example

The tool infers a seqshift primitive for the given RTL:

module p_seqshift(clk, we, din, dout) ;
parameter SRL_WIDTH = 7;
parameter SRL_DEPTH = 37;
input clk, we;
input [SRL_WIDTH-1:0] din;
output [SRL_WIDTH-1:0] dout;
reg [SRL_WIDTH-1:0] regBank[SRL_DEPTH-1:0]/*synthesis srlstyle = "uram"*/ ;
integer i;
always @(posedge clk) begin
if (we) begin
for (i=SRL_DEPTH-1; i>0; i=i-1) begin
regBank[i] <= regBank[i-1];
end
regBank[0] <= din;
end
end
assign dout = regBank[SRL_DEPTH-1];
endmodule

The following graphic displays seqshift for the above RTL in the technology view.

Limitations
• URAM inference for seqshift is not supported, if the output is taken from a dynamic

stage.

• Seqshifts with synchronous reset or asynchronous reset are inferred as registers.

• Seqshifts with both synchronous reset and asynchronous reset are inferred as registers.

• Seqshifts with both reset and set are inferred as registers.

• Seqshifts with enable signal having higher priority than synchronous set or synchronous
reset are inferred as registers.
Compiled 16 November 2016 6

Identify Tool Device Support

The Identify tool supports the device families shown in the table below. You must select
devices from the synthesis tool, which get passed to the Identify Instrumentor in the
synthesis project file. If you specify a library from the synthesis tool that is not supported in
the Identify tool, then this results in a device not supported message when launching the
Identify Instrumentor.

Recommended Versions of Compatible Tools

The FPGA design tools are tested with specific versions of other compatible Synopsys and
third-party tools. The recommended versions of these tools are listed below.

Compatible Versions of Synopsys Tools

The table lists the recommended version for VCS:

Microsemi

Fusion

IGLOO

IGLOOe

IGLOO PLUS

IGLOO2

ProASIC

ProASIC3

ProASIC3E

ProASIC3L

SmartFusion

SmartFusion2

Tool Recommended Version

VCS L-2016.06
Compiled 16 November 2016 7

Platforms

This section includes platform support for the Synopsys FPGA synthesis product. The
software is supported on the platforms and operating systems listed below:

Documentation

The following documents are included with the Synopsys FPGA synthesis product.

Known Problems and Solutions

The current known problems in the tool include the Identify Tool Known Problems and
Solutions on page 9.

Windows • Windows 10 Professional or Enterprise (64-bit)

• Windows 8.1 Professional or Enterprise (64-bit)

• Windows 7 Professional or Enterprise (32 or 64-bit)1

• Windows Server 2008 R2 (64-bit)

• Windows Server 2012 R2 (64-bit)

1. Support for Windows 7 32-bit will be discontinued as of release L-2016.09-SP1. Therefore, version
L-2016.09 is the last release for which Windows 7 32-bit will be supported.

Linux All Linux platforms require 32-bit compatible libraries.
• Red Hat Enterprise Linux 52/6/7 (64-bit)

• SUSE Linux Enterprise 11/12 (64-bit)

2. Support for Linux Red Hat Enterprise 5 64-bit will be discontinued after release L-2016.09-SP1.

Document Access

User Guide Online help, PDF

Reference Manual Online help, PDF

Attribute Reference Manual Online help, PDF

Command Reference Manual Online help, PDF

Language Support Reference Manual Online help, PDF

Messages Reference Manual Online help

Identify Instrumentor User Guide Online help, PDF

Identify Debugger User Guide Online help, PDF

Identify Debugging Environment Reference Manual Online help, PDF
Compiled 16 November 2016 8

Identify Tool Known Problems and Solutions

The following problems are specific to the Identify instrumentor and Identify debugger tools.

Incremental Instrumentation from Previous Release Cannot be Used

Attempting to open an incremental instrumentation created from a previous Identify release
results in an assertion error.

Solution: The incremental instrumentation from the previous release cannot be used, and a
new instrumentation must be redefined using this new release.

Unable to Launch the GDKWave Viewer from the Debugger

Occasionally when launching the GTKWave viewer from Linux, the viewer fails to open with
the following message:

ERROR: couldn’t execute “installPath/bin/gtkwave/gtkwave”: no such file or directory

Solution: Restart both the Synplify tool and the debugger. This problem is scheduled to be
addressed in a future release.

Instrumentor Can Become Unresponsive While Using Multiple Implementations

When using multiple implementations, selecting a different instrumentation from the
Instrumentations Select field at the bottom left of the RTL instrumentor view can cause the
instrumentor to become unresponsive.

Solution: Select the desired implementation from the project view in the synthesis tool, then
invoke the instrumentor rather than attempting to select a different instrumentation directly
from the Instrumentations Select field.

Issue Running Identify Instrumentor and Debugger on Different Platforms

When using real-time debugging with the Identify instrumentor running on a Linux platform
and the Identify debugger running on a Windows platform, an error is reported when
scanning the logic analyzer stating that the remote copy (RCP) could not be executed.

Solution: Run the Identify debugger from the Linux platform.

Pod Assignments not Displayed After Execution of the Logic Analyzer Command

When using real-time debugging, the iice assignments report command fails to display any pod
assignments after successful execution of the assignpod and submit options of the logicanalyzer
command.

Solution: This problem is scheduled to be addressed in a future release.

Trigger Position May be Incorrect for Data Compression with Cross-Triggering

When using data compression with cross-triggering enabled, the trigger position is incorrect
for both the internal_memory (BRAM) and hapssram (SRAM) buffer type settings (the data is still
valid).

Solution: This problem is scheduled to be addressed in a future release.
Compiled 16 November 2016 9

Limitations

The current limitations in the tool are divided into the following categories:

• FPGA Synthesis Limitations, on page 10

• Identify Tool Limitations, on page 10

FPGA Synthesis Limitations

The following limitations apply to supported features in the Synplify Pro product.

GUI Processing Can Fail on Windows 7 for the Synthesis Tool

The synthesis tool GUI might intermittently stop responding on Windows 7.

Solution: To resolve this issue, apply the hotfix from Microsoft by going to
suppport.microsoft.com/kb/2718841/.

Crossprobing Source Code Files Created with Third-Party Editors

When using source code files created with third-party editors, you sometimes cannot
crossprobe to the correct line number in the source file.

Solution: Open the file in the FPGA synthesis tool text editor.

Editing Externally Created Project (prj) Files

If Tcl commands or script files were used to build your project, you might not be able to save
this Project file from the synthesis GUI in downstream tools, because they contain hard-coded
file paths.

Solution: Generally, use the same method to save a project as you did to create the project. In
this case, save the project file to an external text editor and not in the project GUI.

Identify Tool Limitations

The following limitations are specific to the Identify instrumentor and Identify debugger
tools.

Verilog/SystemVerilog Limitations When Importing Signals from Verdi

The following Verilog/SystemVerilog language limitations are present when importing signals
directly from the Verdi® platform:

– Enums with syn_enum_encoding attribute are not supported for instrumentation and, if
present, can impact data expansion.

– Trigger expression settings for unions are either in the form of a serialized bit vector or
hex/integer with the trigger bit width representing the maximum available bit width
among all union members. Trigger expressions using enum are not possible.

– Generate statements are not supported.
Compiled 16 November 2016 10

http://support.microsoft.com/kb/2718841/

– A limitation exists in the instrumentation of essential signals generated by the Verdi
platform because of the naming convention used to represent certain essential signals
by the Verdi tool. Instrumentation of such signals cannot be performed automatically
using the Verdi getsignals command. The Identify instrumentor issues a warning
message when these type of signals are encountered.

– Instrumentation of Interfaces is not supported.

VHDL Limitations When Importing Signals from Verdi

The following VHDL language limitations are present when importing signals directly from the
Verdi platform:

– Boolean vector representation in the Identify-generated FSDB is different from the VCS
generated FSDB, but does not have any known impact during the data expansion.

– Record elements are represented in reverse order in the Identify-generated FSDB. This
reversal does not have any known impact during data expansion.

– Generate statements are not supported.

External Triggering with Imported Triggers Can Cause Excessive Use of the Internal Block RAM

Use of external triggers via the import trigger mechanism causes an excessive use of internal
block RAM due to sampling of the trigger as well as the creation of a look-up table. The prob-
lem is most notable when the maximum of eight imported triggers is selected.

Solution: Add an extra input to the top-level RTL code and instrument the input as a trigger
only.
Compiled 16 November 2016 11

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043 USA

Copyright 2016 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Synplify, Synplify Pro, Certify, Identify, HAPS, VCS, and SolvNet are registered trademarks
of Synopsys, Inc. Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at:

http://www.synopsys.com/Company/Pages/Trademarks.aspx

All other product or company names may be trademarks of their respective owners.

http://www.synopsys.com/Company/Pages/Trademarks.aspx

	Synplify Pro for Microsemi Edition Release Notes
	About the Release
	Feature and Enhancement Summary
	Feature and Enhancement Descriptions
	RAM Primitives Support
	DSP Block Inference
	URAM Inference for Sequential Shift Registers
	Identify Tool Device Support

	Recommended Versions of Compatible Tools
	Platforms
	Documentation
	Known Problems and Solutions
	Identify Tool Known Problems and Solutions

	Limitations
	FPGA Synthesis Limitations
	Identify Tool Limitations

