
© 2017 Microsemi Corporation. Company Proprietary 1

Power Matters.TM

RTG4 Timing Optimization and Closure
Space Forum 2017
Hichem Belhadj
VP, Field Applications and Systems Engineering

Power Matters.TM 2 © 2017 Microsemi Corporation. Company Proprietary

 Timing challenges are a concern for all FPGA designers

 Space FPGA designers have the additional consideration of needing to make sure

their design is robust against radiation effects while trying to solve these timing
challenges

 Space FPGA designers are also conscious of power dissipation

 This presentation focuses mainly on timing closure, but radiation effects are

considered when applicable
• Timing and power-aware techniques are mentioned when appropriate

Overview

Power Matters.TM 3 © 2017 Microsemi Corporation. Company Proprietary

 The first question to ask is, “Is my performance goal reasonable or not?”

 If the answer to the previous question is yes, the second question is, “How far am
I from achieving my goal?”

 If the answer is, “It is far but not impossible,” the third question is, “What’s causing

the timing challenge?”

 Once the root cause or causes of the challenge have been identified, the next
question is, “What can I do about it?”

 The final question is, “Is what I did enough to increase functionality?”

Timing Closure Methodology in Five Questions

Power Matters.TM 4 © 2017 Microsemi Corporation. Company Proprietary

 How does Microsemi address timing challenges?

 How tough are the challenges?

 Root causes, identification, and scope of these challenges

 Dealing with timing challenges for pure logic designs

 Dealing with timing challenges for DSP-intensive designs

 Dealing with timing challenges around instantiate IPs and their interfaces

Outline

Power Matters.TM 5 © 2017 Microsemi Corporation. Company Proprietary

 Timing challenges
• Continuous tools’ QoR improvements
• Dealing with logic depth or a large number of logic levels
• Dealing with IO timing challenges

– Explicit reduction of driver fanout

• Dealing with high-fanout signals and nets

• Dealing with DSP-intensive IPs or designs

• Dealing with interface IPs

Outline (continued)

Power Matters.TM 6 © 2017 Microsemi Corporation. Company Proprietary

How Does Microsemi Address Timing Challenges?

RTG4 Libero SoC Support and Continuous QoR Improvement

Power Matters.TM 7 © 2017 Microsemi Corporation. Company Proprietary

 Production timing—QoR improvement over the releases of Libero SoC

Libero SoC 11.7 SP2—RTG4 QoR

Device Capture Date # Designs Delta QoR

RT4G150* 11.5.7.11 Feb. 2015 344 +7.2%

RT4G150* 11.6.0.34 Sep. 2015 344 +4.2%

RT4G150 11.7.0.119 Feb. 2016 345 +12.0%

RT4G150 11.7.1.9 May. 2016 346 +7.0%

RT4G150 11.7.1.14 Aug. 2016 346 +7.2%

Power Matters.TM 8 © 2017 Microsemi Corporation. Company Proprietary

 Synplify Pro Enhancements
• Libero SoC v11.8 includes a new version of Synplify Pro ME (L2016.09M-2) with enhancements

for RTG4:
– Infer wide-Mux hard macros
– Bus-aware replication of registers on select lines of Mux
– Pack enable signal with higher priority than sync-reset into SLE
– Logic reduction with tied inputs
– Infer Enable on address register of uSRAM
– RTG4 LSRAM: do not infer Feed-Through Write mode
– RTG4 Math: infer only one asynchronous reset

 RTG4 SgCore Changes
The following SgCores have been updated to be compatible with Libero v11.8. If an existing project contains any of the
following cores, update the core to the latest version and regenerate the component before continuing with the design flow in
Libero SoC v11.8.

Libero v11.8

Core Libero 11.8 Compatible Version Changes
RTG4FCCC 1.1.217 Hold violation on Dynamic CCC on

APB_S_PSEL and APB_S_PADDR paths RTG4CCCAPB_IF 1.1.106

Power Matters.TM 9 © 2017 Microsemi Corporation. Company Proprietary

 1.2.11 RTG4 Global Net Report—Clocks and Resets not Radiation-Protected
• The Global Net Report for RTG4 designs in Libero SoC v11.8 appends a new warning section

that lists all clock nets and asynchronous reset/preset nets whose implementation may not be
protected from radiation upsets.

 1.2.12 RTG4 CCC—Simulation Runtime Improvement
• The CCC simulation model for RTG4 designs in Libero SoC v11.8 has been optimized to run up

to three times faster.

 1.2.13 RTG4 Single Event Transient (SET) Mitigation—Option Location Change
• The SET Mitigation option for RTG4 designs has been relocated to the Device Settings window

of the New Project Wizard (Project > New Projects) and the Project Settings dialog box
(Project > Project Settings).

 To save time, please read the software release notes thoroughly.

v11.8—Release Notes Excerpts

Power Matters.TM 10 © 2017 Microsemi Corporation. Company Proprietary

 Libero SoC 11.8—Layout Log Report lists all global clocks and resets that are
NOT implemented as radiation-tolerant
• This means the clocks and resets need TMR logic or glitch filtering.
• Resets on RGREST need to be driven by three separate logic cones.
• Clocks need to pass through global buffer.

Libero 11.8 Rad-Hard Global Reports

Power Matters.TM 11 © 2017 Microsemi Corporation. Company Proprietary

How Tough Are the Timing Challenges?

Power Matters.TM 12 © 2017 Microsemi Corporation. Company Proprietary

 Assuming that your timing constraints are reasonable (~15% higher than the
required specifications) and that you explicitly identified all multi-cycle and false
path constraints, then do the following for each clock domain:
• Draw the slack distribution chart that explicitly shows the slack (negative or positive) of the 100+

most critical paths
• Identify if the scope of the timing challenges. For example, are the top critical paths are confined

within one module, or are they crossing multiple functional or hierarchical blocks?

 For the entire design, review all the clock domains and don’t focus on the most
critical one
• The clock domain meeting the spec may pop up as critical if you do not take care of them
• The clock domains that meet the spec with a nice margin may help you

Assessment Techniques

Power Matters.TM 13 © 2017 Microsemi Corporation. Company Proprietary

 The slack distribution chart depicts the slack (negative or positive) of the most
critical paths with respect to the timing constraint

 Identifying the paths with positive slacks is as important as identifying the paths

with negative slack (or timing violations) to determine the complexity of the timing
optimizations

 Interpretation of the slack distribution profile will help users check how much

leeway they have with each clock domain (see next slide for more information)

Slack Distribution Charts

Power Matters.TM 14 © 2017 Microsemi Corporation. Company Proprietary

 All paths are meeting spec
 Handful of paths (10)

meet marginally
 Other paths have very large

positive slack
 Slight improvement of the

top ten paths will not
disturb the profile of the
slack distribution for this
clock domain

 User may relax the
frequency constraints and
use set_max_delay on the
top ten paths.

Slack Distribution Charts—Profiles and Interpretations

 Handful of paths are not
meeting spec

 Other paths have large
positive slack

 Improvement of the top
paths will not disturb the
profile of the slack
distribution for this clock
domain

 User may relax the
frequency constraints and
use set_max_delay on the
top ten paths.

 Several paths are not
meeting spec

 Other paths have
decent positive slack

 Improvement of the top
paths may or may not
disturb the profile of the
slack distribution for this
clock domain

 In addition to clock
frequency, user may
further tighten the
constraint on the top
paths only

 Many paths are not meeting
spec

 Many paths have
very slim positive slack

 Improvement of the top
paths will disturb the
profile of the slack
distribution for
this clock domain

 In addition to clock
frequency, user may further
tighten the constraint on the
top paths only

1 2 3 4

Number of Paths Number of Paths Number of Paths Number of Path

Delay
(ns)

Delay
(ns)

Delay
(ns)

Delay
(ns)

10 4 50 150

Power Matters.TM 15 © 2017 Microsemi Corporation. Company Proprietary

 If the critical paths are confined within one block or module, the challenge is
easier to tackle than when these critical paths cross several blocks/modules

 To identify the scope, check the source and sink of the top critical paths
 If they belong to the same block/module, then expand two or three of these paths to make sure

all the nets and cells belong to the identified module

 If the critical path crosses two or more blocks/modules, add registers at the
boundaries of these blocks if the overall latency allows
 If not, remove one hierarchy level and allow optimization across hierarchical boundaries

Scope of the Timing Challenge?

Power Matters.TM 16 © 2017 Microsemi Corporation. Company Proprietary

Timing Challenges:
Root Causes, Identification, and Scope

Power Matters.TM 17 © 2017 Microsemi Corporation. Company Proprietary

 What causes timing challenges?

 How to identify the root cause(s)?

Outline

Power Matters.TM 18 © 2017 Microsemi Corporation. Company Proprietary

 Timing challenges could be caused by one or more of the following root causes:
• Deep logic cones from/to IOs or from register to register
• Existence of high-fanout control or data nets
• DSP- or RAM-intensive blocks that interact with logic and IOs
• Congested designs due to cross-bar, barrel-shifters, or multiplexors/de-multiplexor structures
• Too many asynchronous and synchronous reset signals

– A reset signal per clock domain is not good design practice unless power-saving is a MUST (Suspend the
activity of some blocks using reset)

 Timing challenges could also be caused by tools or user options and constraints:
• Poor synthesis or logic mapping results
• Lack of or very stringent physical and timing constraints
• Locally inefficient placement or routing
• Floor plan constraints create artificial congestion

What Causes Timing Challenges?

Power Matters.TM 19 © 2017 Microsemi Corporation. Company Proprietary

 Take the following steps to identify deep logic cones from/to IOs or from register to
register
• Expand the top critical paths and check the number of cells involved
• If the number of cells in the path is above five, your design is considered to have deep logic and it

will be difficult to meet the timing spec
– Use the 50–50 or 45–55 rules of thumb (45% of the path delay is logic and 55% is routing related) unless

one or more nets have high fanout
 To identify high-fanout control or data nets

• Check the Compile report for the highest fanout nets
• Expand the top critical paths and check the delay penalty associated with each net. Nets with high

delay penalty usually have a high fanout (check the FO column)
• If the net’s fanout is less than 24 and the delay penalty is 4 ns or larger, then you have a

placement issue and not a high-fanout net situation
 To identify DSP- /RAM-intensive blocks that interact with logic and IOs

• Check the resource utilization reports from Synthesis and Compile

How to Identify the Root Cause(s)?

Power Matters.TM 20 © 2017 Microsemi Corporation. Company Proprietary

 Perform the following tests to identify if the issue is the inherent congestion of a
design

• Expand the top 20 critical paths—if the number of logic levels is low (less than four) and the
fanout of the nets is low (below 20), yet the timing associated with the nets is high, then the
design is potentially congested

• RTL code includes a lot of busses and the logic utilization for the blocks including these busses

is relatively low (less than 1000 LUTs)

• RTL code includes many case statements that are mapped into Mux structures (not for FSMs)

• See the Multiplexor Structures section for more information
– Hidden Mux structures
– RTL explicit Mux structures

How to Identify the Root Cause(s)? (continued)

Power Matters.TM 21 © 2017 Microsemi Corporation. Company Proprietary

 How to identify if you have too many Asynchronous and Synchronous Reset
Signals
• Check the Compile report for the high-fanout signals/nets and identify the asynchronous and

synchronous reset signals

• If utilization of global routing resources is high (80% and over) and several reset signals (Fanout
Compile Report) are not mapped to global routing, then your design will have challenges
meeting timing, as these high-fanout reset signals will be using regular routes
– These reset signals will fight with other nets for routing resources
– These reset signals may now cause removal time issues

• RTL code for instantiation of IPs or blocks developed by other teams could lead to an unintended

high number of reset signals in the design
– User must reduce the number of asynchronous reset signals to a strict minimum. This will reduce design

congestion, timing challenges, and radiation effects.

How to Identify the Root Cause(s)?

Power Matters.TM 22 © 2017 Microsemi Corporation. Company Proprietary

Identifying Root Cause(s) From Tools and User Settings/Constraints

 How to identify if the issue is poor synthesis or logic mapping results
• Check if the timing report shows several cells made of two or three input LUTs
• Check if deep logic paths are built without using embedded carry chain routing
• Check the efficiency of the synthesis inference of RAMs and DSP blocks

– RTL code intended to be mapped efficiently based on configurations of embedded SRAM may have been
mapped into less efficient cascaded SRAMs

• RTL code may force the hand of the Synthesis tool
• For example, priority encoding (nested if statements) vs. balanced Mux structures (case

statement)
– IP netlists and inhibited cross-hierarchy optimization

 Synthesis options (particularly resource sharing, along with FSM encoding,
optimization across hierarchy) may also lead to poor implementations

Power Matters.TM 23 © 2017 Microsemi Corporation. Company Proprietary

Dealing with Timing Challenges
for Pure Logic Designs or Blocks

Power Matters.TM 24 © 2017 Microsemi Corporation. Company Proprietary

 Handling deep logic paths

 Fixing high-congestion designs

• Focus on Mux structures

 State machines coding style and state encoding options

 Dealing with high and medium fanout control and data nets

 Resets and clocks

Outline

Power Matters.TM 25 © 2017 Microsemi Corporation. Company Proprietary

 If a critical path includes a too many logic levels and each LUT in the path has
only two or three inputs, then the following problems may occur
• Because LUT4 are able to map any logic function of four inputs, there is a waste of capacity

when LUT4 are mapped as two- or three-input LUTs
• Either synthesis is doing a poor mapping, timing constraints are very loose, or the RTL logic

expressions need to be rewritten
• A simple review of the RTL code will reveal these cases

Symptoms of Too Many Logic Levels/Depth of Logic

L
U
T

L
U
T

L
U
T

L
U
T

Power Matters.TM 26 © 2017 Microsemi Corporation. Company Proprietary

 Investigate if you can balance the number of logic levels for all the primary inputs
by using parenthesis in your RTL code

 If not, rewrite your RTL code using the “delay the decision” technique

• For example, consider the following illustration of a critical path with six logic levels

Large Number of Logic Levels in Boolean Equations

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

Power Matters.TM 27 © 2017 Microsemi Corporation. Company Proprietary

 The “delay the decision” technique balances the number of logic levels (now four
instead of six)
 Expense of additional LUT4s and a Mux

 This technique is also used to push the toggling down the depth of the logic and

helps reduce power dissipation

Reducing the Logic Depth—ALAP Decision

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

“0”

“1”

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

6 Levels of Logic 4 Levels of Logic

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjDy-KivfzTAhUHrVQKHYSmDVoQjRwIBw&url=https://openclipart.org/tags/scissors&psig=AFQjCNHrUXCwBm3ezA6VFmyhdioVOW-R7w&ust=1495301214579498
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjDy-KivfzTAhUHrVQKHYSmDVoQjRwIBw&url=https://openclipart.org/tags/scissors&psig=AFQjCNHrUXCwBm3ezA6VFmyhdioVOW-R7w&ust=1495301214579498

Power Matters.TM 28 © 2017 Microsemi Corporation. Company Proprietary

 In many designs, several values of counters are used to decide the execution of
several branches of if statements
• Example:

If (Count = x) then … … …
 elseif ((Count = y or Count = z) and <expression1>) then
 elseif ((Count /= t) or <expression2>) then
 … … … …
 else …. endif;

 If the binary counter is four or five bits long, consider using a 16- or 32-bit 1-Hot
Shift register to implement the counter instead.
• Each value of the counter is represented by the HOT bit of the shift register instead of four or five

variables
• This leads to

– Simplification of large expressions such as (Count = y or Count = z) and <Boolean Expression1>
– Less LUTs and fewer logic levels
– More registers

Reducing the Number of Logic Levels of Boolean Equations:
Beware of Counters!

Power Matters.TM 29 © 2017 Microsemi Corporation. Company Proprietary

 In many designs, users use state machines (FSMs) to sequence processing of
data and control signals changes.

 If several registers or control signals are manipulated in many states of the FSM,

use One Hot to encode the states and reduce the combinatorial logic associated
with the product terms associated with the codes of these states.

 For example, consider a 12-state FSM assigning the same value “V” to register

“R” in four states. The logic driving the selection of V in the Mux in front of R
depends on the product terms associated with these states.

Reducing the Number of Logic Levels of Boolean Equations: State
Machines Encoding

Power Matters.TM 30 © 2017 Microsemi Corporation. Company Proprietary

 If these four states are encoded as “0001,” “0011,” “0101,” and “1100,” the select
line will be an OR of the product terms associated with these codes
OR (!S0&!S1&!S2&!S3, S0&S1&!S2&!S3, S0&!S1&S2&!S3, !S0&!S1&S2&S3) or
at least two logic levels

 If these 4 states are encoded as “00000000001,” “000000000100,”

“00000010000,” and “100000000000,” the select line will be driven by
OR (S0, S2, S4, S11) mapped with 1 LUT or 1 Logic Level

 The next section has more recommendations for state machine coding styles

Reducing the Number of Logic Levels of Boolean Equations: State
Machines Encoding

Power Matters.TM 31 © 2017 Microsemi Corporation. Company Proprietary

 Investigate if a processing (logic or arithmetic) can be done either in a previous
clock cycle (as soon as possible) or in a future cycle (as late as possible)
• If not possible, investigate if a partial pre-computation can be performed in a previous clock cycle

or if a partial post-computation can be performed in the next clock cycle, even if this will add logic

Dealing with Large Number of Logic Levels: Anticipate (ASAP) or
Delay (ALAP)

@(posedge clock)

if (condition_1 == true)
 count <= 8'hff;
 count_is_0 = ‘0’;

else if (Condition_2 == true) begin
 count <= count - 1; //down counter
 if (count == 8'h01) count_is_0 = 1;
 else count_is_0 = 0;

end

@(posedge clock)

wide_bus[63:0] =
 (count_is_0==1) ? Data1: Data2;

@(posedge clock) //down counter
if (condition_1==true)
 count <= 8'hff;
 else
 if (condition_2==true)
 count = count-1;

@(posedge clock)
 wide_bus[63:0]=
(count == (8'b0) ? Data1 : data2;

Power Matters.TM 32 © 2017 Microsemi Corporation. Company Proprietary

 In this example, the computation of R1 + R2 – Rot is split into a pre-computation
R1 + R2 in the Add_Store state, and the final computation when actually needed in
state Xfer_out

 As a result
• No cascaded arithmetic (fewer logic levels)
• Data dependencies respected

Dealing with Large Number of Logic Levels: Anticipate (ASAP) or
Delay (ALAP)

Reset
State

INIT

Add_S
tore

Shitft

Xfr_
Out

Reset_N

Predicate Predicate

Xfer_Exit

Loop_LVQ

Loop_LVQ

… … …
If (State = INIT)
 R1 <= Value_init
 R2 <= Default_init
 Rot <= In1

If (State = Add_Store)
 Intermediate <= R1 + R2 – Rot;

 if (State = Shift)
 Rot <= Rot << 2;

 if (State = Xfer_Out)
 OutRes <= Intermediate;

… … ….

… … …
If (State = INIT)
 R1 <= Value_init
 R2 <= Default_init
 Rot <= In1

If (State = Add_Store)
 // Intermediate <= R1 + R2 - Rot;
 Intermediate <= R1 + R2;

 if (State = Shift)
 begin
 Intermediate <= Intermediate – Rot;
 Rot <= Rot << 2;
 end;

 if (State = Xfer_Out)
 OutRes <= Intermediate;
… … ….

Power Matters.TM 33 © 2017 Microsemi Corporation. Company Proprietary

 If the previous actions do not reduce the number of logic levels to meet the timing,
then the Synthesis Retiming option should be set to ON

 While Retiming may help reduce the number of logic levels, it comes with a cost

• Additional registers inserted to break the depth of the logic cones
• Additional one or two clock cycles will increase the latency of the data transaction

 Beware

• If the critical and deep logic paths are within a particular module or block of a design, use
retiming locally to that module (for example, associate retiming attribute to a module when the
critical and long logic path is located)

• If the critical path is crossing two or more blocks, revisit your RTL code and insert explicit
registers at the boundaries of these modules.

• Do not apply retiming to the entire design.

Dealing with Large Number of Logic Levels: Last Resort

Power Matters.TM 34 © 2017 Microsemi Corporation. Company Proprietary

Fixing High-Congestion Designs

Power Matters.TM 35 © 2017 Microsemi Corporation. Company Proprietary

 Blocks of design with wide buses on their interfaces

 Large number of high-fanout nets

 User physical constraints

 High utilization of resources

• 85% or more utilization of logic cells, IOs, RAMs, DSPs, etc.

 Inherent congested design or blocks/modules of the design

What Causes Routing Congestion?

Power Matters.TM 36 © 2017 Microsemi Corporation. Company Proprietary

 Consider the hierarchical design with three major blocks sharing wide bus
interfaces
• The placement of these blocks due to either IO placement/board layout or user region

constraints leads to two large busses crossing the die
• If the other logic blocks in between do not have enough porosity or are themselves congested,

then the red and orange busses will fight for routing resources and may end up following a snake
path, causing routing congestion

Congestion Type 1—Multiple Blocks with Wide Ports/Pins

Other
Logic

Blocks

Store_
PreProcess

SynchIfce

IP

DP
Processing

Power Matters.TM 37 © 2017 Microsemi Corporation. Company Proprietary

 The screenshot below shows an example of two high-fanout nets and the spread
of routing resources they require
 If several similar nets exist in the design, the routing demand will cause

congestion, and the router will have difficult time satisfying the timing associated
with paths involving the these nets

Congestion Type 2—Large Number of High-Fanout Nets

Power Matters.TM 38 © 2017 Microsemi Corporation. Company Proprietary

 In several designs, users create constraints for the following reasons
• Floor-planning their design to interface with other devices or to use particular resources (SerDes,

DSP, RAMs, and so on)
• Assign IOs to certain banks and locations to satisfy some board layout considerations
• Assign external or internal clock sources to a particular clock conditioning circuitry, PLL, or a

specific global network

 If these constraints do not consider the architecture of the FPGA, its limitations,
and the design timing constraints, these constraints risk creating artificial
congestion

 The following slide shows examples of artificial congestion created by user

constraints

Congestion Type 3—User Constraint-Induced Congestion

Power Matters.TM 39 © 2017 Microsemi Corporation. Company Proprietary

Examples of User Constraint-Induced Congestion

CCC

Logic for Internal
Derived Clock

GB

IO Assignment Forces Unnecessary
Long Routes

Blocks Floor Plan Forces Unnecessary
Long Routes and Congestion

IO Assignment Forces Unnecessary
Long Routes and Large Clock Insertion Delay

Power Matters.TM 40 © 2017 Microsemi Corporation. Company Proprietary

 RTG4 architecture and the Place and Route tool have been designed and implemented to handle
up to 95% resource utilization.

 Congestion associated with a design increases more than linearly with the utilization of the device
resources.
• RAM and DSP blocks demand lots of routing resources, as they have large input/output busses and are placed on

particular rows of the die. If the fanout of the busses and control signals is high, the congestion around these rows will
also be extremely high.

• Logic cells are finer grain, more abundant, and spread across the die. However, If the utilization of these

logic cells is high, there is a high potential for two issues to occur.
– Congestion, particularly when several LC outputs have a high fanout.
– The placer mishandles a small percentage of logic cells, causing additional routing congestion.

Congestion Type 4—High Resource Utilization

Basic
RAM Block

RCLKB
REB

Address
BusB Data

BusB

Address
BusA

Data
BusA

WCLKB
WEB

RCLKA
REA
WCLKA
WEA

Basic
MATH Block

ADD_SUB

DATAA DATAB

Carry_cascade OUT_Bus

CLK

Ovfl

Power Matters.TM 41 © 2017 Microsemi Corporation. Company Proprietary

 High utilization of IOs
• Regular IOs are also fine grain. However, because of the bank organization, there is a potential

that accessing them may require long routes, particularly if the board designer and the FPGA
designer do not communicate.

– The board designer may impose severe IO placement to satisfy requirements such as lowering the traces

on the board, signal integrity, thermal management, and solid power and ground planes.

– FPGA designer needs to close timing and have the freedom to decide the pin-out of their chip design

• IOs assignment has to be a co-design involving iterative activity between FPGA and board
designers

Congestion Type 4—High Resource Utilization

Power Matters.TM 42 © 2017 Microsemi Corporation. Company Proprietary

 Use of high-speed IOs for FDDR interface
• FDDR controller is embedded in the die at a fixed location—a constraint for the placer
• FDDR interface must be handled carefully to avoid congestion and long routes in and out of this

block.
• High fanout or fan-in exasperates the congestion problem
• AXI/AHB bus implementations can have large fanout if used in a complex bus structure

 Minimize fanout or separate the connections to/from FDDR
• Good up-front logic design
• Synplify “syn_maxfanout” attribute helps but not bullet proof.
• Region constraints/high effort placement help greatly

Congestion Type 4—High Resource Utilization

Power Matters.TM 43 © 2017 Microsemi Corporation. Company Proprietary

 In many cases, designs are inherently congested because of the high demand of
routing for logic blocks

 Typical and obvious examples of small logic with heavy demand for routing (IOs)

are Mux structures, rotators, barrel shifters, and cross-bar interconnect blocks

 The following slides will focus on Mux structures

Congestion Type 5—Inherent Design Congestion

Power Matters.TM 44 © 2017 Microsemi Corporation. Company Proprietary

 The basic form that generates Mux in your design are case statements.
• The following illustration shows a 16-bit 12-to-1 Mux

Multiplexors in Your RTL Code

case Reg4 is
when "0000" => mux_out<= A;
when "0001" => mux_out <= B;
when "0010" => mux_out <= C;
when "0011” => mux_out <= D;
when "0100" => mux_out <= E;
when "0101" => mux_out <= F;
when "0110" => mux_out <= G;
when "0111" => mux_out <= H;
when "1000" => mux_out <= I;
when "1001" => mux_out <= J;
when "1010" => mux_out <= K;
when "1011" => mux_out <= L;
when others => mux_out<= “0000000000000000”;
end case;

Power Matters.TM 45 © 2017 Microsemi Corporation. Company Proprietary

 Mux structures cause delay penalties, as it combines both the number of logic
levels and hidden high-fanout select lines.
 These structures are a typical cause of routing congestion

Watch Out for the Mux Structures

S0

S1

S0

S1

S2

4-to-1 Mux
2 Logic Levels
S0 Fanout = 2

8-to-1 Mux
3 Logic Levels
S0 Fanout = 4

Power Matters.TM 46 © 2017 Microsemi Corporation. Company Proprietary

Mux Structure and Select Lines Fanout (continued)

S0

S1

S2

S3

16-to-1 Mux
4 Logic Levels
S0 Fanout = 8

Power Matters.TM 47 © 2017 Microsemi Corporation. Company Proprietary

Number of
Inputs

Input Bit
Width

Select0
Fanout

Select1
Fanout

Select 2
Fanout

Number of
Logic Levels

2 1 1 - - 1

8 1 4 2 1 3

16 1 8 4 2 4

2N 1 2N-1 2N-2 2N-3 N

8 M M*4 M*2 M*1 3

16 M M*8 M*4 M*2 4

2N M M*2N-1 M*2N-2 M*2N-2 N

Mux Structure and Select Lines Fanout

Power Matters.TM 48 © 2017 Microsemi Corporation. Company Proprietary

Things Can Get Nasty with Mux Structures
Case 1: Select Line Deep Logic

S0

S1

S2

S3

L
U
T

L
U
T

L
U
T

L
U
T

• This design is suffering from too many logic levels and the high-fanout select S0
• S0 toggle ripples through the Mux structure

Power Matters.TM 49 © 2017 Microsemi Corporation. Company Proprietary

Incorrect Path Fix: Logic Replication of the Select0 Driver

S0

S1

S2

S3

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

• S0 fanout reduced to half
• S0 toggle still ripples through the Mux structure

Power Matters.TM 50 © 2017 Microsemi Corporation. Company Proprietary

Better Solution: Reordering Select Lines, Swapping Inputs

S0

S1

S2

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

S3

L
U
T

L
U
T

L
U
T

L
U
T

S1

S2

S3

A0 A2 A4 A6 A8 A10 A12 A14 A1 A3 A5 A7 A9 A11 A13 A15

S0

L
U
T

L
U
T

L
U
T

L
U
T

S0 path reduced by three levels of logic
S0 fanout reduced to one
S0 toggling ripple reduced

+

_ S1, S2, and S3 fanout increased

Power Matters.TM 51 © 2017 Microsemi Corporation. Company Proprietary

Things Can Get Nasty with Mux Structures
Case 2: Mux Input Deep Logic, Say A0

S0

S1

S2

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

S3

L
U
T

L
U
T

L
U
T

L
U
T

A0

S0

S1

S2

A1
A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

S3

L
U
T

L
U
T

L
U
T

L
U
T

A0 path reduced
by three logic levels
No Mux added
A0 toggling ripple
reduced

Ai (i = 2, 15) will see
one additional level
of logic

+

_

Power Matters.TM 52 © 2017 Microsemi Corporation. Company Proprietary

Things Can Get Nasty with Mux Structures
Case 3: Mux Input Deep Logic, What If It is A1?

S0

S1

S2

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

S3

L
U
T

L
U
T

L
U
T

L
U
T

A1

S0

S1

S2

A0
A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

S3

L
U
T

L
U
T

L
U
T

L
U
T

A1 path reduced
by three logic levels
No Mux added
A1 toggling ripple
reduced

+

_ Ai (i = 2 .. 15) will
see one additional
level of logic

Power Matters.TM 53 © 2017 Microsemi Corporation. Company Proprietary

 RTL code intends to create a 2Kx32 RAM block
 Synthesis may infer an implementation that uses 512x32 basic SRAM blocks, as

shown in the following illustration
• Notice 4-to-1 Mux for 32-bit busses—remember the S0 fanout
• Figure does not illustrate additional decode logic needed for WE and RE

Hidden Multiplexors in Your RTL Code!

512x32
SRAM

512x32
SRAM

DATA (32-bits)

512x32
SRAM

512x32
SRAM

32-bits

32-bits

ADDRESS

Power Matters.TM 54 © 2017 Microsemi Corporation. Company Proprietary

 Choosing the right aspect ratio removes unnecessary multiplexing and decode
logic
 The outputs of all 2Kx8 RAMs are concatenated to form the 32-bit

How to Fix Hidden Multiplexors in Your RTL Code

2Kx8 2Kx8 2Kx8 2Kx8

DATAIN (32-Bits)
ADDRESS

8-Bits 8-Bits 8-Bits 8-Bits

32-bits

Power Matters.TM 55 © 2017 Microsemi Corporation. Company Proprietary

 If Resource Sharing is ON, synthesis reduces the number of DSP blocks to the
minimum. While this reduces the utilization of these resources, it introduces large
multiplexors in the ingress path of these embedded DSP/arithmetic blocks.
Example of RTL Code:
If (BooleanExpression) then R1 <= A + D; else R2 <= D + B;

 Unless you are running out of DSP resources, set Resource Sharing to OFF

Hidden Multiplexors in Your Synthesis Options

A B D

R1 R2

A B
D Logic

R1 R2

Power Matters.TM 56 © 2017 Microsemi Corporation. Company Proprietary

 Recommendations
• Enumerate all the possible states and use one-hot encoding

• If you can’t enumerate all the possible states, use HDL clauses

– When Others => Next_state <= “a particular state of your choice” – – VHDL
– “default” : Next_state = ““a particular state of your choice”; /* Verilog */

• Do not use “safe” encoding
– All registers in RTG4 are TMRs and SEU immune
– Synplify creates an overhead logic for recovery that is not necessary as it will exacerbate the timing
– Synplify may create additional reset signals that will be mapped to regular routing (not radiation-

hardened)

State Machine Coding Style and State Encoding Options

Power Matters.TM 57 © 2017 Microsemi Corporation. Company Proprietary

Dealing With High and Medium Fanout Data
and Control Nets
Patent Application in Progress

Power Matters.TM 58 © 2017 Microsemi Corporation. Company Proprietary

 IO timing-aware manual unbalanced logic replication

 IO Placement-Aware manual unbalanced logic replication

 Register-2-Register-aware replication

Outline

Power Matters.TM 59 © 2017 Microsemi Corporation. Company Proprietary

 High load on driver
because of high fanout

 Large Clock-2-Out delay due to

higher capacitance on register
output

Clock-2-Out or IO Timing-Aware Adaptive Logic Replication:
Simple Case

FO ~ (N-1)/2

FO = 1
L
U
T

L
U
T

L
U
T

FO ~ (N-1)/2

Register IO Combining

FO = N L
U
T

L
U
T

L
U
T

 Register or IO driver now
has a fanout of 1
 Better Clock-2-Out delay with potential

register combining
 Replicate register

carries the N-1 load

Power Matters.TM 60 © 2017 Microsemi Corporation. Company Proprietary

 High load on driver LUT because
of high fanout
 Large Clock-2-Out delay or IO

due to higher capacitance on
LUT output

IO Timing-Aware Manual RTL Fanout Control

 LUT driving the IO now
has a fanout of 1
 Better Clock2Out or IO delay
 Replicate LUT carries a load of (N – 1)/2

FO = N-1

FO = N L
U
T

L
U
T

FO ~ (N-1)/2

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T FO = (N-1)/2

FO = 1

Power Matters.TM 61 © 2017 Microsemi Corporation. Company Proprietary

 Consider the RTL that generates the OE for a 32-bit output bus DOUT_Bus[31:0]
• The RTL appearance does not reveal a situation of delay penalty associated with the OE signal,

as the designer has registered it and the fanout is only 32
• However, if the 32-bit pads are placed on different IO banks, the routing of the output of the

register (OE) will have high delay penalty no matter how the placer optimizes the placement of
the driving OE register

Clock-2-Out or IO Timing-Aware Adaptive Logic Replication:
Complex Case

L
U
T
0

In_Bus[31:0]

DOUT_Bus[31:0]
L
U
T
0

L
U
T
1

Logic

Power Matters.TM 62 © 2017 Microsemi Corporation. Company Proprietary

 Designers need to identify these situations and modify the RTL code(*) to map the
OE to drive the slices of the DOUT_Bus as the load of each replicated OE register
 The following solution helps, but is tedious for the user because every minor

change in the pin-out will cause a complete review of the RTL code

(*) For example, setting the max_fanout to 4 does not guarantee that synthesis will be selective for the sink load
and distinguish what to drive with each replicated register

IO Placement-Aware Logic Replication

L
U
T
0

L
U
T
1

Power Matters.TM 63 © 2017 Microsemi Corporation. Company Proprietary

 User should set the max_fanout to 1 on the OE and allow synthesis to infer 32 registers (one for
each bit of DOUT_Bus). Additionally, the user could set the IO Register Combining to ON, as the
IO tiles include a free register for the OE

 The upside is that the Clock-2-Out timing is now optimal
 The drawback of this solution is that the high fanout is transferred to the LUT, LUT0, driving the OE

register D inputs and has a similar challenge (solution in next slide)

IO Placement-Aware Logic Replication

IO OE Register
Combining

L
C
0

L
C
1

Power Matters.TM 64 © 2017 Microsemi Corporation. Company Proprietary

 Second layer of logic replication—LUT0
 Replicating LUT0 and dedicate a replicate to a quadrant will allow the P&R to
 Replicating the LUT 4 times will relieve its fanout output, but will increase its input

fanout by 3

Multi-Layer Adaptive Logic Replication

IO OE Register
Combining

LC0 Rep
Bk#1

L
U
T
1

LUT0 Rep
Bk#6

LUT0 Rep
Bk#2

LUT0 Rep
Bk#3

LUT0 Rep
Bk#4

LUT0 Rep
Bk#5

LUT0

LUT0
Rep

Threshold

Threshold

Power Matters.TM 65 © 2017 Microsemi Corporation. Company Proprietary

 Case 1: Register driving high-fanout net

 Criticality at the start of the path
• Delay penalty carried by all the paths in the outgoing logic cone
• Has to be addressed to relieve all these paths
 Register replication is tedious but feasible at the RTL code

Register-to-Register Critical Timing and Fanout Control

L
U
T

L
U
T

L
U
T

L
U
T

Critical Path
FO = N

(a)

Power Matters.TM 66 © 2017 Microsemi Corporation. Company Proprietary

 Case 2: Combinatorial high-fanout net inside deep logic

 All paths starting with high-fanout cell will suffer

• Penalty due to high fanout and capacitance associated with routing
• Number of logic levels up to the cell driving the high-fanout net

 Difficult to predict at the RTL code, but once identified (post-compile), user can

proceed with explicit replication
• See possible solutions in next slide

Register-to-Register Critical Timing and Fanout Control

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

FO = N
Critical Path (b)

Power Matters.TM 67 © 2017 Microsemi Corporation. Company Proprietary

 When manually replicating the register, make sure you have an understanding of
how to allocate the load to the copies/replications
• Paths with a high number of logic levels or high-fanout nets should be allocated to the replication

with lower fanout

• May consider additional replications if floor plan constraints require logic to be pulled to different
sides of the die

Case 1: Explicit Driver Replication to Relieve Critical Paths

FO = M (M << N/2)

L
U
T

L
U
T

L
U
T

FO = N – M

L
U
T

Power Matters.TM 68 © 2017 Microsemi Corporation. Company Proprietary

 Balanced replication—automated approach
• Use syn_max_fanout attribute in RTL code

– Example syn_max_fanout = N/2 will lead to a load, as shown in the following illustration

Case 2: High-Fanout Net Inside Deep Logic

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

FO = N

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

FO ~ N/2

FO ~ N/2

Power Matters.TM 69 © 2017 Microsemi Corporation. Company Proprietary

 Unbalanced replication—automated approach
• Use of syn_max_fanout attribute in RTL code, but the set value (N – m) is such that one branch

will have much less load than other branches

Case 2: High-Fanout Net Inside Deep Logic

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

FO = N

L
U
T

L
U
T

L
U
T

L
U
T

FO ~ (N – m)/2

FO ~ (N – m)/2

L
U
T

L
U
T

L
U
T

L
U
T

FO = m

Power Matters.TM 70 © 2017 Microsemi Corporation. Company Proprietary

 Unbalanced and explicit replication—manual approach
• Use of syn_max_fanout attribute
• Modify RTL code to implement “decide as late as possible” technique

Case 2: High-Fanout Net Inside Deep Logic

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

FO = N

L
U
T

L
U
T

L
U
T

L
U
T

FO ~ (N – 1)/2

FO ~ (N – 1)/2

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

‘0’

‘1’

Explicit Replication

Power Matters.TM 71 © 2017 Microsemi Corporation. Company Proprietary

Improving DSP Design Performance

Power Matters.TM 72 © 2017 Microsemi Corporation. Company Proprietary

 When design utilizes hard MACCs, pay attention to the following connections that
can impact the performance
• Connections between RAM blocks and MACCs
• Connections from fabric to multiple MACCs such as, resets, enable data buses, and so on
• Datapath connections between the MACC rows

 The longer the chain of MACCs, the more attention is required

• Shorter chains (<10 MACCs) are less likely to cause performance degradation when it comes to
fabric connections. The place and route tools perform a decent job (however, it never hurts to
double check).

Identify Potential Performance Hurdles

Power Matters.TM 73 © 2017 Microsemi Corporation. Company Proprietary

 Extensive pipelining improves the performance
• Make sure all the internal MACC registers that receive or transmit data are enabled (this is

possible in majority of cases, no matter the application)

• Pipeline all the connections between MACCs and other components (RAM and fabric)

 In some cases, too many pipes can be counter-productive
• Having room to play with pipeline layers and their locations is the best

Pipeline the Design

Power Matters.TM 74 © 2017 Microsemi Corporation. Company Proprietary

 A chain of MACCs often requires one or more signals or buses to come to every
MACC
• Such signal fanout can be moderate, but the routing can be really long, as the MACCs are

distributed edge-to-edge on a die
• Check the routing of such high-fanout signals/nets to find out if the MACC placement is

appropriate or needs modification
• In any case, setting a strict “max_delay” timing constraint helps avoid these nets to have high

delay penalty
 Separate the MACC chain into clusters with pipelines assigned to every cluster

• The cluster structure is shown on the next slide
• The cluster contains eight MACCs or less. The number eight has no scientific significance, it was

just what worked for CoreFIR design
• Protect the following pipeline registers associated with the clusters from removing by

SynplifyPro:
attribute syn_preserve : boolean;
attribute syn_preserve of pipe_reg : signal is true;

Long Input Lines and Buses

Power Matters.TM 75 © 2017 Microsemi Corporation. Company Proprietary

Long Input Lines and Buses (continued)

Power Matters.TM 76 © 2017 Microsemi Corporation. Company Proprietary

 There is no dedicated connection (cascade chain) between MACC physical rows

 Two techniques are used to establish the cross-row connections on FIR filter-like

structures
• Standard technique: connect the last MACC of a row to the first MACC of the next row (see the

next slide for more information)

• Advanced technique: use additional delay line (see the next slide for more information)

• When using the standard technique, pipeline registers are not always placed optimally, which
can cause unnecessary performance degradation

• With long MACC chains, the second technique often provides better performance

Cross-Row Connections

Power Matters.TM 77 © 2017 Microsemi Corporation. Company Proprietary

Standard Cross-Row Connection

Power Matters.TM 78 © 2017 Microsemi Corporation. Company Proprietary

Advanced Cross-Row Connection

Power Matters.TM 79 © 2017 Microsemi Corporation. Company Proprietary

 Coping with timing challenges starts with understanding the root cause(s)
• Analysis of slack distribution
• Thorough review of compile reports and timing bottlenecks helps identify the root causes

 Methodology-based timing closure proposed

• Provided hints and recommendations to cope with potential root causes
• Main recommendations were as follows:

– Consider all clock domains, not just the critical one
– Reduce the number of asynchronous/synchronous reset signals
– Clear and concise timing constraints and timing exception (multi-cycle and false paths)
– Avoid floor plan that creates artificial congestion (IO placement, blocks floor plan, and so on)
– Use hints when appropriate

 More to come soon
• Block flow with incremental compile points
• Power-aware design on RTG4

Conclusion

Power Matters.TM 80 © 2017 Microsemi Corporation. Company Proprietary

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications,
data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs;
power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF
solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions;
Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has
approximately 4,800 employees globally. Learn more at www.microsemi.com

©2017 Microsemi Corporation. All rights reserved.
Microsemi and the Microsemi logo are registered
trademarks of Microsemi Corporation. All other
trademarks and service marks are the property of
their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume
any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should
not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by
Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is”
and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights,
whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any
changes to the information in this document or to any products and services at any time without notice.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com
www.microsemi.com

Thank You

	�RTG4 Timing Optimization and Closure�Space Forum 2017
	Overview
	Timing Closure Methodology in Five Questions
	Outline
	Outline (continued)
	How Does Microsemi Address Timing Challenges?
	Libero SoC 11.7 SP2—RTG4 QoR
	Libero v11.8
	v11.8—Release Notes Excerpts
	Libero 11.8 Rad-Hard Global Reports
	How Tough Are the Timing Challenges?
	Assessment Techniques
	Slack Distribution Charts
	Slack Distribution Charts—Profiles and Interpretations
	Scope of the Timing Challenge?
	Timing Challenges:�Root Causes, Identification, and Scope
	Outline
	What Causes Timing Challenges?
	How to Identify the Root Cause(s)?
	How to Identify the Root Cause(s)? (continued)
	How to Identify the Root Cause(s)?
	Identifying Root Cause(s) From Tools and User Settings/Constraints
	Dealing with Timing Challenges for Pure Logic Designs or Blocks
	Outline
	Symptoms of Too Many Logic Levels/Depth of Logic
	Large Number of Logic Levels in Boolean Equations
	Reducing the Logic Depth—ALAP Decision
	Reducing the Number of Logic Levels of Boolean Equations: Beware of Counters!
	Reducing the Number of Logic Levels of Boolean Equations: State Machines Encoding
	Reducing the Number of Logic Levels of Boolean Equations: State Machines Encoding
	Dealing with Large Number of Logic Levels: Anticipate (ASAP) or Delay (ALAP)
	Dealing with Large Number of Logic Levels: Anticipate (ASAP) or Delay (ALAP)
	Dealing with Large Number of Logic Levels: Last Resort
	Fixing High-Congestion Designs
	What Causes Routing Congestion?
	Congestion Type 1—Multiple Blocks with Wide Ports/Pins
	Congestion Type 2—Large Number of High-Fanout Nets
	Congestion Type 3—User Constraint-Induced Congestion
	Examples of User Constraint-Induced Congestion
	Congestion Type 4—High Resource Utilization
	Congestion Type 4—High Resource Utilization
	Congestion Type 4—High Resource Utilization
	Congestion Type 5—Inherent Design Congestion
	Multiplexors in Your RTL Code
	Watch Out for the Mux Structures
	Mux Structure and Select Lines Fanout (continued)
	Mux Structure and Select Lines Fanout
	Things Can Get Nasty with Mux Structures�Case 1: Select Line Deep Logic
	Incorrect Path Fix: Logic Replication of the Select0 Driver
	Better Solution: Reordering Select Lines, Swapping Inputs
	Things Can Get Nasty with Mux Structures�Case 2: Mux Input Deep Logic, Say A0
	Things Can Get Nasty with Mux Structures�Case 3: Mux Input Deep Logic, What If It is A1?
	Hidden Multiplexors in Your RTL Code!
	How to Fix Hidden Multiplexors in Your RTL Code
	Hidden Multiplexors in Your Synthesis Options
	State Machine Coding Style and State Encoding Options
	Dealing With High and Medium Fanout Data and Control Nets
	Outline
	Clock-2-Out or IO Timing-Aware Adaptive Logic Replication: Simple Case
	IO Timing-Aware Manual RTL Fanout Control
	Clock-2-Out or IO Timing-Aware Adaptive Logic Replication: Complex Case
	IO Placement-Aware Logic Replication
	IO Placement-Aware Logic Replication
	Multi-Layer Adaptive Logic Replication
	Register-to-Register Critical Timing and Fanout Control
	Register-to-Register Critical Timing and Fanout Control
	Case 1: Explicit Driver Replication to Relieve Critical Paths
	Case 2: High-Fanout Net Inside Deep Logic
	Case 2: High-Fanout Net Inside Deep Logic
	Case 2: High-Fanout Net Inside Deep Logic
	Improving DSP Design Performance
	Identify Potential Performance Hurdles
	Pipeline the Design
	Long Input Lines and Buses
	Long Input Lines and Buses (continued)
	Cross-Row Connections
	Standard Cross-Row Connection
	Advanced Cross-Row Connection
	Conclusion
	Thank You

