
UG0776
User Guide

PolarFire FPGA Design Constraints

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

PolarFire FPGA Design Constraints User Guide

 3

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does Microsemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must
conduct and complete all performance and other testing of the products, alone and together with,
or installed in, any end-products. Buyer shall not rely on any data and performance specifications
or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other IP rights, whether with regard to such information itself or
anything described by such information. Information provided in this document is proprietary to
Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization
devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions;
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet
ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

5-02-00776-3/05.18

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi Corporation. All
rights reserved. Microsemi and
the Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks
and service marks are the
property of their respective
owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

 PolarFire FPGA Design Constraints User Guide

4

Table of Contents

Design Constraints .. 7

Families Supported.. 9
Constraint Support ... 9
Constraint File Format.. 11

Basic Concepts .. 12
Naming Conventions .. 12
Clock .. 12
Region .. 13
Location .. 14
I/O Attributes .. 14

I/O Attributes .. 15
I/O Attributes by Family and Device ... 15

Entering Constraints ... 16
Importing Constraint Files .. 16

Exporting Constraint Files .. 17

Constraints by Name: Timing ... 18
Create Clock .. 18
Create Generated Clock .. 18
Remove Clock Uncertainty .. 19
Set Clock Latency .. 20
Set Clock Uncertainty Constraint ... 20
Set Disable Timing Constraint ... 21
Set False Path .. 21
Set Input Delay ... 22
Set Maximum Delay ... 22
Set Minimum Delay .. 23
Set Multicycle Path... 24
Set Output Delay .. 24
Assign I/O Macro to Location ... 25
Assign Macro to Region ... 25
Assign Net to Region ... 26
Configure I/O Bank... 27
Create Region .. 27
Move Region .. 28

 PolarFire FPGA Design Constraints User Guide

 5

Constraints by File Format - SDC Command Reference 29
About Synopsys Design Constraints (SDC) Files) ... 29
SDC Syntax Conventions .. 29

Referenced Topics ... 32
create_clock ... 32
create_generated_clock ... 33
set_clock_latency ... 35
set_clock_to_output ... 36
set_clock_uncertainty... 37
set_disable_timing ... 39
set_external_check .. 40
set_false_path .. 40
set_input_delay .. 41
set_max_delay (SDC) .. 43
set_min_delay .. 44
set_multicycle_path.. 45
set_output_delay .. 46

Design Object Access Commands ... 49
Design Object Access Commands .. 49
all_inputs .. 49
all_outputs .. 50
all_registers .. 50
get_cells ... 51
get_clocks .. 52
get_pins .. 52
get_nets ... 53
get_ports .. 54
About Physical Design Constraint (PDC) Files .. 54
PDC Syntax Conventions .. 55
PDC Naming Conventions ... 57
assign_net_macros .. 58
assign_region ... 59
define_region ... 60
move_region .. 62
reserve ... 63
set_io .. 63
set_iobank .. 70
set_location .. 75
set_preserve .. 76
Placement Rules for PLLs and DLLs ... 76

 PolarFire FPGA Design Constraints User Guide

7

Design Constraints

Design constraints are usually either requirements or properties in your design. You use constraints to
ensure that your design meets its performance goals and pin assignment requirements.
The Libero SoC software supports both SDC timing and PDC physical constraints. In addition, it supports
netlist optimization constraints. You can set constraints by either using Microsemi's interactive tools (I/O
Editor, Chip Planner, and Constraint Editor) or by importing constraint files directly into your design session.
Use the Constraint Manager to manage all your design constraints.

SDC Timing Constraints
Timing constraints represent the performance goals for your designs. Microsemi software uses timing
constraints to guide the timing-driven optimization tools in order to meet these goals.
You can set timing constraints either globally or to a specific set of paths in your design.
You can apply timing constraints to:
• Specify the required minimum speed of a clock domain
• Set the input and output port timing information
• Define the maximum delay for a specific path
• Identify paths that are considered false and excluded from the analysis
• Identify paths that require more than one clock cycle to propagate the data
• Provide the external load at a specific port

To get the most effective results from the software, you need to set the timing constraints close to your
design goals. Sometimes slightly tightening the timing constraint helps the optimization process to meet the
original specifications.

PDC Physical Constraints
 You can specify the physical constraints to define the size, shape, utilization, and pin/pad placement of a
design. You can specify these constraints based on the utilization, aspect ratio, and dimensions of the die.
The pin/pad placement depends on the external physical environment of the design, such as the placement
of the device on the board.
There are three types of physical constraints:
• I/O assignments

- Set location, attributes, and technologies for I/O ports
- Specify special assignments, such as VREF pins and I/O banks

• Location and region assignments
- Set the location of Core, RAM, and FIFO macros
- Create Regions for I/O and Core macros as well as modify those regions

• Clock assignments
- Assign nets to clocks
- Assign global clock constraints to global, quadrant, and local clock resources

Netlist Optimization Constraints
The software enables you to set some advanced design-specific netlist optimizing constraints.
You can apply netlist optimization constraints to:
• Delete or restore a buffer tree

 PolarFire FPGA Design Constraints User Guide

8

• Manage the fan-outs of the nets
• Manage macro combinations (for example, IO-REG combining)
• Optimize a netlist by removing buffers and/or inverters, propagating constants, and so on

See Also
Constraint Support by Family
Constraint Entry Table
Constraint File Format by Family
Naming Conventions
PolarFire I/O Editor User Guide
PolarFire Timing Constraints Editor User Guide
PolarFire FPGA User I/O User Guide
PolarFire PDC Commands User Guide
PolarFire FPGA Timing Constraints User Guide

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smarttime_ce_ug.pdf
https://www.microsemi.com/document-portal/doc_download/136535-ug0686-polarfire-fpga-user-i-o-user-guide
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_pdc_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_timing_constr_ug.pdf

 PolarFire FPGA Design Constraints User Guide

 9

Families Supported

Constraint Support
Use the Constraint Support table to see which constraints you can use. Click the name of a constraint in the
table for more information.

Table 1 · Constraint Support

 PolarFire

Timing

Create a clock X

Create a generated clock X

Remove clock uncertainty X

Set clock latency X

Set clock uncertainty X

Set disable timing X

Set false path X

Set input delay X

Set load on output port X

Set maximum delay X

Set minimum delay X

Set multicycle path X

Set output delay X

Physical Placement

-Clocks

Assign Net to Global Clock

Assign Net to Local Clock

Assign Net to Quadrant Clock

-Regions

Assign Macro to Region X

Assign Net to Region X

 PolarFire FPGA Design Constraints User Guide

10

 PolarFire

Timing

Create Region X

Delete Regions X

Move Region X

Unassign macro(s) driven by net X

Unassign Macro from Region X

-I/Os

Assign I/O to pin X

Assign I/O Macro to Location X

Configure I/O Bank X

Reset attributes on I/O to default settings X

Reset I/O bank to default settings X

Reserve pins X

Unreserve pins X

-Block

Move Block X

Set Port Block X

Set Block Options X

-Nets

Assign Net to Global Clock

Assign Net to Local Clock

Assign Net to Quadrant Clock

Assign Net to Region X

Reset net's criticality to default level

Set Net's Criticality

Unassign macro(s) driven by net X

Netlist Optimization

Delete buffer tree

 PolarFire FPGA Design Constraints User Guide

 11

 PolarFire

Timing

Demote Global Net to Regular Net

Promote regular net to global net

Restore buffer tree

Set preserve X

See Also
Constraint Entry Table
Constraint File Format by Family

Constraint File Format
Use the File Format table to see which file formats apply to each type of constraint.

Table 2 · Constraint File Format

Family Timing Physical Placement Netlist Optimiization

SDC PDC PDC

PolarFire X X X

SDC – Synopsys Design Constraints
PDC – Physical Design Constraints

See Also
Constraint Support by Family
Constraint Entry Table

 PolarFire FPGA Design Constraints User Guide

12

Basic Concepts

Naming Conventions
The names of ports, instances, and nets in an imported netlist are sometimes referred to as their original
names. Port names appear exactly as they are defined in a netlist. Instances and nets display the original
names plus an escape character (\) before each backslash (/) and each slash (\) that is not a hierarchy
separator. For example, the instance named A/\B is displayed as A\/\\B.
The following components use the Tcl-compliant original names:
• PDC reader/writer
• SDC reader/writer
• Compile report
• SDF/Netlist writer for back annotation
• SmartTime
• SmartPower

See Also
PDC Naming Conventions

Clock
Specifying clock constraints is the most effective way of constraining and verifying the timing behavior of a
sequential design. You must use clock constraints to meet your performance goals and to quickly reach
timing closure.
Best practice is to specify and constrain all clocks used in the design.
To create a clock constraint, you must provide the following clock information:
Clock source: Specifies the pin or port where the clock signal is defined.
Clock period or frequency: Defines the smallest amount of time after which the signal repeats itself.
Duty cycle: Defines the percentage of time during which the clock period is high.
First edge: Indicates whether the first edge of the clock is rising or falling.
Offset: Indicates the shift of the first edge with respect to instant zero common to all clocks in the design.

Example 1:
create_clock -period 10 -waveform {2 7}
This example creates a clock with 10ns period, 2ns offset, and 50% duty cycle using the SDC command.

 PolarFire FPGA Design Constraints User Guide

 13

Example 2:
This example shows how to create a clock with 25MHz frequency, 4ns offset for its first rising edge, and
60% duty cycle using the SmartTime Constraints Editor. Using the Create New Clock Constraint dialog box
is equivalent to using the SDC command: create_clock -period 40 -waveform {4, 28}.

See Also
Constraint support by family
Constraint entry table
create_clock (SDC)
global_clocks (DCF)
Specifying Clock Constraints

Region
A region is a user-defined area on a chip into which you can constrain the physical placement of one or
more macros. You can also constrain macros containing multiple tiles for cores, RAMs, and I/Os. The
floorplanning process usually requires you to create several regions and assign logic to them. Logic can
include core logic, memory, and I/O modules. When you run the place-and-route tool, it places the logic into
their assigned regions.

 PolarFire FPGA Design Constraints User Guide

14

Some regions are user-defined and others are automatically created by the tools to meet routing
requirements (for example, Local clock regions).
You can use region constraints to:
• Create user-defined regions such as Inclusive, Exclusive, Empty, LocalClock, and QuadrantClock
• Assign and unassign macros to user-defined regions
• Constrain all the macros connected to a net by assigning them to a specific net region
• Move regions from one set of co-ordinates to another

See Also
Assign Macro to Region
Create Region
Delete Region
Move Region
Unassign macro from region
About Floorplanning, Creating Regions, Editing Regions

Location
Each core, RAM, and I/O macro in the design is associated with a location on the device. When you run the
place-and-route tool, it places all of your logic into their assigned locations.
You can use location constraints to:
• Overwrite the existing placements of macros
• Tell the place-and-route tool where to initially place the macros
• Assign I/O macros to specific pins to meet your board's requirements

See Also
Assign I/O to pin
Assign macro to location
Assigning Logic to Locations, Moving Logic to Other Locations, Assigning Pins, Unassigning Pins

I/O Attributes
I/O attributes are the characteristics of logic macros or nets in your design. They indicate placement,
implementation, naming, directionality, and other characteristics. This information is used by the design
implementation software during the place-and-route of a design.

See Also
I/O Attributes by Family
PolarFire I/O Editor User Guide
PolarFire PDC Commands User Guide
PolarFire FPGA User I/O User Guide

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_pdc_ug.pdf
https://www.microsemi.com/document-portal/doc_download/136535-ug0686-polarfire-fpga-user-i-o-user-guide

 PolarFire FPGA Design Constraints User Guide

 15

I/O Attributes

I/O Attributes by Family and Device
For details about the I/O standards and attributes supported in this PolarFire release, see the following
documents:
• PolarFire FPGA User I/Os User Guide
• PolarFire FPGA PDC Commands User Guide

https://www.microsemi.com/document-portal/doc_download/136535-ug0686-polarfire-fpga-user-i-o-user-guide
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_pdc_ug.pdf

 PolarFire FPGA Design Constraints User Guide

16

Entering Constraints

You can enter design constraints in the following ways:
• Importing constraint files: You can import - PDC or SDC constraint files
• Using constraint editor tools: You can use the PolarFire I/O Editor to create and modify physical,

logical, and timing constraints. This enables you to enter constraints without having to understand
PDC or other file syntax. The constraints you enter are saved in a PDC or SDC file inside the Libero
SoC project.

See Also
Constraint Support by Family
Constraint Entry
Constraint File Format by Family
Constraint Manager
PolarFire I/O Editor User Guide
PolarFire Timing Constraints Editor User Guide
PolarFire FPGA User I/O User Guide
PolarFire PDC Commands User Guide
PolarFire FPGA Timing Constraints User Guide

Importing Constraint Files
For details on how to import Constraint Files into a Libero SoC PolarFire project, see Constraint Manager.
For details about how to import Constraint Files into a Libero SoC project, see Constraint Manager.

Source File
Import constraints file as source files if they were created with external tools that will be tracked (audited).
This helps to coordinate the design changes better.
The following table shows different constraints format files that can be imported as source files for specific
families.

Table 3 · File Types You Can Import as Source Files

Source Files File Type Extension Family

Physical Design
Constraint File

*.pdc PolarFire

Synopsys
Constraint File

*.sdc PolarFire

See Also
Importing source files
Keep Existing Timing Constraints
Keep Existing Physical Constraints

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smarttime_ce_ug.pdf
https://www.microsemi.com/document-portal/doc_download/136535-ug0686-polarfire-fpga-user-i-o-user-guide
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_pdc_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_timing_constr_ug.pdf

 PolarFire FPGA Design Constraints User Guide

 17

Exporting Constraint Files

The following table shows the constraint files that you can export.

File File Extension Families

SDC *.sdc PolarFire

Physical Design Constraint *.pdc PolarFire

 PolarFire FPGA Design Constraints User Guide

18

Constraints by Name: Timing

Create Clock

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime

PolarFire X X

Purpose
Use this constraint to create a clock constraint at a specific source and define its waveform. The static timing
analysis tool uses this information to propagate the waveform across the clock network to the clock pins of
all sequential elements driven by the defined clock source. The clock information is also used to compute
the slacks in the specified clock domain, display setup and hold violations, and drive optimization tools such
as place-and-route.

Tools /How to Enter
You can use one or more of the following methods to enter clock constraints:
• SDC - create_clock
• SmartTime - Specifying Clock Constraint

See Also
Constraint Entry
create_clock (SDC)

Clock Definition
Specifying Clock Constraint

Create Generated Clock

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraint
Editor

PolarFire X X

 PolarFire FPGA Design Constraints User Guide

 19

Purpose
Use this constraint to create an internally generated clock constraint, such as clock dividers and PLL. The
generated clock is defined in terms of multiplication and/or division factors with respect to a reference clock
pin. When the reference clock pin changes, the generated clock is updated automatically.

Tools /How to Enter
You can use one or more of the following methods to enter clock constraints:
• SDC – create_generated_clock
• SmartTime - Specifying Generated Clock Constraint

See Also
Constraint Entry
create_generated_clock (SDC)

Specifying Generated Clock Constraint

Remove Clock Uncertainty

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC Constraints Tcl command passed to SmartTime

PolarFire No No

Purpose
Use this constraint to remove the timing uncertainty between two clock waveforms within SmartTime.
You can remove clock uncertainty constraints in an SDC file, which you can either create yourself or
generate with Synthesis tools, at the same time you import the netlist. Alternatively, you can remove clock
uncertainty using the GUI tools in the Designer software.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to remove clock uncertainty:
• SDC – remove_clock_uncertainty
• SmartTime - Specifying Clock-to-Clock Uncertainty Constraint

See Also
Constraint Entry
set_clock_uncertainty(SDC)
SmartTime User's Guide: Specifying Clock-to-Clock Uncertainty Constraint

 PolarFire FPGA Design Constraints User Guide

20

Set Clock Latency

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraint Editor

PolarFire X X

Purpose
Use this constraint to define the delay between an external clock source and the definition pin of a clock
within SmartTime.
You can set clock latency constraints in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can set clock latency using the
GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set clock latency:
• SDC – set_clock_latency
• SmartTime - Specifying Clock Source Latency

See Also
Constraint Entry
set_clock_latency (SDC)
Specifying Clock Source Latency

Set Clock Uncertainty Constraint

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints
Editor

PolarFire X X

Purpose
Use this constraint to define the timing uncertainty between two clock waveforms or maximum skew within
SmartTime.
You can set clock uncertainty constraints in an SDC file, which you can either create yourself or generate
with Synthesis tools, at the same time you import the netlist. Alternatively, you can set clock uncertainty
using the GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set clock uncertainty:
• SDC – set_clock_uncertainty

 PolarFire FPGA Design Constraints User Guide

 21

• SmartTime - Specifying Clock-to-Clock Uncertainty Constraint

See Also
Constraint Entry
set_clock_uncertainty(SDC)

Set Disable Timing Constraint

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints Editor

PolarFire X X

Purpose
Use this constraint disable the timing arc in the specified ports on a path.
You can disable the timing arc in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can disable the timing arc using
the GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set maximum delay exception
constraints:
• SDC – set_disable_timing

See Also
Constraint Entry
set_disable_timing(SDC)

Set False Path

Families Supported
The following table shows which file formats and tools you can use to enter or modify it:

Families SDC SmartTime Constraints Editor

PolarFire X X

Purpose
Use this constraint to identify paths in the design that should be disregarded during timing analysis and
timing optimization.
By definition, false paths are paths that cannot be sensitized under any input vector pair. Therefore,
including false paths in timing calculation may lead to unrealistic results. For accurate static timing analysis,
it is important to identify the false paths.

 PolarFire FPGA Design Constraints User Guide

22

You can set false paths constraints in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set false paths:
• SDC – set_false_path
• SmartTime - Specifying False Path Constraint

See Also
Constraint Entry
set_false_path (SDC)

Breaks Tab
Specifying False Path Constraint

Set Input Delay

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constr
aints
Editor

PolarFire X X

Purpose
Use this constraint to define the arrival time relative to a clock.

Tools /How to Enter
You can use one or more of the following methods to set input delay constraint:
• SDC – set_input_delay
• SmartTime - Specifying Input Delay Constraint

See Also
Constraint Entry
set_input_delay (SDC)

Specifying Input Delay Constraint

Set Maximum Delay

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

 PolarFire FPGA Design Constraints User Guide

 23

Families SDC SmartTime Constraints
Editor

PolarFire X X

Purpose
Use this constraint to set the maximum delay exception between the specified ports on a path.
You can set maximum delay exception in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can set maximum delay
exceptions using the GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set maximum delay exception
constraints:
• SDC – set_max_delay
• SmartTime – Specifying Maximum Delay Constraint

See Also
Constraint Entry
set_max_delay (SDC)

Set Minimum Delay

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constra
ints

Editor

PolarFire X X

Purpose
Use this constraint to set the minimum delay exception between the specified ports on a path.
You can set minimum delay exception in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist. Alternatively, you can set minimum delay exceptions
using the GUI tools in the Designer software when you implement your design.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set maximum delay exception
constraints:
• SDC – set_min_delay
• SmartTime – Specifying minimum delay constraint

See Also
Constraint Entry

 PolarFire FPGA Design Constraints User Guide

24

set_min_delay (SDC)

Set Multicycle Path

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints Editor

PolarFire X X

Purpose
Use this constraint to identify paths in the design that take multiple clock cycles.
You can set multicycle path constraints in an SDC file, which you can either create yourself or generate with
Synthesis tools, at the same time you import the netlist.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to set multicycle paths constraints:
• SDC – set_multicycle_path
• SmartTime – Specifying Input Delay Constraint

See Also
Constraint Entry
set_multicycle_paths (SDC)

Specifying Input Delay Constraint

Set Output Delay

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families SDC SmartTime Constraints Editor

PolarFire X X

Purpose
Use this constraint to set the output delay of an output relative to a clock.

Tools /How to Enter
You can use one or more of the following methods to set output delay constraints:
• SDC – set_output_delay
• SmartTime – Specifying Output Delay Constraint

See Also
Constraint Entry

 PolarFire FPGA Design Constraints User Guide

 25

set_output_delay (SDC)

Assign I/O Macro to Location

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

PolarFire X X

Purpose
Use this constraint to assign one or more I/O macros to a specific location. You can define the location using
array co-ordinates.
By confining macros to one area, you can keep the nets connected to that area, resulting in better timing
and better floorplanning. Sometimes placing some macros at specific locations can also result in meeting
timing closures.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a macro to a location:
• PDC - set_location
• ChipPlanner -

See Also
Constraint Entry
set_location (PDC)

: Assigning Logic to Locations
: Assigning Logic

Assign Macro to Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

PolarFire X X

Purpose
Use this constraint to assign one or more macros to a specific region.
By confining macros to one area, you can keep the nets connected to that area, resulting in better timing
and better floorplanning.
You can use the define_region PDC command to create a region, and then use the assign_region PDC
command to constrain a set of existing macros to that region.

 PolarFire FPGA Design Constraints User Guide

26

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a macro to a region:
• PDC - assign_region
• ChipPlanner - Assigning a macro to a region

See Also
Constraint Entry
assign_region (PDC)

Assigning a Macro to a Region

Assign Net to Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

PolarFire X X

Purpose
Use this constraint to place all the loads of a net into a given region. This constraint is useful for high fan-out
or critical path nets or bus control logic.
Constraining nets to a region helps to control the connection delays from the net's driver to the logic
instances it fans out to. You can adjust the size of the region to pack logic more closely together, hence,
improving its net delays.
Suppose you have a global net with loads that span across the whole chip. When you constrain this net to a
specific region, you force the loads of this global net into the given region. Forcing loads into a region frees
up some areas that were previously used. You can then use these free areas for high-speed local
clocks/spines.
Macros connected to a specific net can be assigned to a region in the device. The region can be defined
using the define_region PDC command.
When assigning a net to a region, all of the logic driven by that net will be assigned to that region.
Using Regions for Critical Path and High Fan-out Nets
You should assign high fan-out or critical path nets to a region only after you have used up your global
routing and clock spine networks. If you have determined, through timing analysis, that certain long delay
nets are creating timing violations, assign them to regions to reduce their delays.
Before creating your region, determine if any logic connected to instances spanned by these nets have any
timing requirements. Your region could alter the placement of all logic assigned to it. This may have an
undesired side effect of altering the timing delays of some logic paths that cross through the region but are
not assigned to it. These paths could fail your timing constraints depending on which net delays have been
altered.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to assign a net to a region:
• PDC
• Chip Planner

 PolarFire FPGA Design Constraints User Guide

 27

See Also
Constraint Entry
assign_net_macros (PDC)

Assigning a Net to a Region

Configure I/O Bank

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

PolarFire X X

Purpose
Use this constraint to set the I/O supply voltage (VCCI) for I/O banks.
I/Os are organized into banks. The configuration of these banks determines the I/O standards supported.
Since each I/O bank has its own user-assigned input reference voltage (VREF) and an input/output supply
voltage, only I/Os with compatible standards can be assigned to the same bank.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to configure I/O banks:
• PDC - set_iobank
• ChipPlanner - Manually Assigning Technologies to I/O Banks

See Also
Constraint Entry
set_iobank

Create Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

PolarFire X X

Purpose
Use this constraint to create either a rectangular or rectilinear region on a device.
You can create a region within a device for setting specific physical constraints or for achieving better
floorplanning. You can define regions with the array coordinates for that particular device.
You can use the define_region PDC command to create a rectangular or rectilinear region, and then
use the assign_region PDC command to constrain a set of macros to that region.

 PolarFire FPGA Design Constraints User Guide

28

Tools /How to Enter
You can use one or more of the following commands or GUI tools to create a region constraint:
• PDC -define_region
• Chip Planner – Creating regions

See Also
Constraint Entry
define_region (PDC)

Move Region

Families Supported
The following table shows which families support this constraint and which file formats and tools you can use
to enter or modify it:

Families PDC ChipPlanner

PolarFire X X

Purpose
Use this constraint to move the location of a previously defined region.

Tools /How to Enter
You can use one or more of the following commands or GUI tools to move a region:
• PDC - move_region
• ChipPlanner - Editing Regions

See Also
Constraint Entry
move_region (PDC)

 PolarFire FPGA Design Constraints User Guide

 29

Constraints by File Format - SDC Command
Reference

About Synopsys Design Constraints (SDC) Files)
Synopsys Design Constraints (SDC) is a Tcl-based format used by Synopsys tools to specify the design
intent, including the timing and area constraints for a design. Microsemi tools use a subset of the SDC
format to capture supported timing constraints. Any timing constraint that you can enter using Designer tools
can also be specified in an SDC file.
Use the SDC-based flow to share timing constraint information between Microsemi tools and third-party EDA
tools.

Command Action

create_clock Creates a clock and defines its characteristics

create_generated_clock Creates an internally generated clock and defines its
characteristics

set_clock_latency Defines the delay between an external clock source and the
definition pin of a clock within SmartTime

set_clock_uncertainty Defines the timing uncertainty between two clock
waveforms or maximum skew

set_false_path Identifies paths that are to be considered false and
excluded from the timing analysis

set_input_delay Defines the arrival time of an input relative to a clock

set_max_delay Specifies the maximum delay for the timing paths

set_min_delay Specifies the minimum delay for the timing paths

set_multicycle_path Defines a path that takes multiple clock cycles

set_output_delay Defines the output delay of an output relative to a clock

See Also
Constraint Entry
SDC Syntax Conventions
Importing Constraint Files

SDC Syntax Conventions
The following table shows the typographical conventions that are used for the SDC command syntax.

 PolarFire FPGA Design Constraints User Guide

30

Syntax
Notation

Description

command -
argument

Commands and arguments appear in Courier New typeface.

variable Variables appear in blue, italic Courier New typeface. You must
substitute an appropriate value for the variable.

[-argument
value]

Optional arguments begin and end with a square bracket.

Note: SDC commands and arguments are case sensitive.

Example
The following example shows syntax for the create_clock command and a sample command:

create_clock -period period_value [-waveform edge_list] source

create_clock –period 7 –waveform {2 4}{CLK1}

Wildcard Characters
You can use the following wildcard characters in names used in the SDC commands:

Wildcard What it does

\ Interprets the next character literally

* Matches any string

Note: The matching function requires that you add a backslash (\) before each slash in the pin names in

case the slash does not denote the hierarchy in your design.

Special Characters ([], { }, and \)
Square brackets ([]) are part of the command syntax to access ports, pins and clocks. In cases where
these netlist objects names themselves contain square brackets (for example, buses), you must either
enclose the names with curly brackets ({}) or precede the open and closed square brackets ([]) characters
with a backslash (\). If you do not do this, the tool displays an error message.
For example:
create_clock -period 3 clk\[0\]

set_max_delay 1.5 -from [get_pins ff1\[5\]:CLK] -to [get_clocks {clk[0]}]

Although not necessary, Microsemi recommends the use of curly brackets around the names, as shown in
the following example:
set_false_path –from {data1} –to [get_pins {reg1:D}]

In any case, the use of the curly bracket is mandatory when you have to provide more than one name.
For example:
set_false_path –from {data3 data4} –to [get_pins {reg2:D reg5:D}]

Entering Arguments on Separate Lines
If a command needs to be split on multiple lines, each line except the last must end with a backslash (\)
character as shown in the following example:
set_multicycle_path 2 –from \

 PolarFire FPGA Design Constraints User Guide

 31

[get_pins {reg1*}] \

-to {reg2:D}

See Also
About SDC Files

 PolarFire FPGA Design Constraints User Guide

32

Referenced Topics

create_clock
SDC command; creates a clock and defines its characteristics.

create_clock -name clock name -add -period period_value [-waveform edge_list] source

Arguments
-name clock_name

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.
-add

Specifies that a new clock constraint is created at the same source as the existing clock without overriding
the existing constraint. The name of the new clock constraint with the -add option must be different than
the existing clock constraint. Otherwise, it will override the existing constraint, even with the -add option.
The -name option must be specified with the -add option.
-period period_value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which the
clock waveform repeats. The period_value must be greater than zero.
-waveform edge_list

Specifies the rise and fall times of the clock waveform in ns over a complete clock period. There must be
exactly two transitions in the list, a rising transition followed by a falling transition. You can define a clock
starting with a falling edge by providing an edge list where fall time is less than rise time. If you do not
specify -waveform option, the tool creates a default waveform, with a rising edge at instant 0.0 ns and ©a
falling edge at instant (period_value/2)ns.
source

Specifies the source of the clock constraint. The source can be ports or pins in the design. If you specify a
clock constraint on a pin that already has a clock, the new clock replaces the existing one. Only one
source is accepted. Wildcards are accepted as long as the resolution shows one port or pin.

Description
Creates a clock in the current design at the declared source and defines its period and waveform. The
static timing analysis tool uses this information to propagate the waveform across the clock network to the
clock pins of all sequential elements driven by this clock source.
The clock information is also used to compute the slacks in the specified clock domain that drive
optimization tools such as place-and-route.

Exceptions
• None

Examples
The following example creates two clocks on ports CK1 and CK2 with a period of 6, a rising edge at 0,
and a falling edge at 3:
create_clock -name {my_user_clock} -period 6 CK1

create_clock -name {my_other_user_clock} –period 6 –waveform {0 3} {CK2}

 PolarFire FPGA Design Constraints User Guide

 33

The following example creates a clock on port CK3 with a period of 7, a rising edge at 2, and a falling
edge at 4:
create_clock –period 7 –waveform {2 4} [get_ports {CK3}]

The following example creates a new clock constraint clk2, in addition to clk1, on the same source port
clk1 without overriding it.
create_clock -name clk1 -period 10 -waveform {0 5} [get_ports clk1]

create_clock -name clk2 –add -period 20 -waveform {0 10} [get_ports clk1]

The following example does not add a new clock constraint, even with the -add option, but overrides the
existing clock constraint because of the same clock names. Note: To add a new clock constraint in
addition to the existing clock constraint on the same source port, the clock names must be different.
create_clock -name clk1 -period 10 -waveform {0 5} [get_ports clk1]

create_clock -name clk1 -add -period 50 -waveform {0 25} [get_ports clk1]

Microsemi Implementation Specifics
• The -waveform in SDC accepts waveforms with multiple edges within a period. In Microsemi design

implementation, only two waveforms are accepted.
• SDC accepts defining a clock on many sources using a single command. In Microsemi design

implementation, only one source is accepted.
• The source argument in SDC create_clock command is optional. This is in conjunction with the -name

argument in SDC to support the concept of virtual clocks. In Microsemi implementation, source is a
mandatory argument as -name and virtual clocks concept is not supported.

• The -domain argument in the SDC create_clock command is not supported.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Clock Definition
Create Clock
Create a New Clock Constraint

create_generated_clock
SDC command; creates an internally generated clock and defines its characteristics.

create_generated_clock -name clock_name [–add] [-master_clock clock_name] -source
reference_pin [-divide_by divide_factor] [-multiply_by multiply_factor] [-invert] source -
pll_output pll_feedback_clock -pll_feedback pll_feedback_input

Arguments
-name clock_name

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.

-add

Specifies that the generated clock constraint is a new clock constraint in addition to the existing one at the
same source. The name of the clock constraint should be different from the existing clock constraint. With
this option, -master_clock option and -name options must be specified.

-master_clock clock_name

Specifies the master clock used for the generated clock when multiple clocks fan into the master pin. This
option must be used in conjuction with -add option of the generated clock.

 PolarFire FPGA Design Constraints User Guide

34

Notes:
1. The master_clock option is used only with the -add option for the generated clocks.
2. If there are multiple master clocks fanning into the same reference pin, the first generated clock

specified will always use the first master clock as its source clock.
3. The subsequent generated clocks specified with the -add option can choose any of the master clocks

as their source clock (including the first master clock specified).

-source reference_pin

Specifies the reference pin in the design from which the clock waveform is to be derived.
-divide_bydivide_factor

Specifies the frequency division factor. For instance if the divide_factor is equal to 2, the generated clock
period is twice the reference clock period.
-multiply_by multiply_factor

Specifies the frequency multiplication factor. For instance if the multiply_factor is equal to 2, the generated
clock period is half the reference clock period.
-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.
source

Specifies the source of the clock constraint on internal pins of the design. If you specify a clock constraint
on a pin that already has a clock, the new clock replaces the existing clock. Only one source is accepted.
Wildcards are accepted as long as the resolution shows one pin.
-pll_output pll_feedback_clock

Specifies the output pin of the PLL which is used as the external feedback clock. This pin must drive the
feedback input pin of the PLL specified using the –pll_feedback option. The PLL will align the rising edge
of the reference input clock to the feedback clock. This is a mandatory argument if the PLL is operating in
external feedback mode.
-pll_feedback pll_feedback_input

Specifies the feedback input pin of the PLL. This pin must be driven by the output pin of the PLL specified
using the –pll_output option. The PLL will align the rising edge of the reference input clock to the external
feedback clock. This is a mandatory argument if the PLL is operating in external feedback mode.

Description
Creates a generated clock in the current design at a declared source by defining its frequency with
respect to the frequency at the reference pin. The static timing analysis tool uses this information to
compute and propagate its waveform across the clock network to the clock pins of all sequential elements
driven by this source.
The generated clock information is also used to compute the slacks in the specified clock domain that
drive optimization tools such as place-and-route.

Examples
The following example creates a generated clock on pin U1/reg1:Q with a period twice as long as the period
at the reference port CLK.
create_generated_clock -name {my_user_clock} –divide_by 2 –source [get_ports {CLK}]
U1/reg1/Q

The following example creates a generated clock at the primary output of myPLL with a period ¾ of the
period at the reference pin clk.
create_generated_clock –divide_by 3 –multiply_by 4 -source clk [get_pins {myPLL/CLK1}]

The following example creates a new generated clock gen2 in addition to gen1 derived from same master
clock as the existing generated clock, and the new constraints is added to pin r1/CLK.
create_generated_clock -name gen1 -multiply_by 1 -source [get_ports clk1] [get_pins
r1/CLK]

 PolarFire FPGA Design Constraints User Guide

 35

create_generated_clock -name gen2 -add -master_clock clk1 -source [get_ports clk1] -
multiply_by 2 [get_pins r1/CLK]

The following example does not create a new generated clock constraint in addition to the existing clock, but
will override even with the -add option enabled, because the same names are used.
create_generated_clock -name gen2 -source [get_ports clk1] -multiply_by 3 [get_pins
r1/CLK]

create_generated_clock -name gen2 -source [get_ports clk1] -multiply_by 4 -master_clock
clk1 -add [get_pins r1/CLK]

The following example creates a generated clock named system_clk on the GL2 output pin of FCCC_0 with
a period equal to half the period of the source clock. The constraint also identifies GL2 output pin as the
external feedback clock source and CLK2 as the feedback input pin for FCCC_0.
create_generated_clock -name { system_clk } \

-multiply_by 2 \

-source { FCCC_0/CCC_INST/CLK3_PAD } \

-pll_output { FCCC_0/CCC_INST/GL2 } \

-pll_feedback { FCCC_0/CCC_INST/CLK2 } \

{ FCCC_0/CCC_INST/GL2 }

Microsemi Implementation Specifics
• SDC accepts either –multiply_by or –divide_by option. In Microsemi design implementation, both are

accepted to accurately model the PLL behavior.
• SDC accepts defining a generated clock on many sources using a single command. In Microsemi

design implementation, only one source is accepted.
• The -duty_cycle ,-edges and –edge_shift options in the SDC create_generated_clock command are

not supported in Microsemi design implementation.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Create Generated Clock Constraint (SDC)

set_clock_latency
SDC command; defines the delay between an external clock source and the definition pin of a clock
within SmartTime.

set_clock_latency -source [-rise][-fall][-early][-late] delay clock

Arguments
-source

Specifies a clock source latency on a clock pin.
-rise

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.
-fall

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.
-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.

 PolarFire FPGA Design Constraints User Guide

36

-late

Optional. Specifies that the latency is late bound on the latency. The appropriate bound is used to provide
the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-early",
optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and "-late"
are provided, the same latency is used for both bounds, which results in the latency having no effect for
single clock domain setup and hold checks.
-early

Optional. Specifies that the latency is early bound on the latency. The appropriate bound is used to
provide the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-
early", optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and
"-late" are provided, the same latency is used for both bounds, which results in the latency having no
effect for single clock domain setup and hold checks.
delay

Specifies the latency value for the constraint.
clock

Specifies the clock to which the constraint is applied. This clock must be constrained.

Description
Clock source latency defines the delay between an external clock source and the definition pin of a clock
within SmartTime. It behaves much like an input delay constraint. You can specify both an "early" delay
and a"late" delay for this latency, providing an uncertainty which SmartTime propagates through its
calculations. Rising and falling edges of the same clock can have different latencies. If only one value is
provided for the clock source latency, it is taken as the exact latency value, for both rising and falling
edges.

Exceptions
None

Examples
The following example sets an early clock source latency of 0.4 on the rising edge of main_clock. It also
sets a clock source latency of 1.2, for both the early and late values of the falling edge of main_clock. The
late value for the clock source latency for the falling edge of main_clock remains undefined.
set_clock_latency –source –rise –early 0.4 { main_clock }

set_clock_latency –source –fall 1.2 { main_clock }

Microsemi Implementation Specifics
SDC accepts a list of clocks to -set_clock_latency. In Microsemi design implementation, only one clock pin
can have its source latency specified per command.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_clock_to_output
SDC command; defines the timing budget available inside the FPGA for an output relative to a clock.

set_clock_to_output delay_value -clock clock_ref [–max] [–min] output_list

 PolarFire FPGA Design Constraints User Guide

 37

Arguments
delay_value

Specifies the clock to output delay in nanoseconds. This time represents the amount of time available
inside the FPGA between the active clock edge and the data change at the output port.
-clock clock_ref

Specifies the reference clock to which the specified clock to output is related. This is a mandatory
argument.
-max

Specifies that delay_value refers to the maximum clock to output at the specified output. If you do not
specify –max or –min options, the tool assumes maximum and minimum clock to output delays to be
equal.
-min

Specifies that delay_value refers to the minimum clock to output at the specified output. If you do not
specify –max or –min options, the tool assumes maximum and minimum clock to output delays to be
equal.
output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, IGLOO2, RTG4, PolarFire, SmartFusion, IGLOO, ProASIC3, Fusion

Description
The set_clock_to_output command specifies the clock to output maximum and minimum delays on output
ports relative to a clock edge. This usually represents a combinational path delay from a register internal to
the current design to the output port. For in/out (bidirectional) ports, you can specify the path delays for both
input and output modes. The tool uses clock to output delays for paths ending at primary outputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be an object accessor
that will refer to one clock. For example:
[get_clocks {system_clk}]

[get_clocks {sys*_clk}]

Examples
The following example sets a maximum clock to output delay of 12 ns and a minimum clock to output delay
of 6 ns for port data_out relative to the rising edge of CLK1:
set_clock_to_output 12 -clock [get_clocks CLK1] -max [get_ports data_out]

set_clock_to_output 6 -clock [get_clocks CLK1] -min [get_ports data_out]

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_clock_uncertainty
SDC command; defines the timing uncertainty between two clock waveforms or maximum skew.

set_clock_uncertainty uncertainty (-from | -rise_from | -fall_from) from_clock_list (-to | -
rise_to | -fall_to) to_clock_list [-setup | -hold]

 PolarFire FPGA Design Constraints User Guide

38

Arguments
uncertainty

Specifies the time in nanoseconds that represents the amount of variation between two clock edges. The
value must be a positive floating point number.
-from

 Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. You can specify only one of the -from, -rise_from, or -fall_from arguments for the constraint
to be valid. This option is the default.
-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.
-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.
from_clock_list

Specifies the list of clock names as the uncertainty source.
-to

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. You can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be
valid.
-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.
-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.
 to_clock_list

Specifies the list of clock names as the uncertainty destination.
-setup

Specifies that the uncertainty applies only to setup checks. If you do not specify either option (-setup or
-hold) or if you specify both options, the uncertainty applies to both setup and hold checks.
-hold

Specifies that the uncertainty applies only to hold checks. If you do not specify either option (-setup or -
hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

Description
Clock uncertainty defines the timing between an two clock waveforms or maximum clock skew.
Both setup and hold checks must account for clock skew. However, for setup check, SmartTime looks for
the smallest skew. This skew is computed by using the maximum insertion delay to the launching
sequential component and the shortest insertion delay to the receiving component.
For hold check, SmartTime looks for the largest skew. This skew is computed by using the shortest
insertion delay to the launching sequential component and the largest insertion delay to the receiving
component. SmartTime makes this distinction automatically.

Exceptions
None

Examples
The following example defines two clocks and sets the uncertainty constraints, which analyzes the inter-
clock domain between clk1 and clk2.

 PolarFire FPGA Design Constraints User Guide

 39

create_clock –period 10 clk1

create_generated_clock –name clk2 -source clk1 -multiply_by 2 sclk1

set_clock_uncertainty 0.4 -rise_from clk1 -rise_to clk2

Microsemi Implementation Specifics
• SDC accepts a list of clocks to -set_clock_uncertainty.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
create_clock (SDC)
create_generated_clock (SDC)
remove_clock_uncertainty

set_disable_timing
SDC command; disables timing arcs within the specified cell and returns the ID of the created constraint if
the command succeeded.

 set_disable_timing [-from from_port] [-to to_port] cell_name

Arguments
-from from_port

Specifies the starting port.
-to to_port

Specifies the ending port.
cell_name

Specifies the name of the cell in which timing arcs will be disabled.

Description
This command disables the timing arcs in the specified cell, and returns the ID of the created constraint if
the command succeeded. The –from and –to arguments must either both be present or both omitted for
the constraint to be valid.

Examples
The following example disables the arc between a2:A and a2:Y.
set_disable_timing -from port1 -to port2 cellname

This command ensures that the arc is disabled within a cell instead of between cells.

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

 PolarFire FPGA Design Constraints User Guide

40

set_external_check
SDC command; defines the external setup and hold delays for an input relative to a clock.

set_external_check delay_value -clock clock_ref [–setup] [–hold] [–clock_fall] input_list

Arguments
delay_value

Specifies the external setup or external hold delay in nanoseconds. This time represents the amount of
time available inside the FPGA for the specified input after a clock edge.
-clock clock_ref

Specifies the reference clock to which the specified external check is related. This is a mandatory
argument.
-setup

Specifies that delay_value refers to the setup check at the specified input. This is a mandatory argument if
–hold is not used. You must specify either -setup or -hold option.
-clock_fall

Specifies that the delay is relative to the falling edge of the reference clock. The default is the rising edge.
input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Description
The set_external_check command specifies the external setup and hold times on input ports relative to a
clock edge. This usually represents a combinational path delay from the input port to the clock pin of a
register internal to the current design. For in/out (bidirectional) ports, you can specify the path delays for
both input and output modes. The tool uses external setup and external hold times for paths starting at
primary inputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be an object accessor
that will refer to one clock. For example:
[get_clocks {system_clk}]

[get_clocks {sys*_clk}]

Examples
The following example sets an external setup check of 12 ns and an external hold check of 6 ns for port
data_in relative to the rising edge of CLK1:
set_external_check 12 -clock [get_clocks CLK1] -setup [get_ports data_in]

set_external_check 6 -clock [get_clocks CLK1] -hold [get_ports data_in]

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_false_path
SDC command; identifies paths that are considered false and excluded from the timing analysis.

set_false_path [-from from_list] [-through through_list] [-to to_list]

 PolarFire FPGA Design Constraints User Guide

 41

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description
The set_false_path command identifies specific timing paths as being false. The false timing paths are
paths that do not propagate logic level changes. This constraint removes timing requirements on these
false paths so that they are not considered during the timing analysis. The path starting points are the
input ports or register clock pins, and the path ending points are the register data pins or output ports.
This constraint disables setup and hold checking for the specified paths.
The false path information always takes precedence over multiple cycle path information and overrides
maximum delay constraints. If more than one object is specified within one -through option, the path can
pass through any objects.

Examples
The following example specifies all paths from clock pins of the registers in clock domain clk1 to data pins
of a specific register in clock domain clk2 as false paths:
set_false_path –from [get_clocks {clk1}] –to reg_2:D

The following example specifies all paths through the pin U0/U1:Y to be false:
set_false_path -through U0/U1:Y

Microsemi Implementation Specifics
SDC accepts multiple -through options in a single constraint to specify paths that traverse multiple points in
the design. In Microsemi design implementation, only one –through option is accepted.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set False Path Constraint

set_input_delay
SDC command; defines the arrival time of an input relative to a clock.

set_input_delay delay_value -clock clock_ref [–max] [–min] [–clock_fall] [-rise] [-fall]
[-add_delay] input_list

Arguments
delay_value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal is
available at the specified input after a clock edge.
-clock clock_ref

 PolarFire FPGA Design Constraints User Guide

42

Specifies the clock reference to which the specified input delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.
-max

Specifies that delay_value refers to the longest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.
-min

Specifies that delay_value refers to the shortest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.
-clock_fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
-rise

Specifies that the delay is relative to a rising transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.
-fall

Specifies that the delay is relative to a falling transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.
-add_delay

Specifies that this input delay constraint should be added to an existing constraint on the same port(s).
The -add_delay option is used to capture information on multiple paths with different clocks or clock edges
leading to the same input port(s).
input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Description
The set_input_delay command sets input path delays on input ports relative to a clock edge. This usually
represents a combinational path delay from the clock pin of a register external to the current design. For
in/out (bidirectional) ports, you can specify the path delays for both input and output modes. The tool adds
input delay to path delay for paths starting at primary inputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be:
• a single port name used as source for a clock constraint
• a single pin name used as source for a clock constraint; for instance reg1:CLK. This name can be

hierarchical (for instance toplevel/block1/reg2:CLK)
• an object accessor that will refer to one clock: [get_clocks {clk}]
Notes:
• The behavior of the -add_delay option is identical to that of PrimeTime(TM)
• If, using the -add_delay mechanism, multiple constraints are otherwise identical, except they specify

different -max or -min values
o the surviving -max constraint will be the maximum of the -max values
o the surviving -min constraint will be the minimum of the -min values

Examples
The following example sets an input delay of 1.2ns for port data1 relative to the rising edge of CLK1:
set_input_delay 1.2 -clock [get_clocks CLK1] [get_ports data1]

The following example sets a different maximum and minimum input delay for port IN1 relative to the
falling edge of CLK2:
set_input_delay 1.0 -clock_fall -clock CLK2 –min {IN1}

set_input_delay 1.4 -clock_fall -clock CLK2 –max {IN1}

 PolarFire FPGA Design Constraints User Guide

 43

The next example is almost the same as the previous one, however, in this case, the user has specified -
add_delay, so both constraints will be honored:
set_input_delay 1.0 -clock CLK1 –max {IN1}

set_input_delay 1.4 -add_delay -clock CLK2 –max {IN1}

The following example is more complex:
All constraints are for an input to port PAD1 relative to a rising edge clock CLK2. Each combination of {-
rise, -fall} x {-max, -min} generates an independent constraint. But the max rise delay of 5 and the max
rise delay of 7 interfere with each other.For a -max option, the maximum value overrides all lower values.
Thus the first constraint will be overridden and the max rise delay of 7 will survive.
set_input_delay 5 -max -rise -add_delay [get_clocks CLK2] [get_ports PAD1] # will be
overridden

set_input_delay 3 -min -fall -add_delay [get_clocks CLK2] [get_ports PAD1]

set_input_delay 3 -max -fall -add_delay [get_clocks CLK2] [get_ports PAD1]

set_input_delay 7 -max -rise -add_delay [get_clocks CLK2] [get_ports PAD1]

Microsemi Implementation Specifics
In SDC, the -clock is an optional argument that allows you to set input delay for combinational designs.
Microsemi Implementation currently requires this argument.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Input Delay

set_max_delay (SDC)
SDC command; specifies the maximum delay for the timing paths.

set_max_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

• If the path starting point has an input delay specified, the tool adds that delay value to
the path delay.

• If the path ending point is on a sequential device, the tool includes clock skew and
library setup time in the computed delay.

• If the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-to to_list

 PolarFire FPGA Design Constraints User Guide

44

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description
This command specifies the required maximum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The tool automatically derives the individual maximum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.
The maximum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples
The following example sets a maximum delay by constraining all paths from ff1a:CLK or ff1b:CLK to
ff2e:D with a delay less than 5 ns:
set_max_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

The following example sets a maximum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:
set_max_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The –through option in the set_max_delay SDC command is not supported.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Max Delay

set_min_delay
SDC command; specifies the minimum delay for the timing paths.

set_min_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required minimum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

• If the path starting point has an input delay specified, the tool adds that delay value to
the path delay.

• If the path ending point is on a sequential device, the tool includes clock skew and
library setup time in the computed delay.

• If the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from_list

 PolarFire FPGA Design Constraints User Guide

 45

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description
This command specifies the required minimum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The tool automatically derives the individual minimum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.
The minimum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples
The following example sets a minimum delay by constraining all paths from ff1a:CLK or ff1b:CLK to ff2e:D
with a delay less than 5 ns:
set_min_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

The following example sets a minimum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:
set_min_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The –through option in the set_min_delay SDC command is not supported.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

set_multicycle_path
SDC command; defines a path that takes multiple clock cycles.

set_multicycle_path ncycles [-setup] [-hold] [-from from_list] [–through through_list] [-to
to_list]

Arguments
ncycles

Specifies an integer value that represents a number of cycles the data path must have for setup or hold
check. The value is relative to the starting point or ending point clock, before data is required at the ending
point.
-setup

Optional. Applies the cycle value for the setup check only. This option does not affect the hold check. The
default hold check will be applied unless you have specified another set_multicycle_path command for the
hold value.
-hold

Optional. Applies the cycle value for the hold check only. This option does not affect the setup check.

 PolarFire FPGA Design Constraints User Guide

46

Note: If you do not specify "-setup" or "-hold", the cycle value is applied to the setup check and the
default hold check is performed (ncycles -1).

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list

Specifies a list of pins or ports through which the multiple cycle paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description
Setting multiple cycle paths constraint overrides the single cycle timing relationships between sequential
elements by specifying the number of cycles that the data path must have for setup or hold checks. If you
change the multiplier, it affects both the setup and hold checks.
False path information always takes precedence over multiple cycle path information. A specific maximum
delay constraint overrides a general multiple cycle path constraint.
If you specify more than one object within one -through option, the path passes through any of the
objects.

Examples
The following example sets all paths between reg1 and reg2 to 3 cycles for setup check. Hold check is
measured at the previous edge of the clock at reg2.
set_multicycle_path 3 -from [get_pins {reg1}] –to [get_pins {reg2}]

The following example specifies that four cycles are needed for setup check on all paths starting at the
registers in the clock domain ck1. Hold check is further specified with two cycles instead of the three
cycles that would have been applied otherwise.
set_multicycle_path 4 -setup -from [get_clocks {ck1}]

set_multicycle_path 2 -hold -from [get_clocks {ck1}]

Microsemi Implementation Specifics
• SDC allows multiple priority management on the multiple cycle path constraint depending on the scope

of the object accessors. In Microsemi design implementation, such priority management is not
supported. All multiple cycle path constraints are handled with the same priority.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Multicycle Path

set_output_delay
SDC command; defines the output delay of an output relative to a clock.

set_output_delay delay_value -clock clock_ref [–max] [–min] [–clock_fall] [-rise] [-fall]
[-add_delay] output_list

Arguments
delay_value

 PolarFire FPGA Design Constraints User Guide

 47

Specifies the amount of time before a clock edge for which the signal is required. This represents a
combinational path delay to a register outside the current design plus the library setup time (for maximum
output delay) or hold time (for minimum output delay).
-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.
-max

Specifies that delay_value refers to the longest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.
-min

Specifies that delay_value refers to the shortest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.
-clock_fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
-rise

Specifies that the delay is relative to a rising transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.
-fall

Specifies that the delay is relative to a falling transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.
-add_delay

Specifies that this output delay constraint should be added to an existing constraint on the same port(s).
The -add_delay option is used to capture information on multiple paths with different clocks or clock edges
leading from the same output port(s).
output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).
Notes:
• The behavior of the -add_delay option is identical to that of PrimeTime(TM)
• If, using the -add_delay mechanism, multiple constraints are otherwise identical, except they specify

different -max or -min values
o the surviving -max constraint will be the maximum of the -max values
o the surviving -min constraint will be the minimum of the -min values

Description
The set_output_delay command sets output path delays on output ports relative to a clock edge. Output
ports have no output delay unless you specify it. For in/out (bidirectional) ports, you can specify the path
delays for both input and output modes. The tool adds output delay to path delay for paths ending at
primary outputs.

Examples
The following example sets an output delay of 1.2ns for port OUT1 relative to the rising edge of CLK1:
set_output_delay 1.2 -clock [get_clocks CLK1] [get_ports OUT1]

The following example sets a different maximum and minimum output delay for port OUT1 relative to the
falling edge of CLK2:
set_output_delay 1.0 -clock_fall -clock CLK2 –min {OUT1}

set_output_delay 1.4 -clock_fall -clock CLK2 –max {OUT1}

The following example demonstrates an override condition of two constraints. The first constraint is
overridden because the second constraint specifies a different clock for the same output:

 PolarFire FPGA Design Constraints User Guide

48

set_output_delay 1.0 {OUT1} -clock CLK1 –max

set_output_delay 1.4 {OUT1} -clock CLK2 –max

The next example is almost the same as the previous one, however, in this case, the user has specified -
add_delay, so both constraints will be honored:
set_output_delay 1.0 {OUT1} -clock CLK1 –max

set_output_delay 1.4 {OUT1} -add_delay -clock CLK2 -max

The following example is more complex:
All constraints are for an output to port PAD1 relative to a rising edge clock CLK2. Each combination of {-
rise, -fall} x {-max, -min} generates an independent constraint. But the max rise delay of 5 and the max
rise delay of 7 interfere with each other.
For a -max option, the maximum value overrides all lower values. Thus the first constraint will be
overridden and the max rise delay of 7 will survive.
set_output_delay 5 [get_clocks CLK2] [get_ports PAD1] -max -rise -add_delay # will
be overridden

set_output_delay 3 [get_clocks CLK2] [get_ports PAD1] -min -fall -add_delay

set_output_delay 3 [get_clocks CLK2] [get_ports PAD1] -max -fall -add_delay

set_output_delay 7 [get_clocks CLK2] [get_ports PAD1] -max -rise -add_delay

Microsemi Implementation Specifics
• In SDC, the -clock is an optional argument that allows you to set the output delay for combinational

designs. Microsemi Implementation currently requires this option.

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions
Set Output Delay

 PolarFire FPGA Design Constraints User Guide

 49

Design Object Access Commands

Design Object Access Commands
Design object access commands are SDC commands. Most SDC constraint commands require one of these
commands as command arguments.
Microsemi software supports the following SDC access commands:

Design Object Access Command

Cell get_cells

Clock get_clocks

Net get_nets

Port get_ports

Pin get_pins

Input ports all_inputs

Output ports all_outputs

 Registers all_registers

See Also
About SDC Files

all_inputs
Design object access command; returns all the input or inout ports of the design.

all_inputs

Arguments
• None

Exceptions
• None

Example
set_max_delay -from [all_inputs] -to [get_clocks ck1]

Microsemi Implementation Specifics
• None

 PolarFire FPGA Design Constraints User Guide

50

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

all_outputs
Design object access command; returns all the output or inout ports of the design.

all_outputs

Arguments
• None

Exceptions
• None

Example
set_max_delay -from [all_inputs] -to [all_outputs]

Microsemi Implementation Specifics
None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

all_registers
Design object access command; returns either a collection of register cells or register pins, whichever you
specify.

all_registers [-clock clock_name] [-cells] [-data_pins]
 [-clock_pins] [-async_pins] [-output_pins]

Arguments
-clock clock_name

Creates a collection of register cells or register pins in the specified clock domain.
-cells

Creates a collection of register cells. This is the default. This option cannot be used in combination with
any other option.
-data_pins

Creates a collection of register data pins.
-clock_pins

Creates a collection of register clock pins.
-async_pins

Creates a collection of register asynchronous pins.

 PolarFire FPGA Design Constraints User Guide

 51

-output_pins

Creates a collection of register output pins.

Description
This command creates either a collection of register cells (default) or register pins, whichever is specified.
If you do not specify an option, this command creates a collection of register cells.

Exceptions
• None

Examples
set_max_delay 2 -from [all_registers] -to [get_ports {out}]

set_max_delay 3 –to [all_registers –async_pins]

set_false_path –from [all_registers –clock clk150]

set_multicycle_path –to [all_registers –clock c* -data_pins

 –clock_pins]

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_cells
Design object access command; returns the cells (instances) specified by the pattern argument.

get_cells pattern

Arguments
pattern

Specifies the pattern to match the instances to return. For example, "get_cells U18*" returns all instances
starting with the characters "U18", where “*” is a wildcard that represents any character string.

Description
This command returns a collection of instances matching the pattern you specify. You can only use this
command as part of a –from, -to, or –through argument for the following constraint exceptions: set_max
delay, set_multicycle_path, and set_false_path design constraints.

Exceptions
None

Examples
set_max_delay 2 -from [get_cells {reg*}] -to [get_ports {out}]

set_false_path –through [get_cells {Rblock/muxA}]

 PolarFire FPGA Design Constraints User Guide

52

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_clocks
Design object access command; returns the specified clock.

get_clocks pattern

Arguments
pattern

Specifies the pattern to match to the SmartTime on which a clock constraint has been set.

Description
• If this command is used as a –from argument in maximum delay (set_max_path_delay), false path

(set_false_path), and multicycle constraints (set_multicycle_path), the clock pins of all the registers
related to this clock are used as path start points.

• If this command is used as a –to argument in maximum delay (set_max_path_delay), false path
(set_false_path), and multicycle constraints (set_multicycle_path), the synchronous pins of all the
registers related to this clock are used as path endpoints.

Exceptions
• None

Example
set_max_delay -from [get_ports datal] -to \

[get_clocks ck1]

Microsemi Implementation Specifics
None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_pins
Design object access command; returns the specified pins.

get_pins pattern

 PolarFire FPGA Design Constraints User Guide

 53

Arguments
pattern

Specifies the pattern to match the pins.

Exceptions
None

Example
create_clock -period 10 [get_pins clock_gen/reg2:Q]

Microsemi Implementation Specifics
• None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_nets
Design object access command; returns the named nets specified by the pattern argument.

get_nets pattern

Arguments
pattern

Specifies the pattern to match the names of the nets to return. For example, "get_nets N_255*" returns all
nets starting with the characters "N_255", where “*” is a wildcard that represents any character string.

Description
This command returns a collection of nets matching the pattern you specify. You can only use this
command as source objects in create clock (create_clock) or create generated clock
(create_generated_clock) constraints and as -through arguments in set false path (set_false_path), set
minimum delay (set_min_delay), set maximum delay (set_max_delay), and set multicycle path
(set_multicycle_path) constraints.

Exceptions
None

Examples
set_max_delay 2 -from [get_ports RDATA1] -through [get_nets {net_chkp1 net_chkqi}]

set_false_path –through [get_nets {Tblk/rm/n*}]

create_clcok -name mainCLK -per 2.5 [get_nets {cknet}]

Microsemi Implementation Specifics
None

 PolarFire FPGA Design Constraints User Guide

54

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

get_ports
Design object access command; returns the specified ports.

get_ports pattern

Argument
pattern

Specifies the pattern to match the ports. This is equivalent to the macros $in()[<pattern>] when used as –
from argument and $out()[<pattern>] when used as –to argument or $ports()[<pattern>] when used as a –
through argument.

Exceptions
None

Example
create_clock -period 10[get_ports CK1]

Microsemi Implementation Specifics
None

See Also
Constraint Support by Family
Constraint Entry Table
SDC Syntax Conventions

About Physical Design Constraint (PDC) Files
A PDC file is a Tcl script file specifying physical constraints. Any constraint that you can enter can also be
used in a PDC file.

Command Action

assign_net_macros Assigns the macros connected to a net to a specified defined
region

assign_region Assigns macros to a pre-specified region

define_region Defines either a rectangular or rectilinear region

move_region Moves a region to new coordinates

"reserve" on
page Error! Bookmark
not defined.

Reserves the named pins in the current device package

 PolarFire FPGA Design Constraints User Guide

 55

Command Action

"set_io" on page 63 Sets the attributes of an I/O

set_iobank Specifies the I/O bank’s technology and sets the VREF pins
for the specified banks

set_location Places a given logic instance at a particular location

"set_preserve" on
page Error! Bookmark
not defined.

Preserves instances before compile so that instances are not
combined

Note: PDC commands are case sensitive. However, their arguments are not.

See Also
Constraint Entry
PDC Syntax Conventions
PDC Naming Conventions
Importing Constraint Files

PDC Syntax Conventions
The following table shows the typographical conventions that are used for the PDC command syntax.

Syntax Notation Description

command
-
argument

Commands and arguments appear in Courier New
typeface.

variable Variables appear in blue, italic Courier New typeface. You
must substitute an appropriate value for the variable.

[-argument value]
[variable]+

Optional arguments begin and end with a square bracket
with one exception: if the square bracket is followed by a
plus sign (+), then users must specify at least one
argument. The plus sign (+) indicates that items within
the square brackets can be repeated. Do not enter the
plus sign character.

Note: PDC commands are case sensitive. However, their arguments are not.

Examples
Syntax for the assign_local_clock command followed by a sample command:

assign_local_clock -type value -net netname [LocalClock_region]+

assign_local_clock -type hclk -net reset_n tile1a tile2a

Syntax for the set_io command followed by a sample command:

 PolarFire FPGA Design Constraints User Guide

56

set_io portname [-iostd value][-register value][-out_drive value][-slew value][-res_pull
value][-out_load value][-pinname value][-fixed value][-in_delay value]

set_io ADDOUT2 \

-iostd PCI \

-register yes \

-out_drive 16 \

-slew high \

-out_load 10 \

-pinname T21 \

-fixed yes

Wildcard Characters
You can use the following wildcard characters in names used in PDC commands:

Wildcard What It Does

\ Interprets the next character literally

? Matches any single character

* Matches any string

Note: The matching function requires that you add a slash (\) before each slash in the port, instance, or net

name when using wildcards in a PDC command and when using wildcards in the Find feature of the
MultiView Navigator. For example, if you have an instance named “A/B12” in the netlist, and you
enter that name as “A\\/B*” in a PDC command, you will not be able to find it. In this case, you must
specify the name as A\\\\/B*.

Special Characters ([], { }, and \)
Sometimes square brackets are part of the command syntax. In these cases, you must either enclose the
open and closed square brackets characters with curly brackets or precede the open and closed square
brackets characters with a backslash (\). If you do not, you will get an error message.
For example:
set_iobank {mem_data_in[57]} -fixed no 7 2

or

set_iobank mem_data_in\[57\] -fixed no 7 2

Entering Arguments on Separate Lines
To enter an argument on a separate line, you must enter a backslash (\) character at the end of the
preceding line of the command as shown in the following example:
set_io ADDOUT2 \

-iostd PCI \

-register Yes \

-out_drive 16 \

-slew High \

-out_load 10 \

-pinname T21 \

-fixed yes

See Also
About PDC Files

 PolarFire FPGA Design Constraints User Guide

 57

PDC Naming Conventions

PDC Naming Conventions
Note: The names of ports, instances, and nets in an imported netlist are sometimes referred to as their
original names.

Rules for Displaying Original Names
Port names appear exactly as they are defined in a netlist.
Instances and nets display the original names plus an escape character (\) before each backslash (/) and
each slash (\) that is not a hierarchy separator. For example, the instance named A/\B is displayed as
A\/\\B.

Using PDC Commands
When writing PDC commands, follow these rules:
• Always use the macro name as it appears in the netlist. (See "Merged elements" in this topic for

exceptions.)
• Names from a netlist: For port names, use the names exactly as they appear in the netlist. For

instance and net names, add an escape character (\) before each backslash (\) and each slash (/) that
is not a hierarchy separator.

• For wildcard names, always add an extra backslash (\) before each backslash.
• Always apply the PDC syntax conventions to any name in a PDC command.

The following table provides examples of names as they appear in an imported netlist and the names as
they should appear in a PDC file:

Type of name and its location Name in the
imported netlist

Name to use in
PDC file

Port name in netlist A/:B1 A/:B1

Port name in MVN A/:B1 A/:B1

Instance name in a netlist A/:B1 A$(1) A\\/:B1 A$(1)

Instance name in the netlist but using a
wildcard character in a PDC file

A/:B1 A\\\\/:B*

Instance name in MVN or a compile report A\/:B1 A\\/:B1

Net name in a netlist Net1/:net1 Net1\\/:net1

Net name in MVN or a compile report Net1\/:net1 Net1\\/:net1

When exporting PDC commands, the software always exports names using the PDC rules described in this
topic.

Case Sensitivity When Importing PDC Files
The following table shows the case sensitivity in the PDC file based on the source netlist.

File
Type

Case Sensitivity

 PolarFire FPGA Design Constraints User Guide

58

File
Type

Case Sensitivity

Verilog Names in the netlist are case sensitive.

Edif Names in the netlist are always case sensitive because we use the Rename
clause, which is case sensitive.

Vhdl Names in the netlist are not case sensitive unless those names appear
between slashes (\).

For example, in VHDL, capital "A" and lowercase "a" are the same name, but \A\ and \a\ are two different
names. However, in a Verilog netlist, an instance named "A10" will fail if spelled as "a10" in the set_location
command:
set_location A10 (This command will succeed.)

set_location a10 (This command will fail.)

Operation Name to Use

I/O connected to PLL with a hardwired connection PLL instance name

I/O combined with FF or DDR I/O instance name

Global promotion

See Also
About PDC Files
PDC Syntax Conventions

assign_net_macros
PDC command; assigns to a user-defined region all the macros that are connected to a net.

assign_net_macros -region_name region_name -net_name <net_name> -include_driver <true |
false>

Arguments
-region_name

Specifies the name of the region to which you are assigning macros. The region must exist before you
use this command. See define_region (rectangular) or define_region (rectilinear). Because the
define_region command returns a region object, you can write a simple command such as
assign_net_macros [define_region]+ [net]+
-net_name

You must specify at least one net name. Net names are AFL-level (flattened netlist) names. These names
match your netlist names most of the time. When they do not, you must export AFL and use the AFL
names. Net names are case insensitive. Hierarchical net names from ADL are not allowed. You can use
the following wildcard characters in net names:

Wilcard What It Does

\ Interprets the next character as a non-special character

 PolarFire FPGA Design Constraints User Guide

 59

Wilcard What It Does

? Matches any single character

* Matches any string

-include_driver

Specifies whether to add the driver of the net(s) to the region. You can enter one of the following values:

Value Description

true Include the driver in the list of macros assigned to the region (default) .

false Do not assign the driver to the region.

Notes:

• Placed macros (not connected to the net) that are inside the area occupied by the net region are
automatically unplaced.

• Net region constraints are internally converted into constraints on macros. PDC export results as a
series of assign_region <region_name> macro1 statements for all the connected macros.

• If the region does not have enough space for all of the macros, or if the region constraint is impossible,
the constraint is rejected and a warning message appears in the Log window.

• For overlapping regions, the intersection must be at least as big as the overlapping macro count.
• If a macro on the net cannot legally be placed in the region, it is not placed and a warning message

appears in the Log window.
• Net region constraints may result in a single macro being assigned to multiple regions. These net

region constraints result in constraining the macro to the intersection of all the regions affected by the
constraint.

Example
assign_net_macros -region_name UserRegion1 -net_name Y -include_driver false

assign_region
PDC command; constrains a set of macros to a specified region.

assign_region -region_name region_name -inst_name macro_name+

Arguments
region_name

Specifies the region to which the macros are assigned. The macros are constrained to this region.
Because the define_region command returns a region object, you can write a simpler command such as
assign_region [define_region]+ [macro_name]+.
macro_name

Specifies the macro(s) to assign to the region. You must specify at least one macro name. You can use
the following wildcard characters in macro names:

Wildcard What It Does

\ Interprets the next character as a non-special character

 PolarFire FPGA Design Constraints User Guide

60

Wildcard What It Does

? Matches any single character

* Matches any string

The region must be created before you can assign macros to it. If the region creation PDC command and
the macro assignment command are in different PDC files, the order of the PDC files is important.
You can assign only hard macros or their instances to a region. You cannot assign a group name. A hard
macro is a logic cell consisting of one or more silicon modules with locked relative placement.
The macro name must be a name with full hierarchical path.

Notes:
• The region must be created before you can assign macros to it. If the region creation PDC command

and the macro assignment command are in different PDC files, the order of the PDC files is important.
• You can assign only hard macros or their instances to a region. You cannot assign a group name. A

hard macro is a logic cell consisting of one or more silicon modules with locked relative placement.
• The macro name must be a name with full hierarchical path.

Examples
In the following example, two macros are assigned to a region:
assign_region -region_name UserRegion1 -inst_name “test_0/AND2_0 test_0/AND2_1”

In the following example, all macros whose names have the prefix des01/Counter_1 (or all macros whose
names match the expression des01/Counter_1/*) are assigned to a region:
assign_region -region_name User_region2 -inst_name des01/Counter_1/*

See Also
 set_location

define_region
PDC command; defines either a rectangular region or a rectilinear region.

define_region -region_name <region_name> -type <inclusive|exclusive|empty> -x1 <integer> -y1
<integer> -x2 <integer> -y2 <integer> [-color <integer>] [-route <true|false>]

Note: The -color and -route parameters are optional.

Arguments
-region_name region_name

Specifies the region name. The name must be unique. Do not use reserved names such as “bank0” and
“bank<N>” for region names. If the region cannot be created, the name is empty. A default name is
generated if a name is not specified in this argument.
-type <inclusive|exclusive|empty>

Specifies the region type. The default is inclusive. The following table shows the acceptable values for this
argument:

Region Type Value Description

Empty Empty regions cannot contain macros.

Exclusive Only contains macros assigned to the region.

 PolarFire FPGA Design Constraints User Guide

 61

Region Type Value Description

Inclusive Can contain macros both assigned and unassigned to the region.

-x1 -y1 -x2 -y2

Specifies the series of coordinate pairs that constitute the region. These rectangles may or may not
overlap. They are given as x1 y1 x2 y2 (where x1, y1 is the lower left and x2 y2 is the upper right corner in
row/column coordinates). You must specify at least one set of coordinates.
-color value

Specifies the color of the region. The following table shows the recommended values for this argument:

Color Decimal Value

 16776960

 65280

 16711680

 16760960

 255

 16711935

 65535

 33023

 8421631

 9568200

 8323199

 12632256

-route value

Specifies whether to direct the routing of all nets internal to a region to be constrained within that region. A
net is internal to a region if its source and destination pins are assigned to the region. You can enter one
of the following values:

Constrain
Routing Value

Description

true Constrain the routing of nets within the region as well as the
placement.

false Do not constrain the routing of nets within the region. Only constrain
the placement. This is the default value.

 PolarFire FPGA Design Constraints User Guide

62

Note: Local clocks and global clocks are excluded from the -route option. Also, interface nets are
excluded from the –route option because they cross region boundaries.

An empty routing region is an empty placement region. If -route is "yes", no routing is allowed inside the
empty region. However, local clocks and globals can cross empty regions.
An exclusive routing region is an exclusive placement region (rectilinear area with assigned macros) along
with the following additional constraints:
• For all nets internal to the region (the source and all destinations belong to the region), routing must be inside

the region (that is, such nets cannot be assigned any routing resource which is outside the region or crosses the
region boundaries).

• Nets without pins inside the region cannot be assigned any routing resource which is inside the region or crosses
any region boundaries.

An inclusive routing region is an inclusive placement region (rectilinear area with assigned macros) along
with the following additional constraints:
• For all nets internal to the region (the source and all destinations belong to the region), routing must be inside

the region (that is, such nets cannot be assigned any routing resource which is outside the region or crosses the
region boundaries).

• Nets not internal to the region can be assigned routing resources within the region.

Description
Unlocked macros in empty or exclusive regions are unassigned from that region. You cannot create empty
regions in areas that contain locked macros.
Use inclusive or exclusive region constraints if you intend to assign logic to a region. An inclusive region
constraint with no macros assigned to it has no effect. An exclusive region constraint with no macros
assigned to it is equivalent to an empty region.
Note: If macros assigned to a region exceed the area's capacity, the region’s Properties Window displays

the overbooked resources (over 100 percent resource utilization) in red.

Examples
The following example defines an empty rectangular region called UserRegion1 with lower-left co-ordinates
(100,46) and upper-right co-ordinates (102,50).
define_region -region_name UserRegion1 -type empty -x1 100 -y1 46 -x2 102 -y2 50

The following example defines an inclusive rectilinear region with the name UserRegion2. This region
contains two rectangular areas, one with lower-left co-ordinates (12,39) and upper-right co-ordinates (23,41)
and another rectangle with lower-left co-ordinates (12,33) and upper-right co-ordinates (23,35).
define_region -region_name UserRegion2 -type exclusive -x1 12 -y1 39 -x2 23 -y2 41 -x1 12
-y1 33\
-x2 23 -y2 35

The following examples define three regions with three different colors:
define_region -region_name UserRegion0 -color 128 -x1 50 -y1 19 -x2 60 -y2 25

define_region -region_name UserRegion1 -color 16711935 -x1 11 -y1 2 -x2 55 -y2 29

define_region -region_name UserRegion2 -color 8388736 -x1 61 -y1 6 -x2 69 -y2 19

See Also
assign_region

move_region
PDC command; moves the named region to the coordinates specified.

 PolarFire FPGA Design Constraints User Guide

 63

move_region -region_name <region_name> -x1 <integer> -y1 <integer> -x2 <integer> -y2 <integer>

Arguments
-region_name <region_name>

Specifies the name of the region to move. This name must be unique.
-x1 -y1 -x2 -y2

Specifies the series of coordinate pairs representing the location in which to move the named region.
These rectangles can overlap. They are given as x1 y1 x2 y2, where x1, y1 represents the lower-left
corner of the rectangle and x2 y2 represents the upper-right corner. You must specify at least one set of
coordinates.

Example
This example moves the region named UserRegion1 to a new region with lower-left co-ordinates (0,40) and
upper-right co-ordinates (3,42):
move_region -region_name UserRegion1 -x1 0 -y1 40 -x2 3 -y2 42

See Also
"define_region" on page Error! Bookmark not defined.

reserve
PDC command; reserves the named pins in the current device package.

reserve -pin_name "list of package pins"

Arguments
-pin_name "list of package pins"

Specifies the package pin name(s) to reserve. You can reserve one or more pins.

Exceptions
None

Examples
reserve -pin_name "F2"

reserve -pin_name "F2 B4 B3"

reserve -pin_name "124 17"

set_io
PDC command; sets the attributes of an I/O for PolarFire devices.
You can use the set_io command to assign an I/O technology, place, or lock the I/O at a given pin location.
There are two I/O types available for PolarFire: GPIO and HSIO. Each I/O type supports different I/O
standards.

I/O Type Supported I/O Standards

HSIO LVCMOS12, LVCMOS15, LVCMOS18, SSTL18I, SSTL18II, HSUL18I, HSUL18II, SSTL15I, SSTL15II, HSTL15I,
HSTL15II, SSTL135I, SSTL135II, HSTL135I, HSTL135II, HSTL12I, HSTL12II, HSUL12I, SLVSE15, POD12I,
POD12II, LVSTL11I, LVSTL11II, SLVS18, HCSL18, LVDS18, RSDS18, MINILVDS18, SUBLVDS18, PPDS18,

 PolarFire FPGA Design Constraints User Guide

64

I/O Type Supported I/O Standards

SHIELD18, SHIELD15, SHIELD135, SHIELD12

GPIO LVTTL, LVCMOS33, PCI, LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, SSTL25I, SSTL25II, SSTL18I,
SSTL18II, HSUL18I, HSUL18II, SSTL15I, SSTL15II, HSTL15I, HSTL15II, SLVS33, HCSL33, HCSL25, MIPI25,
MIPIE25, LVPECL33, LVPECL25, LVPECLE33, LVDS25, LVDS33, RSDS25, RSDS33, MINILVDS25,
MINILVDS33, SUBLVDS25, SUBLVDS33, PPDS25, PPDS33, SLVSE15, MLVDSE25, BUSLVDSE25,
LCMDS33, LCMDS25, SHIELD33, SHIELD25, SHIELD18, SHIELD15, SHIELD12

set_io -port_name <port_name>\
[-pin_name <package_pin>]\
[-fixed <true|false>]\
[-io_std <io_std_values>]\
[-OUT_LOAD <value>]\
[-RES_PULL <value>]\
[-LOCK_DOWN <value>]\
[-FF_IO_STATE <value>]\
[-CLAMP_DIODE <value>]\
[-SCHMITT_TRIGGER <value>]\
[-SLEW <value>]\
[-VCIM_RANGE <value>]\
[-ODT <value>]\
[-ODT_VALUE]\
[-OUT_DRIVE <value>]\
[-IMPEDANCE <value>]
[SOURCE_TERM <value>]

Arguments
-port_name

Specifies the portname of the I/O macro.
-pin_name <package_pin>

Specifies the package pin name(s) to place the I/O on it.
-io_std <value>

Sets the I/O standard for this macro. If the voltage standard used with the I/O is not compatible with other
I/Os in the I/O bank, then assigning an I/O standard to a port will invalidate its location and automatically
unassign the I/O.
The following table shows a list of supported I/O standards.
Some I/O standards support only either single I/O or differential I/Os while others support both Single and
Differential I/Os. The table below lists the different I/O standards and whether they support single I/O,
differential I/O, or both.

IO_STD Value Single Differential

LVTTL YES NO

LVSTL11I YES YES

LVSTL11II YES YES

LVCMOS33 YES NO

LVCMOS25 YES NO

 PolarFire FPGA Design Constraints User Guide

 65

IO_STD Value Single Differential

LVCMOS18 YES NO

LVCMOS15 YES NO

LVCMOS12 YES NO

PCI YES NO

POD12I YES YES

POD12II YES YES

PPDS33 NO YES

PPDS25 NO YES

PPDS18 NO YES

SLVS33 NO YES

SLVS25 NO YES

SLVS18 NO YES

HCSL33 NO YES

HCSL25 NO YES

HCSL18 NO YES

SLVSE NO YES

SLVSE15 NO YES

BUSLVDSE NO YES

BUSLVDSE25 NO YES

MLVDSE NO YES

MLVDSE25 NO YES

LVDS NO YES

LVDS33 NO YES

LVDS25 NO YES

LVDS18 NO YES

BUSLVDS NO YES

MLVDS NO YES

 PolarFire FPGA Design Constraints User Guide

66

IO_STD Value Single Differential

MIPI33 NO YES

MIPI12 NO YES

MINILVDS NO YES

MINILVDS33 NO YES

MINILVDS25 NO YES

MINILVDS18 NO YES

RSDS NO YES

RSDS33 NO YES

RSDS25 NO YES

RSDS18 NO YES

LVPECL (only for inputs) NO YES

LVPECL33 NO YES

LVPECL25 NO YES

LVPECLE33 NO YES

HSTL15I YES YES

HSTL15II YES YES

HSTL135I YES YES

HSTL135II YES YES

HSTLI2I YES YES

HSTL12II YES YES

SSTL18I YES YES

SSTL18II YES NO

SSTL15I YES YES

SSTL15II YES YES

SSTL135I YES YES

SSTL135II YES YES

SSTL125I YES YES

SSTL125II YES YES

 PolarFire FPGA Design Constraints User Guide

 67

IO_STD Value Single Differential

HSUL18I YES YES

HSUL18II YES YES

HSUL12I YES YES

HSUL12II YES YES

SUBLVDS33 NO YES

SUBLVDS25 NO YES

SUBLVDS18 NO YES

LCMDS25 NO YES

LCMDS33 NO YES

-fixed <value>

Specifies if the location of this port is fixed (i.e., locked). Locked ports are not moved during layout. The
default value is true. You can enter one of the following values:

Value Description

true The location of this port is locked.

false The location of this port is unlocked.

Examples
set_io -port_name IO_in\[2\]

-io_std LVCMOS25 \

-fixed true\

I/O Directions Not Supported
The following table lists I/O directions that are not supported for the I/O standards shown in the table.

I/O Direction IO_STD Value

Input SLVSE15, MLVDSE25, BUSLVDSE25, MIPIE33, LVPECLE33, SHIELD33,
SHIELD25, SHIELD18, SHIELD15, SHIELD135, SHIELD12

Output SLVS33, HCSL33, HCSL25, LVPECL33, LVPECL25, MIPI25, LVDS18, RSDS18,
MINILVDS18, SUBLVDS18, PPDS18, SLVS18, HCSL18

Tribuff SLVS33, HCSL33, HCSL25, LVPECL33, LVPECL25, MIPI25, LVDS18, RSDS18,
MINILVDS18, SUBLVDS18, PPDS18, SLVS18, HCSL18, LVDS25, LVDS33,
RSDS25, RSDS33, MINILVDS25, MINILVDS33, SUBLVDS25, SUBLVDS33,
PPDS25, PPDS33, LCMDS25, LCMDS33

Inout LVDS33, LVDS18, LVDS25, RSDS18, RSDS33, RSDS25, MINILVDS18,

 PolarFire FPGA Design Constraints User Guide

68

I/O Direction IO_STD Value

MINILVDS33, MINILVDS25, SUBLVDS18, SUBLVDS33, SUBLVDS25, PPDS18,
PPDS33, PPDS25, SLVS33, SLVS25, HCSL33, HCSL25, LVPECL33, LVPECL25,
MIPI25, MIPIE25, SLVS18, HCSL18, SHIELD33, SHIELD25, SHIELD18, SHIELD15,
SHIELD135, SHIELD12, LCMDS25, LCMDS33

-OUT_LOAD <value>

Sets the output load (in pF) of output signals.
The default is 5.
Direction: Output

 PolarFire FPGA Design Constraints User Guide

 69

-RES_PULL <value>

Allows you to include a weak resistor for either pull-up or pull-down of the input buffer. Not all I/O
standards have a selectable resistor pull option.
The following table shows the acceptable values for the -RES_PULL attribute:

I/O Standard Value Description

LVCMOS25, LVCMOS33,
LVTTL, PCI, LVCMOS18,
LVCMOS15, LVCMOS12

Up Includes a weak resistor for pull-up of the input buffer

Down Includes a weak resistor for pull-down of the input buffer

Hold Holds the last value

None Does not include a weak resistor

For all other I/O standards, the value is None.
The default is None.
Direction: Input

-LOCK_DOWN <value>

Security feature that locks down the I/Os if tampering is detected.
Values are OFF, ON. The default is OFF.
Direction: Inout

-FF_IO_STATE <value>

Preserves the previous state of the I/O. You can override this default using the FF_IO_STATE attribute.
When you set this attribute to LAST_VALUE, the I/O remains in the same state in which it was functioning
before the device went into Flash*Freeze mode. Possible values are shown in the table below.

Value Description

LAST_VALUE Preserves the previous state of the I/O.

LAST_VALUE_WP The last value with weak pullup.

The default is LAST_VALUE.
Direction: Inout

-CLAMP_DIODE <value>

Specifies whether to add a power clamp diode to the I/O buffer. This attribute option is available to all I/O
buffers with I/O technology set to LVTTL. A clamp diode provides circuit protection from voltage spikes,
surges, electrostatic discharge and other over-voltage conditions.
Values are OFF, ON.
The following table lists the values for GPIO standards. For HSIO standards, the value is always ON.

I/O Standard Values

LVCMOS12, LVCMOS15, LVCMOS18, SSTL18I, SSTL18II,
SSTL15I, SSTL15II, HSTL15I, HSTL15II, LVTTL, LVCMOS33,
LVCMOS25, SSTL25I, SSTL25II, MIPI25

OFF, ON. The default is ON.

HSUL12I, HSUL18I, HSUL18II, SLVSE15, PCI, SLVS33,
HCSL25, HCSL33, MIPIE33, LVPECL33, LVPECL25,

ON

 PolarFire FPGA Design Constraints User Guide

70

I/O Standard Values

LVPECLE33, LVDS25, LVDS33, RSDS25, RSDS33,
MINILVDS25, MINILVDS33, SUBLVDS25, SUBLVDS33,
PPDS25, PPDS33, MLVDSE25, BUSLVDSE25, SSTL135I,
SSTL135II, HSTL135I, HSTL135II, HSTL12I, HSTL12II,
SLVSE15, POD12I, POD12II, LVSTL11I, LVSTL11II, SLVS18,
HCSL18, LVDS18, RSDS18, MINILVDS18, SUBLVDS18,
PPDS18, MIPIE25, LCMDS25, LCMDS33

Direction: Inout

-SCHMITT_TRIGGER <value>

Specifies whether this I/O has an input schmitt trigger. The schmitt trigger introduces hysteresis on the I/O
input. This allows very slow moving or noisy input signals to be used with the part without false or multiple
I/O transitions taking place in the I/O.
For the following I/O standards, the values are OFF, ON. The default is OFF.

I/O Standard Values

GPIO

LVCMOS25, LVCMOS33, LVTTL, PCI OFF, ON

HSIO

LVCMOS18, LVCMOS15 OFF, ON

For all other I/O standards, the value is OFF.
Direction: Input

-SLEW <value>

Sets the output slew rate. Slew control affects only the falling edges for some families. Slew control
affects both rising and falling edges. Not all I/O standards have a selectable slew. Whether you can use
the slew attribute depends on which I/O standard you have specified for this command.
The following I/O standards have values OFF, ON. The default is OFF.

I/O Standard Values

LVCMOS25, LVCMOS33, LVTTL, PCI OFF, ON

For all other I/O standards, the value is OFF.
Direction: Output

-VICM_RANGE

Sets the VCM input range.
Values for all I/O standards are MID, LOW. The default is MID.
Direction: Input

-ODT

On-die termination (ODT) is the technology where the termination resistor for impedance matching in
transmission lines is located inside a semiconductor chip instead of on a printed circuit board.
Values are ON, OFF.
The table below lists acceptable values.

 PolarFire FPGA Design Constraints User Guide

 71

I/O Standard Values

LVCMOS12,
LVCMOS15,
LVCMOS18,
LVCMOS25,
HSUL18I,
HSUL18II

OFF, ON. The default is OFF.

SSTL15I,
SSTL15II,
SSTL18I,
SSTL18II,
HSUL12I,
LVSTL11I,
LVSTL11II,
POD12I, POD12II,
SSTL135I,
SSTL135II,
HSTL15I,
HSTL15II,
LVDS33, LVDS25,
LVPECL33,
LVPECLE33,
LVPECL25,
MINILVDS33,
MINILVDS25,
RSDS33,
RSDS25,
SUBLVDS33,
SUBLVDS25,
HSTL12I,
HSTL12II,
HSTL135I,
HSTL135II,
LCMDS33,
LCMDS25

OFF, ON. The default is ON.

Direction: Input

-ODT_VALUE

Sets the ODT value (in Ohms) for On Die Termination.
Values vary depending on the I/O standard.
The table below lists acceptable values.

I/O Standard Values

LVCMOS12, LVCMOS15,
LVCMOS18, LVCMOS25,
HSUL12

120, 240. The default is 120.

SSTL15I, SSTL15II, 20, 30, 40, 60, 120. The default is 30.

SSTL135I, SSTL135II 20, 30, 40, 60, 120. The default is 40.

SSTL18I, SSTL18II 50, 75, 150. The default is 50.

 PolarFire FPGA Design Constraints User Guide

72

I/O Standard Values

LVSTL11I, LVSTL11II, 30, 34, 40, 48, 60, 80, 120, 240. The default is 60.

POD12I, POD12II 34, 40, 48, 60, 80, 120, 240. The default is 40.

LVDS33, LVDS25, LVPECL33,
LVPECL25, LVPECLE33,
MINILVDS33, MINILVDS25,
RSDS33, RSDS25,
SUBLVDS33, SUBLVDS25,
LCMDS33, LCMDS25

100

HSTL15I, HSTL15II, HSUL18I,
HSUL18II, HSTL12I, HSTL12II,
HSTL135I, HSTL135II,

50

 Direction: Input

-OUT_DRIVE <value>

Sets the strength of the output buffer to 1.5, 2, 3.5, 4, 6, 8, 10, 12, 16, or 20 in mA, weakest to strongest.
The list of I/O standards for which you can change the output drive and the list of values you can assign
for each I/O standard is family-specific. Not all I/O standards have a selectable output drive strength. Also,
each I/O standard has a different range of legal output drive strength values. The values you can choose
from depend on which I/O standard you have specified for this command. The table below lists acceptable
values.

I/O Standard Values

LVCMOS12 2, 4, 6, 8. The default is 8.

LVCMOS15 2, 4, 6, 8, 10. The default is 8.

LVCMOS18 2, 4, 6, 8, 10, 12. The default is 8.

LVCMOS25 2, 4, 6, 8, 12, 16. The default is 8.

LVCMOS33, LVTTL 2, 4, 8, 12, 16, 20. The default is 8.

LVDS25, LVDS33, MINILVDS25,
MINILVDS33, LCMDS33, LCMDS25

3, 3.5, 4, 6. The default is 6

PPDS25, PPDS33, RSDS25,
RSDS33

1.5, 2, 3. The default is 3.

SUBLVDS25, SUBLVDS33 1, 1.5, 2. The default is 2.

BUSLVDSE25, MLVDSE25,
LVPECLE33

16

MIPIE25, SLVSE15 8

PCI 20

Direction: Output

-IMPEDANCE <value>

 PolarFire FPGA Design Constraints User Guide

 73

Sets the Impedance value (in Ohms).
Values vary depending on the I/O standard.

I/O Standard Values

HSTL12I 50

HSTL12II 25

HSTL135I, HSTL15I 34, 40, 50, 60. The default is 50.

HSTL135II, HSTL15II,
HSUL18II

22, 25, 27, 30. The default is 25.

HSUL12I 34, 40, 48, 60, 80, 120. The default is 40.

HSUL18I 34, 40, 55, 60. The default is 55.

POD12I 40, 48, 60. The default is 48.

LVSTL11I, LVSTL11II 30, 34, 40, 48, 60, 80, 120, 240. The default is 40.

POD12II, SSTL135II,
SSTL15II

27, 30, 34. The default is 34.

SSTL135I, SSTL15I 40, 48. The default is 40.

SSTL18I 40, 48, 60, 80. The default is 60.

SSTL18II 30, 34, 40, 48. The default is 40.

SSTL25I 48, 60, 80, 120. The default is 80.

SSTL25II 34, 40, 48, 60. The default is 48.

Direction: Output

-SOURCE_TERM

Near End termination for a differential output I/O.
The default is OFF.
Direction: Output

See Also
UG0686: PolarFire FPGA User I/O User Guide

set_iobank
PDC command; sets the input/output supply voltage (vcci) and the input reference voltage (vref) for the
specified I/O bank.
All banks have a dedicated vref pin and you do not need to set any pin on these banks.
There are two types of I/O banks: General-Purpose IO (GPIO) and High-Speed IO (HSIO).
Each bank type supports a different set of IO Standards as listed in the table below.

https://www.microsemi.com/document-portal/doc_download/136535-ug0686-polarfire-fpga-user-i-o-user-guide

 PolarFire FPGA Design Constraints User Guide

74

I/O Bank
Type

Supported I/O Standards

High-Speed IO
(HSIO)

LVCMOS12, LVCMOS15, LVCMOS18, SSTL18I, SSTL18II, HSUL18I, HSUL18II, SSTL15I,
SSTL15II, HSTL15I, HSTL15II, SSTL135I, SSTL135II, HSTL135I, HSTL135II, HSTL12I, HSUL12I,
SLVSE15, POD12I, POD12II, LVSTL11I, LVSTL11II, SLVS18, HCSL18, LVDS18, RSDS18,
MINILVDS18, SUBLVDS18, PPDS18

General-
Purpose IO
(GPIO)

LVTTL, LVCMOS33, PCI, LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, SSTL25I,
SSTL25II, SSTL18I, SSTL18II, HSUL18I, HSUL18II, SSTL15I, SSTL15II, HSTL15I, HSTL15II,
SLVS33, HCSL33, MIPI12, MIPIE33, LVPECL33, LVPECL25, LVPECLE33, LVDS25, LVDS33,
RSDS25, RSDS33, MINILVDS25, MINILVDS33, SUBLVDS25, SUBLVDS33, PPDS25, PPDS33,
SLVSE15, MLVDSE25, BUSLVDSE25

set_iobank -bank_name <bank_name>\
[-vcci vcci_voltage]\
[-vref vref_voltage]\
[-fixed value]\
[-update_iostd value]\

Arguments
-bank_name <bank_name>

Specifies the name of the bank. I/O banks are numbered 0 through N (bank0, bank1,...bankN). The
number of I/O banks varies with the device. Refer to the datasheet for your device to determine how many
banks it has.
-vcci vcci_voltage

Sets the input/output supply voltage. You can enter one of the following values:

vcci
voltage

Compatible Standards

3.3 V LVTTL, LVCMOS33, PCI, LVDS33, LVPECL33, LVPECLE33, SLVS33,
HCSL33, RSDS33, MINILVDS33, SUBLVDS33

2.5 V LVCMOS25, SSTL25I,SSTL25II, LVPECL25, PPDS25, SLVS25, HCSL25,
MLVDSE25, MINILVDS25, RSDS25, SUBLVDS25, LVDS25, MLVDSE25,
BUSLVDSE25

1.8 V LVCMOS18, SSTL18I, SSTL18II, HSUL18I, HSUL18II, SLVS18, HCSL18,
LVDS18, RSDS18, MINILVDS18, SUBLVDS18, PPDS18

1.5 V LVCMOS15, SSTL15I, SSTL15II, HSTL15I, HSTL15II, SLVSE15

1.35 V HSTL135I, HSTL135II, SSTL135I, SSTL135II

1.2 V LVCMOS12, HSUL12I, HSTL12I, POD12I, MIPI12

1.1V LVSTL11I, LVSTL11II

-vref vref_voltage

Sets the input reference voltage. You can enter one of the following values:

vref voltage Compatible Standards

1.25 V SSTL25I

 PolarFire FPGA Design Constraints User Guide

 75

vref voltage Compatible Standards

1.0 V SSTL18I,HSUL18I

0.75 V POD12I, HSTL15I, SSTL15I, HSUL12I, HSTL12I

0.67 V SSTL135I, HSTL135I

-fixed_value

Specifies if the I/O technologies (vcci and vccr voltage) assigned to the bank are locked. You can enter
one of the following values:

Value Description

true The technologies are locked.

false The technologies are not locked.

-update_iostd value

Specifies if the I/O technologies (vcci and vccr voltage) assigned to the bank are locked. You can enter
one of the following values:

Value Description

true If there are I/O's placed on the bank, we keep the placement and change the
host to one which is compatible with this bank setting. Check the I/O Attributes
to see the one used by the tool.

false If there are I/O's placed and locked on the bank, the command will fail. If they
are placed I/Os they will be unplaced.

Exceptions
Any pins assigned to the specified I/O bank that are incompatible with the default technology are
unassigned.

Examples
The following example assigns 3.3 V to the input/output supply voltage (vcci) for I/O bank 0.
set_iobank -bank_name bank0 -vcci 3.3

set_location
PDC command; assigns the specified macro to a particular location on the chip.

set_location -inst_name <macro_inst_name> -fixed <true|false> -x <integer> -y <integer>

Arguments
-inst_name

Specifies the instance name of the macro in the netlist to assign to a particular location on the chip.
-fixed <true|false>

 PolarFire FPGA Design Constraints User Guide

76

Sets whether the location of this instance is fixed (that is, locked). Locked instances are not moved during
layout. The default is yes. The following table shows the acceptable values for this argument:

Value Description

true The location of this instance is locked.

false The location of this instance is unlocked.

-x -y

The x and y coordinates specify where to place the macro on the chip. Use the Chip Planner tool to
determine the x and y coordinates of the location.

Exceptions
None

Example
This example assigns and locks the macro with the name "mem_data_in\[57\]" at the location x=7, y=2:

set_location -inst_name mem_data_in\[57\] -fixed true -x 7 -y 2

set_preserve
This command sets a preserve property on instances before compile, so compile will preserve these
instances and not combine them.

set_preserve -inst_name <instance_name>

Arguments
-inst_name

Specifies the full hierarchical name of the macro in the netlist to preserve.

Exceptions
You must put this command in a PDC constraint file and associate it with Place and Route.

Example
set_preserve -inst_name “test1/AND2_0”

Placement Rules for PLLs and DLLs
This topic outlines the placement rules for PLL and DLL instances. You must place PLL and DLL instances
using the set_location command.
The following error messages indicate non-compliance with placement rules for PLL and DLL:

PRPF_006: PLL/DLL <inst name> must be placed before running Place & Route.
All PLL and DLL instances must be placed before running Place and Route.

 PolarFire FPGA Design Constraints User Guide

 77

PRPF_010: There can be a maximum of 6 PLL/DLL reference and/or fabric clocks
coming driven by the FPGA fabric in the <NW|SW|NE|SE> location.

There are four "corners" (NW, SW, NE, NW) that PLL and DLL instances can be placed in on each MPF300
or MPF200 FPGA device.
You can place multiple PLL/DLL instances in each corner. However, for each corner, the sum total of
PLL/DLL reference clocks and fabric clocks that the fabric drives must be six or less.

PRPF_011: There can be a maximum of 2 PLL/DLL reference clocks coming driven by
the FPGA fabric in the <NW|SW|NE|SE> location.

For each corner, only two PLL/DLL reference clocks can be driven by the fabric.
NOTE: For information about the set_location command, refer to the PolarFire PDC Commands User Guide.

Placement Rules for RGMII, SGMII, and IOG CDR Interfaces
Placement rules must be adhered to for RGMII, SGMII, and IOG CDR interfaces. Non-compliance with
these rules may result in the following errors:

PRPF_001: Port <port name> for Interface <inst name> must be placed before running
Place & Route.

All PADs must be placed using the set_io command.

PRPF_002: Interface <inst name> has ports that must be assigned to the same physical
lane. The current port assignment for this interface does not meet this requirement.

For the SGMII interface and IOG CDR, all RX_ and TX_ PADs must be placed in the same lane.
For the RGMII interface, all RX [] PADs and the RXCLK PAD must be placed in the same lane.

PRPF_003: The current Interface <inst name> port assignment requires that pin <pin
name (functional pin name)> be reserved. You must not assign any port to that package
pin.

For the SGMII interface and IOG CDR, the DQS_N pin of the lane is reserved for internal use. It must be left
unused.

PRPF_004: You must not assign <inst name> to any location. Use the set_io command
to assign any Interface port to package pins. This instance will automatically be placed.

IOD instances with TRAINING/OVERLAY should not be placed by users. These are internal instances, and
will be handled by the tool.

PRPF_005: Port <port name> for Interface <inst name> must be assigned to <pin name
(functional pin name)>.

For the RGMII interface, RX_CLK must be assigned to the DQS (P pad) of the lane.
NOTE: Refer to the "set_io" on page 63 help topic for more information about this command.

Placement Rules for Transceivers
For PolarFire designs with the transceiver (XCVR) interface, some placement rules apply. Non-compliance
with these rules may result in the following errors:

https://coredocs.s3.amazonaws.com/Libero/pf_2_0_0/Tool/pf_pdc_ug.pdf

 PolarFire FPGA Design Constraints User Guide

78

PRPF_007: TxPLL <inst name> must be placed before running Place & Route.
Transceiver Tx PLLs must be placed by the user with the set_location command before running Place and
Route.

PRPF_008: Dedicated XCVR ports <port name>* must be placed before running Place &
Route.

The transceiver interface has dedicated ports. These must be placed using the set_io command. For
information about rules, refer to UG0677: User Guide PolarFire FPGA Transceiver.

PRPF_009: Dedicated XCVR reference clock port <port name> must be placed before
running Place & Route.

All transceiver reference clock PADs must be placed using the set_io command before running layout.
NOTES:
For information about the set_io command, refer to the "set_io" on page 63 help topic.
For information about the set_location command, refer to the PolarFire PDC Commands User Guide.
For more information about rules for transceivers, refer to UG0677: User Guide PolarFire FPGA
Transceiver.

PRPF_008: Dedicated XCVR ports <port name>* must be placed before running Place &
Route.

The transceiver interface has dedicated ports. These must be placed using the set_io command. For
information about rules, refer to UG0677: User Guide PolarFire FPGA Transceiver.

PRPF_009: Dedicated XCVR reference clock port <port name> must be placed before
running Place & Route.

All transceiver reference clock PADs must be placed using the set_io command before running layout.
NOTES:
For information about the set_io command, refer to the "set_io" on page 63 help topic.
For information about the set_location command, refer to the PolarFire PDC Commands User Guide.
For more information about rules for transceivers, refer to UG0677: User Guide PolarFire FPGA
Transceiver.

PRPF_008: Dedicated XCVR ports <port name>* must be placed before running Place &
Route.

The transceiver interface has dedicated ports. These must be placed using the set_io command. For
information about rules, refer to UG0677: User Guide PolarFire FPGA Transceiver.

PRPF_009: Dedicated XCVR reference clock port <port name> must be placed before
running Place & Route.

All transceiver reference clock PADs must be placed using the set_io command before running layout.
NOTES:
For information about the set_io command, refer to the "set_io" on page 63 help topic.
For information about the set_location command, refer to the PolarFire PDC Commands User Guide.
For more information about rules for transceivers, refer to UG0677: User Guide PolarFire FPGA
Transceiver.

https://coredocs.s3.amazonaws.com/Libero/pf_2_0_0/Tool/pf_pdc_ug.pdf

	Table of Contents
	Constraint Support 9
	Constraint File Format 11
	Naming Conventions 12
	Clock 12
	Region 13
	Location 14
	I/O Attributes 14
	I/O Attributes by Family and Device 15
	Importing Constraint Files 16
	Create Clock 18
	Create Generated Clock 18
	Remove Clock Uncertainty 19
	Set Clock Latency 20
	Set Clock Uncertainty Constraint 20
	Set Disable Timing Constraint 21
	Set False Path 21
	Set Input Delay 22
	Set Maximum Delay 22
	Set Minimum Delay 23
	Set Multicycle Path 24
	Set Output Delay 24
	Assign I/O Macro to Location 25
	Assign Macro to Region 25
	Assign Net to Region 26
	Configure I/O Bank 27
	Create Region 27
	Move Region 28
	About Synopsys Design Constraints (SDC) Files) 29
	SDC Syntax Conventions 29
	create_clock 32
	create_generated_clock 33
	set_clock_latency 35
	set_clock_to_output 36
	set_clock_uncertainty 37
	set_disable_timing 39
	set_external_check 40
	set_false_path 40
	set_input_delay 41
	set_max_delay (SDC) 43
	set_min_delay 44
	set_multicycle_path 45
	set_output_delay 46
	Design Object Access Commands 49
	all_inputs 49
	all_outputs 50
	all_registers 50
	get_cells 51
	get_clocks 52
	get_pins 52
	get_nets 53
	get_ports 54
	About Physical Design Constraint (PDC) Files 54
	PDC Syntax Conventions 55
	PDC Naming Conventions 57
	assign_net_macros 58
	assign_region 59
	define_region 60
	move_region 62
	reserve 63
	set_io 63
	set_iobank 70
	set_location 75
	set_preserve 76
	Placement Rules for PLLs and DLLs 76

	Design Constraints
	See Also

	Families Supported
	See Also
	See Also

	Basic Concepts
	See Also
	Example 1:
	Example 2:
	See Also
	See Also
	See Also
	See Also

	I/O Attributes
	Entering Constraints
	See Also
	See Also

	Exporting Constraint Files
	Constraints by Name: Timing
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also

	Constraints by File Format - SDC Command Reference
	See Also
	See Also

	Referenced Topics
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also

	Design Object Access Commands
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also
	Arguments
	See Also

	Arguments
	Description
	Examples
	See Also
	See Also

	Arguments
	Exceptions
	Examples
	Arguments
	Examples
	I/O Directions Not Supported
	See Also

	Arguments
	Exceptions
	Examples
	Arguments
	Exceptions
	Example
	PRPF_006: PLL/DLL <inst name> must be placed before running Place & Route.
	PRPF_010: There can be a maximum of 6 PLL/DLL reference and/or fabric clocks coming driven by the FPGA fabric in the <NW|SW|NE|SE> location.
	PRPF_011: There can be a maximum of 2 PLL/DLL reference clocks coming driven by the FPGA fabric in the <NW|SW|NE|SE> location.

	Placement Rules for RGMII, SGMII, and IOG CDR Interfaces
	PRPF_001: Port <port name> for Interface <inst name> must be placed before running Place & Route.
	PRPF_002: Interface <inst name> has ports that must be assigned to the same physical lane. The current port assignment for this interface does not meet this requirement.
	PRPF_003: The current Interface <inst name> port assignment requires that pin <pin name (functional pin name)> be reserved. You must not assign any port to that package pin.
	PRPF_004: You must not assign <inst name> to any location. Use the set_io command to assign any Interface port to package pins. This instance will automatically be placed.
	PRPF_005: Port <port name> for Interface <inst name> must be assigned to <pin name (functional pin name)>.

	Placement Rules for Transceivers
	PRPF_007: TxPLL <inst name> must be placed before running Place & Route.
	PRPF_008: Dedicated XCVR ports <port name>* must be placed before running Place & Route.
	PRPF_009: Dedicated XCVR reference clock port <port name> must be placed before running Place & Route.
	PRPF_008: Dedicated XCVR ports <port name>* must be placed before running Place & Route.
	PRPF_009: Dedicated XCVR reference clock port <port name> must be placed before running Place & Route.
	PRPF_008: Dedicated XCVR ports <port name>* must be placed before running Place & Route.
	PRPF_009: Dedicated XCVR reference clock port <port name> must be placed before running Place & Route.

