UGO0758

User Guide
PolarFire FPGA Design Flow

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file

may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

& Microsemi

Power Matters.”

PolarFire FPGA Design Flow User Guide

Onz. -

Power Matters.

Microsemi Corporate
Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996

Email:
sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks and
service marks are the property of
their respective owners.

& Microsemi

Power Matters.”

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does
Microsemi assume any liability whatsoever arising out of the application or use of any product or
circuit. The products sold hereunder and any other products sold by Microsemi have been
subject to limited testing and should not be used in conjunction with mission-critical equipment
or applications. Any performance specifications are believed to be reliable but are not verified,
and Buyer must conduct and complete all performance and other testing of the products, alone
and together with, or installed in, any end-products. Buyer shall not rely on any data and
performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility
to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults,
and the entire risk associated with such information is entirely with the Buyer. Microsemi does
not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights,
whether with regard to such information itself or anything described by such information.
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the
right to make any changes to the information in this document or to any products and services
at any time without notice.

About Microsemi

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for aerospace & defense, communications, data center and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; enterprise storage and communication
solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-
over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi
is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally.
Learn more at www.microsemi.com.

5-02-00758-7/08.18

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Table of Contents

Table Of CONTENTS......u e 2
Libero SOC INtrodUCTION ... ccveeii e 4
Welcome to Microsemi's Libero® SoC PolarFire™ v2.3 Release.........ccccocvvevevenveiiieenieennenn, 4
Libero SOC PolarFire DeSIGN FIOW........ciiie it r e e e e nnnaneeeeae s 5
Constraint FIOW and DESIgN SOUICES........cuuiiaiiiiiiiiiieae ettt ee e e e e e e bt e e e e e e e aabebeeeaaaeaeaanreeees 8
File TYPES iN LIDEIO SOC ... cciiiieiiiiiiieii ettt e st e et e e e s e s e e e e e e s s snnb e e e e e e e sennnnnnneeeaees 9
Software TOOIS - LIDEIO SOC.........oviiiiiiiic et 10
Libero Design FIOW ... 12
Starting the LIDEIO GUIeeiiiiiec et e s e e e e e s s e e e e e e e e snnneeeees 12
[1S3 o [T = T) o S 13
Using the New Project Wizard to Start @ ProjECtc.uuviiiiiiiiiiiiiiieeeeee i 14
Create and Verify DESIQNi i e 19
Create SMANDESIGN. ... ueiii ettt ettt e e e st e e et e e e e bt e e e e bt e e e e bbe e e e anre e e e annas 19
Create Core frOM HDL ...ttt e e e e e e e e e e e e s nnaeee s 20
[1S3 T [1T o TR T |0 22
Designing With BIOCK FIOWooiiiiiiiie ettt e e et e e e e e e s nnnnanne e e e e 23
Create New SmartDesign TEStDENCRcoiii i 23
HDL TESIDENCI ... ettt st e e e 24
Verify Pre-Synthesized Design - RTL SIiMulationcccceeeviiiciiieeee e 25
Libero SoC Constraint Management.........cccooeeieeiiii, 29
Invocation of Constraint Manager From the Design Flow Window...........cccccvcvvveeciiiiiieenennn, 29
LiDEro SOC DESIGN FIOWveviieiiiiiiiiee et e e s e e e e s s st ar e e e e e e s e nnnnreneeeeee s 29
Introduction to CONSIAINT MANAGETcoii ittt e e e e e e eenbbeeeaaaeeas 30
g oo = W @ o] 0 11 =11 1= 34
(@70 0153 1= 11 LA I8/ = RS 38
Constraint Manager — /O Attributes Tab ... 39
Constraint Manager — TimIiNG Tabc.uviiiiieii e e e 41
DT AV =To I OTo] 1S3 =Vl USRS 43
Constraint Manager — FIOor Planner Tab........oouuiiiiiiiee e 43
Constraint Manager — Netlist Attributes Tab...........covviiiiiiii e 45
IMPIEMENT DESIGN coviiiiiiiie e e e 47
SYNENESIZE .ottt e e e e et e e e e e e e e e bbb et e e e e e e e nbaeaeeas 47
Verify POSt-SYNtheSIZEa DESIGN.....coiuiiiiiiiiiie ittt e e sneee s 52
1070 T 011 =3 L= 1) PSPPSR 53
Constraint FIow in IMplementation.......... ... 54
PlACE @NU ROULE......coiiiiiiie ittt st s ettt e e st e e s sttt e e s anbbe e e s anbbeeeennnes 59

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
Multiple Pass Layout CONfIQUIALIONooiiiiiiiiiiee ittt a e 63
RESOUICE USAJE ..coeiiiiiiieiieieie ettt ettt ettt ettt et et et et et et et et et et et et et et et et e eeteaeteteaataaaaaaeaaeaees 65
L€ (0] o F= L A\ A L= oL o SR 66
Verify Post Layout IMplementationoooiiiiiiiiie e 71
CoNfIGUIE HardWare........oooieiii et 83
Programming Connectivity and INtErface...........uuvvveiiiiiiiiieee e e e e 83
ProgrammEr SEHINGSueeiiiiiiee et e e e et e e e e e e e e s bt e e e e e e e e e e e aanbbeeeaaaeeas 85
Y= 1= Tox o T | = 1o 1] 0= SRS 86
Program DESIgNu i 88
GeNErate FPGA AITAY D@Lauuuuuuiiiuiiiiiiiiiiitiiietiieiaiababababeeababebebebebebebebebsbebebsbebsbsbebebsbsrssnrnnes 88
Configure Design Initialization Data and MEMOIIES..........ccuveeeieeeiiiiiieie e 88
Generate Design Initialization DAtacceeeiiiiiiiiiiee e 107
Configure 1/0 States During JTAG Programming...........ccuueeeeeaaeniiiieeeeia e seaiieeeeeae e seeenees 107
Configure Programming OPtiONSuuuiiiiieeiiiiiiiieeee e s s st e e e e e s st e e e e e e s s sanree e e e e e e s snnnnneees 108
(010 0110 0TI T =T ol U]] /SR 109
PermMan@nt LOCKSoooi ittt a et e e e e e e enebane s 119
Configure Permanent LOCKS for ProduCtionceeeeiiiiiiiieeiee e cciiiieeee e s e e e 120
(070 0110 8 = =71 €] (== o SR 121
GENEIALE BILSIIEAIM ...ceii ittt e e e e ettt e e e e e e e s abbbe e e e e e e e e annreneeas 122
Run Programming DEVICE ACHONSuuuiiieeeiiiiiiieieee e e e s ettt ee e e e e e s sstntre e e e e e e e s nanree e e e e e e e snnnrnneees 122
Program SPI FIash IMage.....cceeeoi oottt e e e e e e e e e enrnae e 130
DEbUQG DESIGN ..o 134
Generate SmartDebug FPGA Array Datal..........c.uvveveieeiiiiiiiieiee et e e s s seee e e e e e snnnnneees 134
I 1= g 1= o T SR 134
To [T 101 A YA BI=T o TN o T B IS o | o I PP 135
Handoff Design for Production...........ccoiiiiiiiiie e 136
L d 0oL A 271 51 £=T- 1 1SR 136
EXport FIaShPro EXPress JOD ...t 143
[d o o] A] d I o F= 1= T T 4 = Vo = S 147
L d 0oL A =T T =T o To o S 148
EXPOIT BSDL File. ..ottt ettt e e ettt e e e e e e e bb e e e e e e e e e e aannreneeas 148
L d 00T 2 IS0 1Y o o = R 149
Export SmartDebug Data (Libero SOC)ccoooiiiiiiiiiiiiieeeeeeeee e 151
REFEIENCES ..oeieeeee e e e e e e 154

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Libero SoC Introduction

. gl
Libefo)

System-on-Chip

Welcome to Microsemi's Libero- SoC PolarFire™ v2.3 Release

Microsemi's Libero® SoC PolarFire™ software is specifically for designing with PolarFire FPGAs, the fifth
generation family of non-volatile FPGA devices from Microsemi, built on state-of-the-art 28nm non-volatile
process technology. Cost-optimized PolarFire FPGAs deliver the lowest power at mid-range densities.

For documentation about PolarFire FPGAs, see the PolarFire product information page on the Microsemi website.

Microsemi's Libero® SoC is a comprehensive and powerful FPGA design and development software suite,
providing start-to-finish design flow guidance and support for novice and experienced users alike. Libero SoC
combines Microsemi's tools with EDA tools such as Synplify Pro® and ModelSime.

More Information
For more information about the Libero® SoC PolarFire v2.3 release, see the Libero SoC PolarFire Web Page.

https://www.microsemi.com/polarfire
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Libero SoC PolarFire Design Flow

Create Testbench

[e — — — Create Design
* Constraint
_ Manager
o Pre- Synthesis
sﬁfﬁlﬁf Simulation Pre-Syn constraints
I . Derived Constraints 5D
Implement |-
Device ’-’__, User SDC
Urnder Tast| - Metlist Attributes
| it TR e T T —i I Synthezize +'/
- P‘?’;_“ 5'1""_'““'5 k Place & Route Constraints
imulation o |EEa LA iy e R i v
HOL Testbench) I | | T +’—-.__ Derived Constraints SDC
—______ | | Floor Planning PDC
| User 5DC
I:Ie'.'?-e B Post- Layout o[/O PDC
Uadar Tan i Simulation |
Verify Timi
L I | it 4\ Timing Verification Constraints
\\\ Derived Constraints 304
User SDC

Meets Timing o
ReqUirel‘V

Yes

Configure Hardware |

Program Design
Generate FPGA Array Data
Cofigure Options

Debug Design
EmartDebug

Identify Debug

!

Handoff for Firmware Dev, |
Handoff for Debugging

Handoff for Production
Security Options

Figure 1 - Libero SoC Design Flow

Create Design
Create your design with any or all of the following design capture tools:
e Create SmartDesign
e Create HDL
e Create SmartDesign Testbench (optional, for simulation only)
e Create HDL Testbench (optional, for simulation only)

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Once the design is created, you can invoke simulation for pre-synthesis verification.

It is also possible to click the o button, to execute the Libero SoC software through Place and Route with
default settings. However this bypasses constraint management.

Constraints

Implement

Manage Constraints

In the FPGA design world, constraint files are as important as design source files. Constraint files are
used throughout the FPGA design process to guide FPGA tools to achieve the timing and power
requirements of the design. For the synthesis step, SDC timing constraints set the performance goals
whereas non-timing FDC constraints guide the synthesis tool for optimization. For the Place-and-
Route step, SDC timing constraints guide the tool to achieve the timing requirements whereas
Physical Design Constraints (PDC) guide the tool for optimized placement and routing (Floorplanning).
For Static Timing Analysis, SDC timing constraints set the timing requirements and design-specific
timing exceptions for static timing analysis.

Libero SoC provides the Constraint Manager as the cockpit to manage your design constraint needs.
This is a single centralized graphical interface for you to create, import, link, check, delete, edit design
constraints and associate the constraint files to design tools in the Libero SoC environment. The
Constraint Manager allows you to manage constraints for SynplifyPro synthesis, Libero SoC Place-
and- Route and the SmartTime Timing Analysis throughout the design process.

Invocation of Constraint Manager From the Design Flow Window

After project creation, double-click Manage Constraints in the Design Flow window to open the
Constraint Manager.

| Reports & X | my usersdc & X ‘ Constraint Manager & X ‘ mddr_top_sb CCC_0_FCCC.sde & X | =
‘ 1J0 Attributes \/ Timing /" Floor Planner Netlist Attributes \J’ b_ ConStralnts Tab
~
[New] [Import] [Link. l [Editwim Constraint Editor 'I [Check v] [Dar\va Consbaims] [Constraintcaverage 'I [Help]6 ’
N—
y Synthesis Place and Route Timing Verification
constraint\ top_derived_constraints.sdc
constraint\my.sdc B El L]
constraintimy_usersde]]]
N
Constraints
File Order

File and Tool Association

Figure 2 - Constraint Manager
See Also
e Constraint Manager

e New Project Wizard to import/link design constraints when creating new projects

Open Netlist Viewer (User Guide)

Synthesize - Double-click Synthesize to run synthesis on your design with the default settings. The
constraints associated with Synthesis in the Constraint Manager are passed to Synplify.

Verify Post-Synthesis Implementation (Simulate)

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/stdalone_nlv_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Place and Route - Place and Route takes the design constraints from the Constraint Manager and

runs with default settings. This is the last step in the push-button o design flow execution.

Verify Post Layout Implementation

e Verify Timing - Right click and select Configure Options to specify a timing report with your
desired conditions.

e Open SmartTime
e Verify Power

e Open SSN Analyzer

Configure Hardware

Programming Connectivity and Interface - Organizes your programmer(s) and devices.

Configure Programmer - Opens your programmer settings; use if you wish to program using
settings other than default.

Select Programmer

Device I/O States During Programming - Sets your device I/O states during programming; use if your
design requires that you change the default 1/O states.

Program Design

Generate FPGA Array Data
Configure Design and Memory Initialization

Configure I/O States During JTAG Programming

Configure Programming Options

Configure Security Wizard

Configure Permanent Locks (OTP)

Generate Bitstream
Run PROGRAM Action
Program SPI Flash Image

Debug Design

SmartDebug (User Guide)
Identify Debug Design

Handoff Design for Production

Export Bitstream
Export SPI Flash Image
Export FlashPro Express Job

Export Pin Report

Export BSDL
Export IBIS Model

Handoff Design for Debugging (Export SmartDebug Data)

https://coredocs.s3.amazonaws.com/Libero/pf_2_3_0/Tool/pf_smartdebug_ug.pdf

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Constraint Flow and Design Sources

The Constraint Flow supports HDL and Netlist design sources. The Libero SoC Design Flow window and the
Constraint Manager are context-sensitive to the type of design sources: HDL or Netlist.

Constraint Flow for HDL designs

When the design source is HDL, the Design Flow window displays Synthesis as a design step. The Constraint
Manager also makes available Synthesis as a target to receive timing constraints and netlist attribute constraints.
The options to promote or demote global resources of the chip are set in the Synthesis options.

Constraint Flow for Netlist designs

When the design source is a Netlist, the Design Flow window displays Compile Netlist as a design step. Timing
constraints can be passed to Place and Route and Timing Verification only.

The options to promote or demote global resources of the chip are set in the Compile Netlist options.
The HDL flow versus the Netlist Flow is compared and contrasted below.

HDL Flow

Netlist Flow

Design Flow

Top Module(root): sort_4

Tool
+ » Create Design
=i~ # Constraints
3 Manage Constraints
¢ = » Implement Design
’Q* Open Netlist Viewer
v S Synthesize
- » Verify Post-Synthesized Desi

Post Layout Implemen

D =

P Verify

|
#- b Configure Hardware
#- » Program Design
+- ¢ Debug Design
#- » Handoff Design for Production
#- ¢ Handoff Design for Debugging

Design Flow Window

Design Flow
Top Module(root): sort_4

Tool

#- b Create Design

® Manage Constraints
P Implement Design
Q Open Netlist Viewer
» Verify Pre-Compiled Design
% Compile Netlist
9;5 Place and Route
» Verify Post Layout Implementation
Configure Hardware
Program Design
Debug Design
Handoff Design for Production
Handoff Design for Debugging

=-E-E-E

ryFvYywwvwi

&

Design Flow Window

Congiraint Manager & X l

7 T/0 Attributes) Timing /" Floor Planrer 4" Netist Atiributes %

Mew | mmpot | uek Eclt with Constraint Editor [*| o

| Synthesis | Plac

comnstraint\usersde [Target |

,|"- o Annhutesv Timing \U,.- Fhoor Planner -"I.f- Metlist Attributes 1'.

Link Edit with Constraint Editor

New | tmport

Place and Routs Tim

o L
o

constralnt/user. sdc
constrainbimy2 sdc

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

HDL Flow

Netlist Flow

Constraint Manager

Constraint Manager

ConstraintMansger & X |

{170 Attributes % Timing /" Ficor Planner /" Netist Attnbutes

{1/ Attributes \[Timing /" Floor Planner 1/ Netlist Attributes |

Global Promotion/Demotion Options set in

Synthesis Options Dialog Box

_ New [v|| Import Lirik Check =] Hed
Mew | wmpert | uink Edit with Constraint Editor [* Chd :
E— Check Compile N
| Synthess ch - :
constraintwsersdc | Target |] Cil constraint/my.ndc 4
Constraint Manager - Check *.fdc and *.ndc Constraint Manager - Check *.ndc only
hesi i »x 1 ~
c? = e A Compile Netlist Options P -
Sobal Nets
Mg e G Rk il P
Minimum number of asynchronous pins: 800 Global Promotion
Minimum fanout of non-clock nets Lo be kept on globals: 5000
Number of global resources [z
Maximum number of global nets that could be demated to raw-globals: |16 MNumber of global resaurces: 24
Minimum fanout of global nets that could be demoted to row-globals: 1000
QEtimizations Maximum number of global nets that could be demoted to row-globals: | 18]
Enable retiming
RAM optimized for: ® High speed —
Map seq-shift register compenents Lo Registers % RAMEAX1Z Minimum fanout of global nets that could be demoted to row-globals: 1000
Map ROM components to: ® Logic RAM
Addiionst cptions for SynpPrs snthesis Minimum fanout of non-clock nets to be kept on globals: 5000
Script file:
Agaitionat options
Global Promotion/Demotion Options set in
] © concar [x| Compile Netlist Options Dialog Box

Figure 3 - HDL vs. Netlist Flow

File Types in Libero SoC

When you create a new project in Libero SoC it automatically creates new directories and project files. Your
project directory contains all of your local project files. When you import files from outside your current project, the

files are copied into your local project folder.

The Project Manager enables you to manage your files as you import them. If you want to store and maintain your
design source files and design constraint files in a central location outside the Project location, Libero gives you
the option to link them to your Libero project folders when you first create your project. These linked files are not

copied but rather linked to your project folder.

Depending on your project preferences and the version of Libero SoC you installed, the software creates

directories for your project.

The top level directory (<project_name>) contains your *.prjx file; only one *.prjx file is enabled for each Libero
SoC project. If you associate Libero SoC as the default program with the *.prjx file (Project > Preferences >

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Startup > Check the default file association (.prjx) at startup), you can double-click the *.prjx file to open the
project with Libero SoC.

component directory - Stores your SmartDesign components (SDB and CXF files) and the *_manifest.txt file for
each design components in your Libero SoC project. Refer to the *_manifest.txt file if you want to run synthesis,
simulation, and firmware development with your own point tools outside the Libero SoC environment. For each
design component, Libero SoC generates a <component_name>_manifest.txt file which stores the file name and
location of:

e HDL source files to be used for synthesis and simulations
e Stimulus files and configuration files for simulation

e Firmware files for software IDE tools

e Configuration files for programming

e Configuration files for power analysis.

constraint directory - All your constraint files (SDC timing constraint files, floorplanning PDC files, I/O PDC files,
Netlist Attributes NDC files)

designer directory - *_ba.sdf, *_ba.v(hd), STP, PRB (for Silicon Explorer), TCL (used to run designer),
impl.prj_des (local project file relative to revision), designer.log (lodfile)

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog

simulation directory - meminit.dat, modelsim.ini filesfiles and *.vec file, run.do file for simulation.
smartgen directory - GEN files and LOG files from generated cores

stimulus directory - BTIM, Verilog, and VHDL stimulus files

synthesis directory - *.vm (Verilog Netlist output), *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr
(Synplify logfile), precision.log (Precision logfile), *.tcl (used to run synthesis) and many other files generated by
the tools (not managed by Libero SoC)

viewdraw directory - viewdraw.ini files

Internal Files

Libero SoC generates the following internal files. They may or may not be encrypted. They are for Libero SoC
housekeeping and are not for users.

File File Extension Remarks
Routing Segmentation File *.seg
Combiner Info *.cob
Hierarchical Netlist *.adl
Flattened Netlist * afl
map file *.map Fabric Programming File

Software Tools - Libero SoC

The Libero SoC integrates design tools, streamlines your design flow, manages design and log files, and passes

design data between tools.
For more information on Libero SoC tool

S, Visit:

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

10

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
Function Tool Company

Project Manager, HDL Editor, Core Generation Libero SoC Microsemi

SoC
Synthesis Synplify® Pro ME | Synopsys
Simulation ModelSim® ME Mentor

Pro Graphics

Timing/Constraints, Power Analysis, Netlist Viewer, Floorplanning, Libero SoC Microsemi
Package Editing, Place-and-Route, Debugging SoC
Programming Software FlashPro Microsemi

SoC
Programming Software FlashPro Express | Microsemi

SoC

Project Manager, HDL Editor targets the creation of HDL code. HDL Editor supports VHDL and Verilog with
color, highlighting keywords for both HDL languages.

Synplify Pro ME from Synopsys is integrated as part of the design package, enabling designers to target HDL
code to specific devices.

Microsemi SoC software package includes:
e Chip Planner displays I/0 and logic macros in your design for floorplanning
e Netlist Viewer design schematic viewer
e SmartPower power analysis tool
e SmartTime static timing analysis and constraints editor

ModelSim ME Pro from Mentor Graphics enables source level verification so designers can verify HDL code line
by line. Designers can perform simulation at all levels: behavioral (or pre-synthesis), structural (or post-synthesis),
and back-annotated (post-layout), dynamic simulation. (ModelSim ME Pro is supported in Libero Gold and
Platinum only.)

11

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Libero Design Flow

Starting the Libero GUI

When starting Libero SoC GUI, the user will be presented with the option of either creating a new project, or

opening an old one.

-

@

Project File Edit View Design Tools Help

N W 22 @ 0 A

StartPage

Recent Projects

Welcome to Libero SoC
Libero SoC Quickstart

Libere SoC Interface Description

Libero SoC Release Notes on the Web
Libero Tutorials

Product Tutorials

Training Webcasts

Microsemi SoC Website

New...
Open...

(1N

Log

Libero - ox

4

Welcome to Microsemi's Libero® SoC
PolarFire™ v2.3 Release

Microsemi's Libero™ SoC PolarFire™ software is specifically for designing with PolarFire
FPGAs, the fifth generation family of non-volatile FPGA devices from Microsemi, built on state-
of-the-art 28nm non-volatile process technology. Cost-optimized PolarFire FPGAs deliver the
lowest power at mid-range densities.

For documentation about PolarFire FPGAs, see the PolarFire product information page on the
Microsemi website.

Microsemi's Libero® SoC is a comprehensive and powerful FPGA design and development
software suite, providing start-to-finish design flow guidance and support for novice and
experienced users alike. Libero SoC combines Microsemi's tools with EDA tools such as
Synplify Pro®™ and ModelSim®.

More Information

For more information about the Libero® SoC PolarFire v2.3 release, see the Libero SoC
PolarFire Weh Page.

@ Errors A Warnings @ Info

Log

Having opened a project, the Libero SoC GUI presents a Design Flow window on the left hand side, a log and
message window at the bottom, and project information windows on the right. Below we see the GUI of a newly

Message

Fam: |Part:

Figure 4 - Libero SoC Start-up GUI

Clicking on ©ren - gpens a pre-existing Libero SoC project.

Clicking on New- starts the New Project Wizard. Upon completion of the wizard, a new Libero SoC project is

created and opened.

created project with only the top level Design Flow Window steps visible.

12

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Project File Edit View Design Tools Help

DEW o033 &

Design Flow & & Reports & X StartPage & X ¥
Top Module{root): sort_4 B0 FF @ % |[Elan | @oErrors A 0Warnings @ 0lnfo
= sort_4 reports Pronect: FaNe i BoLt

Create Design Locat 4 sgatest ld/southard/1ib prod/prod_v1l_
Constraints

Implement Design

Configure Hardware

Program Design

Debug Design]
Handoff Design for Production
Handoff Design for Debugging

3B

Design Flow | Design Hierarchy | Stimulus Hierarchy = Catalog | Files

Figure 5 - Design Flow Window

The Design Flow Window

The Design Flow Window for each technology family may be slightly different. The Constraint Flow choice made
during new project creation may also affect the exact elements of design flow. However, all flows include some
version of the following design steps:

e Create

e Constrain

e Implement

e Configure Hardware
e Program Design

e Debug Design

e Handoff

Design Report

The Design Report Tab lists all the reports available for your design, and displays the selected report.

Reports are added automatically as you move through design development. For example, Timing reports are
added when you run timing analysis on your design. The reports are updated each time you run timing analysis.

If the Report Tab is not visible, you can expose it at any time by clicking on the main menu item Design >
Reports

If a report is not yet listed, you may have to create it manually. For example, you must invoke Verify Power
manually before its report will be available.

Reports for the following steps are available for viewing here:
e Project Summary
e Synthesize
e Place and Route
e Verify Timin
o Verify Power
e Programming
e Generate FPGA Array Data
e Generate Bitstream

e Export
e Export Pin Report

13

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e Export BSDL File

Using the New Project Wizard to Start a Project

New Project Creation Wizard — Project Details

You can create a Libero SoC project using the New Project Creation Wizard. You can use the pages in the wizard
to:

e Specify the project name and location

e Select the device family and parts

e Setthe I/O standards

e Import HDL source files and/or design constraint files into your project

Project Detais

onll ¥ L % ¥ L4 boryls il

Spealy Propect Detals

Libefo)

Sytemon {hyp

Project Datails

Proect Mame: |

Project Locaban C: faemp Erowss...
Device Selection

Descroton
Device Settings f

Design Template Frefered HOL Type: | Werlog =
Eruabile [oach Croaton
Add HDL 5ources

Add Constraints

Project

Figure 6 - Libero SoC New Project Creation Wizard

Project Name - Identifies your project name; do not use spaces or reserved Verilog or VHDL keywords.
Project Location — Identifies your project location on disk.

Description — General information about your design and project. The information entered appears in your
Datasheet Report View.

Preferred HDL type - Sets your HDL type: Verilog or VHDL. Libero-generated files (SmartDesigns, SmartGen
cores, etc.) are created in your specified HDL type. Libero SoC supports mixed-HDL designs.

Enable Block Creation - Enables you to build blocks for your design. These blocks can be assembled in other
designs, and may have already completed Layout and been optimized for timing and power performance for a
specific Microsemi device. Once optimized, the same block or blocks can be used in multiple designs.

When you are finished, click Next to proceed to the Device Selection page.

See Also
New Project Creation Wizard - Device Selection

New Project Creation Wizard — Device Settings

14

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

New Project Creation Wizard — Add HDL Source Files
New Project Creation Wizard - Add Constraints

New Project Creation Wizard — Device Selection

The Device Selection page is where you specify the Microsemi device for your project. Use the filters and drop-
down lists to refine your search for the right part to use for your design.

This page contains a table of all parts with associated FPGA resource details generated as a result of a value
entered in a filter.

When a value is selected for a filter:

e The parts table is updated to reflect the result of the new filtered value.
e All other filters are updated, and only relevant items are available in the filter drop-down lists.

For example, when PolarFire is selected in the Family filter:
e The parts table includes only PolarFire parts.
e The Die filter includes only PolarFire dies in the drop-down list for Die.

a New project e
l¢= Device selection
g Select a part for your project from the part number list Selected part: MPF300T_ES-1FCGA484E
- : Part filter
Project Details
Farnily: [PolarFlre =] Die: |All + | Package: [A\I =]
Device Selection
Reset filters
Device Settings Search part:
Part Number v || DFF User 1/0s USRAM LSRAM Math H-Chip Global Z
MPF100TS_ES-1FULLPKGE | 108600 296 1008 352 336 48
Add HDL Sources MPE200TS ES-1FULLPKGE | 192408 368 1764 616 588 48
MPF300T ES-1FCG1152E | 299544 512 2772 952 924 48
MPF300T ES5-1FCG484E 299544 244 2772 a952 924 48
MPF300T ES-1FCG784E | 209544 388 2772 952 924 48
. MPF300T_ES-1FCS5G536E | 299544 300 2772 952 924 48
Add Constraints MPF300T_ES-1FCVGAB4E | 299544 284 2772 952 924 48 | |
MPF300T_ES-FCG1152E | 299544 512 2772 952 924 48
MPF300T_ES-FCG484E 299544 244 2772 952 924 48
MPF300T_ES-FCG784E 299544 388 2772 952 924 48
- ’I\ MPF300T_ES-FCSG536E | 209544 300 2772 952 924 48
MPF300T_ES-FCVG484E 299544 284 2772 952 924 48 L
l ero MPF300TS ES-1FCG1152E | 299544 512 2772 952 924 48 K
System-onChip - [l I [+]
[<Back |[Next>][Fnish |[cancel |

Figure 7 - New Project Creation Wizard - Device Selection Page
Family — Specify the Microsemi device family. Only devices belonging to the family are listed in the parts table.

Die / Package / Speed - Select your device die, package, and speed grade. Use the Die/Package/Speed filters
to help in selection. The Die/Package/Speed grades available for selection depend on the level of Libero SoC
license (Evaluation/Silver/Gold/Platinum) - refer to the Libero SoC Licensing Web Page for details.

Range - Define the voltage and temperature ranges a device may encounter in your application. Tools such as
SmartTime, SmartPower, timing-driven layout, power-driven layout, the timing report, and back-annotated
simulation are affected by operating conditions.

Supported ranges include:
e All - All ranges
e EXT — All parts that support operating temperature range from 0 to 100 degrees Celsius
e IND — All parts that support operating temperature range from -40 to 100 degrees Celsius
Note: Supported operating condition ranges vary according to your device and package.
Refer to your device datasheet to find your recommended temperature range.
Reset Filters — Reset all filters to the default ALL option except Family.

15

https://www.microsemi.com/products/fpga-soc/design-resources/licensing

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Search Parts — Enter a character-by-character search for parts. Search results appear in the parts table.
When Device Selection is completed, click on:

e Next to proceed to the Device Settings page
OR

e Finish to complete New Project Creation with all remaining defaults.

New Project Creation Wizard — Device Settings
The Device Settings page is where you set the Device 1/0 Technology and Reserve pins for Probes.

@ New project [FEIET%")

Device settings
Choose device settings for your project

Selected part: MPF200TS_ES-1FULLPKGE

Project Details Core Voltage : m
1O settings
Default /O technology: LVCMOS 1.8V~ | @ Please use the /O Editor to change individual /O attributes.
Device Selection =
[#] Reserve pins for probes
Device Settings ["] System controller suspended mode
Add HDL Sources
Add Constraints
Libefo)
System-on-Chip e

[< Back] [Next > l [Finish] I Cancel

Figure 8 - New Project Creation Wizard — Device Settings Page
Core Voltage - Set the core voltage for your device.

Default I/O Technology - Set all your I/Os to a default value. You can change the values for individual 1/Os in the
1/0 Attribute Editor. The I/O Technology available is family-dependent.

Reserve Pins for Probes - Reserve your pins for probing if you intend to debug using SmartDebug.

When you are finished, click Next to proceed to the next page, or click Finish to complete New Project Creation
with all remaining defaults.

New Project Creation Wizard — Add HDL Source Files

The Add HDL Source Files page is where you add HDL design source files to your Libero SoC project. The HDL
source files can be imported or linked to the Libero SoC Project.

16

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
(-'\ New project - ~ = | = ﬁ1

Add HDL source files
Specify HDL files to import/link to your project.

Project Details Import file J [Link file

File type File name File location

Selected part: MPF200TS_ES-1FULLPKGE

Device Selection

‘ Device Settings

Add HDL Sources

Add Constraints

Libefo)

System-on-Chip

[< Back] l Next > l [Finish] l Cancel

Figure 9 - New Project Creation Wizard - Add HDL Source Files Page
Import File — Navigate to the disk location of the HDL source. Select the HDL file and click Open. The HDL file is
copied to the Libero Project in the <prj_folder>/hdl folder.

Link File — Navigate to the disk location of the HDL source. Select the HDL file and click Open. The HDL file is
linked to the Libero Project. Use this option if the HDL source file is located and maintained outside of the Libero

project.

Delete - Delete the selected HDL source file from your project. If the HDL source file is linked to the Libero
project, the link will be removed.

When Add HDL Sources is completed, click on:

e Next to proceed to the Add Constraints page
OR

e Finish to complete New Project Creation.

New Project Creation Wizard - Add Constraints

The Add Constraints page is where you add Timing constraints and Physical Constraints files to your Libero SoC
project. The constraints file can be imported or linked to the Libero SoC Project.

17

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
rc'\ New project — _—_ —~ = |[E] iﬁ1

Add constraints
Specify constraint files for timing or physical constraints.

Project Details Import file] [Link file

File type File name File location

Selected part: MPF200TS_ES-1FULLPKGE

Device Selection
T Device Settings
Add HDL Sources

Add Constraints

Libefo)

System-on-Chip

Next > [Finish] l Cancel

Figure 10 - New Project Creation Wizard — Add Constraints Page

Import File — Navigate to the disk location of the constraints file. Select the constraints file and click Open. The
constraints file is copied to the Libero Project in the <prj_folder>/constraint folder.

Link File — Navigate to the disk location of the constraints file. Select the constraints file and click Open. The
constraints file is linked to the Libero Project. Use this option if the constraint file is located and maintained
outside of the Libero project.

Delete - Remove the selected constraints file from your project. If the constraints file is linked to the Libero
project, the link will be removed.

When Add Constraints is completed, click on:

e Finish to complete New Project Creation.

The Reports tab displays the result of the New Project creation.
Reports & X | StartFage & X |

4 Project Summary &3 0 Errors & 0 Warnings b 0 Info
g5_prep_instlog

Project MName: g5_prep inst

Location: U:\proj wll 8%g5 prep inst
Dezcription:

Preferred HDL Type: Verilog

o
Device Details

o

Part Number : MPF200T8_ES-1FULLFEGE

Family : PolarFire

Die : MPF200TS_ES

Package : Fully Bonded Package

Speed : -1

Core Voltage : 1.0

Eange : EXT

Figure 11 - Reports Tab

18

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Create and Verify Design

Create your design with any or all of the following design capture tools:

Create SmartDesign

Create HDL

Create SmartDesign Testbench (optional, for simulation only)

Create HDL Testbench (optional, for simulation only)

Create SmartDesign

About SmartDesign

SmartDesign is a visual block-based design creation/entry tool for the instantiation, configuration and connection
of Microsemi IPs, user-generated IPs, custom/glue-logic HDL modules. This tool provides a canvas for
instantiating and stitching together design objects. The final result from SmartDesign is a design-rule-checked and
automatically abstracted synthesis-ready HDL file. A generated SmartDesign can be the entire FPGA design or a
component subsystem to be re-used in a larger design.

The following design objects can be instantiated in the SmartDesign Canvas:

Microsemi IP Cores

User-generated or third-party IP Cores
HDL design files

HDL + design files

Basic macros

Other SmartDesign components (*.cxf files) generated from SmartDesign in the current Libero SoC project
or may be imported from other Libero SoC projects.

Re-usable design blocks (*.cxz files) published from Libero SoC

For more information see the SmartDesign User Guide.

Create New SmartDesign

This SmartDesign component may be the top level of the design or it may be used as a lower level SmartDesign
component (after successful generation) in another design.

1.

2.

From the File menu, choose New > SmartDesign or in the Design Flow window or double-click Create
SmartDesign. The Create New SmartDesign dialog box opens.

Bl Create New SmartDesign

MName:
|
ox

Figure 12 - Create New SmartDesign Dialog Box

Enter a name and click OK. The component appears in the Design Hierarchy tab of the Design Explorer.
NOTE: The component name you choose much be unique in your project

For more information see the SmartDesign User Guide.

19

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smartdesign_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smartdesign_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Generating a SmartDesign Component

Before your SmartDesign component can be used by downstream processes, such as synthesis and simulation,
you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.

Note: The generated HDL file will be deleted when your SmartDesign design is modified and saved to
ensure synchronization between your SmartDesign component and its generated HDL file.

Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected before
you generate your SmartDesign design.

If theéorts of a sub-design have changed, then the parent SmartDesign component will be annotated with the

icon in the Design Hierarchy tab of the Design Explorer.

Generate Recursively vs. Non-Recursively
These options are set in the Project Preference Dialog Box - Design Flow Preferences section.

¢ In the "Recursive generation"” mode, the Generate button will attempt to generate all sub-design
SmartDesigns, depth first. The parent SmartDesign will only be generated if all the sub-designs are
generated successfully.

¢ In the "Non-Recursive generation" mode, the Generate button will only attempt to generate the specified
SmartDesign. The generation can be marked as successful even if a sub-design is un-generated (either

never attempted or unsuccessful). An un-generated component will be annotated with the icon ﬂ in the
Design Hierarchy tab of the Design Explorer.

Create Core from HDL

You can instantiate any HDL module and connect it to other blocks inside SmartDesign. However, there are
situations where you may want to extend your HDL module with more information before using it inside
SmartDesign.

e If you have an HDL module that contains configurable parameters or generics.

e If your HDL module is intended to connect to a processor subsystem and has implemented the appropriate
bus protocol, then you can add a bus interface to your HDL module so that it can easily connect to the bus
inside of SmartDesign.

To create a core from your HDL.:

1. Import or create a new HDL source file; the HDL file appears in the Design Hierarchy.

2. Select the HDL file in the Design Hierarchy and click the HDL+ icon or right-click the HDL file and choose
Create Core from HDL.
The Edit Core Definition — Ports and Parameters dialog appears. It shows you which ports and
parameters were extracted from your HDL module.

3. Remove parameters that are not intended to be configurable by selecting them from the list and clicking the
Xicon. Remove parameters that are used for internal variables, such as state machine enumerations.
If you removed a parameter by accident, click Re-extract ports and parameters from HDL file to reset the
list so it matches your HDL module.

20

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
Ml Edit Core Definition - Ports and Parameters EHE

HDL: CiiDocuments and SettingsifarleyciDeskkophfarleyc_actelpritsoc_10spl_cc_hdlihdifyaPE_adder.y

Module: MyAPE_adder

Extracted Ports Extracted Parameters N
PCLE i |WIDTH

PRESETH SIZE

PADDR[4:0] APE_SIZE

PSEL FIFCO_EMABLE

PEMAELE COUNTER _EMNABLE

PWRITE

PROATA[7:0]
PYDATA[7:00]
PREADY
PSLYERR
TN_A[15:0]
N_E[15:0]
RESULT[15:0]
OWERFLOWY

Re-extract ports and parameters From HDL |

Help | AddEdit bus interfaces... I OF | Cancel |

Figure 13 - Edit Core Definition - Ports and Parameters Dialog Box
4. (Optional) Click Add/Edit Bus Interfaces to add bus interfaces to your core.

After you have specified the information, your HDL turns into an HDL+ icon in the Design Hierarchy. Click and
drag your HDL+ module from the Design Hierarchy to the Canvas.

If you added bus interfaces to your HDL+ core, then it will show up in your SmartDesign with a bus interface pin
that can be used to easily connect to the appropriate bus IP core.

If your HDL+ has configurable parameters then double-clicking the object on the Canvas (or right-click and select
Configure) invokes a configuration dialog that enables you to set these values. On generation, the specific
configuration values per instance are written out to the SmartDesign netlist.

|| Configurator { = | =] Iﬁr

-

| prep9_0
BRsT OB
AS FD
Sy CB Configurator
B> AH[T: DB
i CE User:Private:prep9:1.0
i BD

AL

BEI Configuration ‘
_________________________ #=

WIDTH: 16
Help OK H Cancel

Figure 14 - HDL+ Instance and Configuration Dialog Box
You can right-click the instance and choose Modify HDL to open the HDL file inside the text editor.

Edit Core Definition

You can edit your core definition after you created it by selecting your HDL+ module in the design hierarchy and
clicking the HDL+ icon.

21

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Remove Core Definition

You may decide that you do not want or need the extended information on your HDL module. You can convert it
back to a regular HDL module. To do so, right-click the HDL+ in the Design Hierarchy and choose Remove Core
Definition. After removing your definition, your instances in your SmartDesign that were referencing this core
must be updated. Right-click the instance and choose Replace Component for Instance.

Designing with HDL

Create HDL

Create HDL opens the HDL editor with a new VHDL or Verilog file. Your new HDL file is saved to your /hdl
directory; all modules created in the file appear in the Design Hierarchy.

You can use VHDL and Verilog to implement your design.

To create an HDL file:

1. Inthe Design Flow window, double-click Create HDL. The Create new HDL file dialog box opens.

2. Select your HDL Type. Choose whether or not to Initialize file with standard template to populate your file
with default headers and footers. The HDL Editor workspace opens.

3. Enter a Name. Do not enter a file extension; Libero SoC adds one for you. The filename must follow Verilog
or VHDL file naming conventions.

4. Click OK.
After creating your HDL file, click the Save button to save your file to the project.

Using the HDL Editor

The HDL Editor is a text editor designed for editing HDL source files. In addition to regular editing features, the
editor provides keyword highlighting, line numbering and a syntax checker.

You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between files.
Editing

Right-click inside the HDL Editor to open the Edit menu items. Available editing functions include cut, copy, paste,
Go to line, Comment/Uncomment Selection and Check HDL File. These features are also available in the toolbar.
Saving

You must save your file to add it to your Libero SoC project. Select Save in the File menu, or click the Save icon
in the toolbar.

Printing
Print is available from the File menu and the toolbar.

Note: To avoid conflicts between changes made in your HDL files, Microsemi recommends that you use
one editor for all of your HDL edits.

HDL Syntax Checker

To run the syntax checker:

In the Files list, double-click the HDL file to open it. Right-click in the body of the HDL editor and choose Check
HDL File.

The syntax checker parses the selected HDL file and looks for typographical mistakes and syntactical errors.
Warning and error messages for the HDL file appear in the Libero SoC Log Window.

Commenting Text

You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a group
of text and applying the Comment command.

22

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

To comment or uncomment out text:

1. Type your text.
2. Select the text.
3. Right-click inside the editor and choose Comment Selection or Uncomment Selection.

Find

In the File menu, choose Find and the Find dialog box appears below the Log/Message window. You can search
for a whole word or part of a word, with or without matching the case.

You can search for:
¢ Match Case
e Match whole word
e Regular Expression
The Find to Replace function is also supported.

Column Editing

Column Editing is supported. Press ALT+click to select a column of text to edit.

Importing HDL Source Files

To import an HDL source file:

1. Inthe Design Flow window, right-click Create HDL and choose Import Files. The Import Files window
appears.

2. Navigate to the drive/folder that contains the HDL file.
3. Select the file to import and click Open.
Note: SystemVerilog (*.sv), Verilog (*.v) and VHDL (*.vhd/*.vhdl) files can be imported.

Mixed-HDL Support in Libero SoC
You must have ModelSim ME Pro to use mixed HDL in the Libero SoC. You must also have Synplify Pro to
synthesize a mixed-HDL design.

When you create a project, you must select a preferred language. The HDL files generated in the flow (such as
the post-layout netlist for simulation) are created in the preferred language.

The language used for simulation is the same language as the last compiled testbench. (For example, if th_top is
in Verilog, <fam>.v is compiled.)
If your preferred language is Verilog, the post-synthesis and post-layout netlists are in Verilog 2001.

Designing with Block Flow

For information about designing with Block Flow, see Designing with Blocks for Libero SoC Enhanced Constraint
Flow.

Create New SmartDesign Testbench

The SmartDesign Testbench component may be the top level of the design or it may be used as a lower level
SmartDesign Testhench component (after successful generation) in another design.

1. From the File menu, choose New > SmartDesign Testbench, or in the Design Flow window double-click
Create SmartDesign Testbench. The Create New SmartDesign Testbench dialog box opens.

23

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_block_flow_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_block_flow_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Name:

|v Set as Active Stimulus

Help OK I Cancel

Figure 15 - Create New SmartDesign Testbench
2. Enter a name, select the Set as Active Stimulus radio button if you want have this SmartDesign Testbench
as your active stimulus, and click OK. The component appears in the Stimulus Hierarchy tab of the Design
Explorer.
Note: The component name you choose much be unique in your project.

For more information see the SmartDesign User Guide.

HDL Testbench

You can create a HDL Testbench by right-clicking a SmartDesign in the Design Hierarchy and choosing Create
Testbench > HDL.

HDL Testbench automatically instantiates the selected SmartDesign into the Component.

You can also double-click Create HDL Testbench to open the Create New HDL Testbench dialog box. The
dialog box enables you to create a new testbench file and gives you the option to include standard testbench
content and your design data.

HDL Type
Set your HDL Type: Verilog or VHDL for the testbench.

Name
Specify a testbench file name. A *.v or a *.vhd file is created and opened in the HDL Editor.

Clock Period (ns)
Enter a clock period in nanoseconds (ns) for the clock to drive the simulation. The default value is 100 ns (10
MHz). Libero creates in the testbench a SYSCLK signal with the specified frequency to drive the simulation.

Set as Active Stimulus sets the HDL Testbench as the stimulus file to use for simulations. The active stimulus
file/testbench is included in the run.do file that Libero generates to drive the simulation. Setting one testbench as
the Active Stimulus is necessary when there are multiple testbenches in the stimulus hierarchy.

Initialize with Standard Template adds boilerplate for a minimal standard test module. This test module does
not include an instantiation of the root module under test.

Instantiate Root Design Creates a test module that includes an instance of the root module under test, and
clocking logic in the test module which drives the base clock of the root module under test.

24

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smartdesign_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.”

i) Create New HDL Testbench File x

HDL Type

@ Verilog VHDL

Name:

Clock Period (ns) : | 100

+ | Initialize file with standard template
+ Instantiate Root Design

v Set as Active Stimulus

. anncel Q‘&!?K

Figure 16 - Create New HDL Testbench File Dialog Box

e B et e T

2 | -- Created by Microsemi SmartDesign Mon Mar 27 15:87:29 2017

3 | -- Testbench Template

4 | -- This is a basic testbench that instantiates your design with basic

5 clock and reset pins connected. If your design has special

6 | -- clock/reset or testbench driver requirements then you should

7 | -- copy this file and modify it.

| et AR o, Mo MO A s e AR, i P R e ey et bR el et e e iy 1ty S e

g L
R L LR L
ri - Company: <Name>

12 -

13 | -- File: counter_th.vhd

14 | -- File history:

5 | -- <Revision number>: <Date>: <Comments=>

a8 | -- <Revision number=: <Date>: <Comments:

ir | -- <Revision number>: <Date>: <Comments>

18

19 | -- Description:

. | --

21 | -- <Description here=>

22 | --

23 | -- Targeted device: <Family::PolarFire> <Die: MPF2B0TS_ES> <Package::Fully Bonded Package>
24 | -- Author: <Name>

25

T e e E LT
2r

o

29 library ieee;
30 wuse ieee,std_logic_1164.all;

32 Tentlty counter_tb is

33 | end counter_tb;

34

35 (Harchitecture behavioral of counter_tb is

36

37 constant SYSCLK_PERIOD : time := 100 ns; -- 108MHZ
38

39 signal SYSCLK : std_logic := '0°;

4@ signal NSYSRESET : std_logic := '6@°";

41

42 component countl6

Figure 17 - HDL Testbench Example - VHDL, Standard Template and Root Design Enabled

Verify Pre-Synthesized Design - RTL Simulation

To perform pre-synthesis simulation, double-click Simulate under Verify Pre-Synthesized Design in the Design
Flow window. Alternatively, in the Stimulus Hierarchy right-click the testbench and choose Simulate Pre-Synth
Design > Run.

25

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

The default tool for RTL simulation in Libero SoC PolarFire is ModelSim™ ME Pro. ModelSim ME works with all
levels of Libero SoC license (Eval, Silver, Gold and Platinum) whereas ModelSim Pro ME works with all levels of

Libero SoC license except Silver.

ModelSim ME and ModelSim ME Pro are custom editions of ModelSim PE that are integrated into Libero SoC's
design environment. ModelSim for Microsemi is an OEM edition of Mentor Graphics ModelSim tools. ModelSim

ME Pro supports mixed VHDL, Verilog, and SystemVerilog simulation but ModelSim ME does not. Both ModelSim

editions only work with Microsemi simulation libraries and they are supported by Microsemi.

Other editions of ModelSim are supported by Libero SoC. To use other editions of ModelSim, do not install
ModelSim ME from the Libero SoC media.

Note: ModelSim for Microsemi includes online help and documentation. After starting ModelSim, click the
Help menu.

See the following topics for more information on simulation in Libero SoC:
e Simulation Options
e Selecting a Stimulus File for Simulation

e Selecting additional modules for simulation

e Performing Functional Simulation

Project Settings: Simulation - Options and Libraries

DO file

Using this dialog box, you can set change how Libero SoC handles Do files in simulation, import your own Do
files, set simulation run time, and change the DUT name used in your simulation. You can also change your
library mapping.

To access this dialog box, from the Project menu choose Project Settings and click to expand Simulation
options or Simulation libraries.

For Simulation options click the option you wish to edit: DO file, Waveforms, Vsim commands, Timescale.
For Simulation libraries click on the library you wish to change the path for.

F. + 2eeti
] e sutomat 00 S
Smulsion runtime: 100 -
% Tasthendh modie name! bestbenh
a Senulsten opteded
0O e Top level rstance names <tops 0
Warvefaams
e Gererate WD fle
Vsim commands
Timescale VCD fle riame:
+ Samulstion libraries
SmurtFumionl User defired DO fle:
DO command parameters:
neip Al

Figure 18 - Project Settings: DO File

e Use automatic DO file - Select if you want the Project Manager to automatically create a DO file that will
enable you to simulate your design.

e Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is empty,
there will not be a run command included in the run.do file.

e Testbench module name - Specify the name of your testbench entity name. Default is “testbench,” the
value used by WaveFormer Pro.

26

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project Manager
replaces <top> with the actual top level macro when you run simulation (presynth/postsynth/postlayout).

e Generate VCD file - Click the checkbox to generate a VCD file.

e VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click power.ved
and type to change the name.

e User defined DO file - Enter the DO file name or click the browse button to navigate to it.
e DO command parameters - Text in this field is added to the DO command.

Waveforms

e Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.

e Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Project Manager outputs the line ‘add wave
/testbench/*' in the DO file run.do. If you select DUT then Project Manager outputs the line ‘add wave
/testbench/DUT/*' in the run.do file.

e Log all signals in the design - Saves and logs all signals during simulation.
Vsim Commands

e Post-layout simulation only:

e SDF timing delays - Select Minimum (Min), Typical (Typ), or Maximum (Max) timing delays in the
back-annotated SDF file.

o Disable Pulse Filtering during SDF-based Simulations - When the check box is enabled the
+pulse_int_e/l +pulse_int_r/1 +transport_int_delays switch is included with the vsim command
for post-layout simulations; the checkbox is disabled by default.

e Resolution - The default is 1ps.Some custom simulation resolutions may not work with your simulation
library. Consult your simulation help for more information on how to work with your simulation library and
detect infinite zero-delay loops caused by high resolution values.

e Additional options - Text entered in this field is added to the vsim command.

e SRAM ECC Simulation -
Two options can be added to specify the simulated error and correction probabilities of all ECC
SRAMs in the design.

e -gERROR_PROBABILITY=<value>, where 0 <=value <=1
e -gCORRECTION_PROBABILITY=<value>, where 0 <=value <=1

During Simulation, the SB_CORRECT and DB_DETECT flags on each SRAM block will
be raised based on generated random numbers being below the specified <value>s.

Timescale
e TimeUnit - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list, which is the time base for

each unit. The default setting is ns.
e Precision - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list. The default setting is ps.

Simulation Libraries
o Restore Defaults- Sets the library path to default from your Libero SoC installation.

e Library path - Enables you to change the mapping for your simulation library (both Verilog and VHDL).
Type the pathname or click the Browse button to navigate to your library directory.

27

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Selecting a Stimulus File for Simulation

Before running simulation, you must associate a testbench. If you attempt to run simulation without an associated
testbench, the Libero SoC Project Manager asks you to associate a testbench or open ModelSim without a
testbench.

To associate a stimulus:

1.

3.

Run simulation or in the Design Flow window under Verify Pre-Synthesized Design right-click Simulate and
choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files dialog box appears.

Associate your testbench(es):

In the Organize Stimulus Files dialog box, all the stimulus files in the current project appear in the Source
Files in the Project list box. Files already associated with the block appear in the Associated Source Files list
box.

In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI cores,
add multiple files to the Associated Source Files list.

e To add atestbench: Select the testbench you want to associate with the block in the Source Files
in the Project list box and click Add to add it to the Associated Source Files list.

e Toremove atestbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

e To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

When you are satisfied with the Associated Source Files list, click OK.

Selecting Additional Modules for Simulation
Libero SoC passes all the source files related to the top-level module to simulation.

If you need additional modules in simulation, in the Design Flow window right-click Simulate and choose
Organize Input Files > Organize Source Files. The Organize Files for Simulation dialog box appears.

Select the HDL modules you wish to add from the Simulation Files in the Project list and click Add to add them to
the Associated Stimulus Files list

Performing Functional Simulation

To perform functional simulation:

1.
2.

Create your testbench.

Right-click Simulate (in the Design Flow window, Implement Design > Verify Post-Synthesis Implementation
> Simulate) and choose Organize Input Files > Organize Simulation Files from the right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source
Files in the Project list box. Files already associated with the block appear in the Associated Source Files list
box.

In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI cores,
add multiple files to the Associated Source Files list.

e To add atestbench: Select the testbench you want to associate with the block in the Source Files
in the Project list box and click Add to add it to the Associated Source Files list.

e To remove atestbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

When you are satisfied with the Associated Simulation Files list, click OK.
To start ModelSim ME Pro, right-click Simulate in the Design Hierarchy window and choose Open
Interactively.
ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator
runs for 1 us and the Wave window opens to display the simulation results.
Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom buttons
to zoom in and out as necessary.

From the File menu, select Quit.

28

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Libero SoC Constraint Management

In the FPGA design world, constraint files are as important as design source files. Constraint files are used
throughout the FPGA design process to guide FPGA tools to achieve the timing and power requirements of the
design. For the synthesis step, SDC timing constraints set the performance goals whereas non-timing FDC
constraints guide the synthesis tool for optimization. For the Place-and-Route step, SDC timing constraints guide
the tool to achieve the timing requirements whereas Physical Design Constraints (PDC) guide the tool for
optimized placement and routing (Floorplanning). For Static Timing Analysis, SDC timing constraints set the
timing requirements and design-specific timing exceptions for static timing analysis.

Libero SoC provides the Constraint Manager as the cockpit to manage your design constraint needs. This is a
single centralized graphical interface for you to create, import, link, check, delete, edit design constraints and
associate the constraint files to design tools in the Libero SoC environment. The Constraint Manager allows you
to manage constraints for SynplifyPro synthesis, Libero SoC Place-and- Route and the SmartTime Timing
Analysis throughout the design process.

Invocation of Constraint Manager From the Design Flow Window

After project creation, double-click Manage Constraints in the Design Flow window to open the Constraint

Manager.
| Reports & X | my_usersdc & X | Constraint Manager & X | mddr_top_sb_CCC_0_FCCC.sdc & X ‘ ¥
1/0 Attributes /" Timing "/ Floor Planner \/” Netlist Attributes _‘) @_ Constraints Tab
(~
[New] [Import] [Link] [Editwith Constraint Editor V] [Check V] [Derive Constrainis] [ConstraintCoverage V] [Help] + '
N—
y Synthesis Place and Route Timing Verification
b 9
constraint\ top_derived_constraints.sdc
constraint\my.sdc = | =
constraint\my_usersdc [0 a
NG

Constraints
File Order

File and Tool Association

Figure 19 - Constraint Manager

Libero SoC Design Flow

The Constraint Manager is Libero SoC's single centralized Graphical User Interface for managing constraints files
in the design flow.

29

PolarFire FPGA Design Flow User Guide

~ — — — ——

|
|

Create Testbench

Create Design

SenartDesign
Testbench

Device
Under Test

HOL Teatbanech

Desvice
Undegr Tast

— % :

Simulation

[1

I Post Synthesis

: Simulation

e e e e e

I Fost- Layout

| Simulation

 BEE TR o O A R

Pre- Synthesis

L

& Microsemi

Power Matters.

Constraint
Manager

Implement

I Synthesize

| Place and Route

| Werify Timing

L

Pre-Syn constraints

Derived Constraints 5D
=1 User SDC

Metlist Attributes

Flace & Route Constraints

Derived Constraints S0C
Floar Planning PDC
User SDC

If0 PDC

]

Timing Verification Constraints

Derived Constraints SD{]

™ User SDC

MNa

Meets Timing
Requirements

Yes

Configure Hardware

Program Design
Generate FRGA Array
Cofigure Options

Data

SmartDebug

Debug Design

Idantify Dabug

!

Handoff for Firmware Dev, |

Handoff for Debugging

Security Options

Handoff for Production

Figure 20 - Constraint Manager in Libero SoC Design Flow

Introduction to Constraint Manager

Synthesis Constraints

The Constraint Manager manages these synthesis constraints and passes them to SynplifyPro:

e Synplify Netlist Constraint File (*.fdc)

e Compile Netlist Constraint File (*.ndc)
e SDC Timing Constraints (*.sdc)

30

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

e Derived Timing Constraints (*.sdc)
Synplify Netlist Constraints (*.fdc)

These are non-timing constraints that help SynplifyPro optimize the netlist. From the Constraint Manager Netlist

Attribute tab import (Netlist Attributes > Import) an existing FDC file or create a new FDC file in the Text Editor
(Netlist Attributes > New > Create New Synplify Netlist Constraint). After the FDC file is created or imported,
click the checkbox under synthesis to associate the FDC file with Synthesis.

Compile Netlist Constraints (*.ndc)

These are non-timing constraints that help Libero SoC optimize the netlist by combining I/Os with registers. 1/0s
are combined with a register to achieve better clock-to-out or input-to-clock timing. From the Constraint Manager
Netlist Attribute tab import (Netlist Attributes > Import) an existing NDC file or create a new NDC file in the Text
Editor (Netlist Attributes > New > Create New Compile Netlist Constraint). After the NDC file is created or
imported, click the checkbox under synthesis to associate the NDC file with Synthesis.

SDC Timing Constraints (*.sdc)

These are timing constraints to guide SynplifyPro to optimize the netlist to meet the timing requirements of the
design. From the Constraint Manager Timing tab, import (Timing > Import) or create in the Text Editor (Timing >
New) a new SDC file. After the SDC file is created or imported, click the checkbox under synthesis to associate
the SDC file with Synthesis.

After the synthesis step, you may click Edit with Constraint Editor > Edit Synthesis Constraints to edit existing
constraints or add new SDC constraints.

Derived Timing Constraints (*.sdc)

These are timing constraints LiberoSoC generates for IP cores used in your design. These IP cores, available in
the Catalog, are family/device-dependent. Once they are configured, generated and instantiated in the design, the
Constraint Manager can generate SDC timing constraints based on the configuration of the IP core and the
component SDC. From the Constraint Manager Timing tab, click Derive Constraints to generate the Derived
Timing Constraints (*.sdc). Click the *derived_constraints.sdc file to associate it with synthesis.

Place and Route Constraints
The Constraint Manager manages these constraints for the Place-and-Route step:
e |/O PDC Constraints (*io.pdc)
e Floorplanning PDC Constraints (*fp.pdc)
e Timing SDC constraint file (*.sdc)

1/0 PDC Constraints

These are /O Physical Design Constraints in an *io.pdc file. From the Constraint Manager 1/O Attribute tab, you
may import (I/O Attributes > Import) or create in the Text Editor (/O Attributes > New) an *io.pdc file.

Click the checkbox under Place and Route to associate the file with Place and Route.
Floorplanning PDC Constraints

These are floorplanning Physical Design Constraints in a *fp.pdc file. From the Constraint Manager Floor Planner
tab, you may import (Floor Planner > Import) or create in the Text Editor (Floor Planner > New) a *fp.pdc file.
Click the checkbox under Place and Route to associate the file with Place and Route.

31

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Timing SDC Constraint file (*.sdc)

These are timing constraint SDC files for Timing-driven Place and Route. From the Constraint Manager Timing
tab, you may import (Timing > Import) or create in the Text Editor (Timing > New) a timing SDC file. Click the
checkbox under Place and Route to associate the SDC file with Place and Route. This file is passed to Timing-
driven Place and Route (Place and Route > Configure Options > Timing Driven).

Timing Verifications Constraints

The Constraint Manager manages the SDC timing constraints for Libero SoC’s SmartTime, which is a Timing
Verifications/Static Timing analysis tool. SDC timing constraints provide the timing requirements (e.g.
create_clock and create_generated_clock) and design-specific timing exceptions (e.g. set_false_path and
set_multicycle_path) for Timing Analysis.

From the Constraint Manager Timing tab, you may import (Timing > Import) or create in the Text Editor (Timing
> New) a SDC timing file. Click the checkbox under Timing Verifications to associate the SDC timing constraints
file with Timing Verifications.

Note: You may have the same set of SDC Timing Constraints for Synthesis, Place and Route and Timing
Verifications to start with in the first iteration of the design process. However, very often and particularly when the
design is not meeting timing requirements you may find it useful in subsequent iterations to have different sets of
Timing SDC files associated with different tools. Take for example; you may want to change/modify the set of
SDC timing constrains for Synthesis or Place and Route to guide the tool to focus on a few critical paths. The set
of SDC timing constraints associated with Timing Verifications can remain unchanged.

The Constraint Manager lets you associate/dis-associate the constraint files with the different tools with a mouse
click.

Constraint Manager Components
The Constraint Manager has four tabs, each corresponding to a constraint type that Libero SoC supports:
e |/O Attributes
e Timing
e Floor Planner
e Netlist Attribute
Clicking the tabs displays the constraint file of that type managed in the Libero SoC project.

Constraint File and Tool Association

Each constraint file can be associated/dis-associated with a design tool by checking and unchecking the
checkbox corresponding to the tool and the constraint file. When associated with a tool, the constraint file is
passed to the tool for processing.

X
T 170 Attributes \/ Timing \/ Floor Planner \/ Netiist Attributes \

New Import Link Edit with Constraint Editor | | Check i" Derive Constraints | | Constraint Coverage v Help + |
Synthesis Place and Rout¢ Timing Verification
constraint/user.sdc v v 7
constraint/mytiming2.sdc L4 4
constraint/myuserl.sdc Ll L

Figure 21 - Constraint File and Tool Association

Note: Libero SoC'’s Design Flow window displays the state the tool is in. A green check mark V indicates

successful completion. A warning icon indicates invalidation of the state because the input files for the tool
have changed since the last successful run. Association of a new constraint file with a tool or dis-association of an
existing constraint file with a tool invalidates the state of the tool with which the constraint file is associated.

All Constraint files except Netlist Attributes can be opened, read and edited by Interactive Tools invoked from the
Constraint Manager directly. The Interactive Tools are:

e |/O Editor
e Chip Planner

32

PolarFire FPGA Design Flow User Guide

e Constraint Editor

& Microsemi

Power Matters.

Constraint Constraint File Location inside Project Associated with Interactive
Type Extension Design Tool Tool (For
Editing)
1/0 Attributes PDC (*.pdc) <proj>\constraints\io*.pdc Place and Route 1/0 Editor
Floorplanning PDC (*.pdc) <proj>\constraints\fp*.pdc Place and Route Chip Planner
Timing SDC (*.sdc) <proj>\constraints*.sdc Synthesis, Place and Constraint
Route, Timing Editor
Verification
Netlist Attributes | FDC (*.fdc) <proj>\constraints*.fdc Synthesis n/a
NDC (*.ndc) <proj>\constraints*.ndc Synthesis n/a

Derive Constraints in Timing Tab

The Constraint Manager can generate timing constraints for IP cores used in your design. These IP cores,
available in the Catalog, are family/device-dependent. Once they are configured, generated and instantiated in
your design, the Constraint Manager can generate SDC timing constraints based on the configuration of the IP
core and the component SDC. A typical example of an IP core for which the Constraint Manager can generate
SDC timing constraints is the IP core for Clock Conditioning Circuitry (CCC).

Create New Constraints

From the Constraint Manager, create new constraints in one of two ways:
e Use the Text Editor
e Use Libero SoC's Interactive Tools

To create new constraints from the Constraint Manager using the Text Editor:
1. Select the Tab that corresponds to the type of constraint you want to create.

Click New.

When prompted, enter a file name to store the new constraint.

Enter the constraint in the Text Editor.

Click OK.
The Constraint file is saved and visible in the Constraint Manager in the tab you select:

e |/O Attributes constraint file (<proj>\io*.pdc) in the 1/O Attributes tab
e Floorplanning constraints (<proj>\fp*.pdc) in the Floor Planner tab
e Timing constraints (<proj>\constraints*.sdc) in the Timing tab

6. (Optional) Double-click the constraint file in the Constraint Manager to open and add more constraints to the
file.

ok wn

To create new constraints from the Constraint Manager using Interactive Tools:

Note: Netlist Attribute constraints cannot be created by an Interactive Tool. Netlist Attribute files can only be
created with a Text Editor.

Note: Except for timing constraints for Synthesis, the design needs to be in the post-synthesis state to enable
editing/creation of new constraints by the Interactive Tool.

Note: The *.pdc or *.sdc file the Constraint Manager creates is marked [Target]. This denotes that it is the target
file. A target file receives and stores new constraints from the Interactive Tool. When you have multiple constraint
files of the same type, you may select any one of them as target. When there are multiple constraint files but none
of them is set as target, or there are zero constraint files, Libero SoC creates a new file and set it as target to
receive and store the new constraints created by the Interactive Tools.

33

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
1. Select the Tab that corresponds to the type of constraint you want to create.
2. Click Edit to open the Interactive Tools. The Interactive Tool that Libero SoC opens varies with the constraint

type:
L]

1/0O Editor to edit/create 1/0O Attribute Constraints. See PolarFire /0 Editor User Guide for details.
Chip Planner to edit/create Floorplanning constraints. See PolarFire Chip Planner User Guide for
details.
Constraint Editor to edit/create Timing Constraints. See Timing Constraints Editor User Guide for
details.

Create the Constraints in the Interactive Tool. Click Commit and Save.
Check that Libero SoC creates these files to store the new constraints:

Constraints\io\user.pdc file when I/O constraints are added and saved in I/O Editor.
Constraints\fpluser.pdc file when floorplanning constraints are added and saved in Chip Planner.
Constraints\user.sdc file when Timing Constraints are added and saved in Constraint Editor

Constraint File Order
When there are multiple constraint files of the same type associated with the same tool, use the Up and Down
arrow to arrange the order the constraint files are passed to the associated tool. Constraint file order is important
when there is a dependency between constraints files. When a floorplanning PDC file assigns a macro to a
region, the region must first be created and defined. If the PDC command for region creation and macro
assignment are in different PDC files, the order of the two PDC files is critical.

To move a constraint file up, select the file and click the Up arrow.
To move a constraint file down, select the file and click the Down arrow.

1.
2.

[1i0 Attributes %/ Timing \{ Floor Planner \/ Netlist Attributes \ I

| New Import Link Edit with Constraint Editor " Check ,v Derive Constraints | | Constraint Coverage " Help + |4
Synthesis Place and Routt Timing Verification Move Up

constraint/top_derived_constraints.sdc ¥ b «
constraint/user.sdc v 4
canstraint/mytiming.sdc = ¥
constraint/mytiming2.sdc i -l =
constraint/sdfsadf.sdc

Figure 22 - Move constraint file Up or Down

Note: Changing the order of the constraint files associated with the same tool invalidates the state of that tool.

Import a Constraint File

Use the Constraint Manager to import a constraint file into the Libero SoC project. When a constraint file is
imported, a local copy of the constraint file is created in the Libero Project.

To import a constraint file:

Click the Tab corresponding to the type of constraint file you want to import.

Click Import.

Navigate to the location of the constraint file.

Select the constraint file and click Open. A copy of the file is created and appears in Constraint Manager in
the tab you have selected.

1.

2.
3.
4

Link a Constraint File
Use the Constraint Manager to link a constraint file into the Libero SoC project. When a constraint file is linked, a
file link rather than a copy is created from the Libero project to a constraint file physically located and maintained

outside the Libero SoC project.

To link a constraint file:
Click the Tab corresponding to the type of constraint file you want to link.
Click Link.

1.
2.

34

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_3_0/Tool/smarttime_ce_ug.pdf

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

3. Navigate to the location of the constraint file you want to link to.

4. Select the constraint file and click Open. A link of the file is created and appears in Constraint Manager
under the tab you have selected. The full path location of the file (outside the Libero SoC project) is
displayed.

Check a Constraint File
Use the Constraint Manager to check a constraint file.
To check a constraint file:

1. Select the tab for the constraint type to check.
2. Click Check.

Note: I/O constraints, Floorplanning constraints, Timing constraints, and Netlist Attributes can be checked only
when the design is in the proper state. A pop-up message appears when the check is made and the design state
is not proper for checking.

#_ | Information @

fo} Please run 'Synthesize' before executing Check Operation

- s

All constraint files associated with the tool are checked. Files not associated with a tool are not checked.
For Timing Constraints, select from the Check drop-down menu one of the following:

e Check Synthesis Constraints
e Check Place and Route Constraints
e Check Timing Verification Constraints

{170 Attributes \/ Timing \/ Fioor Planner \/_Netlist Attributes \

New Import | Link Edit with Constraint Editor ‘P | Check "I | Derive Constraints | | Constraint Coverage :‘ ! Help + J
Synthesis Place ai Check Synthesis Constraints)
constraint/top_derived_constraints. sdc ¥ ¥ Check Place And Route Constraints
constraint/user.sdc o Check Timing Verification Constraints
constraint/mytiming.sdc b4 ™ 2
constraint/mytiming2.sdc v v v

constraint/sdfsadf.sdc

Figure 23 - Check Constraints
Check Synthesis Constraints checks only the constraint files associated with the Synthesis.
Check Place and Route Constraints checks only the constraint files associated with Place and Route
Check Timing Verification Constraints checks only the Constraint Files associated with Timing Verification.
For the constraint files and tool association shown in the SDC file and Tool Association Figure below:
e Check Synthesis Constraints checks the following files:
e top_derived_constraints.sdc
e user.sdc
e mytiming2.sdc
e Check Place and Route Constraints checks the following files:
e top_derived_constraints.sdc
e mytiming.sdc
e mytiming2.sdc
e Check Timing Verification Constraints checks the following files:
e top_derived_constraints.sdc

35

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e user.sdc
e mytiming.sdc
e mytiming2.sdc
Note: sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.

[1/0 Attributes \/ Timing \[Floor Planner \/ Netlist Attributes \

Kk

New Import | Link | Edit with Constraint Editor |l' ‘ Check |L' Derive Constraint5| Constraint Coverage]' Help 41 &
Synthesis Place and Routt Timing Verification
constraint/top_derived_constraints.sdc L4 ~ 4
constraint/user.sdc o4 ol
constraint/mytiming.sdc L L
constraint/mytiming2.sdc 4 o T4

constraint/sdfsadf.sdc

Figure 24 - Timing Constraints SDC file and Tool Association
When a constraint file is checked, the Constraint Manager:
e Checks the SDC or PDC syntax.

¢ Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in the
netlist (RTL or post-layout ADL netlist). Any discrepancy (e.g. constraints on a design object which does not
exist in the netlist) are flagged as errors and reported in the *.log file or message window.

Check Result

If the check is successful, this message pops up.

5| Information ﬁ

Figure 25 - Check Successful Message
If the check fails, this error message pops up.

ZEI Error ﬁ

P '__
[_8_! Checking of Timing constraints assocated with Timing Verification failed. See the message window for more details.
F

k..

Figure 26 - Check Fails Message

Constraint Type Check for Tools | Required Design Netlist Used Check Result
State for Details
Before Checks Checks

I/O Constraints Place and Route | Post-Synthesis ADL Netlist Libero Message
Window

Floorplanning Place and Route | Post-Synthesis ADL Netlist Libero Message

Constraints Window

Timing Constraints Synthesis Pre-Synthesis RTL Netlist synthesis_sdc_check.
log

36

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
Constraint Type Check for Tools | Required Design Netlist Used Check Result
State for Details
Before Checks Checks

Place and Route | Post-Synthesis ADL Netlist placer_sdc_check.log
Timing Post-Synthesis ADL Netlist timing_sdc_check.log
Verifications

Netlist Attributes Synthesis Pre-Synthesis RTL Netlist *cck.srr file

(*.fdc)

Netlist Attributes Synthesis Pre-Synthesis RTL Netlist Libero Log Window

(*.ndc)

Edit a Constraint File
The Edit button in the Constraint Manager allows you to:

e Create new constraint files. See To create new constraints from the Constraint Manager using the Text
Editor for details.

e Edit existing constraint files.

To edit a constraint file

Note: Netlist Attributes cannot be edited by an Interactive Tool. Use the Text Editor to edit the Netlist Attribute
constraint (*.fdc and *.ndc) files.

1. Select the tab for the constraint type to edit. An Interactive Tool is opened to make the edits.

2. Click Edit.
e All constraint files associated with the tool are edited. Files not associated with the tool are not
edited.

e When a constraint file is edited, the constraints in the file are read into the Interactive Tool.
e Different Interactive Tools are used to edit different constraints/different files:

e |/O Editor to edit I/O Attributes (<proj>\io*.pdc). For details, refer to the PolarFire I/O
Editor User Guide.

e Chip Planner to edit Floorplanning Constraints (<proj>\fp*.pdc). For details, refer to the
Chip Planner User's Guide (Chip Planner > Help > Reference Manuals)

e Constraint Editor to edit Timing Constraints (constraints*.sdc). For details, refer to the
Timing Constraints Editor User's Guide (Help > Constraints Editor User’s Guide)

Note: I/O constraints, Floorplanning constraints, Timing constraints can be edited only when the design is in the
proper state. A message pops up if the file is edited when the design state is not proper for edits. If, for example,
you open the Constraints Editor (Constraint Manager > Edit) to edit timing constraints when the design state is not
post-synthesis, a pop-up message appears.

5. Information P

[0] Flease run 'Synthesize' before executing Edit Operation

Figure 27 - Pop-up Message

3. For Timing Constraints, click one of the following to edit from the Edit with Constraint Editor drop-down
menu.

e Edit Synthesis Constraints

37

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_3_0/Tool/smarttime_ce_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e Edit Place and Route Constraints
e Edit Timing Verification Constraints

{170 Attributes /" Timing /" Fioor Planner \/ Netlist Attributes \

New Import Link | | Edit with Constraint Editor ,' Check ?' Derive Constraints | | Constraint Coverage !' Help + &

Edit Synthesis Constraints Miming Verification

constraint/top_derived_constraints.sdc Edit Place And Route Constraints v
constraint/user.sdc Edit Timing Verintation Constraints |¥
L v 4

constraint/mytiming sdc
constraint/mytiming2.sdc L Ld L
constraint/sdfsadf.sdc

Figure 28 - Edit Drop-down Menu
For the constraint files and tool association shown in the Timing Constraint File and Tool Association below:

e Edit Synthesis Constraints reads the following files into the Constraint Editor:
e user.sdc
e myuserl.sdc

e Edit Place and Route Constraints reads the following files into the Constraint Editor:
e user.sdc
e mytiming2.sdc
e myuserl.sdc

e Edit Timing Verification Constraints reads the following files into the Constraint Editor:
e user.sdc
e mytiming2.sdc

K370 Atiributes \/ Timing \/ Fioor Planner \/ Netiist Afiribntes\

New Import Link Edit with Constraint Editor 'v Check tv: Derive Constraints | = Constraint Coverage 'v Help + ¥
Synthesis Place and Routt Timing Verification
constraint/user.sdc L4 od ~
constraint/mytiming2.sdc L4 «
constraint/myuserl.sdc Ld Cd

Figure 29 - Timing Constraint File and Tool Association
4. Edit the constraint in the Interactive Tool, save and exit.
5. The edited constraint is written back to the original constraint file when the tool exits.

Refer to the Timing Constraints Editor User’s Guide (Help > Constraints Editor User’s Guide) for details on how to
enter/modify timing constraints.

Note: When a constraint file is edited inside an Interactive Tool, the Constraint Manager is disabled until the
Interactive Tool is closed.

Note: Making changes to a constraint file invalidates the state of the tool with which the constraint file is
associated. For instance, if Place and Route has successfully completed with user.sdc as the associated
constraint file, then making changes to user.sdc invalidates Place and Route. The green checkmark (denoting
successful completion) next to Place and Route turns into a warning icon when the tool is invalidated.

See Also:
PolarFire FPGA Design Constraints User Guide

Constraint Types

Libero SoC manages four different types of constraints:

e 1/O Attributes Constraints — Used to constrain placed I/Os in the design. Examples include setting 1/0
standards, 1/0 banks, and assignment to Package Pins, output drive, and so on. These constraints are used
by Place and Route.

e Timing Constraints — Specific to the design set to meet the timing requirements of the design, such as
clock constraints, timing exception constraints, and disabling certain timing arcs. These constraints are
passed to Synthesis, Place and Route, and Timing Verification.

e Floor Planner Constraints — Non-timing floorplanning constraints created by the user or Chip Planner and
passed to Place and Route to improve Quality of Routing.

38

https://coredocs.s3.amazonaws.com/Libero/pf_2_3_0/Tool/smarttime_ce_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_des_constraints_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e Netlist Attributes - Microsemi-specific attributes that direct the Synthesis tool to synthesize/optimize the,
leveraging the architectural features of the Microsemi devices. Examples include setting the fanout limits,
specifying the implementation of a RAM, and so on. These constraints are passed to the Synthesis tool only.

The following table below summarizes the features and specifics of each constraint type.

Constraint File Location File User Constraints Constraints | Changes
Type Ext. Actions Edited By Used By Invalidate
Design
State?

1/0 <proj>/constraints/io | *.pdc | Create I/0O Editor Place and YES
Attributes folder New, Route

Import, Or user editing

Link, Edit, the *.pdc file in

Check Text Editor
Timing <proj>/constraints *.sdc | Create Constraint Synplify YES
Constraints | folder New, Editor

Import,

Link, Edit, Or user editing Place and

Check the *.sdc file in | Route

Text Editor
Verify Timing
(SmartTime)

Floor <proj>/constraints/fp | *.pdc | Create Chip Planner Place and YES
Planner folder New, Route
Constraints Import, Or user Editing

Link, Edit, |the *.pdc file in

Check Text Editor
Netlist <proj>/constraints *fdc | Create User to Open in | Synplify YES
Attributes folder New, Text Editor to

Import, Edit

Link,

Check
Netlist <proj>/constraints *.ndc | Import, User to Open in | Synplify YES
Attributes folder Link, Text Editor to

Check Edit

Constraint Manager — 1/O Attributes Tab

The 1/0 Attributes tab allows you to manage /O attributes/constraints for your design’s Inputs, Outputs, and
Inouts. All I/0O constraint files (PDC) have the *.pdc file extension and are placed in the
<Project_location>/constraint/io folder.

Available actions are:

e New — Creates a new I/O PDC file and saves it into the <Project_location>\constraint\io folder. There are
two options:

e Create New I/O Constraint

e Create New I/O Constraint From Root Module -- This will pre-populate the PDC file with information
from the Root Module

e Having selected the create method:

39

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

e When prompted, enter the name of the constraint file.
e The file is initially opened in the text editor for user entry.

Import — Imports an existing 1/0 PDC file into the Libero SoC project. The 1/O PDC file is copied into the
<Project_location>\constraint\io folder.

Link — Creates a link in the project’s constraint folder to an existing 1/0 PDC file (located and maintained
outside of the Libero SoC project).

Edit with I/O Editor — Opens the I/O Editor tool to modify the 1/0 PDC file(s) associated with the Place and
Route tool.

Check — Checks the legality of the PDC file(s) associated with the Place and Route tool against the gate
level netlist.

When the I/O Editor tool is invoked or the constraint check is performed, all files associated with the Place and
Route tool are being passed for processing.

When you save your edits in the I/O Editor tool, the 1/0 PDC files affected by the change will be updated to reflect
the change you have made in the I/O Editor tool. New I/O constraints you add in the 1/0 Editor tool are written to
the Target file (if a target file has been set) or written to a new PDC file (if no file is set as target) and stored in the
<project>\constraint\io folder.

{170 Attributes \/ Timing \/ Floor Planner \/ Netist Attributes \

New |v| | Import Link Edt v | ched || He

%
[+

Place and Route

constraint\ic'\ddr_ioa_placement.pde
constraint\io\user.pdec [Target | v
constraint\ic\tmp_extra_cst_528463.pdc

| Reserve Pins for Device Migration
Select the devices you are targetting for migration, Pins not bonded on these devices will be reserved in the device selected for this project,
Selected Dewice: MPF300TS_ES -FCGL152

MPF300T_ES

Target Devices:

General

| Reserve Pins for Probes

Figure 30 - Constraint Manager — I/O Attributes Tab

Right-click the I/O PDC files to access the available actions:

Set/UnSet as Target — Sets or clears the selected file as the target to store new constraints created in the
1/O Editor tool. Newly created constraints only go into the target constraint file. Only one file can be set as
target. This option is not available for linked files.

Open in Text Editor — Opens the selected constraint file in the Libero Text Editor.

Clone — Copies the file to a file with a different name. The original file name and its content remain intact.
This option is not available for linked files.

Rename — Renames the file to a different name. This option is not available for linked files.
Copy File Path - Copies the file path to the clipboard.
Delete — Deletes the file from the project and from the disk. This option is not available for linked files.

Unlink - Removes the linked file from the project. The original file is untouched. This option is only available
for linked files.

Unlink: Copy file locally — Removes the link and copies the file into the <Project_location>\constraint\io
folder. This option is only available for linked files.

40

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

File and Tool Association
Each I/O constraint file can be associated or disassociated with the Place and Route tool.
Click the checkbox under Place and Route to associate/disassociate the file from the tool.

I/O Settings

Reserve Pins for Device Migration — This option allows you to reserve pins in the currently selected device that
are not bonded in a device or list of devices you may later decide to migrate your design to. Select the target
device(s) you may migrate to later to ensure that there will be no device/package incompatibility if you migrate
your design to that device.

Reserve Pins for Probes — Check this box if you plan to use live probes when debugging your design with
SmartDebug.

Constraint Manager — Timing Tab
The Timing tab allows you to manage timing constraints throughout the design process. Timing constraints files
(SDC) have the *.sdc file extension and are placed in the <Project_location>\constraint folder.
Available actions are:
¢ New — Creates a new timing SDC file and saves it into the <Project_location>\constraint folder.
e When prompted, enter the name of the constraint file.
e The file is initially opened in the text editor for user entry.

e Import — Imports an existing timing SDC file into the Libero SoC project. The timing SDC file is copied into
the <Project_location>\constraint folder.

e Link — Creates a link in the project’s constraint folder to an existing timing SDC file (located and maintained
outside of the Libero SoC project).

e Edit with Constraint Editor — Opens the Timing Constraints Editor (see Timing Constraints Editor
User Guide for details) to modify the SDC file(s) associated with one of the three tools:

o Synthesis — When selected, the timing SDC file(s) associated with the Synthesis tool is loaded in
the constraints editor for editing.

o0 Place and Route - When selected, the timing SDC file(s) associated with the Place and Route tool
is loaded in the constraints editor for editing.

o Timing Verification - When selected, the timing SDC file(s) associated with the Timing Verification
tool is loaded in the constraints editor for editing.

e Check — Check the legality of the SDC file(s) associated with one of the three tools described below:
0 Synthesis — The check is performed against the pre-synthesis HDL design.
o Place and Route — The check is performed against the post-synthesis gate level netlist.
o Timing Verification — The check is performed against the post-synthesis gate level netlist.

e Derive Constraints — When clicked, Libero generates a timing SDC file based on user configuration of IP
core, components and component SDC. It generates the create_clock and create_generated_clock SDC
timing constraints. This file is named <top_level_> derived_constraints.sdc. The component SDC and the
generated <root>_derived_constraint.sdc files are dependent on the IP cores and vary with the device
family.

Examples:
create -name {REF_CLK _PAD 0} -period 5 [get_ports { REF_CLK PAD O }]

create_generated_clock -name {PF_TX PLL_O/txpll_isnt_0/DIV_CLK} -
divide_by 2 -source [get_pins { PF_TX_PLL_O/txpll_isnt_O/REF CLK P } 1 L[
get_pins { PF_TX_PLL_O/txpll_isnt_0/DIV_CLK }]
e Constraint Coverage - When clicked, a pull-down list displays. Select the Constraint Coverage Reports you
want:
0 Generate Place and Route Constraint Coverage Report
0 Generate Timing Verification Constraint Coverage Report

41

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smarttime_ce_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smarttime_ce_ug.pdf

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Note: Constraint Coverage Reports can be generated only after synthesis. A warning message
appears if the design is not in the post-synthesis state when this button is clicked.

The generated report will be visible in the respective nodes of the report view (Design > Reports).

When the SmartTime Constraint Editor tool is invoked or the constraint check is performed all the files associated
with the targeted tool — Synthesis, Place and Route, Timing Verification — are being passed for processing.

When you save your edits in the SmartTime Constraint Editor tool, the timing SDC files affected by the change
are updated to reflect the changes you have made in the SmartTime Constraints Editor tool. New timing
constraints you add in the SmartTime Constraint Editor tool are written to the Target file (if a target file has been
set) or written to a new SDC file (if no file is set as target) and stored in the <project>\constraint folder.

Reports @ % | Startpage @ x| B2 of peie_to_dd3 top & % Constraint Manager @ X pf_peie_to_ddr3_top_derived_constraints.sde & X =
Ti0 Attribwtes \/ Tming W/ Figor Planner \/ Nefist Attribytes \
| mew || Import Lik | Edit with Constraint Editor |»| | Check = |Derive Constraints| | Constraint Coverage || Hep |
Synthesis Place and Route Timing Verification
constraint\pf_pcie_to_ddr3_top_derived constraints.sdec [V W S
constraint\mytiming2.sdc 4| v
constraint\myuserl.sde v V!

Figure 31 - Constraint Manager — Timing Tab
Right-click the timing SDC files to access the available actions for each constraint file:

e Set/Unset as Target — Sets or clears the selected file as the target to store new constraints created in the
SmartTime Constraint Editor tool. Newly created constraints only go into the target constraint file. Only one
file can be set as target, and it must be a PDC or SDC file. This option is not available for the derived
constraint SDC file. This option is not available for linked files.

e Open in Text Editor — Opens the selected constraint file in the Libero Text Editor.

e Clone - Copies the file to a file with a different name. The original file name and its content remain intact.
This option is not available for linked files.

¢ Rename - Renames the file to a different name. This option is not available for linked files.
e Copy File Path - Copies the file path to the clipboard.

e Delete - Deletes the selected file from the project and from the disk. This option is not available for linked
files.

¢ Unlink - Removes the linked file from the project. The original file is untouched. This option is only available
for linked files.

e Unlink: Copy file locally — Removes the link and copies the file into the <Project_location>\constraint
folder. This option is only available for linked files.

File and Tool Association
Each timing constraint file can be associated or disassociated with any one, two, or all three of the following tools:
e Synthesis
e Place and route
e Timing Verification

Click the checkbox under Synthesis, Place and Route, or Timing Verification to associate/disassociate the file
from the tool.

When a file is associated, Libero passes the file to the tool for processing.

42

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
Example
[170 Attributes \/ Timing \/ Floor Planner \/ Netiist Attributes \
'-l: New Import Link Edit with Constraint Editor i" Check ‘L" Derive Constraints | | Constraint Coverage ll" Help 4+ I
Synthesis Place and Routt Timing Verification

constraint/top_derived_constraints.sdc v v v

constraint/user.sdc v ¥

constraint/mytiming.sdc v ¥

constraint/mytiming2.sdc v v ¥

constraint/sdfsadf.sdc

Figure 32 - File and Tool Association Example

In the context of the graphic above, when Edit Synthesis Constraint is selected, user.sdc,
top_derived_constraints.sdc, and mytiming2.sdc are read (because these three files are associated with
Synthesis); mytiming.sdc and sdfsadf.sdc are not read (because they are not associated with Synthesis). When
the SmartTime Constraint Editor opens for edit, the constraints from all the files except for sdfsadf.sdc are read
and loaded into the Constraint Editor. Any changes you made and saved in the Constraint Editor are written back
to the files.

Note: sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.

Derived Constraints

Libero SoC is capable of generating SDC timing constraints for design components when the root of the design
has been defined. Click Derive Constraints in the Constraint Manager’s Timing tab to generate SDC timing
constraints for your design’s components.

The generated constraint file is named <root>_derived.sdc and is created by instantiating component SDC files
created by IP configurators (e.g., CCC) and oscillators used in the design.

The <root>_derived.sdc file is associated by default to the Synthesis, Place and Route and Timing Verification
tool. You can change the file association in the Constraint Manager by checking or unchecking the checkbox
under the tool.

To generate SDC timing constraints for IP cores:

1. Configure and generate the IP Core.

2. From the Constraint Manager's Timing tab, click Derive Constraints (Constraint Manager > Timing >
Derive Constraints).
The Constraint Manager generates the <root>_derived_constraints.sdc file and places it in the Timing Tab
along with other user SDC constraint file.

3. When prompted for a Yes or No on whether or not you want the Constraint Manager to
automatically associate the derived SDC file to Synthesis, Place and Route, and Timing Verification, click
Yes to accept automatic association or No and then check or uncheck the appropriate checkbox for tool
association.
Note: Microsemi recommends the <root>_derived_constraints.sdc be always associated with all three tools:
Synthesis, Place and Route, and Verify Timing. Before running SynplifyPro Synthesis, associate the
<root>_derived_constraints.sdc file with Synthesis and Place and Route. This will ensure that the design
objects (such as nets and cells) in the <root>_derived_constraints.sdc file are preserved during the
synthesis step and the subsequent Place and Route step will not error out because of design object
mismatches between the post-synthesis netlist and the <root>_derived_constraints.sdc file.

Note: Full hierarchical path names are used to identify design objects in the generated SDC file.

Note: The Derive Constraints button is available for HDL-based and SmartDesign-based design flows. It is not
available for Netlist Designs (Project > Project Settings > Design Flow > Enable Synthesis [not checked]).

Constraint Manager — Floor Planner Tab

The Floor Planner tab allows you to manage floorplanning constraints. Floorplanning constraints files (PDC) have
the *.pdc file extension and are placed in the <Project_location>\constraint\fp folder.

43

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Available actions are:

New — Creates a new floorplanning PDC file and saves it into the <Project_location>\constraint\fp folder.

Import — Imports an existing floorplanning PDC file into the Libero SoC project. The floorplanning PDC file is
copied into the <Project_location>\constraint\fp folder.

Link — Creates a link in the project’s constraint folder to an existing floorplanning PDC file (located and
maintained outside of the Libero SoC project).

Edit with Chip Planner — Opens the Chip Planner tool to modify the floorplanning PDC file(s) associated
with the Place and Route tool.

Check — Checks the legality of the PDC file(s) associated with the Place and Route tool against the gate
level netlist.

When the Chip Planner tool is invoked or the constraint check is performed, all files associated with the Place and
Route tool are passed for processing.

When you save your edits in the Chip Planner tool, the floorplanning PDC files affected by the change are
updated to reflect the change you made in the Chip Planner tool. New floorplanning constraints that you add in
the Chip Planner tool are written to the Target file (if a target file has been set) or written to a new PDC file (if no
file is set as target) and stored in the <project>\constraint\fp folder.

[1/0 Attributes \/ Timing \/ Floor Planner \/ Netiist Attributes \

[

New | [import | [ink | [EdtwithChipPlanner] [cChedc | [Hep | + ¥

Place and Route

constraint\fp\my.pdc v

Figure 33 - Constraint Manager — Floor Planner Tab

Right-click the floorplanning PDC files to access the available actions:

Set/Unset as Target — Sets or clears the selected file as the target to store new constraints created in the
Chip Planner tool. Newly created constraints only go into the target constraint file. Only one file can be set
as target. This option is not available for linked files.

Open in Text Editor — Opens the selected constraint file in the Libero Text Editor.

Clone - Copies the file to a file with a different name. The original file name and its content remain intact.
This option is not available for linked files.

Rename - Renames the file to a different name. This option is not available for linked files.
Copy File Path - Copies the file path to the clipboard.

Delete - Deletes the selected file from the project and from the disk. This option is not available for linked
files.

Unlink - Removes the linked file from the project. The original file is untouched. This option is only available
for linked files.

Unlink: Copy file locally — Removes the link and copies the file into the <Project_location>\constraint\fp
folder. This option is only available for linked files.

File and Tool Association
Each floorplanning constraint file can be associated or disassociated to the Place and Route tool.

44

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/chipplanner_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Click the checkbox under Place and Route to associate/disassociate the file from the tool.
When a file is associated, Libero passes the file to the tool for processing.

See Also
Chip Planner User Guide

Constraint Manager — Netlist Attributes Tab

The Netlist Attributes tab allows you to manage netlist attribute constraints to optimize your design during the
synthesis and/or compile process. Timing constraints should be entered using SDC files managed in the Timing
tab. Netlist Attribute constraints files are placed in the <Project_location>\constraint folder. Libero SoC manages
two types of netlist attributes:

e FDC constraints are used to optimize the HDL design using Synopsys SynplifyPro synthesis engine and
have the *.fdc extension.

e NDC constraints are used to optimize the post-synthesis netlist with the Libero SoC compile engine and
have the *.ndc file extension

Available operations are:
e New — Creates a new FDC or NDC netlist attribute constraints file in the <Project_location>\constraint folder.

e Import — Imports an existing FDC or NDC netlist attribute constraints file into the Libero SoC project. The
FDC or NDC netlist attribute constraints file is copied into the <Project_location>\constraint folder.

e Link — Creates a link in the project’s constraint folder to an existing existing FDC or NDC netlist attribute
constraints file (located and maintained outside of the Libero SoC project).

e Check — Checks the legality of the FDC and NDC file(s) associated with the Synthesis or Compile tools.

When the constraint check is performed, all files associated with the Synthesis or Compile tools are passed for
processing.

[10 Attributes \/ Timing \/ Fioor Planner \/ Metist Attributes }

New = [Import | ik || Check |+ Hep | + [$
Synthesis

constraintitest.fde V!

constraint\nny:ndec i

Figure 34 - Constraint Manager — Netlist Attributes Tab
Right-click the FDC or NDC files to access the available actions:
e Open in Text Editor — Opens the selected constraint file in the Libero SoC Text Editor.

e Clone - Copies the file to a file with a different name. The original file name and its content remain intact.
This option is not available for linked files.

¢ Rename - Renames the file to a different name. This option is not available for linked files.
e Copy File Path - Copies the file path to the clipboard.
e Delete — Deletes the file from the project and from the disk. This option is not available for linked files.

¢ Unlink - Removes the linked file from the project. The original file is untouched. This option is only available
for linked files.

e Unlink: Copy file locally — Removes the link and copies the file into the <Project_location>\constraint
folder. This option is only available for linked files.

File and Tool Association
Each netlist attributes constraint file can be associated with or disassociated from the Synthesis tool.
Click the checkbox under Synthesis (Compile) to associate/disassociate the file from Synthesis (Compile).
When a file is associated, Libero passes the file to Synthesis (Compile) for processing when Synthesis is run.

45

https://coredocs.s3.amazonaws.com/Libero/pf_2_3_0/Tool/chipplanner_ug.pdf

& Microsemi
PolarFire FPGA Design Flow User Guide

Power Matters.

When Synthesis is ON (Project > Project Settings > Design Flow > Enable synthesis [checked]) for a project, the
Design Flow Synthesis action runs both the synthesis engine and the post-synthesis compile engine.

When Synthesis is OFF (Project > Project Settings > Design Flow > Enable synthesis [not checked]) for a project,

the Design Flow Synthesis action is replaced by the Compile action and runs the compile engine on the gate-level
netlist (EDIF or Verilog) available in the project.

46

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Implement Design

Synthesize
Double-click Synthesize to run synthesis on your design with the default settings specified in the synthesis tool.

If you want to run the synthesis tool interactively, right-click Synthesize and choose Open Interactively. If you
open your tool interactively, you must complete synthesis from within the synthesis tool.

The default synthesis tool included with Libero SoC is Synplify Pro ME. If you want to use a different synthesis
tool, you can change the settings in your Tool Profiles.

You can organize input synthesis source files via the Organize Source Files dialog box.

Synthesize Options

Some families enable you to set or change synthesis configuration options for your synthesis tool. To do so, in the
Design Flow window, expand Implement Design, right-click Synthesize and choose Configure Options. This
opens the Synthesize Options dialog box.

47

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

] Synthesize Options x
Global Nets
Minimum number of clock pins: 2
Minimum number of asynchronous pins: 800
Minimum fanout of non-clock nets to be kept on globals: | 5000
Number of global resources: [24|

Maximum number of global nets that could be demoted to row-globals: | 16

Minimum fanout of global nets that could be demoted to row-globals: 1000

Optimizations

Enable retiming

RAM optimized for: @ High speed Low power
Map seq-shift register components to: Registers & RAMG4x12
Map ROM components to: % Logic RAM

Additional options for SynplifyPro synthesis

Script file: [iad

Additional options:

=

Figure 35 - Synthesize Options Dialog Box

P |

HDL Synthesis Language Settings

HDL Synthesis language options are no longer specified in this dialog box. Please refer to Project Settings:
Design Flow Options.

Global Nets (Promotions and Demotions)

Use the following options to specify to the Synthesis tool the threshold value beyond which the Synthesis tool
promotes the pins to globals:

e Minimum number of clock pins — Specifies the threshold value for Clock pin promotion. The default value
is 2.

48

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e Minimum number of asynchronous pins — Specifies the threshold value for Asynchronous pin promaotion.
The default is 800 for PolarFire.

¢ Minimum fanout of non-clock nets to be kept on globals — Specifies the threshold value for data pin
promotion to global resources. It is the minimum fanout of non-clock (data) nets to be kept on globals (no
demotion). The default is 5000 (must be between 1000 and 200000).

e Number of global resources — This can be used to control number of Global resources you want to use in
your design. By default this displays the number of available global resources for the die you have selected
for the project and varies with different die sizes. For PolarFire, the default is 24 for all dies.

e Maximum number of global nets that could be demoted to row-globals — Specifies the maximum
number of global nets that could be demoted to row-globals. The default is 16 (must be between 0 to 50).

¢ Minimum fanout of global nets that could be demoted to row-globals — Specifies the minimum fanout of
global nets that could be demoted to row-global. It is undesirable to have high fanout nets demoted using
row globals because it may result in high skew. The default is 300. (Must be between 25 to 5000). If you run
out of global routing resources for your design, reduce this number (to allow more globals to be demoted to
Row Globals) or select a bigger die for your design.

Note: Hardwired connections to global resources, such as CCC hardwired connections to GB , |0 Hardwired
connections to GB, and so on, cannot be controlled by these options.

Optimizations

Enable retiming — Check this box to enable Retiming during synthesis. Retiming is the process of automatically
moving registers (register balancing) across combinational gates to improve timing, while ensuring identical logic
behavior. The default is no retiming during synthesis.

RAM optimized for:
Use this option to guide the Synthesis tool to optimize RAMs to achieve your design goal.

e High speed — RAM Optimization is geared towards Speed. The resulting synthesized design achieves
better performance (higher speed) at the expense of more FPGA resources.

e Low power — RAM Optimization is geared towards Low Power. RAMs are inferred and configured to ensure
the lowest power consumption.

Map seqg-shift register components to:
Use this option to select the mapping of sequential logic:
e Registers — When selected, sequential shift logic in the RTL is mapped to registers.

¢ RAM®64x12 — When selected, sequential shift logic in the RTL is mapped to a 64x12 RAM block. This is the
default setting.

Map ROM components to:

Use this option to select the mapping of ROM components. Libero default is to map ROM components to Logic
during synthesis.

e Logic - When selected, ROM components will be mapped to Logic.
¢ RAM - When selected, ROM components will be mapped to RAM.

Additional options for Synplify Pro synthesis

Script File

Click the Browse L"** | button to navigate to a Synplify Tcl file that contains the Synplify Pro-specific options.
Libero passes the options in the Tcl file to Synplify Pro for processing.

Additional Options
Use this field to enter additional Synplify options. Put each additional option on a separate line.

Note: Libero passes these additional options “as-is” to Synplify Pro for processing; no syntax checks are
performed. All of these options are set on the Active Implementation only.

The list of recommended Synthesis Tcl options below can be added or modified in the Tcl Script File or Additional
Options Editor.

49

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Note: The options from the Additional Options Editor will always have priority over the Tcl Script file options if they
are same.

set_option -use_fsm_explorer 0/1

set_option -frequency 200.000000

set_option -write_verilog 0/1

set_option -write_vhdl 0/1

set_option -resolve_multiple_driver 1/0

set_option -rw_check_on_ram 0/1

set_option -auto_constrain_io 0/1

set_option -run_prop_extract 1/0

set_option -default_enum_encoding default/onehot/sequential/gray

set_option -maxfan 30000

set_option -report_path 5000

set_option -update models _cp 0/1

set_option -preserve_registers 1/0

set_option -continue_on_error 1/0

set_option -symbolic_fsm_compiler 1/0

set_option -compiler_compatible 0/1

set_option -resource_sharing 1/0

set_option -write_apr_constraint 1/0

set_option -dup 1/0

set_option -enable64bit 1/0

set_option -fanout_limit 50

set_option -frequency auto

set_option -hdl_define SLE_INIT=2

set_option -hdl_param -set "width=8"

set_option -looplimit 3000

set_option -fanout_guide 50

set_option -maxfan_hard 1/0

set_option -num_critical_paths 10

set_option -safe_case 0/1
Any additional options can be entered through the Script File or Additional Options Editor. All of these options can
be added and modified outside of Libero through interactive SynplifyPro.
Refer to the Synplify Pro Reference Manual for detailed information about the options and supported families.
The following options are already set by Libero. Do not include them in the additional options field or Script File:

add_file <*>

impl <*>

project_folder <*>

add_folder <*>

constraint_file <*>

project <*>

project_file <*>

open_file <*>

set_option —part

set_option -package

set_option -speed_grade

set_option -top_module

set_option -technology

set_option -opcond

set_option -vlog_std

set_option -vhdl12008

50

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

set_option -disable_io_insertion
set_option -async_globalthreshold
set_option -clock _globalthreshold
set_option -globalthreshold
set_option -low_power_ram_decomp
set_option -retiming

Synplify Pro ME
Synplify Pro ME is the default synthesis tool for Libero SoC.
To run synthesis using Synplify Pro ME and default settings, right-click Synthesize and choose Run.

If you wish to use custom settings you must run synthesis interactively.

To run synthesis using Synplify Pro ME with custom settings:

1.

w

If you have set Synplify as your default synthesis tool, right-click Synthesize in the Libero SoC Design Flow
window and choose Open Interactively. Synplify starts and loads the appropriate design files, with a few
pre-set default values.

From Synplify’s Project menu, choose Implementation Options.
Set your specifications and click OK.
Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools and is

not intended for synthesis. Embed the defparam statement in between translate_on and translate_off

synthesis directives as follows:
/* synthesis translate_off */
defparam MO.MEMORYFILE = "meminit.dat"

/*synthesis translate_on */

// rest of the code for synthesis

Click the RUN button. Synplify compiles and synthesizes the design into an HDL netlist. The resulting *.vm

files are visible in the Files list, under Synthesis Files.
Should any errors appear after you click the Run button, you can edit the file using the Synplify editor.
Double-click the file name in the Synplify window showing the loaded design files. Any changes you
make are saved to your original design file in your project.

From the File menu, choose Exit to close Synplify. A dialog box asks you if you would like to save any

settings that you have made while in Synplify. Click Yes.

Note: See the Microsemi Attribute and Directive Summary in the Synplify online help for a list of attributes
related to Microsemi devices.

Note: To add a clock constraint in Synplify you must add "n:<net_name>" in your SDC file. If you put the
net_name only, it does not work.

Identify Debug Design

Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.

To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click Instrument
Design.

Identify features:

Instrument and debug your FPGA directly from RTL source code.
Internal design visibility at full speed.

Incremental iteration - Design changes are made to the device from the Identify environment using
incremental compile. You iterate in a fraction of the time it takes route the entire device.

Debug and display results - You gather only the data you need using unique and complex triggering
mechanisms.

51

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow outlined
below.

To use the Identify Instrumentor and Debugger:

1.
2.

ook w

9.

Create your source file (as usual) and run pre-synthesis simulation.

(Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a Programming
File) without starting Identify.

Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
In Synplify, click Options > Configure Identify Launch to setup Identify.
In Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.

In the Implementations Options dialog, make sure the Implementation Results > Results Directory points to
a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your resulting Verilog
Netlist file.

From the Instumentor Ul specify the sample clock, the breakpoints, and other signals to probe. Synplify
creates a new synthesis implementation. Synthesize the design.

In Libero SoC, run Synthesis, Place and Route and Generate a Programming File.

Note: Libero SoC works from the edif netlist of the current active implementation, which is the
implementation you created in Synplify for Identify debug.

Double-click Identify Debug Design in the Design Flow window to launch the Identify Debugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

Verify Post-Synthesized Design

Generate Simulation File
This step generates the post-synthesis *.v Verilog or *.vhd VHDL netlist for post-synthesis simulation. Post-
synthesis simulation verifies the post-synthesis implementation of the design.
The netlist file is located in the synthesis folder of the project. Libero SoC passes this file to the simulator for the

post-synthesis simulation run. This step must be preceded by a successful synthesis. If synthesis is not yet run,
generating Simulation Files automatically initiates a synthesis run as a requirement to this step

Verify Post-Synthesis Implementation - Simulate

The steps for performing functional (post-synthesis) and timing (post-layout) simulation are nearly identical.
Functional simulation is performed before place-and-route and simulates only the functionality of the logic in the
design. Timing simulation is performed after the design has gone through place-and-route and uses timing
information based on the delays in the placed and routed designs.

To perform functional simulation:

1.
2.

If you have not done so, back-annotate your design and create your testbench.

Right-click Simulate (in the Design Flow window, Implement Design > Verify Post-Synthesis Implementation
> Simulate) and choose Organize Input Files > Organize Simulation Files from the right-click menu.

In the Organize Files for Source dialog box, all stimulus files in the current project appear in the
Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want

simultaneous association of multiple testbench files for one simulation session, as in the case of PCI
cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in
the Project list box and click Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

52

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.

4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open
Interactively. ModelSim starts and compiles the appropriate source files. When the compilation completes,
the simulator runs for 1 pus and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to zoom in
and out and measure timing delays.

6. When you are done, from the File menu, choose Quit.

Compile Netlist

Options

Compile contains a variety of functions that perform legality checking and basic netlist optimization. Compile
checks for netlist errors (bad connections and fan-out problems), removes unused logic (gobbling), and combines
functions to reduce logic count and improve performance. Compile also verifies that your selected device has
sufficient resources to fit your design.

The Compile Netlist step appears in the Design Flow window only after unchecking the Enable Synthesis option in
the Project > Project Settings > Design Flow page. This option is only visible after importing or linking your HDL
Netlist files into the project and building the design hierarchy.

To compile your device with default settings, right-click Compile Netlist in the Design Flow window and choose
Run (or simply double-click Compile Netlist).

During compile, the Log window displays information about your design, including warnings and errors. Libero
SoC issues warnings when your design violates recommended Microsemi design rules. Microsemi recommends
that you address all warnings, if possible, by modifying your design before you continue.

If the design fails to compile due to errors, you must modify the design to remove the errors and re-Compile.

To compile your design with custom settings, right-click Compile Netlist in the Design Flow window and choose
Configure Options.

The Compile Netlist Options sets the threshold value for global resource promotion and demotion when Place and
Route is executed.

7 Compile Netlist Options 2

Global Promotion

Mumber of global resources: 24

Maximum number of global nets that could be demoted to row-globals: | 16|

Minimum fanout of global nets that could be demoted to row-globals: 1000

Minirmum fanout of non-dodk nets to be kept on globals: 5000

Help Ok] | Cancel

Figure 36 - Compile Netlist Options Dialog Box

53

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Number of global resources - The number of available global resources for the die is reported in this field. The
number varies with the die size you select for the Libero SoC project.

The following options allow you to set the maximum/minimum values for promotion and demotion of global routing
resources.

Maximum Number of global nets that could be demoted to row-globals — Specifies the maximum number of
global nets that can be demoted to row-globals. The default is 16.

Minimum fanout of global nets that could be demoted to row-globals — Specifies the minimum fanout of
global nets that can be demoted to row-global. The default is 1000. If you run out of global routing resources for
your design, reduce this number (to allow more globals to be demoted) or select a larger die for your design.

Minimum fanout of non-clock nets to be kept on globals — Specifies the minimum fanout of non-clock (data)
nets to be kept on globals (no demotion). The default is 5000 (valid range is 1000 to 200000). If you run out of
global routing resources for your design, increase this number or select a larger die for your design.

Constraint Flow in Implementation

Design State Invalidation

The Libero SoC Design Flow window displays status icons to indicate the status of the design state. For any
status other than a successful run, the status icon is identified with a tooltip to give you additional information.

Status Tooltip Description Possible Causes/Remedy
Icon

N/A Tool has not NEW state Tool has not run or it has been cleaned.
run yet.

I vf Tool runs Tool runs with no N/A

! successfully. errors. PASS state.
Varies with the | Tool runs but with Varies with the tool (e.g., for the Compile Netlist
tool. Warnings. step, not all I/Os have been assigned and locked).

|o Tool Fails. Tool fails to run. Invalid command options or switches, invalid

design objects, invalid design constraints.

Design State is | Tool state changes Since the last successful run, design source design
' Out of Date. from PASS to OUT OF | files, constraint files or constraint file/tool
DATE. association, constraint files order, tool options,

and/or project settings have changed.

x Timing Timing Verification Design fails Timing Analysis. Design has either set-
Constraints runs successfully but up or hold time violations or both. See PolarFire
have not been [the design fails to meet | FPGA Timing Constraints User Guide on how to
met. timing requirements. resolve the timing violations.

Constraints and Design Invalidation

A tool in the Design Flow changes from a PASS state (green check mark) to an OUT OF DATE state when a
source file or setting affecting the outcome of that tool has changed.

The out-of-date design state is identified by the
Sources and/or settings are defined as:

icon in the Design Flow window.

e HDL sources (for Synthesis), gate level netlist (for Compile), and Smart Design components

54

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_timing_constr_flow_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_timing_constr_flow_ug.pdf

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

e Design Blocks (*.cxz files) — low-level design units which may have completed Place and Route and re-used
as components in a higher-level design

e Constraint files associated with a tool

e Upstream tools in the Design Flow:
0 If the tool state of a Design Flow tool changes from PASS to OUT OF DATE, the tool states of all

the tools below it in the Design Flow, if already run and are in PASS state, also change to OUT OF

DATE with appropriate tooltips. For example, if the Synthesis tool state changes from PASS to

OUT OF DATE, the tool states of Place and Route tool as well as all the tools below it in the Design
Flow change to OUT OF DATE.

o If a Design Flow tool is CLEANED, the tool states of all the tools below it in the Design Flow, if

already run, change from PASS to OUT OF DATE.

o If a Design Flow tool is rerun, the tool states of all the tools below it in the Design Flow, if already
run, are CLEANED.

e Tool Options

o If the configuration options of a Design Flow tool (right-click the tool and choose Configure

Options) are madified, the tool states of that tool and all the other tools below it in the Design Flow,
if already run, are changed to OUT OF DATE with appropriate tooltips.

e Project Settings:

o Device selection
0 Device settings
o Design Flow

0 Analysis operating conditions

Setting Changed Note Design Flow Tools Affected New State of the
Affected Design Flow
Tools

Die Part# is All CLEANED/NEW
changed

Package Part# is All CLEANED/NEW
changed

Speed Part# is All CLEANED/NEW
changed

Core Voltage Part# is All CLEANED/NEW
changed

Range Part# is All CLEANED/NEW
changed

Default I/0 Technology Synthesize, and all tools below it | OUT OF DATE

Reserve Pins for Place and Route, and all tools OUT OF DATE

Probes below it

PLL Supply Voltage (V) Verify Power, Generate FPGA OUT OF DATE

Array Data and all other “Program
and Debug Design” tools below it
Power On Reset Delay Generate FPGA Array Data and OUT OF DATE

all other “Program and Debug
Design” tools below it

55

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Setting Changed Note Design Flow Tools Affected New State of the
Affected Design Flow
Tools
System controller Generate FPGA Array Data and OUT OF DATE
suspended mode all other “Program and Debug
Design” tools below it
Preferred Language None N/A
Enable synthesis All OUT OF DATE
Synthesis gate level Synthesize CLEANED/NEW
netlist format
Reports(Maximum None N/A
number of high fanout
nets to be displayed)
Abort flow if errors are None N/A
found in PDC
Abort flow if errors are None N/A
found in SDC
Temperature range(C) Verify Timing, Post Layout OUT OF DATE
Simulate, and Verify Power
Core voltage range(V) Verify Timing, Verify Power OUT OF DATE
Default 1/0 voltage Verify Timing, Verify Power OUT OF DATE
range

¢ Note: Cleaning a tool means the output files from that tool are deleted including log and report files, and
the tool’s state is changed to NEW.

Check Constraints
When a constraint file is checked, the Constraint Checker does the following:

e Checks the syntax

e Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in the
netlist (RTL or post-layout ADL netlist). Any discrepancy (e.g., constraints on a design object which does not
exist in the netlist) are flagged as errors and reported in the *_sdc.log file

Design State and Constraints Check

Constraints can be checked only when the design is in the right state.

Constraint Type | Check for Required Design Netlist Used for Check Result
Tools State Before Design Objects
Checking Checks
I/O Constraints Place and Post-Synthesis ADL Netlist Reported in
Route Libero Log
Window

56

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Constraint Type | Check for Required Design Netlist Used for Check Result
Tools State Before Design Objects
Checking Checks
Floorplanning Place and Post-Synthesis ADL Netlist par_sdc.log
Constraints Route
Timing Synthesis Pre-Synthesis RTL Netlist synthesis_sdc.log
Constraints
Place and Post-Synthesis ADL Netlist par_sdc.log
Route
Timing Post-Synthesis ADL Netlist vt_sdc.log
Verification
Netlist Attributes | FDC Check Pre-Synthesis RTL Netlist Libero Message
Window
Netlist Attributes | NDC Check Pre-Synthesis RTL Netlist Reported in
Libero Log
Window

A pop-up message appears when the check is made and the design flow has not reached the right state.
[0] Please run 'Synthesize’ before executing Ched: Operation

& ¥

Figure 37 - Pop-Up message: Design State insufficient for Constraints Check operation

7 Information

Edit Constraints

Click the Edit with 1/O Editor/Chip Planner/Constraint Editor button to edit existing and add new constraints.
Except for the Netlist Attribute constraints (*.fdc and *.ndc) file, which cannot be edited by an interactive tool, all
other constraint types can be edited with an Interactive Tool. The *.fdc and *.ndc files can be edited using the
Libero SoC Text Editor.

The 1/O Editor is the interactive tool to edit I/O Attributes, Chip Planner is the interactive tool to edit Floorplanning
Constraints, and the Constraint Editor is the interactive tool to edit Timing Constraints.

For Timing Constraints that can be associated to Synthesis, Place and Route, and Timing Verification, you need
to specify which group of constraint files you want the Constraint Editor to read and edit:

e Edit Synthesis Constraints - reads associated Synthesis constraints to edit.
e Edit Place and Route Constraints - reads only the Place and Route associated constraints.
e Edit Timing Verification Constraints - reads only the Timing Verification associated constraints.

For the three SDC constraints files (a.sdc, b.sdc, and c.sdc, each with Tool Association as shown in the table
below) when the Constraint Editor opens, it reads the SDC file based on your selection and the constraint file/tool
association.

Synthesis Place and Route Timing Verification

a.sdc X X

57

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Synthesis Place and Route Timing Verification
b.sdc X X
c.sdc [target] X X X

e Edit Synthesis Constraints reads only the b.sdc and c.sdc when Constraint Editor opens.

e Edit Place and Route Constraints reads a.sdc, b.sdc and c.sdc when Constraint Editor opens.

e Edit Timing Verification Constraints reads a.sdc and c.sdc when Constraint Editor opens.

Constraints in the SDC constraint file that are read by the Constraint Editor and subsequently modified by you will
be written back to the SDC file when you save the edits and close the Constraint Editor.

When you add a new SDC constraint in the Constraint Editor, the new constraint is added to the c.sdc file,
because it is set as target. If no file is set as target, Libero SoC creates a new SDC file to store the new

constraint.

Constraint Type and Interactive Tool

Constraint Type

Interactive Tool For
Editing

Design Tool the
Constraints File is
Associated

Required Design
State Before
Interactive Tool
Opens for Edit

I/0 Constraints

1/0O Editor

Place and Route Tool

Post-Synthesis

Floorplanning
Constraints

Chip Planner

Place and Route Tool

Post-Synthesis

Timing Constraints

SmartTime Constraints
Editor

Synthesis Tool
Place and Route

Timing Verification

Pre-Synthesis
Post-Synthesis
Post-Synthesis

Netlist Attributes Interactive Tool Not Synthesis Pre-Synthesis
Synplify Netlist Available Open the Text

Constraint (*.fdc) Editor to edit.

Netlist Attributes Interactive Tool Not Synthesis Pre-Synthesis

Compile Netlist
Constraint (*.ndc)

Available Open the Text
Editor to edit.

Note: If the design is not in the proper state when Edit with <Interactive tool> is invoked, a pop-up message

appears.

58

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

| Information ot m

Io:I Please run 'Synthesize' before executing Edit Operation
Note: When an interactive tool is opened for editing, the Constraint Manager is disabled. Close the Interactive
Tool to return to the Constraint Manager.

Place and Route

Double-click Place and Route to run Place and Route on your design with the default settings.

Place and Route Options

To change your Place and Route settings from the Design Flow window, expand Implement Design, right-click
Place and Route and choose Configure Options. This opens the Layout Options dialog box.

59

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

r I¥ Timing-driven
[Power-driven
[1/0 Register Combining
¥ Global Pins Demation
[Driver Replication
[~ High Effort Layout

[Repair Minimum Delay Violations

[T Incremental Layout

[Use Multiple Passes

Configure...

Help |

Ok

(=]

Cancel

Figure 38 - Layout Options Dialog Box

60

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

—
[¥ Timing-driven
[Power-driven
[IjO Register Combining
v Global Fins Demotion
[Driver Replication
[High Effort Layout

[Repair Minimum Delay Violations

[Incremental Layout

[Use Multiple Passes

nfigure...

Car

Block Creation

Mumber of raw-global resources | 18

Help | QK

Cancel

Figure 39 - Layout Options Dialog Box - with Block Flow enabled

Timing-Driven

Timing-Driven Place and Route is selected by default. The primary goal of timing-driven Place and Route is to
meet timing constraints, specified by you or generated automatically. Timing-driven Place and Route typically

delivers better performance than Standard Place and Route.

If you do not select Timing-driven Place and Route, timing constraints are not considered by the software,
although a delay report based on delay constraints entered in SmartTime can still be generated for the design.

Power-Driven

Enable this option to run Power-Driven layout. The primary goal of power-driven layout is to reduce dynamic

power while still maintaining timing constraints.

61

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

1/0 Register Combining

Enable this option to combine any register directly connected to an 1/O when it has a timing Constraint. If there
are multiple registers directly connected to a (bi-directional) 1/O, select one register to combine in the following
order: input-data, output-data, output-enable.

Global Pins Demotion

This option is selected by default when Timing-Driven Place and Route is enabled. When this option is enabled,
the layout tool selects the most timing critical pins on any Global network and moves them to the source that
drives the Global resource. When a driver register is replicated, the duplicate names are printed. Each set of
names should be used in place of the original register in any specified timing constraint.

Driver Replication

Enable this option to enable an algorithm to replicate critical net drivers to reduce timing violations. The algorithm
prints the list of registers along with the duplicate names. Each set of names should be used in place of the
original register in any specified timing constraint.

High Effort Layout

Enable this option to improve the likelihood of achieving layout success. The layout runtime will increase if you
select this option. Timing performance may suffer as well. Users are urged to consider other methods for
achieving layout success before utilizing this option.

Repair Minimum Delay Violations

Enable this option to instruct the Router engine to repair Minimum Delay violations for Timing-Driven Place and
Route mode (Timing-Driven Place and Route option enabled). The Repair Minimum Delay Violations option, when
enabled, performs an additional route that attempts to repair paths that have minimum delay and hold time
violations. This is done by increasing the length of routing paths and inserting routing buffers to add delay to the
top 100 violating paths.

When this option is enabled, Libero adjusts the programmable delays through I/Os to meet hold time
requirements from input to registers. For register-to-register paths, Libero adds buffers.

Libero iteratively analyzes paths with negative minimum delay slacks (hold time violations) and chooses suitable
connections and locations to insert buffers. Not all paths can be repaired using this technique, but many common
cases will benefit.

Even when this option is enabled, Libero will not repair a connection or path which:
e Is a hardwired, preserved, or global net
e Has a sink pin which is a clock pin
¢ Isviolating a maximum delay constraint (that is, the maximum delay slack for the pin is negative)
e May cause the maximum delay requirement for the sink pin to be violated (setup violations)

Typically, this option is enabled in conjunction with the Incremental Layout option when a design’s maximum
delay requirements have been satisfied.

Every effort is made to avoid creating max-delay timing violations on worst case paths.

Min Delay Repair produces a report in the implementation directory which lists all of the paths that were
considered.

If your design continues to have internal hold time violations, you may wish to rerun repair Minimum Delay
Violations (in conjunction with Incremental Layout). This will analyze additional paths if you originally had more
than 100 violating paths.

62

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Incremental Layout

Choose Incremental Layout to use previous placement data as the initial placement for the next run. If a high
number of nets fail, relax constraints, remove tight placement constraints, deactivate timing-driven mode, or select
a bigger device and rerun Place and Route.

You can preserve portions of your design by employing Compile Points, which are RTL partitions of the design
that you define before synthesis. The synthesis tool treats each Compile Point as a block which enables you to
preserve its structure and timing characteristics. By executing Layout in Incremental Mode, locations of
previously-placed cells and the routing of previously-routed nets is preserved. Compile Points make it easy for
you to mark portions of a design as black boxes, and let you divide the design effort between designers or teams.
See the Synopsys FPGA Synthesis Pro ME User Guide for more information.

Use Multiple Pass

Check Multiple Pass to run multiple pass of Place and Route to get the best Layout result. Click Configure to
specify the criteria you want to use to determine the best layout result. For details see Multiple Pass Layout

Configuration.

Block Creation — Number of row-global resources

This option is available only when the Block Creation option is turned on (Project > Project Settings > Design
Flow > Enable Block Creation). The value entered here restricts the number of row-global resources available in
every half-row of the device. During Place and Route of the block, the tool will not exceed this capacity on any
half-row. The default value is the maximum number of row-globals. If you enter a value lower than the maximum
capacity (the default), the layout of the block will be able to integrate with the rest of the design if they consume
the remaining row-global capacity.

See Also
Multiple Pass Layout Configuration.

extended run_lib

Multiple Pass Layout Configuration

Multiple Pass Layout attempts to improve layout quality by selecting from a greater number of Layout results. This
is done by running individual place and route multiple times with varying placement seeds and measuring the best
results with specified criteria.

e Before running Multiple Pass Layout, save your design.
e Multiple Pass Layout is supported by all families.

e Multiple Pass Layout saves your design file with the pass that has the best layout results. If you want to
preserve your existing design state, you should save your design file with a different name before
proceeding. To do this, from the File menu, choose Save As.

e Four types of reports (timing, maximum delay timing violations, minimum delay timing violations, and power)
for each pass are written to the working directory to assist you in later analysis:

e <root_module_name>_timing_r<runNum>_s<seedIndex>.rpt
e <root_module_name>_timing_violations_r<runNum>_s<seedIndex>.rpt
e <root_module_name>_timing_violations_min_r<runNum>_s<seedIndex>.rpt
e <root_module_name>_power_r<runNum>_s<seedIlndex>.rpt
e <root_module_name>_iteration_summary.rpt provides additional details about the saved files.
To configure your multiple pass options:
1. When running Layout, select Use Multiple Passes in the Layout Options dialog box.
2. Click Configure. The Multi-Pass Configuration dialog box appears.

63

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

PolarFire FPGA Design Flow User Guide

& Microsemi

| Multi-Pass Configuration

D |- |

Power Matters.

Mumber of passes: &

L

L113

Start at seed index (1 - 101): 11

Measurement:
) Slowest dodk
(7 Spedfic dodk CLK_ibuffud/U_IOINFF:Y

~1 Timing violations

Maximum delay Minimum delay
Selectb Total Megative Slack
Stop on first pass without violations
@ Total power

] [Canicel

o

Figure 40 - Multi-Pass Configuration Dialog Box

3. Set the options and click OK.

Number of passes: Set the number of passes (iterations) using the slider. 1 is the minimum and 25 is the
maximum. The default is 5.

Start at seed index: Set the specific index into the array of random seeds which is to be the starting point for the
passes. If not specified, the default behavior is to continue from the last seed index that was used.
Measurement: Select the measurement criteria you want to compare layout results against.

e Slowest clock: Select to use the slowest clock frequency in the design in a given pass as the performance

reference for the layout pass.

e Specific clock: Select to use a specific clock frequency as the performance reference for all layout passes.
Timing violations: This is the default. Select Timing Violations to use the pass that best meets the slack or
timing-violations constraints.

Note: You must enter your own timing constraints through SmartTime or SDC.

e Maximum delay: Select to examine timing violations (slacks) obtained from maximum delay analysis. This

is the default.

e Minimum delay: Select to examine timing violations (slacks) obtained from minimum delay analysis.

e Select by: Worst Slack or Total Negative Slack to specify the slack criteria.

e When Worst Slack (default) is selected, the largest amount of negative slack (or least amount of
positive slack if all constraints are met) for each pass is identified, and the largest value of all
passes determines the best pass.

¢ When Total Negative Slack is selected, the sum of negative slacks from the first 100 paths in the
Timing Violations report for each pass is identified, and the largest value of all the passes

64

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

determines the best pass. If no negative slacks exist for a pass, the worst slack is used to evaluate
that pass.

e Stop on first pass without violations: Select to stop performing remaining passes if all timing
constraints have been met (when there are no negative slacks reported in the timing violations
report).

e Total power: Select to determine the best pass to be the one that has the lowest total power (static +
dynamic) of all layout passes.

Iteration Summary Report

The file <root_module>_iteration_summary.rpt records a summary of how the multiple pass run was invoked
either through the GUI or extended_run_lib Tcl script, with arguments for repeating each run. Each new run
appears with its own header in the Iteration Summary Report with fields RUN_NUMBER and INVOKED AS,
followed by a table containing Seed Index, corresponding Seed value, Comparison data, Report Analyzed, and
Saved Design information.

TGt pten syl @ X Rmat X | Swree X maly X iy & X maly B K =

Figure 41 - Iteration Summary Report

See Also
Place and Route
extended run_lib

Resource Usage

After layout, you can check the resource usage of your design.

From the Design menu, choose Reports (Design > Reports). Click <design_name>_layout_log.log to open the
log file.

The log file contains a Resource Usage report, which lists the type and percentage of resource used for each
resource type relative to the total resources available for the chip.

Type Used Total Percentage
4LUT 400 86184 0.46
DFF 300 86184 0.34
I/O Register 0 795 0.00
Logic Element 473 86184 0.55

4L UTs are 4-input Look-up Tables that can implement any combinational logic functions with up to four inputs.

65

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

The Logic Element is a logic unit in the fabric. It may contain a 4LUT, a DFF, or both. The number of Logic
Elements in the report includes all Logic Elements, regardless of whether they contain 4LUT only, DFF only, or
both.

Overlapping of Resource Reporting

The number of 4LUTs in the report are the total number used for your design, regardless of whether or not they
are combined with the DFFs. Similarly, the number of DFFs in the report are the total number used for your
design, regardless of whether or not they are combined with 4LUT’s.

In the report above, there is a total of 473 Logic Elements (LEs) used for the design.

300 of the 473 LEs have DFFs inside, which means 173 (473-300) of them have no DFFs in them. These 173
LEs are using only the 4LUTSs portion of the LE.

400 of the 473 LEs have 4LUTs inside, which means 73 (473-400) of them have no 4LUTS in them. These 73
LEs are using only the DFF portion of the LE.

LEs using DFF Only = 473-400 = 73

LEs using 4LUTS only = 473-300= 173

=| 246 (Total of LEs using 4LUTS ONLY or DFF ONLY)

Report’s Overlapped resource = 227 (LEs using both 4LUTS and DFF)

Total number of LEs used = 473

LE Using
DFF
Only
(73)

LE Using
4LUTS Only
(173)

The area where the two circles overlap represents the overlapped resources in the Resource Usage report.

Global Net Report

The Global Net Report displays all the nets that use the global routing resources of the device. This report is
generated after the Place and Route step and available in XML format in the Reports tab (Libero SoC > Design
> Reports > <design_name>_glb_net_report.xml).

The global routing resources in Microsemi FPGA devices offer a low-skew network for effective distribution of high
fanout nets including clock signals. Global routing resources include the following:

e Fabric CCC

66

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

e Global Buffers (GB)
e Row Global Buffers (RGB)

E Reports & X

= rammer reports

=l rammer
rammer_manifest.txt

= sram
sram_manifest.txt

=l sram2
sram2_manifest.txt

= Synthesize
synplify.log
A rammer.sr
run_options. txt
rammer_dsp_rpt.txt
rammer_compike_n
rammer_compile_n...
¥ rammer_compil

=l Place and Route

rammer_pinrpt_na
rammer_pinrpt_nu
rammer_bankrpt.rpt
rammer_ioff.xml

§ rammer_layout...

>

Global Net Report

Microsemi Corporation - Microsemi Libero Software Release PolarFire v2.25P1 (Version 12.200.35.1)
Date: Fri Jun 1 10:55:58 2018

Global Nets Information

From GB Location Net Name Fanout
1 CLK_O_ibul_RNIETQAJ/UD | (1165, 162) ' CLK_O_ibuf_RNIETQA/UO_Y | 32
2| CLK_ibul_RNIVQO4/UO | (1152, 162) | CLK_ibuf_RNIVQOX/UD_Y |16

1/0 to GB Connections

(none)

Fabric to GB Connections

From
Location

From To Net Name Net |

1 CLK_0_ibuf_RNIETQA_CLK_GATING_AND2:Y ?}-2;?. CLK_0_ibuf_RNIETQA/UO CLK_0_ibuf_Z_CLK_GATING ROU

-
3

Figure 42 - Global Net Report

The Global Net Report has following sections:

Global Nets Information

The GB Location refers to the location of the Global routing resource/instance name of the macro on the chip. The
location is indicated by X-Y co-ordinates of the global resource macro.

67

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Global Nets Information

From GBLocation Net Name Fanout
1 | GB[4] (726, 156) reset_ctri_i/R_core_reset_out RNIFUQ&/UO_YWn 3571
2 | GB[8] (734, 156) pll_i/GLO_INST/UD_YWn 35488
3 |GB[19 | (741, 156) pll_i/GL3_INST/UD_YWn 2006
4 | GB[13] (739, 156) reset_ctrl_i/R_global_reset RNIOT36/U0_YWn 1848
5 GB[14] (740,156) pl_i/GL2_INST/UO_YWn_GEast 1104
6 GB[2] (724, 156) serdes_i/SERDES_IF_O0/EPCS_1_RX CLK_keep RNIEDL3/UD_YWn 514
7 | GH[O] (722, 156) serdes_I/SERDES_IF_0/EPCS_0_RX CLK_keep RNID1JYUD YWn | 513
8 |GB[3] (725, 156) serdes_i/SERDES_IF_0/EPCS_2_RX CLK_keep_RNIFPN1/U0_YWn 511
9 GH[7] | (729, 156) serdes_i/pcs_gl 0 pes_Ofmx_rst_n_i_0_RMNY9T3C/UD_YWn 312
10 GB[11] | (737, 156) serdes_i/pcs_gl_1_pcs_O/m_rst_n_i_0_RMIAGFA/UO_YWn 310
11 GB[1] | (723, 156) serdes_i/SERDES_IF_0/EPCS_0_TX CLK_keep RNIFLD&UO YWn 178
12| GBI5] | (727, 156) serdes_i/SERDES_IF_0/EPCS_2 TX CLK_keep RNIHDI4/UO_YWn 178
13 GBl6] (728, 156) serdes i/SERDES_IF_0/EPCS_1_TX CLK_keep RNIG1G6/UD_YWn 178
14| GB[10] | (736, 156) SPI_SCLK_ibuf_RNIT4T&/UD_YWn_GEasl 149
15 GB[9] | (735, 156) SRAM_CQ_ibuf_RNIBAIC/UO_Y Wn_GEast 11
16 GB[12] (738, 156) SRAM_CQn_ibuf_RNIPMME/UD_YWn_GEast 18

Figure 43 - Global Net Information

/0 to GB Connections

This section lists all the I/Os connected to the Global Resource/instance name of the macro.
/0 to GB Connections

PortMame Pin Number /O Function From From Location To Net Name Met Type Fanout
1/SPLSQK |03 | MSIO17ENB18 SPLSCLK IBUGU_IOINY | (6, 307) |GBI10] SPLSCLK buf ROUTED |1
2 SRAM_CQ | G16 DORIOI20NB2MDDR_DA_ECCH/COC_NET_CLKI3 SRAM_CO_bulUOIUIOINY | North 10 47 (1005, 313)| GBI8 | SRAM_CQ_ibul | ROUTED |1
3 SRAM_COn|F16 DORIO120PE2MDDR_DQ_ECCY/GE12/0CC_NE1_CLKI2 | SRAM_COn_ibuffU0/U_IOPALLY | North 10 #6 (1002, 313)| GB[12] SRAM_CQn_iouf HARDWIRED |1

Figure 44 - /0O to GB Connections

Net type is either routed or hardwired. Hardwired net types are dedicated wiring resources and have lower
insertion delays. Routed net types are implemented using fabric routing resources and the insertion delay
(generally higher than hardwired nets), varies from iteration to iteration.

The 1/O function name column describes all the connection details about the I/O such as the bank name,
hardwired GB or hardwired CCC connections, if any, and/or dedicated SERDES/DDR connections, if any. For
hardwired connections, the function name (DDRIO120PB2/MDDR_DQ_ECC1/GB12/CCC_NE1_CLKI2) contains
the GB index (GB12 in this case) that matches the GB index in the To column (GBL[12] in this case) whereas for
routed connections the Function name does not contain the proper GB index.

Fabric to GB Connections

This section lists all the nets originating from the fabric to the Global Resources/Instance name of the macro. The
From Location refers to the X-Y co-ordinates of the driver pin of the net. Generally speaking, the nets are routed
nets (not hardwired).

68

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Fabric to GB Connections

From From Location To Net Name Net Type Fanout
1 .resel_mrl_n'R_:ore_reser_out'o | (720, 160) .GBE-‘,!} reset_ctrl_ilcore_reset_out |RouTED |1
2 | reset_ctrl_VR_global_reset Q (722, 160) GB[13] | reset_cirl_i/global_reset_0 ROUTED 3
3 | serdes_SERDES_IF_(VSERDESIF_INSTINST_SERDESIF_IP.EPCS_RXCLK_1/(72, 2) GB[2] |serdes VSERDES_IF_VEPCS_1_RX CLK | ROUTED 1
4 | serdes_ISERDES_IF_0/SERDESIF_INSTINST_SERDESIF_IP-EPCS_RXCLK_D | (72, 2) GB[0] |serdes VSERDES_IF_OVEPCS_0_RX CLK | ROUTED 1
5 |serdes_VSERDES_IF_(YSERDESIF_INSTINST_SERDESIF_IP.EPCS_RXCLK[0] | (72, 2) GB[3] |serdes_iSERDES_IF_(VEPCS_2 RX_CLK ROUTED 1
6 |serdes_Vpcs_gl_0_pcs_O/m_rsi_n_i_O°Y (269, 54) GB[7] |serdes_ipcs_gi0.pcs_O/m_rst_n_i_0_1 ROUTED 1
7 |serdes_ipcs_gl_1_pcs_O/mx_rst_n_i O:Y (266, 96) GB[11] | serdes_i/pcs_gl.1.pcs_Oim_rst_n_i_0 ROUTED 1
8 | serdes_VSERDES_IF_(YSERDESIF_INSTINST_SERDESIF_IP:EPCS_TXCLK_0 | (72, 2) GB[1] |serdes VSERDES_IF_(VEPCS_0_TX CLK | ROUTED 1
9 | serdes_iSERDES_IF_(/SERDESIF_INST/INST_SERDESIF_IP. EPCS_TXCLK[0] | (72, 2) GB[5] |serdes_iSERDES_IF_O0'EPCS_2 TX CLK ROUTED 1
10| serdes_VSERDES_IF_/SERDESIF_INSTINST_SERDESIF_IP:EPCS_TXCLK 1 | (72, 2) GB[6] |serdes ¥SERDES IF_(WEPCS_1 TX CLK |ROUTED 1

Figure 45 - Fabric to GB connections

CCC to GB Connections

This section lists the nets originating from the Clock Conditioning Circuitry (CCC) outputs (GLx) to the Global
Resources/instance name of the macro. CCC clock outputs are usually hardwired (dedicated connection) to
Global resources (GB) to minimize clock skew.

CCC to GB Connections

From From Location To Net Name Net Type Fanout
1 pll_i/CCC_INST/INST_CCC_IP:GL0 | CCC-NEO (1428, 302) GB[8] | pll_i/GLO_net HARDWIRED 1
2 pll_ifCCC_INST/INST_CCC_IP:GL3 | CCC-NEO (1428, 302) GB[15] | pll_i/GL3 net HARDWIRED | 1
3 pll_i/CCC_INST/INST_CCC_IP:GL2 CCC-NEO (1428, 302) | GB[14] pl_i/GL2_net HARDWIRED | 1

Figure 46 - CCC to GB Connections

CCC Input Connections
This section lists the nets from the I/O Pins to the CCC inputs.

CCC Input Connections

PortName Pin Number IO Function From From Location To (Pin Swapped for Back Annotation Only) CCC Location Net Name ' Net Type Fanout
1/FPGA_CLK P | V12 MSIO35PBS/COC_NED_CLKIO| pll_UCLKO_PAD_INST/U_JOPADP-IOUT_P | East 10 #0 (1455, 112) pli_VCCC_INSTANST_CCC_IP-CLKD_PAD CCC-NEO (1428, 302) | fixed_clk | HARDWIRED| 1

Figure 47 - CCC Input Connections

Net type can be routed or hardwired. Hardwired net types are dedicated wiring resources and have lower
insertion delays. Routed net types are implemented using fabric routing resources and the insertion delay
(generally higher than that of hardwired nets), varies from iteration to iteration.

The 1/O function column describes all the connection details about the I/O such as the bank name, hardwired GB
or hardwired CCC connections, if any, and/or dedicated SERDES/DDR connections, if any. For hardwired
connections, the I/O function name contains the CCC location (CCC_NEQ in this case) and the To (Pin
Swapped for Back Annotation Only) column contains the actual input pin of the CCC in the backannotated
netlist.

Local Clock Nets to RGB Connections

This section lists the clock nets from the local clock nets to RGB (Row globals). RGBs are situated on the vertical
stripes of the global network architecture inside the FPGA fabric. The global signals from the GBs are routed to
the RGBs. Each RGB is independent and can be driven by fabric routing in addition to being driven by GBs. This
facilitates the use of RGBs to drive regional clocks spanning a small fabric area, such as the the clock network for
SERDES.

69

PolarFire FPGA Design Flow User Guide

Local Clock Nets to RGB Connections

From From Locafion NetMName Fanout

1/ serdes_ifpcs_gl 2 pes_Ofmx_rst_n_i 0 (216, 111) serdes_ifpcs_gl.2.pcs_O/m_rst_n_i_0 0| 310

Figure 48 - Local Clock Nets to RGB Connections

RGE Location Local Fanout
(364,
(364,
(364,
(364,
(364,
(364,
(364,
(364,
(364,
(364,
(364,
(364,
(364,

72)
75)
78)
81)
84)
87)
90)
93)
9%6)
%)
102)
111)
114)

& Microsemi

15
44
ar
19
28
20
25
25
36
19
14
i7
11

Power Matters.

The location refers to the X-Y co-ordinates on the chip. The fanout column gives the total fanout of the net and the
local fanout column gives the fanout at the local RGB only. The driver in the From column is routed to different

RGBs each with different local fanout.

The From column refers to the X-Y co-ordinates of the driver of the net. The driver in the From column is routed
to different RGBs each with different local fanout. The Fanout column gives the total fanout of the net and the

Local Fanout column gives the fanout at the local RGB only.

Global Clock Nets to RGB Connections
This section lists all nets from Globals (GBs) to Row Globals (RGBSs).

The From location refers to the X-Y co-ordinates on the chip. The Fanout column gives the total fanout of the net
and the Local Fanout column gives the fanout local to RGB. The driver in the From column is hardwired to

different RGBs each with different local fanout.

70

PolarFire FPGA Design Flow User Guide

Global Clock Nets to RGB Connections

From From Location Net Name
1 GBR[16] (736, 154) clk16_ibuf RNIGAL/UO Y

Fanout
5003

4= T == T > B 6 1 R - R S S B

SRS [B LT S o) IErel BRI SR SR ST RRa) ST
&gm&.um—xowmﬂmm&um—xo

27

& Microsemi

Power Matters.

RGB Location Local Fanout

(1166, 114)
(1166, 120)
(1166, 123)
(1166, 129)
(1166, 132)
(1166, 135)
(1166, 138)
(1166, 141)
(1166, 144)
(1166, 147)
(1166, 150)
(1166, 156)
(1166, 159)
(1166, 162)
(1166, 165)
(1166, 168)
(1166, 171)
(1166, 174)
(1166, 177)
(1166, 180)
(1166, 183)
(1166, 186)
(1166, 189)
(1166, 192)
(1166, 195)
(1166, 198)
(1166, 201)

Figure 49 - Global Clock Nets to RGB Connections

Verify Post Layout Implementation
Verify Timing

Verify Timing Configuration

7
53
40
39
48
50
77
100
64
53
63
39
128
146
146
130
139
146
164
20
145
127
121
127
110
94
30

Use this dialog box to configure the ‘Verify Timing’ tool to generate a timing constraint coverage report and
detailed static timing analysis and violation reports based on different combinations of process speed, operating

voltage, and temperature.
For the timing and timing violation reports you can select:

71

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

¢ Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature
operating conditions.

e Min Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature
operating conditions.

e Max Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature
operating conditions.

e Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature
operating conditions.

e Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and Low Temperature
operating conditions.

e Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and Low Temperature
operating conditions.

The following figures show examples of the Verify Timing Configuration dialog box for various operating
conditions and report selections.

W Verify Timing Configuratic M

Timing Reports

Slow process, Low voltage and High temperature
Max Delay Analysis Timing Report

[] Min Delay Analysis Timing Report

Max Delay Analysis Timing Violations Report
[] Min Delay Analysis Timing Violations Report 1

Fast process, High voltage and Low temperature

[] Max Delay Analysis Timing Report
Min Delay Analysis Timing Repart
[] Max Delay Analysis Timing Viclations Report
Min Delay Analysis Timing Violations Report

Slow process, Low voltage and Low temperature

[] Max Delay Analysis Timing Report
[] Min Delay Analysis Timing Report
[] Max Delay Analysis Timing Violations Report
[] Min Delay Analysis Timing Violations Report

Constraints Coverage Report

Generate constraints coverage report

o) [cad

Figure 50 - Verify Timing Configuration Settings

72

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Types of Timing Reports

From the Design Flow window > Verify Timing, you can generate the following types of reports:

Timing reports — These reports display timing information organized by clock domain. Four types of timing
reports are available. You can configure which reports to generate using the ‘Verify Timing’ configuration dialog
box (Design Flow > Verify Timing > Configure Options). The following reports can be generated:

Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature
operating conditions.

Min Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature
operating conditions.

Max Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature
operating conditions.

Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature
operating conditions.
Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and Low Temperature
operating conditions.
Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and Low Temperature
operating conditions.

Timing violations reports — These reports display timing information organized by clock domain. Four types of
timing violations reports are available. You can configure which reports to generate using the ‘Verify Timing’
configuration dialog (Design Flow > Verify Timing > Configure Options). The following reports can be
generated:

Max Delay Analysis Timing Violation report based on Slow process, Low Voltage, and High Temperature
operating conditions.

Min Delay Analysis Timing Violation report eport based on Fast process, High Voltage, and Low
Temperature operating conditions.

Max Delay Analysis Timing Violation report based on Fast process, High Voltage, and Low Temperature
operating conditions.

Min Delay Analysis Timing Violation report based on Slow process, Low Voltage, and High Temperature
operating conditions.

Max Delay Analysis Timing Violation report based on Slow process, Low Voltage, and Low Temperature
operating conditions.

Min Delay Analysis Timing Violation report based on Slow process, Low Voltage, and Low Temperature
operating conditions.

Constraints coverage report — This report displays the overall coverage of the timing constraints set on the
current design.

<root>_timing_constraints_coverage.xml (generated by default)

73

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

4 \erify Timing
pf_pcie_to_ddr3_top_max_timing_slow_v_html
? pf_pcie_to_ddr3_top_min_timing_slow_kv_ht.xml

V pf_pcie_to_ddr3_top_max_timing_violations_slow_lv_ht.xmil

? pf_pcie_to_ddr3_top_min_timing_viclations_slow_hv_ht.aml

? pf_pcie_to_ddr3_top_max_timing_fast_hv_[t.xm|
pf_pcie_to_ddr3_top_min_timing_fast_hv_taml

? pf_pcie_to_ddr3_top_max_timing_violations_fast_hv_|t.xml
v pf_pcie_to_ddr3_top_min_timing_violations_fast_hwv_|txml

? pf_pcie_to_ddr3_top_max_timing_slow_lv_ltxml

? pf_pcie_to_ddr3_top_min_timing_slow_lv_ltxml
V pf_pcie_to_ddr3_top_max_timing_violations_slow_lv_[t.xml
@’ pf_pcie_to_ddr3_top_min_timing_violations_slow_lv_lt.xml
pf_pcie_to_ddr3_top_timing_constraints_coverage.xml
pf_pcie_to_ddr3_top_timing_combinational_loopsxml

Report Listing Icon Legend
Icon Definition
v‘ Timing requirement met for this report
x Timing requirement not met (violations) for this
report
‘? Timing report available for generation but has not
been selected/configured for generation

Figure 51 - Reports Example

SmartTime

SmartTime is the Libero SoC gate-level static timing analysis tool. With SmartTime, you can perform complete
timing analysis of your design to ensure that you meet all timing constraints and that your design operates at the
desired speed with the right amount of margin across all operating conditions.

See the Timing Constraints Editor User Guide for help with creating and editing timing constraints.

Static Timing Analysis (STA)
Static timing analysis (STA) offers an efficient technique for identifying timing violations in your design and
ensuring that it meets all your timing requirements. You can communicate timing requirements and timing
exceptions to the system by setting timing constraints. A static timing analysis tool will then check and report
setup and hold violations as well as violations on specific path requirements.
STA is particularly well suited for traditional synchronous designs. The main advantage of STA is that unlike
dynamic simulation, it does not require input vectors. It covers all possible paths in the design and does all the
above with relatively low run-time requirements.
The major disadvantage of STA is that the STA tools do not automatically detect false paths in their algorithms as
it reports all possible paths, including false paths, in the design. False paths are timing paths in the design that do
not propagate a signal. To get a true and useful timing analysis, you need to identify those false paths, if any, as
false path constraints to the STA tool and exclude them from timing considerations.

Timing Constraints
SmartTime supports a range of timing constraints to provide useful analysis and efficient timing-driven layout.

74

https://coredocs.s3.amazonaws.com/Libero/pf_2_3_0/Tool/smarttime_ce_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Timing Analysis
SmartTime provides a selection of analysis types that enable you to:
e Find the minimum clock period/highest frequency that does not result in a timing violations
¢ Identify paths with timing violations
e Analyze delays of paths that have no timing constraints
e Perform inter-clock domain timing verification
e Perform maximum and minimum delay analysis for setup and hold checks

To improve the accuracy of the results, SmartTime evaluates clock skew during timing analysis by individually
computing clock insertion delays for each register.

SmartTime checks the timing requirements for violations while evaluating timing exceptions (such as multicycle or
false paths).

SmartTime and Place and Route

Timing constraints impact analysis and place and route the same way. As a result, adding and editing your timing
constraints in SmartTime is the best way to achieve optimum performance.

SmartTime and Timing Reports
From SmartTime > Tools > Reports, the following report files can be generated:
e Timing Report (for both Max and Min Delay Analysis)
e Timing Violations Report (for both Max and Min Delay Analysis)
e Bottleneck Report
e Constraints Coverage Report
e Combinational Loop Report
SmartTime and Cross-Probing into Chip Planner

From SmartTime, you can select a design object and cross-probe the same design object in Chip Planner. Design
objects that can be cross-probed from SmartTime to Chip Planner include:

e Ports
e Macros
e Timing Paths

Refer to the SmartTime User's Guide for details (Libero SoC > Help > Reference Manual > SmartTime User’s
Guide).
SmartTime and Cross-Probing into Constraint Editor

From SmartTime, you can cross-probe into the Constraint Editor. Select a Timing Path in SmartTime’s Analysis
View and add a Timing Exception Constraint (False Path, Multicycle Path, Max Delay, Min Delay) . The Constraint
Editor reflects the newly added timing exception constraint.

Refer to the SmartTime Static Timing Analyzer User Guide for details.

Verify Power
Right-click on the Verify Power command in the Design Flow window to see the following menu of options:

75

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_smarttime_sta_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Tool

¥ Create Design
¥ Constraints

v = » Implement Design
12 Open Metlist Viewer
v S Synthesize

=I- ¥ Verify Post-Synthesized Design
*L| Generate Simulation File
. Simulate
v ?‘Q Place and Route
¥ Verify Post Layout Implementation
(4 Verify Timing

E‘ i Gsen SmartTime

£% Open 55N Analyzer Run

+- b Configure Hardware Clean and Run All
+- b Program Design :
5 b Debug Design Open Interactively
#- b Handoff Design for Producti Clean
+- b Handoff Design for Debuggi

Help

Figure 52 - Verify Power right-click menu

Verify Power sub-commands

Run - Runs the default power analysis and produces a power report. This is also the behavior of a double-click to
Verify Power.

Clean and Run All - Identical to the sequence of commands "Clean" (see below) and "Run"
Open interactively - Brings up the SmartPower for Libero SoC tool (see below)
Clean - Clears the history of any previous default power analysis, including deletion of any reports. The flow task

completion icon will also be cleared.

Configure Options ... - This sub-command is only available if there are options to configure, in which case a
dialog box will pop-up presenting the user with technology-specific choices.

View Report - This sub-command is only available and visible if a report is available. When View Report is
invoked, the Report tab will be added to the Libero SoC GUI window, and the Power Report will be selected and
made visible.

SmartPower

SmartPower is the Microsemi SoC state-of-the-art power analysis tool. SmartPower enables you to globally and
in-depth visualize power consumption and potential power consumption problems within your design, so you can
make adjustments — when possible — to reduce power.

SmartPower provides a detailed and accurate way to analyze designs for Microsemi SoC FPGAs: from top-level
summaries to deep down specific functions within the design, such as gates, nets, 10s, memories, clock domains,
blocks, and power supply rails.

You can analyze the hierarchy of block instances and specific instances within a hierarchy, and each can be
broken down in different ways to show the respective power consumption of the component pieces.

SmartPower also analyses power by functional modes, such as Active, Flash*Freeze, Shutdown, Sleep, or Static,
depending on the specific FPGA family used. You can also create custom modes that may have been created in
the design. Custom modes can also be used for testing "what if* potential operating modes.

76

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

SmartPower has a very unique feature that enables you to create test scenario profiles. A profile enables you to
create sets of operational modes, so you can understand the average power consumed by this combination of
functional modes. An example may be a combination of Active, Sleep, and Flash*Freeze modes — as would be
used over time in an actual application.

SmartPower generates detailed hierarchical reports of the power consumption of a design for easy evaluation.
This enables you to locate the power consumption source and take appropriate action to reduce the power if
possible.

SmartPower supports use of files in the Value-Change Dump (VCD) format, as specified in the IEEE 1364
standard, generated by the simulation runs. Support for this format lets you generate switching activity information
from ModelSim or other simulators, and then utilize the switching activity-over-time results to evaluate average
and peak power consumption for your design.

See SmartPower User Guide

Simultaneous Switching Noise

Introduction

Simultaneous Switching Noise (SSN) is the Libero SoC voltage noise analysis tool. It provides a detailed analysis
of the noise margin on each I/O pin in the design based on the pin information as well as all the other active pins
placed in the same 1/O bank of the design. The tool computes the noise margin based on I/O Standards, Drive
Strength, and placement of the pin. The SSN Analyzer helps you achieve the desired voltage noise margin,
resulting in improved signal integrity.

Right-click SSN Analyzer in the Design Flow window and select Open Interactively to open the SSN Analyzer.

Supported Die/Package

Family Die Package
PolarFire MPF300XT FCG1152
MPF100T FCG484
MPF200T FCG484
MPF300T FCG484/FCG1152
MPF500T FCG1152
Note: 1 ns pulse width is only supported for MPF300XT/FCG1152.

Dies and packages for which characterization data is unavailable are not supported.
Supported 1/0 Standard

The SSN Analyzer supports the following I/O Standards:
e LVCMOS 3.3V
e LVCMOS 2.5V
e LVCMOS 1.8V
e LVCMOS 1.5V
e LVCMOS 1.2V
e LVTTL

77

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_1/Tool/smartpower_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Supported 1/0 Types
Only single-end 1/Os are supported. Differential 1/Os are not supported.
SSN Analyzer

Three tabs are available in the SSN Analyzer:
¢ Noise Report
e Excluded IOs
e Summary

Noise Report

The Noise Report tab displays by default when the SSN Analyzer opens, and lists all of the design’s Output and
Inout ports. Input I/Os are not supported. The displayed columns are:

e Bank Name/Pin Number — Shows the Bank Number and the Package Pin Number of the Port
e Port Name — Shows the Port Name
e Instance Name — Shows the Instance Name of the Port

e |/O Standard — Shows the I/O Standards supported by SSN Analyzer. Supported standards are: LVCMOS
3.3V, LVCMOS 2.5V, LVCMOS 1.8V, LVCMOS 1.5V and LVCMOS 1.2V and LVTTL.

e Drive Strength (mA) — Drive Strength selections are available from 2 to 12.

e Static — When this checkbox is checked, the I/O is considered neither as an Aggressor nor as a Victim. Itis
excluded from SSN Analysis.

e Don’'t Care —When this checkbox is checked, the I/O is excluded from consideration as a Victim for Noise
Margin computation. However, it is considered as an Aggressor for Noise Margin computation of other I/Os.

Note: Static and Don’'t Care are mutually exclusive.

e Noise Margin (%) — This is the Noise Margin number computed by the SSN Analyzer. A negative number
(shown in red) indicates that it is outside the guideline of SSN analysis.

e Within Guideline— Either Yes (Positive Noise Margin) or No (Negative Noise Margin). The Yes (within
guideline) or No (outside guideline) guideline is different for different I/O standards:

e LVTTL/LVCMOS (3.3V) — A Yes (within guideline) is defined as follows:
e A ground bounce voltage less than or equal to 1.25V and a pulse width of less than or

equalto 1 ns
e A VDD dip voltage greater than or equal to VIHm» and a pulse width of less than or equal
tolns
e All other LVCMOS Standards (2.5V, 1.8V, 1.5V, 1.2V) - A Yes (within guideline) is defined as

follows:

e A ground bounce voltage less than or equal to VILma for ground bounce and a pulse width
of less than or equal to 1 ns

e« A VDD dip voltage greater than or equal to VIHm» and a pulse width of less than or equal
to1ns

* Noise margin violating the criteria for “Yes” is considered to fall outside the specified guidelines,
and is reported as a “No”

78

PolarFire FPGA Design Flow User Guide

& Microsemi

£ S5MAnahyzer o o), [
File Edit View Help
R
Mo Report | Excloded10s | Summary
Port Name : | Search Puise Width : |1ns x
Bank Name/ Pin Number PortName Instance Name 10 Standard Drive Strength (mA] Static Don't Care Noise Margin (%) Within Guideline
4 Banko (L5v)
AlG wr wr_obuf/U0/U_IOPAD LVCMOS1S 4 v 99.01 Yes
AlS datao{28] datac_cbuf[28]/U0/U_IOPAD LVCMOSLS 4 99.00 Yes
4 Bankl (3.3v) =
| datao|29] datac_obuf[29]/U0/U IOPAD LVTTL 4 98.38 Ves I
m dataof25] datac_obuf[25]/U0/U_IOPAD LVCMOS33 4 9838 Yes
4 Bank2 (2.5v)
M30 datacd] datac_obuf[4]/U0/U_IOPAD LVEMOS25 12 Ne
N26 addressl[7] sddressi_obuf[7JUOUIOP.. LVEMOSZS 16 Ne
M8 address1[4] LVCMOSZ5 16 No |
K30 addrescl (3] LVCMOS25 16 Me
N27 addressl (2] LVCMOS25 16 Mo
M27 addressl[25] LVCMOS25 16 Mo
L28 addressl[24] LVCMOS25 16 Mo
21} address1[23] LVCMOS25 16 No
MX% address1[22] LVCMOS25 16 No
nN25 addressl[21] LVEMOS25 16 No
K28 address1[20] LVCMOS25 16 No
N4 addressl[1] VCMOS25 16 No
1] address1[19] LVEMOS25 16 Ne
L9 addressl[15] LVEMOS25 16 No
ey address1[14] LVEMOS25 16 Mo
L30 addressl[13] address1_obuff13]/UDjU_iO LVCMOS25 16 Mo
P30 addressl[12] address1_ebuf[12)uDjU IO LVCMOS25 16 Ves
4 Bank3 2.5v)
AB29 mig mio_obuf/U0/U_JOPAD LVCMOS25 6 70.52 Yes
] datao{20] datac_obuf[20]/U0/U_IOPAD LVCMOS25 12 2407 Ves
u2s dataa{15] datac_obuf[15]/U0/U_IOPAD LVCMOS25 12 68.75 Yes 1
Tr sl datanlldl datan abafLALLUOALLIDDAD. _ INCROSIS. 12 asm e
Run Analysis | | Save Report |
Ready Fam:SmartFusion? | Die:M25050T | [Pkg:896 FBGA [Speed: -1

Figure 53 - SSN Analyzer — Noise Report Tab

Right-click Menu Items

The following menu items are available when you right-click an 1/O. You can select multiple 1/0Os and then right-
click to apply the menu items to all selected I/Os. Available menu items are:

Show in 10 Editor/Chip Planner — Allows you to cross-probe or reconfigure the selected I/Os in 1/O
Editor or Chip Planner.
Note: This menu item is only active when the 1/O Editor is open.

Mark Selected Static — Marks the selected 1/Os as static (excluded from Noise Analysis).

Unmark Selected Static — Unmarks the selected 1/Os as static (included for Noise Analysis).

Mark Selected Don’t Care — Marks the selected 1/0 as Don't Care (Not to be considered as Victim).
Unmark Selected Don’t Care — Unmarks the selected I/0s as Don't Care (to be considered as Victim).
Copy Selection — Copies the selected 1/Os to the Clipboard for pasting into other applications.

Print Selection - Copies the selected I/Os and sends to the printer.

Sort by Package Die Pad Number — Sorts the Pin Number by the order of the I/O Pad number. Use this
option to find a pin and its neighboring pins. All used pins are arranged in order of proximity (geographical
proximity).

Search and Filter

Power Matters.

Filtering is available for Port Names. For example, if you enter the search pattern “DATA*” in the Port Name field
and click Search, the list is populated with all I/O names beginning with DATA. Names not beginning with DATA
are excluded from the list. Filtering allows you to focus on I/Os you are interested in for SSN Analysis.

Pulse Width

The Pulse Width is the settling time of the signal bounce. It is a threshold value which the signal bounce must

exceed before the signal bounce is recognized for SSN calculation. Select 1ns or Ons. Selecting Ons means that
any signal bounce with a pulse width above Ons is recognized for SSN calculation. A selection of 1ns means only
signal bounces with a pulse width at or above 1ns are recognized for SSN calculation.

Changing the Pulse Width selection discards all the changes made for the current Pulse Width selection and
triggers a re-analysis based on the new Pulse Width.

Note: 1 ns pulse width is only supported for the MPF300XT/FCG1152 die/package.

79

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Run Analysis

This button is not active when SSN first opens. It is activated only when you have made changes in the Noise
Report. These changes may include one or more of the following:

e Checking/unchecking the Don't’ Care checkbox for one or more 1/Os.
e Checking/unchecking the Static checkbox for one or more 1/Os.
When you have made your changes, click Run Analysis and SSN will recompute the Noise Margin number.

Save Report

Click Save Report to save the Noise Report in one of three formats:
e Text— Text file with *.txt file extension
e CSV - Spreadsheet file with *.csv file extension
e XML — XML file with *.xml file extension

Excluded 1/0Os

This tab displays all I/Os excluded from Noise Analysis. Excluded I/Os include:
e 1/Os on unsupported I/O standards
e 1/Os marked as Static in the Noise Analysis tab
e JTAG I/Os for which Noise Analysis is irrelevant

£ SSNAnalyzer =B K
CBSE
Moise Report | ExcudedIOs | Summary |
BankNamefPinl\iumber Port Name Instance Name 10 Standard Comment
Bank8 (2.5v)
Bank7 (2.5v)
Banké (L.2v)
4 Bank5 (1.8v)
AK19 ast2 ast2_obuf/U0/U_IOPAD LPDDRI 10 Standard is not supported
AE2T astl astl_ebuf/U0/U_IOPAD LPDDRI 10 Standard is not supported
AF18 datac[30] datac_obuf[30]/U0/U_IOPAD SSTLISI 10 Standard is not supported
Bank3 (2.5v)
Bank2 (2.5v)
Bank1 (3.3v)
4 BankD (L.5v)
D15 datac[10] datac_obuf[10]/U0/U_IOPAD HSTLL 10 Standard is not supported
D14 dstac([11] datac_obuf[11]/U0/U_IOPAD HSTLI 10 Standard is not supported
| Fam:SmartFusion2 | Die:M25050T | Pkg:896 FBGA :Speed: -1

Figure 54 - SSN Analyzer — Excluded I/0Os Tab
The Noise Report includes these columns:
e Bank Name/Pin Number
e Port Name
e Instance Name
e |/O Standard
e Comment — Specifies the reason for exclusion, e.g., unsupported I/O Standards or Marked as Static I/Os

You can right-click an I/O previously marked as static in the Excluded 1/Os list and select Unmarked Selected
Static to include it in Noise Report Analysis.

80

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Summary

The Summary tab displays a summary of the SSN Analyzer. Click Save Summary to save the summary in Text,
CSV, or XML format.

SSNAnalyzer

Window Menu Help
2 ma
MNoise Report Excluded 10s Summary
SSN Analyzer Summary:
Vendor: Microsemi Corporation

Program: Microsem| Libero Software, Release PolarFire v2.25P1 (Version 12.200.35.1)
Copyright (C) 1989-2018

Date Mon Jun 4 13:12:00 2018
Version: 1.0

Family : PolarFire

Die : MPF300XT

Package : FCG1152

Speed : STD

Pulse Width :1ns

SSN Analyzer Status : Successful

DRC Violations
None

Save Summary

Fam:PolarFire |Die:MPF300XT | Pkg:FCG1152 Speed: STD

Figure 55 - SSN Analyzer - Summary
User Action When SSN Noise Analyzer Reports Failure

When the SSN Noise Analyzer reports poor Noise Margin or Failure, take the following steps to improve the noise
margin:
1. Change the I/O Standard to one that has a lower noise impact for the failing I/O Bank.

2. Select the lower Drive-Strength to reduce the noise. Open the I/O Advisor to see the power/timing impact of
the specific 1/0 cell.

3. After making these changes, rerun the SSN Analyzer to see if the noise margin of the I/O Cell improves. In
this scenario, Place and Route information remains intact.

4. If the improvement is not significant, open the Pin Attributes Editor and change the placement of the pin
within the 1/0 bank to a location farther away from the noisy pins.

5. Spread the failing pins across multiple I/O banks. This will reduce the number of aggressive outputs on the
power system of the 1/O bank.

6. Rerun Place and Route and rerun SSN Analyzer to check the Noise Report.

81

PolarFire FPGA Design Flow User Guide

Compile

& Microsemi

Power Matters.”

Place & Route

Re- Configure IO

Aftributes

Analyzer

Change 10

Pin- Placement

Figure 56 - SSN Analyzer in the Design Flow

See Also
Simultaneous Switching Noise and Signal Integrity Application Notes

82

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130042

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Configure Hardware

Programming Connectivity and Interface

In the Libero SoC Design Flow window, expand Configure Hardware and double-click Programming
Connectivity and Interface to open the Programming Connectivity and Interface window. The Programming
Connectivity and Interface window displays the physical chain from TDI to TDO configuration.

The Programming Connectivity and Interface view enables the following actions:

Select Programming Mode — Select JTAG. or SPI Slave mode. SPI Slave mode is only supported by
FlashPro5.SPI Slave mode is not supported for PolarFire devices.

Construct Chain Automatically - Automatically construct the physical chain

Add Microsemi Device — Add a Microsemi device to the chain

Add Non-Microsemi Device — Add a non-Microsemi device to the chain

Add Microsemi Devices From Files — Add a Microsemi device from a programming file
Delete Selected Device — Delete selected devices in the grid

Scan and Check Chain — Scan the physical chain connected to the programmer and check if it matches the
chain constructed in the grid

Zoom In — Zoom into the grid
Zoom Out — Zoom out of the grid

Hover Information
The device tooltip displays the following information if you hover your pointer over a device in the grid:

Name - Editable field for a user-specified device name. If you have two or more identical devices in your
chain you can use this field to give them unique names.

Device - Device name.
File - Path to programming file.

Programming action — When a programming file is loaded, the user can select a programming action for
any device which is not the Libero design device.

IR Length - Device instruction length.

TCK - Maximum clock frequency in Hz to program a specific device; Libero uses this information to ensure
that the programmer operates at a frequency lower than the slowest device in the chain.

83

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.”

Libero design device

|Name: |MPF3:st_Es
|De~.rice: |MPF3:st_Es
|File |

|F'ru:ugrar‘r1ming action: |
[IR: 8
|Tck: 10000000

Figure 57 - Device Information

Device Chain Details
The device within the chain has the following details:

Libero design device — Has a red circle within Microsemi logo. Libero design device cannot be disabled.
Left/right arrow — Move device to left or right according to the physical chain.

Enable Device - Select to enable the device for programming; enabled devices are green, disabled devices
are gray.

Name - Displays your specified device name.
File - Path to programming file.

Right-Click Properties

Set as Libero Design Device - The user needs to set Libero design device when there are multiple
identical Libero design devices in the chain.

Enable Device for Programming - Select to enable the device for programming; enabled devices are
green, disabled devices are gray.

Configure Device — Ability to reconfigure the device (for a Libero SoC target device the dialog appears but
only the device name is editable).

Load Programming File — Load programming file for selected device. (Not supported for Libero SoC target
design device.)

Set Serial Data - Opens the Serial Settings dialog box; enables you to set your serialization data.
Select Program Procedure/Actions (Not supported for Libero SoC target design device):
e Actions - List of programming actions for your device.

e Procedures - Advanced option; enables you to customize the list of recommended and optional
procedures for the selected Action.

Move Device Left/Right — Move device in the chain to left or right.

84

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.”

MPF300T_ES (2)
[MPF300T_ES] <

Tou 2

Set As Libero Design Device
Configure Device...

Enable Device for Programming...
Load Programming File...

Set Serial Data...

Select Program Procedure/Actions...
Move Device Left..

|

Figure 58 - Right-click Properties

Programmer Settings

In the Libero SoC Design Flow window, expand Configure Hardware, double-click Configure Programmer, or
right-click Configure Programmer and choose Programmer Settings to view the Programmer Settings dialog.
You can set specific voltage and force TCK frequency values for your programmer in this dialog.

i Programmer Settings >

FlashPro | FlashPro Lite FlashPro3 | FlashPro4 FlashPro5

A ¥ setvpump

TCK Mode: Free Running Clocdk

[Force TCK Freguency

|4 TI MHz

Set Defaults |

Help | QK Cancel |

Figure 59 - Programmer Settings
The Programmer Settings dialog includes setting options for FlashPro5/4/3/3X.
Limitation of the TCK frequency for the selected programmer:

85

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e FlashPro5: 1, 2, 3, 4, 5, 6, 10, 15, 30 MHz
e FlashPro4:1, 2, 3,4,5,6 MHz
e FlashPro3/3X: 1, 2, 3, 4, 6 MHz
TCK frequency limits by target device:
e Refer to target device data sheet

During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file overrides the TCK
frequency setting selected by you in the Programmer Settings dialog box unless you also select the Force TCK
Frequency checkbox.

FlashPro5/4/3/3X Programmer Settings

For FlashPro5/4/3/3X, you can choose the Set Vpump setting or the Force TCK Frequency. If you choose the
Force TCK Frequency, select the appropriate MHz frequency. For FlashPro4/3X settings, you can switch the TCK
mode between Free running clock and Discrete clocking. After you have made your selections(s), click OK.

Alert: Do not connect VPUMP to a PolarFire device.
Default Settings

e The Vpump option is checked to instruct the FlashPro5/4/3/3X programmer(s) to supply Vpump to the
device.
NOTE: VPUMP voltage will not be checked for the SmartFusion2/IGLOO2 and newer families of devices.
VPUMP does not need to be connected to the programmer for these devices.

e The Force TCK Frequency option is unchecked to instruct the FlashPro5/4/3/3X to use the TCK frequency
specified by the Frequency statement in the PDB/STAPL file(s).

e FlashPro5/4/3/3X default TCK mode setting is Free running clock.

TCK Setting (ForceTCK Frequency)

If Force TCK Frequency is checked (in the Programmer Setting), the selected TCK value is set for the
programmer and the Frequency statement in the PDB/STAPL file is ignored.

Default TCK frequency

When the IPD/STAPL file or Chain does not exist, the default TCK frequency is set to 4AMHz. When more than
one Microsemi flash device is targeted in the chain, the FlashPro Express software passes through all of the files
and searches for the "freq" keyword and the "MAX_FREQ" Note field. The FlashPro Express software uses the
lesser value of all the TCK frequency settings and the "MAX_FREQ" Note field values.

Select Programmer

In the Libero SoC Design Flow window, expand Configure Hardware and double-click Select Programmer to
open the Select Programmer dialog. You can also right-click Select Programmer to open it. The dialog displays
the name, type, and port of your programmer if it is connected.

A drop-down list shows all connected programmers, allowing you to select the programmer you want. If no
programmers are connected, you can connect a programmer without closing the dialog and then click Refresh.
The connected programmer will appear in the drop-down list.

86

PolarFire FPGA Design Flow User Guide

Programmer:

Programmer type:

Port:

See Also

Programmer Settings

& Microsemi

Power Matters.

89313

FlashPro4

usb89313 (USB 2.0)

Figure 60 - Select Programmer Dialog

Tcl command select_programmer.htm

87

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Program Design

Generate FPGA Array Data

The Generate FPGA Array Data tool generates database files used in downstream tools:

*.map files used for Programming
RAM structural information used in ‘Configure Design Initialization and Memories’ tools

Double-click Generate FPGA Array Data or right-click Generate FPGA Array Data in the Design Flow window
and click Run to generate FPGA Array Data. Before running this tool, the design should have completed the
Place and Route step. If not, Libero SoC runs implicitly the upstream tools (Synthesis, Compile Netlist, and Place
and Route) before it generates the FPGA Array Data.

] [F] - [FH - [F

Top Module(root): sort_4

Tool

Create Design
Constraints
Implement Design
Configure Hardware
Pro Falal
L| Generate FPGA Array Data
~+L] Configlire Design Initialization Data and Memories

-+ | Generate Design Initialization Data

=& Configure /O States During JTAG Programming

= Configure Programming Options

-~ @ Configure Security
e @ Configure Permanent Locks (OTP)
- 4% Generate Bitstream

- Run PROGRAM Action
¥ Program SPI Flash Image
Debug Design
Handoff Design for Production
Handoff Design for Debugging

k
k
k
k
¥

v v v [H

Figure 61 - Generate FPGA Array Data

Configure Design Initialization Data and Memories

User design blocks such as LSRAM, uSRAM, XCVR (transceivers), and PCle can be initialized using data stored
in non-volatile uPROM, sNVM, or external SPI Flash storage memory. The Configure Design Initialization Data
and Memories tool allows you to define the specification of this Design Initialization sequence, and the
specification of the initialization clients in separate tabs:

Design Initialization Specification

Configure uPROM

Configure sSNVM
Configure SPI Flash

Configure Fabric RAMs Initialization

88

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Note: The Configure Design Initialization Data and Memories tool can be invoked only after successful completion
of the Generate FPGA Array Data step.

Use the tabs in this GUI to configure the Design Initialization data and memories.
Once the Configuration is complete, follow these remaining steps to program the initialization data:
1. Generate initialization clients

2. Generate or export the bitstream

3. Program the device

See Also

Generate Design Initialization Data
Configure Fabric RAMSs Initialization
Configure Programming Options

Configure Security Wizard

Design Initialization Specification Tab

Diesor Ivsirwoe | wRiin | gWie | 25 Finsh | e i

LU A, e, e PO L g el i S Loty it 415 P B et 1 ae ey
4, o el] Plash

g e T Bkl o

i thee it sLagr, Bhe mtahration sogurmscr de avurts FASEX PO

1

Trme Cut (5

Cisnee ol pten e

Figure 62 - Design Initialization Tab

Common Commands for All Configure Design Initialization Data and Memories Tabs

If a Configure Design Initialization Data and Memories Tab title has an asterisk (*) next to it, an item on that
tab has been changed, but not yet "Applied". The common options on every tab page are:

e Apply - Click the Apply button to save the changes made in this tab.
Note: The Apply button only saves the configuration changes. For the initialization of the memory block to
take effect, go back to the Device Initialization tab and click Generate Initialization Clients.

e Discard - Click the Discard button to discard any changes made in this tab.

First Stage (SNVM)

In the first stage, the initialization sequence de-asserts the FABRIC_POR_N signal and starts the 1/O calibration
routine. The initialization client for this stage is always placed in sSNVM, and it uses the last two pages of the
sNVM memory space. There are no options for this stage

89

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Second Stage (SNVM)

In the second stage, the initialization sequence initializes the PCle and XCVR blocks present in the design. This
stage is grayed out if the design does not have PCle or XCVR Blocks. The initialization client for this stage is
named INIT_STAGE_2_ SNVM_CLIENT. It is always placed in SNVM at the start address of the user’s choice.
The start address can only be at the start of an SNVM page (page boundary). Each sSNVM page is 256 bytes in
size, so the valid start addresses (Hex) are 0x0, 0x100, 0x200, and so on. Only the plain text non-authenticated
client is supported for initialization.

Third Stage (UPROM/sNVM/SPI Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design. The initialization
client for this stage is placed in the memory type of the user’s choice (UPROM/sNVM/External SPI Flash). If the
design does not have any Fabric RAMs, this stage of the initialization sequence is not needed and is grayed out.
Each logical RAM block can be initialized from any of the three memory types. Use the Fabric RAMs configuration
tab to assign the memory type to the logical RAM blocks.

Only the memory types used by the design, as defined in the Fabric RAMs configuration tab, are selected and
enabled.

e UPROM - For uPROM, the name of the initialization client is INIT_STAGE_3_UPROM_CLIENT. Its start
address is at the user's choice, subject to the limitation that the start address can only be at the start of a
UPROM block. Each UPROM block is 256 words, so the allowed start addresses (Hex) are 0x0, 0x100,
0x200, and so on.

e sNVM - For sNVM, the name of the initialization client is INIT_STAGE_3_SNVM_CLIENT. Its start address
is at the user's choice, subject to the limitation that the start address can only be at the start of an SNVM
page (page boundary). Each SNVM page is 256 bytes long, so the allowed start addresses (HEX) are 0xO0,
0x100, 0x200, and so on.

e SPI-Flash - For SPI-Flash, the name of the initialization client is INIT_STAGE_3_SPIFLASH_CLIENT.
e SPI-Flash Binding: there are four Binding Options from which the user can select:

1. No Binding Plaintext: When this option is selected, the <root>_uic.bin file is a script file
that can be opened to see readable text.

2. Binding Encrypted with Default Key: When this option is selected, the <root>_uic.bin file is
encrypted with the default encryption key. Also, the design version is displayed and this
design version can be modified from Configure Programming Options. When Default key
is selected, the user does not need to specify any other details.

3. Binding Encrypted with User Encryption Key 1 (UEK1): When this option is selected, the
<root>_uic.bin file is encrypted with UEK1. Also, the design version is displayed and this
design version can be modified from Configure Programming Options. The user needs to
configure SPM along with UEK1. If UEK1 is not specified, the Generate SPI Flash Image
and Export SPI Flash Image steps will result in error. UEK1 can be configured using the
Configure Security Tool.

4. Binding Encrypted with User Encryption Key 2 (UEK2): When this option is selected, the
<root>_uic.bin file is encrypted with UEK2. Also, the design version is displayed and this
design version can be modified from Configure Programming Options. The user must
configure SPM along with UEK2. If UEK2 is not specified, the Generate SPI Flash Image
and Export SPI Flash Image steps will result in error. UEK2 can be configured using the
Configure Security Tool.

e SPI Clock divider value: The user can also select the SPI clock divider value using the adjacent
drop-down menu to set the clock divider value. Choose the value that meets the minimum clock
width requirement of the external SPI Flash. The allowed values are 1, 2, 4, or 6. The default value
is 1.

Time-Out

A time-out of up to 128 seconds can be selected from the drop-down menu for the completion of all three stages
of initialization process. The default setting is 128.

90

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Custom Configuration File

The Custom Configuration File contains signal integrity parameters for Transceivers. Click the Browse button at

the far right to navigate to and select a custom configuration file for Transceiver solutions. Contact Microsemi
Tech Support for details.

See Also

Configure Fabric RAMs Initialization
Configure Security Wizard

Configure uPROM

Use the uPROM tab to manage and configure user-specific data clients targeted for uPROM memory.

Design Inih’alizat'on SNVM]SPI Flash] FabricRAMs]
Apply | Discard | Help]

—Usage statistics — 1 rClients —
Available memory(3-bit words): 52224 Add ... |'; Edit...] Delete | Load design configuration |
Used memory{9-bit words): a - - -
Free memary (o It =) 52994 Client Name | Start Address | 9-bit words |

[] Used space
[Free space

Figure 63 - Configure uPROM Tab
Common Commands for All Configure Design Initialization Data and Memories Tabs

If a Configure Design Initialization Data and Memories Tab title has an asterisk (*) next to it, an item on that
tab has been changed, but not yet "Applied". The common options on every tab page are:

91

PolarFire FPGA Design Flow User Guide

Add

Edit

Delete

& Microsemi

Power Matters.

e Apply - Click the Apply button to save the changes made in this tab.
Note: The Apply button only saves the configuration changes. For the initialization of the memory block to
take effect, go back to the Device Initialization tab and click Generate Initialization Clients.

e Discard - Click the Discard button to discard any changes made in this tab.

Use the Add button to add a uPROM client. When a uPROM client is added, it appears in the spreadsheet-like
list.

See Add uPROM Client

Use the Edit button to edit the uPROM client. If there are multiple uPROM clients, first select the client from the
spreadsheet-like list and then click Edit.

When changes are made to the configuration of any of the uPROM client, then their ‘Edited’ state is indicated by
an asterisk (*) next to the uPROM tab’s title, and also an asterisk (*) next to the title of the main window of the

Design and Memory Initialization step. When the edits are saved , then the uPROM tab’s asterisk (*) disappears.
All the edits present in all the tab can be saved in one go by clicking on the ‘Save’ icon on Libero’s toolbar. When
there are no edits present in any of the tabs, then the asterisk (*) next to the title of the main window disappears.

See Add uPROM Client

Use the Delete button to delete an uPROM client. If there are multiple uPROM clients, first select the client and
then click Delete.

Load Design Configuration

Click this button to load in the design’s original tPROM configuration file in
<project>/component/work/UPROM.cfg. This button is grayed out if the design does not have an original uPROM
configuration file. This configuration is changed whenever the design is updated in the design window, If there are
changes made to this design configuration after the latest Apply, Libero SoC gives a clear visual indication that a
newer design configuration is available by two means:

e an info icon appears next to the button ‘Load design configuration’,
e aninfo icon is shown next to the uPROM tab title.

The tool-tip on both icons contains the time-stamp information of the design configuration file. The icons
disappear after the user clicks Apply the next time.

Usage Statistics

Memory usage for the uPROM is reported in the pie chart.

See Also
Tcl command configure_uprom

Add/Edit uPROM Client

Click Add or Edit to open a dialog to add/edit a uPROM client.

92

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

5 Add UPROM Client

2 -t |

Client name: ||

uPROM

@ Content from file:

Format: |Microsemi Binary 9-hit -

(71 Content filled with 0s

Ak
|

Start address: Ox 0
Mumber of 9-bit words;

Lse for initialization of RAMs

Use content for simulation

Decmal

-]

] [Cancel

Figure 64 - Add uPROM Client Dialog

Client name

Enter the name of the uPROM client to be added

Content from File

Navigate to and specify a file, the content of which is to be used to fill the uPROM.

Content filled with 0s

Populates the uPROM with zero’s.

Start Address

Specifies the start address (in HEX) of the uPROM client. If there are multiple uPROM clients, the start address
must not overlap. A warning message appears if there is address overlapping of uPROM clients. Valid start

addresses range from 0 to CBFF (Hex).

93

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.”

Number of 9-bit words

Specifies the number (in decimal) of 9-bit words to populate the uPROM. If the number of 9-bit words exceeds the
memory size of the uPROM, an “out-of —bounds” warning message appears.

Use for initialization of RAMs

This option is disabled and unavailable from the Design and Memory Initialization tool.

Use Content for simulation

This option is disabled and unavailable from the Design and Memory Initialization tool.

Configure sNVM

Use the sNVM tab to manage and configure sSNVM clients.

Design Init’alizat'onl UPROM @ SPL FIashI Fabric RAMsI

Apply I

Discard I

Help |

—Usage statistics

Used memory (jin pages):
Free memory {in pages):

Used space
Free space

Available memory (in pages): 221

0
m

~Clients

Add ... i‘i Edit... | Delete | Load design conﬁgurah’onl

Client Namei Start Page I Mumber of bytes |

Figure 65 - sSNVM Tab

94

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Common Commands for All Configure Design Initialization Data and Memories Tabs

If a Configure Design Initialization Data and Memories Tab title has an asterisk (*) next to it, an item on that
tab has been changed, but not yet "Applied". The common options on every tab page are:

e Apply - Click the Apply button to save the changes made in this tab.
Note: The Apply button only saves the configuration changes. For the initialization of the memory block to
take effect, go back to the Device Initialization tab and click Generate Initialization Clients.

e Discard - Click the Discard button to discard any changes made in this tab.

Add

Click Add to open the Add Client dialog. Four different types of SNVM clients can be added:
e PlainText NonAuthenticated: 252 user bytes per page.
e PlainText Authenticated: 236 user bytes per page.
e CipherText Authenticated: 236 user bytes per page.
e USK: 96 user bytes. The USK client occupies exactly 1 page.
Note: Only one USK client in the sSNVM is allowed.
When an authenticated client is present in the sSNVM, a USK client must be necessarily present too.

Adding Text Clients

See Add Text Client

Adding a USK Client

See Add USK Client
Edit

Use the Edit button to edit the SNVM client’s configuration. If there are multiple SNVM clients, first select the client
you want and then click Edit.

When changes are made to the configuration of any of the sSNVM client, then their ‘Edited’ state is indicated by an
asterisk (*) next to the sSNVM tab'’s title, and also an asterisk (*) next to the title of the main window of the Design
and Memory Initialization step. When the edits are saved , then the SNVM tab’s asterisk (*) disappears. All the
edits present in all the tab can be saved in one go by clicking on the ‘Save’ icon on Libero’s toolbar. When there
are no edits present in any of the tabs, then the asterisk (*) next to the title of the main window disappears.

Delete

Use the Delete button to delete an sSNVM client. If there are multiple SNVM clients, , first select the client you want
and then click Delete.

Load Design Configuration

Click this button to load in the design’s original SNVM configuration file in <project>/component/work/sNVM.cfg.
This button is grayed out if the design does not have an original SNVM configuration file. This configuration is
changed whenever the design is updated in the design window, If there are changes made to this design
configuration after the latest Apply, Libero SoC gives a clear visual indication that a newer design configuration is
available by two means:

e an info icon appears next to the button ‘Load design configuration’,
e aninfo icon is shown next to the sNVM tab title.

95

PolarFire FPGA Design Flow User Guide

The tool-tip on both icons contains the time-stamp information of the design configuration file. The icons

disappear after the user clicks Apply the next time.
Usage Statistics

Memory usage for the SNVM is reported in the pie chart.

See Also
Tcl command configure_snvm
PolarFire FPGA Programming User Guide

Add sNVM Clients

Two different kinds of SNVM clients can be added:
e Text Client
e USK Client

Add Text client

Use the dialog box to add text clients:
e PlainText NonAuthenticated: 252 user bytes per page.
e PlainText Authenticated: 236 user bytes per page.
e CipherText Authenticated: 236 user bytes per page.

& Microsemi

Power Matters.

#| Add PlainText MonAuthenticated client

Client name: |
sMVM
(71 Content from file:
Format: Microsemi-Binary 8/16/32 hit
) Content filed with Os
@ Mo content {dient is a placeholder and will not be programmed)
Start page (decimal): i} = 0x0

Mumber of bytes {decdmal): 0 0 page

[Use content for simulation

D Use as ROM

J [Cancel

Figure 66 - Add Plain Text client

96

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Client name
Enter the name of the SNVM client to be added.
Content from File
Navigate to and specify a file, the content of which is to be used to fill the sSNVM.
Content filled with 0s
Populates the sSNVM with zero’s.
No Content
client is a placeholder and will not be programmed.
Start Page

Specifies the start page (in decimal) of the sSNVM client. SNVM client address starts at page boundaries. If there
are multiple sNVM clients, their start page cannot be the same. A warning message appears if there is address
overlapping of SNVM clients. Valid start page range from 0 to 220 (Decimal).

Number of bytes

Specifies the total number (in decimal) of bytes to populate the sSNVM. If the number of bytes exceeds the
memory size of the SNVM, an “out-of —bounds” warning message appears. Valid ranges is from 1 to 47376

Use Content for simulation
Check if this client should be loaded for the simulation run.
Use as ROM

Check if this client should be used as read-only-memory (ROM).

Add USK client
This client holds the USK. It is always 1 page (96 bytest) in size. There is no total byte entry for the USK client.

97

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

#| Add USK Client

L9 oo

This dient holds the LSK, Itis always 1 page in size,

¥

Start page (dedmal): b
LISK Key (24 HEX chars): 0

Eﬂ Reprogram
[Use content for simulation

Use-as ROM

Help

Ox0

ok || cancel

Figure 67 - Add USK Client

Enter a USK key (24 Hex characters). A random key can be generated by clicking the padlock icon to the right of

Start Page

Start page can vary between 0 and 220.
USK Key

this field.
Reprogram

Check if this client should be programmed.

Use Content for Simulation

Check if this client should be loaded for the simulation run.

Use as ROM
Check if this client should be used as read-only-memory (ROM).

Configure SPI Flash

The SPI Flash tab allows you to enable Auto Update, select the SPI Flash Manufacturer, and configure SPI Flash
Clients. The configuration is saved in the spiflash.cfg file in the Libero design implementation folder.

98

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Deson Inmsizaton | wPROM | #9571 Fash | Fabeic ass

(Ce] Lowewst | vits |
T Eriable futo Upclate

Manstictrm: [MICRON 7] et o MT25QU0 1GRBBRESS- 51T

Uiage stamnes 91 Flngh Cherits

dovalaile memary () 134071 s |
Uiseed ey (08 8 = =
Freememory B8] : 133071 Stan | fnd | Design

Bypass Back Level
| Address | e | Verien penis

Peut
Recimvery

Program

Hamr | Type ndex Centent File

B Usedspace [T Bibstnam for Receneer y Cokders
B Frec e Far 1]

Figure 68 - SPI Flash Tab
Common Commands for All Configure Design Initialization Data and Memories Tabs

If a Configure Design Initialization Data and Memories Tab title has an asterisk (*) next to it, an item on that
tab has been changed, but not yet "Applied". The common options on every tab page are:

e Apply - Click the Apply button to save the changes made in this tab.
Note: The Apply button only saves the configuration changes. For the initialization of the memory block to
take effect, go back to the Device Initialization tab and click Generate Initialization Clients.

e Discard - Click the Discard button to discard any changes made in this tab.

Enable Auto Update

Check Enable Auto Update to enable Auto Update on the target device. The bitstream generated within Libero will
enable this feature. If this is checked, a total of two SPI Bitstreams can be added. One SPI Bitstream will be for
Auto Update and the other will be for Recovery/Golden. The tool enforces the Recovery/Golden bitstream to be at
index 0 and the Auto Update bitstream to be at Index 1. The Auto Update Bitstream Design version must be
greater than the Design Version of the Recovery/Golden bitstream.

Manufacturer

Click the pull-down menu to see the supported SPI Flash manufacturer/vendors and the part number. The table
below lists the supported vendors and part number.

Manufacturer Part Number Capacity Sector Size

MICRON MT25QL01GBBB8ESF-0SIT | 1GB 4KB

The SPI Flash Part Number is displayed to the right of the manufacturer/vendor name. The Memory size (in MB)
for the SPI Flash is displayed in the Usage Statistics above the pie chart.

Note: This version of the programmer does not support SPI Flash security. Device security options such as
"Hardware Write Protect" should be disabled for the External SPI Flash device.

99

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Usage Statistics

Available Memory (MB) reflects the SPI Flash vendor and part selected.
¢ MICRON
Memory usage for the SPI Flash is reported in the pie chart.

SPI Flash Clients

SPI flash clients appear in a spreadsheet-like format when they are added and configured.

Design Inivalzaton | WPROM | sWM SPI Flash | Fobric Rats |
e R
I~ Enable Auto Update:
Manufactures: [MIRON | Part No: MT250L01GBBBAESF-0SIT
Usage statistics SPI Fissh Clents

Avaiatie memry (HE): 127 [] e |
Usedmemory ME): 18
Free memory (MB) © 109

Start

Name. Type Index Content File A

7 identt SPL Bitstream for Recovery/Golden |0
P |dent SP1 Bitstream for 1P 2
& dojent3 Data Storage

wef2.2 sp1\Prog,, (0400 |0xS095ck 1 Enabled

2 piprog,. |PXO0000... 0x99116ea 1 Disabled

2 sp1iprog.. |D99LIS... 0x991176a A

B Usedspace P ittt eam for Recovery/Gokden
B e [EPTBTean o Ao Updste |

Figure 69 - SPI Flash Clients

Note: Bypass Back Level protection feature is only supported for SPI Bitstream clients for
Recovery/Golden.

SPI Bitstream Client for Recovery/Golden

A SPI client for Recovery/Golden is required if a SPI Bitstream is added. There can only be one SPI Bitstream
configured as Recovery/Golden. It is highlighted in yellow in the spreadsheet-like display. An error message
appears if none is configured or more than one is configured.

If Auto Update is enabled, then the SPI Bitstream Client for Recovery/Golden must have a Design Version smaller
than the Design Version for the SPI Bitstream Client for Auto Update.

If Back Level Protection is enabled in Configure Security tool, then Programming Recovery will fail if the Back
Level Version programmed in the device is greater than or equal to the Design Version of the SPI Bitstream Client
for Recovery/Golden. To allow for programming Recovery to pass in this situation, you can import a Bitstream that
has been exported with the Bypass Back Level Protection option.

Index 0 is reserved for this client.

SPI Bitstream Client for Auto Update

This client is highlighted in green in the spreadsheet-like display. To add a SPI Client for Auto Update, the Enable
Auto Update checkbox must first be checked. This client is optional. The Design Version of this client must be
greater than the Design Version for the SPI Bitstream Client for Recovery/Golden.

Index 1 is reserved for this client.
Note: The tool will reject a Bitstream file with Bypass Back Level Protection enabled for this type of client.

SPI Bitstream Client for IAP

To add a SPI Client for IAP, select the SPI Bitstream file for IAP in Add/Edit SPI Bitstream Client window. The
total number of SPI Bitstream Clients allowed including Recovery/Golden and Auto Update Clients is 255.

Index for this client can be range of 2-255.

100

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Add

Edit

Delete

Data Storage Client

See add_data_storage_client to add a Data Storage Client. Bypass Back Level Protection feature is not
applicable to Data Storage Client. Also, they don’t have a Design Version number and an Index value.

Click Add to add a SPI Bitstream client or Data Storage client. A total of up to 255 SPI Bitstream clients (including
one client for Recovery/Golden and one client for Auto Update and the rest for IAP) can be added. One of the
clients must be the Recovery/Golden client.

Click Edit to modify the configuration of the SPI Bistream client or Data Storage client. If there are multiple clients
in the list, select the client you want to modify and click Edit.

Use Delete to delete a SPI Flash client. If there are multiple SPI Flash clients, first select the client you want to
delete and then click Delete.

See Also

Add/Edit SPI Bitstream Client
Add Data Storage Client

Tcl command configure_spiflash

PolarFire FPGA Programming User Guide

Add/Edit SPI Bitstream Client

Click the Add button in the SPI Flash tab of the Configure Design Initialization Data and Memories tool to add a
SPI Bitstream client and the Edit button to modify an existing SPI Bitstream client.

101

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

(> Add SPI Bitstream Client [

Mame: |

Content
@) SPI Bitstream file for IAP
() SPI Bitstream file for Recovery/Gaolden

SP1 Bitstream file for Auto Update

Design version:

) Filled with 1s
Start address (HEX): Ox 400 =
Size in bytes (decimal): i

&) et

Figure 70 - Add/Edit SPI Client

Name

Enter the name of the SPI Bistream client to be added. Up to 32 alphanumeric characters are allowed. When
editing an existing SPI Flash client, the client name cannot be changed.

Content
Check one of the following to select the type of SPI Bitstream to be added. A total of 255 SPI clients can be
added for IAP.
SPI Bitstream for IAP
Check this checkbox to add a SPI bitstream client for IAP.

SPI Bitstream for Recovery/Golden

Check this checkbox to add a client for Recovery/Golden. It is mandatory and only one is allowed. This option is
disabled if one is already added. The existing one can be edited or deleted.

SPI Bitstream for Auto Update

This is available only when Auto Update is checked in the Configure SPI Bitstream tab. The SPI bitstream client is
optional and only one is allowed. This option is disabled if one is already added. The existing one can be edited or
deleted.

102

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Browse Button

Click the Browse button to navigate to a SPI file (*.spi) location. The content of this file is used to export the SPI
Bitstream Image file.

Filled with 1s

Check this checkbox to fill the content of the SPI Bitstream client with 1s. If the content is filled with 1s, specify a
client size. It must be greater than 0. Golden or Auto Update SPI clients cannot be filled with zeros. They require
a content file.

Start Address (HEX)

The first available start address is 0x400 (the first 1024 bytes are reserved for the SPI directory and are not
available).

Size in bytes (decimal)

This field displays the number of bytes (in decimal) of the client based on the specified bitstream (*.spi) file used
to load in the content. The size can be increased but not decreased.

A new client is validated against existing clients. Address overlapping of clients is not allowed and is flagged as
an error.

See Also
Tcl command "set_client " on page 154
PolarFire FPGA Programming User Guide

Add/Edit Data Storage Client for SPI Flash

Click the Add button in the SPI Flash tab of the Configure Design Initialization Data and Memories tool to add a
Data Storage client. Click the Edit button to modify an existing Data Storage client.

Reports & X | StartFage & X | D= I Design and Memory Initialization & X

{ Design initialization \/” uFrROM /" stiv \/ SPIFlash \/” Fabric RAMs '}

Help
Enable Auto Update
Manufacturer: _MIC_RQH % Part Ho: MT25QL01GBEBBBESF-0SIT
Usage statistics SFI Flash Clients
Available memory (MB):127 l Add... E|
iR v Add SPI Bitstream Client |

Free memory (MB) : 127

Type Index
Add Data Storage Client [e

Figure 71 - Add Data Storage Client (SPI Flash Tab)

103

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
() Add SPI Flash Data Storage Client @
Name:
Content
@ Memory file: [‘
Format:
Filled with 1s
Start address (HEX): 0x 400
Size in bytes (decimal):]
Help OK Cancel

Figure 72 - Add/Edit Data Storage Client Dialog
Note: Intel Hex file type is supported for this release.

Name

Enter the name of the Data Storage client to be added. Up to 32 alphanumeric characters are allowed. When
editing an existing Data Storage client, the client name cannot be changed.

Content
Select one of the following options.

Memory file
Enter the name of the Memory file or click the Browse button to navigate to a Memory file location. Currently, only
Intel-Hex format memory files are supported. The memory file will be loaded into the SPI-Flash at the desired start
address.

Filled with 1s

Check this checkbox to fill the content of the Data Storage client with 1s. If the content is filled with 1s, specify a
client size. It must be greater than 0.

Start Address (HEX)

The first available start address is 0x400 (the first 1024 bytes are reserved for the SPI directory and are not
available).

Size in bytes (decimal)

This field displays the number of bytes (in decimal) of the client based on the specified Data Storage file used to
load in the content. The size can be increased but not decreased.

A new client is validated against existing clients. Address overlapping of clients is not allowed and is flagged as
an error.

104

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

See Also

Tcl command configure_spiflash
Configure SPI Flash

PolarFire FPGA Programming User Guide

Configure Fabric RAMs Initialization

The Fabric RAMs Initialization tab allows you to select the Initialization options for the memory blocks in the
design. The memory blocks include:

e Dual-Port SRAM
e Two-Port SRAM

e USRAM
Deson intbaaton | uPROM | s | 5t e P RAREY
B S| Se|

[rs— Grts
LA Menery Losd demgn cofgurston | Iritatee o hents o [Gver Selecion -l
Avatoble ey yies): | || =
Caed momary ovies) 0 -
e emer by fes) 237 T [T PORTE

0 . [|
| e rmc | Depoeeney | Memery Cament | soeage Type | ey Souce

20480 0amE Cantent filled with 0s | sNVM Configurator

02412 1024112 Cantent filled with Os [SPI-Flssh | Confiqurator

Figure 73 - Fabric RAMs Initialization
Common Commands for All Configure Design Initialization Data and Memories Tabs

If a Configure Design Initialization Data and Memories Tab title has an asterisk (*) next to it, an item on that
tab has been changed, but not yet "Applied". The common options on every tab page are:

e Apply - Click the Apply button to save the changes made in this tab.
Note: The Apply button only saves the configuration changes. For the initialization of the memory block to
take effect, go back to the Device Initialization tab and click Generate Initialization Clients.

e Discard - Click the Discard button to discard any changes made in this tab.
Fabric RAM Clients Configuration:

e Click on Load design configuration to reset all Fabric RAM clients to their first configuration (the values
specified by the first Apply for each client). This overrides any subsequent Apply commands that have
been made.

e Click the Initialize all clients from pull-down menu to select from:

e SNVM
e UPROM
e SPI-Flash

e User Selection

¢ Instruction commands generated by Libero to initialize the memory blocks (Fabric RAM clients) can be
saved in any of the storage types (sSNVM, uPROM, or SPI-Flash). As a convenience, however, the user
can select to initialize all Fabric RAM clients from the same storage type. If you select any one of the
storage types from this pick-list, the instruction commands to initialize all clients are generated in SNVM,

105

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

uPROM, or SPI, as you selected. Choosing User Selection indicates that each Fabric RAM Client will be
configured separately.

Fabric RAM Client Table

Each row in the Fabric RAM Client Table provides information about a Fabric RAM Client. The first three items
are information-only, and cannot be modified from this dialog box:

1. Logical Instance Name
2. PortA Depth x Width
3. PortB Depth x Width

Iltems 4-6 are configurable; either by the Initialize all clients mechanism previously described for all clients, or by
individual User Selection configuration:

4. Memory Content
5. Storage Type
6. Memory Source

To configure a Fabric RAM client with client-specific initialization options, double-click the Fabric RAM client row
(or right-click on the row and select Edit..., or single click on the row and click on the Edit button above the table).
This will bring up an Edit Fabric RAM Initialization Client dialog box (see below) for this particular client.

Note: If you change the Storage Type for a specific client to something other than that previously chosen for all
clients, this will also change the Initialize all clients from value to User selection.

Edit Fabric RAM Initialization Client

Physical Name: | am_0fusram_usram_0_PF_URAM_ROCO/RAMGE4x12_PHYS_0/INST_RAME4x12_IF

RAM Initialization Options

" Content from file: [|

("~ Content filled with Os

{* No content (dient is a placeholder and will not be programmed)

Optimize for: (* High Speed (¢ Low power

Storage Type 15P1-F|ash VI
Help | OK Close

Figure 74 - Edit Fabric RAM Initialization Client Dialog Box
Dialog Box Sections:

e Client Name - Information only. Cannot be changed in this Dialog Box
e Physical Name - Information only. Cannot be changed in this Dialog Box
e RAM Initialization Options:
¢ No Content - The memory block is not initialized.
e Content Filled with Zeros - The memory block is filled with zeros for initialization.

e Memory File - Click the Browse button to navigate to the location of a memory file and import the
file to the memory block. By default, the same memaory file as specified in the memory configurator

106

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

is used. The supported memory file formats are Intel-HEX (*.hex), Motorola (*.s), Simple-Hex
(*.shx), or Microsemi-Binary (*.mem).

e Optimize for - Information only. Cannot be changed in this Dialog Box.
e Storage Type - User can select from the available Storage Types:

¢ sSNVM

e UPROM

¢ SPI-Flash
See Also

Configure Design Initialization Data and Memories

Generate Design Initialization Data

To generate the initialization clients, do one of the following in the Design Flow window:
e Double-click Generate Design Initialization Data
or
¢ Right-click Generate Design Initialization Data and choose Run
Libero SoC carries out the following three actions:
e Generates the memory files corresponding to the three stages of the initialization sequence.
e Removes all pre-existing initialization clients.
e Creates the initialization clients for each stage and places them in their target memories.

o0 The first stage initialization client is always created, and is always placed in sSNVM. It is always
placed at start address 0OxDCO0O (page 220).

0 The second stage initialization client is created only when there are PCle blocks present in the
design. It is always placed in SNVM. It is placed at the start address specified by the user in the
‘Design Initialization’ tab of the ‘Configure Design Initialization Data and Memories’ tool.

0 The third stage initialization client is created only when there are Fabric RAMs in the design or non-
PCle transceiver blocks in the design. It can be placed in any of uPROM, sNVM, or SPI memories
at the user-specified start address. The user can specify both the target memory and the target
start address in the ‘Design Initialization’ tab of the ‘Configure Design Initialization Data and
Memories’ tool.

See Also
Configure Design Initialization Data and Memories
generate_design _initialization_data

Configure 1/0 States During JTAG Programming

In the Libero SoC Design Flow window expand Program Design and double-click Configure I/O States During
JTAG Programming to specify the 1/O states prior to programming. This feature is only available once Layout is
completed.

The default state for all I/Os is Tri-state.

To specify 1/O states during programming:

1. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the
1/0s you wish to modify (as shown in the figure below).

2. Setthe I/O Output state. You can set Basic I/O settings if you want to use the default I/O settings for your
pins, or use Custom /O settings to customize the settings for each pin. See the Specifying I/O States During
Programming - 1/0 States and BSR Details help topic for more information on setting your 1/O state and the
corresponding pin values. Basic I/O state settings are:

e 1-1/Ois set to drive out logic High
e 0-1/Ois setto drive out logic Low

107

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e Last Known State: I/O is set to the last value that was driven out prior to entering the programming
mode, and then held at that value during programming

e Z - Tri-State: I/O is tristated with weak pull up (10k ohm)

= Specify 1/O States During Programming - JTAG Mode Only x
Load from file.. | | Save to file... Show BSR Details
Port Name Macro Cell Pin Number I/O State (Output Only)
1| UNUSED UNUSED 31 z
RIUNUSED UNUSED 30 Z

o [o

Figure 75 - /O States During Programming Window
3. Click OK to save your settings.

Note: 1/0O States During programming will be used during programming or when exporting the bitstream.

Configure Programming Options

Sets your Design version, Back Level version and Silicon signature.
Design name is a read-only field that identifies your design.

Design version (number between 0 and 65535) - Specifies the Design version to be programmed to the device.
This value is also used for Back Level protection in "Update Policy" on page 112 of the Configure Security
tool.

Back Level version (number between 0 and 65535) - Specifies the Back Level version to be programmed to
the device. This has to be always less than or equal to Design version number. A warning message appears if the
Back Level version is equal to the Design version and an info message appears if it is less than the Design
version. Move your mouse over warning or info icon to view the message respectively. This value is used for Back
Level protection (if enabled) in Update Policy of the Configure Security tool.

Silicon signature (max length is 8 HEX chars) - 32-bit user configurable silicon signature to be programmed
into the device. This field can be read from the device using the JTAG (IEEE 1149-1) USERCODE instruction or
by running the DEVICE_INFO programming action.

108

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Design name: fftousram_new

Design version (number between 0 and 65535): | 3

1. Back Level version (number between 0 and 65535): | 3

Silicon signature (max length is 8 HEX chars): 0x | 2

Help | oK

Cancel

Figure 76 - Configure Programming Options Dialog Box

Notes

SPI file programming for Auto Programming, Auto Update (IAP) and IAP/ISP Services currently can only
program security once with the master file. Update files cannot update the Security settings. In addition,
Silicon signature, and Tamper Macro can only be programmed with the master file and cannot be

updated.

Configure Security

Configure Security Wizard

The Configure Security Wizard is a GUI-based wizard that guides the user step by step on how to configure

custom security settings. The wizard has five steps executed in this sequential order:

1. Userkeys
Update Policy
Debug Policy

Microsemi Policy
JTAG/SPI Slave Commands

a s wn

109

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

|= | Configure Security Wizard =5

Encrypt bitstream with default key. No user keys or security settings are enabled.

Security key mode

(@) Bitstream encryption with default key ") Custom security options

User keys
|
Update policy
|
Debug policy

|
Microsemi
factory
access
|
IJTAG/SFI Slave
commands
policy

Save Summary to File... Back Next Finish \ I Cancel

Figure 77 - Configure Security Wizard

Summary Window

The summary window displays the summary of the current configuration settings. The window will scroll to the
current page as you move from page to page.

Security Key Mode

Two security key modes are available.

e Bitstream encryption with default key
This mode uses the default encryption key for security. The Next and Back button are disabled. All steps are
disabled. Custom User Keys and security settings are disabled.

e Custom security Mode
This mode allows you to configure custom security keys and settings. All steps are enabled. The Next and
Back button are enabled.

Back

Click Back to return to the previous step.

Next

Click Next to proceed to the next step.

110

& Microsemi

PolarFire FPGA Design Flow User Guide

Finish
Click Finish to skip steps and complete the configuration.
Save Summary to File
Click Save Summary to File to save the display in the Summary field to a file.

User Keys

The User Keys are configured in this step. All keys are 256 bits (64 HEX characters).
5| Configure Security Wizard @

Disable all factory key modes and configured security settings. i
Use FlashLock/UPK1 to temporarily enable settings during one p ing/del i i |

ser key|
UPK1 and UEK1 will be programmed and available for use.
UPK2 and UEK2 will be programmed and available for use.

m

Update Palicy
Fabric can be updated using & bitstream encrypted with UEK1 or UEK2,
sNVM can be updated using a bitstream encrypted with UEK 1 or UEK2,
Debug Palicy
DFK has not been provided and will not be programmed.
SmartDebug user debug access and active probes are enabled.
SmartDebug Live Probe debug access is enabled.
SmartDebug shVM debug is enabled.
JTAG or SPI Slave UTTAG is enabled, -

Security key mode

) Bitstream encryption with default key @ Custom security options

User Key Set 1 {UKS1)
User keys FlashLock/UPK 1 protects all security settings. You are required to configure it. ‘\
FlashLock/UPK1 (54 HEX chars):

| 5

You can use User Encryption Key 1 (UEK1) for updating the Fabric, uPROM, and sMVM or disable it.
[7] Disable UEK1

Update policy

‘ LEK1 (User Encryption Key 1) (64 HEX chars):

&Ux

Debug policy
User Key Set 2 (UKS2)

You can optionally configure User Key Set 2 (UKS32) for a second encryption key.
‘ [7] Disable UEK2
UEK2 (User Encryption Key 2) (64 HEX chars):

&0}(

‘ User Pass Key 2 (UPK2) protects UEK2 and is reguired if you use UEK2.

UPK2 {(User Pass Key 2) (64 HEX chars):

&Ox

Help |Save Summary to File... Back Mext

Figure 78 - User Keys

FlashLock/UPK1

Power Matters.

FlashLock/UPK1 is enabled by default. This key protects all security settings. This key is required and must be a

string of 64 HEX characters. Enter the key or click the padlock icon at the far right to generate a random key.

111

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

User Encryption Key 1 (UEK1)

UEK1 is enabled by default. Click Disable if you want to disable it. If enabled, the key is required and must be a
string of 64 HEX characters. Enter the key or click the padlock icon at the far right to generate a random key.

Use UEK1 for updating the Fabric, uPROM, and sNVM or disable it.
User Encryption Key 2 (UEK2)

UEK?2 is enabled by default. Click Disable if you want to disable it. If enabled, the key is required and must be a
string of 64 HEX characters. Enter the key or click the padlock icon at the far right to generate a random key.

Use UEK2 as a second encryption key for updating the Fabric, uPROM, and sNVM or disable it
User Pass Key 2 (UPK2)

UPK2 is required if UEK2 is enabled. Enter the key or click the padlock icon at the far right to generate a random
key.

Update Policy

Field updates are enabled by default. Use this page to disable field updates and to specify field-update protection
parameters.

112

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

H
q

Disable all factory key modes and configured security settings.
Use FlashLock/UPK1 to temporarily enable settings during one programming/debugging session.

User Keys
Enable UEK1. FlashLock/UPK 1 is required to change this setting.
UPK1 and UEK1 will be programmed and available for use,
Disable UEK?2. FlashLock/UPK1 is required to change this setting.

Update Policy
Fabric can be updated using a bitstream encrypted with UEK1.
sMVM can be updated using a bitstream encrypted with UEK 1,

Back Level protection is enabled. Use FlashLock/UPK 1 to bypass Back Level protection,

Design version: 3 Back Level version: 2

Auto Programming, Auto Update, [AP Services, and Programming Recovery are enabled for update.

JTAG interface is enabled for update. j

ST Glave intarfara ie anahlad far indate
Security key mode

" Bitstream encryption with default key ¢ Custom security options

Field updates are enabled by default. You can disable updates by setting options below.
Use FlashLock/UPK1 to temporarily enable disabled settings.

User Keys

Fabric update protection: |Updahes allowed using user defined encryption keys; FlashLock/UPK1 is not required for updates

L Lo

sMVM update protection: |LlpdatEs allowed using user defined encryption keys; FlashLock/UPK1 is not required for updates
[V Enable Back Level protection

Update Policy P Design version: 3

& Back Level version: 2

‘ Disable programming interfaces:

™ Auto Programming and IAP Services

Debug Policy [oec

—'— I~ sP1Slave

Disable bitstream programming actions (JTTAG/SPI Slave):
™ Program
I” Authenticate
™ verify

Reset to default

Save Summary to File... | Back Mext Finish Cancel

Figure 79 - Update Policy

Fabric update protection

Two options are available:
e Disable Erase/Write operations
WARNING: The field update STAPL files (_uek1/_uek2) will include plain-text FlashLock/UPK1
e Updates allowed using user defined encryption keys; FlashLock/UPK1 is not required for updates

sNVM update protection options:

Two options are available:
e Disable Write operations
WARNING: The field update STAPL files (_uek1/_uek2) will include plain-text FlashLock/UPK1

e Updates allowed using user defined encryption keys; FlashLock/UPK1 is not required for updates

113

PolarFire FPGA Design Flow User Guide

Enable Back Level protection

& Microsemi

Power Matters.

When enabled, a field update design being programmed must be of a version higher than the Back Level version
value in the programmed device. This protection will prevent field update designs with back level versions less
than or equal to the design version programmed in the device.

Design version (number between 0 to 65535)

Displays the current Design version (as set in the Configure Programming Options tool).

Back Level version (number between 0 to 65535)

Displays the current Back level version (as set in the Configure Programming Options tool). Back Level version
uses the Design version value to determine which bitstreams are allowed for programming. The Back Level
version must be smaller than or equal to Design version.

Note: If Back Level Protection is disabled and Back Level version is greater than zero, then Generate Bitstream
and Export Bitstream tools will error out.

The following are the examples with Back Level protection enabled in the Configure Security tool:

Example 1: Programming the Back Level version to the same version as the Design version

Step Bitstream Action Bitstream Bitstream Device Result
Design Back Level Back
version version Level
version
1 _master PROGRAM 1 1 1 Pass
2 _master VERIFY 1 1 1 Pass, if device has
UPK1
3 _master ERASE 1 1 1 Pass, if device has
UPK1
4 _master AUTHENTICATE 1 1 1 Pass, if device has
UPK1
5 _master DEVICE_INFO 1 1 1 Always passes
6 _uekl PROGRAM 2 2 2 Pass
7 _master PROGRAM 1 1 2 Fail, due to back
level protection
Example 2: Programming the Back Level version less than the Design version
Step Bitstream Action Bitstream Bitstream Device Result
Design Back Level Back
version version Level
version
1 _master PROGRAM 2 1 1 Pass
2 _uekl PROGRAM 3 1 1 Pass
3 _uekl 1 PROGRAM 4 1 1 Pass
4 _uekl_ 2 PROGRAM 5 4 4 Pass

114

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Step Bitstream Action Bitstream Bitstream Device Result
Design Back Level Back
version version Level
version
5 _master PROGRAM 1 4 Fail, due to back
level protection
6 _uekl PROGRAM 1 4 Fail, due to back
level protection
7 _uekl 1 PROGRAM 1 1 Fail, due to back
level protection
8 uekl 2 VERIFY 4 4 Pass

Disable programming interfaces

Disable Bitstream Programming Actions (JTAG/SPI Slave)

The following programming interfaces can be disabled

e Auto Programming and IAP services

o JTAG
e SPI Slave

Disabling of all three interfaces is not allowed and an error message appears if all three interfaces are disabled.

* Program
 Authenticate
« Verify

WARNING: The field update STAPL files (_uek1/_uek?2) will include plain-text FlashLock/UPK1

The summary at the top of the wizard summarizes the result of the selection.

Reset to Default

Reset the options to default values. All options are unchecked.

Debug Policy
The Debug Policy page allows you to configure Debug Protections. By default, debugging is enabled.

Debug with DPK (Debug Pass Key) - Optional

Protect Debug with a 256-bit (64-character HEX) Debug Pass Key. Enter the key in the field or click the padlock
icon at the far right to generate a random key. This key is optional if you want a separate passkey to enable
access to disabled debug features during one debugging session.

If the DPK key is entered, then at least one option must be checked.

115

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
| Configure Security Wizard ﬁ
Debug Policy -

DPK has not been provided and will not be programmed.

SmartDebug user debug access and active probes are enabled.
SmartDebug Live Probe debug access is enabled.

SmartDebug sNVM debug is enabled.

JTAG or SPI Slave UJTAG is enabled.

JTAG (1149.1) boundary scan is enabled.

JTAG or SPI Slave reading of temperature and voltage sensor is enabled.

Microsemi Factory Access
Allow Microsemi factory test mode access. This is required to perform Failure Analysis on the device. -

Security key mode

Bitstream encryption with default key Q@) Custom security options

i Debugging is enabled by default at this stage for design and debug.
Use FlashLock/UPK1 or DPK to temporarily enable access to disabled debug features during one debugging session.

DPK (Debug Pass Key) (64 HEX chars):
0x & |
Update policy SmartDebug access control

| Disable user debug access and active probes

I Disable Live Probe

| Debug policy Disable shvM
I Disable UITAG command through JTAG interface
i Disable JTAG (1149.1) boundary scan
Microsemi
factory || Disable reading temperature and voltage sensor (JTAG/SPI Slave)
’ access

| (Reset to defauit|
=

:_Sa\re SurnmarytoFiIB..j] Back | [Next J Finish j I Cancel

Figure 80 - Debug Policy

SmartDebug Access Control

All of the following are enabled by default for SmartDebug access. Check to disable access.
e Disable User Debug Access and Active Probe
e Disable Live Probe
e Disable SNVM

WARNING: Leaving SmartDebug access control enabled on production devices will allow anyone to
debug or access active probes, access Live Probe, or read the content of SNVM.

Three additional options are:
e Disable UJITAG command through JTAG Interface

e Disable JTAG (1149.1) boundary scan
Disables JTAG (1149.1) commands. The following JTAG commands will be disabled: HIGHZ, EXTEST,
INTEST, CLAMP, SAMPLE, and PRELOAD. I/Os will be tri-stated when in JTAG programming mode and
BSR control during programming is disabled. BYPASS, IDCODE, and USERCODE instructions will remain
functional.

e Disable reading temperature and voltage sensor (JTAG/SPI Slave)
The summary at the top of the page displays the results of the selection.

Microsemi Factory Access Policy

The page allows you to configure the policy for Microsemi Test Mode Access. Test mode access is required for
Failure Analysis on the device.

116

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

[Configure Security Wizard

=)

JTAG or SPI Slave UITAG is enabled.
JTAG (1149.1) boundary scan is enabled.
JTAG or SFI Slave reading of temperature and voltage sensor is enabled.

Microsemi Factory Access
JTAG/SFI Slave User Commands Policy
PUF emulation is available.

External zeroization through JTAG/SPI Slave is available.
Security key mode

L Microsemi factory test mode access is allowed by default.
This is required to perform Failure Analysis on the device.

User keys Use FlashLock/UPK1 to change access level.
Microsemi factory test mode access level
Update policy @ Allow factory test mode access
(7)) Disable factory test mode access
Debug palicy
Reset to default
Microsemi
factory
access

JTAG/SFI Slave
commands

policy

Allowr Microsemi factory test mode access. This is required to perform Failure Analysis on the device.

External Fabric/sNVM design digest check requests through JTAG and SFI Slave are available.

(7)) Bitstream encryption with default key (@) Custom security options

T

| Help ISave Summary to File...l |

| [cancel

Figure 81 - Microsemi Access Policy

Two options are available:
« Allow factory test mode access (default setting).

WARNING: This is not recommended for production devices.

« Disable factory test mode access

NOTE: Use FlashLock/UPK1 to change access level

JTAG/SPI Slave Command Policy

The page allows you to configure the policy for JTAG/SPI Slave User Commands. Three options are available.
Enabled is the default setting for all three options. Click the checkbox to disable any of the settings.

« Disable all external access to PUF emulation through JTAG/SPI Slave
« Disable external Fabric/sNVM digest requests through JTAG/SPI Slave

WARNING: Repeated external Fabric digest calculations can impact device reliability. View Datasheet for

additional information.
« Disable external zeroization through JTAG/SPI Slave

WARNING: It is not recommended to leave zeroization enabled for production devices

117

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

[Configure Security Wizard

=)

JTAG or SPI Slave UITAG is enabled.
JTAG (1149.1) boundary scan is enabled.
JTAG or SFI Slave reading of temperature and voltage sensor is enabled.

Microsemi Factory Access

Allowr Microsemi factory test mode access. This is required to perform Failure Analysis on the device.

JTAG/SPI Slave User Commands Policy
PUF emulation is available.

External Fabric/sNVM design digest check requests through JTAG and SFI Slave are available.

External zeroization through JTAG/SPI Slave is available.
Security key mode

(7)) Bitstream encryption with default key (@) Custom security options

PUF emulation is available by default
User keys E_\ Disable all external access to PUF emulation

External Fabric/sNVM digest requests JTAG/SPI Slave are available by default
[pisable external Fabric/sNVM digest requests through TTAG/SPI Slave

External zeroization through JTAG/SPI Slave is available by default

access

Update policy
|| Disable external zeroization through JTAG/SPI Slave
Debug policy
Microsemi]
factory |Reset to default

JTAG/SFI Slave

commands
policy

ISave Summary to File...l | Back

Next

m

Finish

||

Cancel

Figure 82 - JTAG/SPI Slave Commands Policy

Security Features Frequently Asked Questions
I have configured the Security Wizard and enabled security in my design but | do not want to program my

design with the Security Policy Manager features enabled. What do | do?

Go to Configure Bitstream and uncheck Security.
What is programmed when | click Program Device?

All features configured in your design and enabled in the Configure Bitstream tool. Any features you have

configured (such as sSNVM or Security) are enabled for programming by default.

When | click Program Device is the programming file encrypted?
All programming files are encrypted. To generate programming files encrypted with UEK1 or UEK2 you must

generate them from Export Bitstream for field updates.

Note: Once security is programmed, you must erase the security before attempting to reprogram the

security.

How do | generate encrypted programming files with User Encryption Key 1/2?

Configure the Security Wizard and specify User Key Set 1, User Key Set 2. Ensure the Security
programming feature is enabled in Configure Bitstream; it is enabled by default once you configure the

Security Policy Manager.

Export Bitstream from Handoff Design for Production - <filename>_uek1.(stp/spi/dat),

<filename>_uek?2.(stp/spi/dat) files are encrypted with UEK1, UEK2,respectively. See Security Programming

File Descriptions below for more information on programming files.

What are Security Programming Files?
See the Security Programming Files topic for more information.

118

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Permanent Locks

This page allows you to configure Permanent Locks for Production programming. Permanent Locks should be
configured after the Design/Debug phase has been completed. The Permanent Lock settings will not be applied
to programming within Libero. They are only applied to the Export tools used for Production programming. Once
the Permanent Locks are programmed, they cannot be changed. Configuring the Permanent Locks will affect the
settings on the subsequent pages and should be reviewed carefully. The settings cannot be changed once they
are programmed.

Disable all factory key modes and configured security settings. =
Use FlashLock/UPK1 to temporarily enable settings during one programming/debugging session.

Permanent Locks
Mo permanent locks selected,

User Keys
Enable UEK 1. FlashLock/UPK1 is required to change this setting.
UPK1 and UEK1 will be programmed and available for use,
Disable UEK?2. FlashLock/UPK1 is required to change this setting.

Update Policy
Fabric can be updated using a bitstream encrypted with UEK1.
sMVM can be updated using a bitstream encrypted with UEK 1.

Back Level protection is enabled. Use FlashLock/IUPK 1 to bypass Back Level protection.
Design version: 3 Back Level version: 2 j

User keys and security policies are protected with FlashLock,

You can make any of the settings below permanent (one-time programmable).
Permanent

Locks

All one-time programming bits are located in the same segment.
Cnce one of these bits is programmed they cannot be changed,
this entire segment becomes non-changesble,

™ Permanently disable UPK1
User Encryption Key 1 (UEK1) and security policies will be permanently write-protected.

™ Permanently disable UPK2

User Encryption Key 2 (UEK2) will be permanently write-protected,

User Keys

Permanently disable SmartDebug access control and
reading temperature and voltage sensor (JTAG/SPT)

[Permanently disable Debug Pass Key (DPK)
™ Permanently write-protect Fabric

™ Permanently disable Microsemi factory test mode access

This will permanently disable access to the programming interfaces. All pins are disabled.

Permanently disable Auto Programming, JTAG, and SPI Slave
programming interfaces

Save Summary to File... |

Figure 83 - Configure Permanent Lock for Production

All the user keys and security policies are protected with FlashLock and can be made One-Time Programmable,
by configuring the Permanent Lock settings.

Mext | Finish Cancel

@
&
o

You can select one or more of the below options to be locked permanently:

e Permanently disable UPK1 - This will permanently disable FlashLock/UPK1 from being able to be matched
by the device. Any feature that is disabled will be permanently disabled. Any feature that is available will be
permanently available.

e Permanently disable UPK2 - This will permanently disable FlashLock/UPK2 from being able to be matched
by the device. If UEK2 is enabled and selected for programming, then it cannot be changed.

e Permanently disable SmartDebug access control and reading temperature and voltage sensor -This
will permanently disable SmartDebug access control for user debug and active probes, live probes and,
sNVM along with the ability to read the temperature and voltage sensor.

119

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

e Permanently disable Debug Pass Key(DPK) - This will permanently disable the FlashLock/DPK from
being able to be matched by the device. If DPK was programmed, then it can no longer be used for
SmartDebug access.

e Permanently write-protect Fabric - This will make the Fabric One-Time Programmable. Verify of the
Fabric will still be possible. Erase/Program of the Fabric is permanently disabled.

e Permanently disable Microsemi factory test mode access - This will permanently disable Microsemi
factory test mode access. Microsemi will not be able to perform a Failure Analysis on this device.

e Permanently disable Auto Programming, JTAG and SPI Slave programming interfaces - This will
permanently disable all programming interfaces. The actual JTAG and SPI Slave ports are disabled and you
cannot access the device for any operations including reading the IDCODE of the device. The device will
become One-Time Programmable and there will be no way to Erase/Program/Verify the device.

The summary window displays the summary of the current configuration set in Permanent Locks page. The
summary can be exported to a file and is recommended to keep a record of the settings configured. It is important
to review the summary carefully and ensure the settings and behaviors are as expected since they cannot be
changed once the device is programmed.

Remove Permanent Locks

You can remove the Permanent Lock settings by either right-clicking on the tool in the Design Tree or by clicking
the button in the UL.

When selected removes all the Permanent Locks selected and restores to initial security settings configured in
Configure Security tool. This option is highlighted only when at least one of the Permanent Locks is enabled.
See Also

Configure Security

Tcl command for Permanent Locks
remove_permanent locks

Configure Permanent Locks for Production

Configure Permanent Locks for Production is a GUI-based tool that guides the user step by step on how to
configure the Permanent Locks for Production. The wizard has six steps/pages executed in sequential order. One
Time Programmable (OTP) settings in the Permanent Locks page are applied to configured Security settings from
the Configure Security tool. The subsequent pages have read only fields, which will be affected by Permanent
Lock settings. These settings can only be configured by the Configure Security tool.

If you configure any Permanent Lock settings, you will be forced to go through each page to review the Security
settings to make sure they are as desired. The settings cannot be changed once they have been programmed.

1. Permanent Locks

2. User keys in Configure Security

3. Update Policy in Configure Security
4. Debug Policy in Configure Security
5
6

. Microsemi Factory Access in Configure Security

. JTAG/SPI Slave Commands Policy in Configure Security

Summary Window

The summary window displays the summary of the current page configuration settings. Based on the selection
made in the first page, the summary for the subsequent pages change. The window will scroll to the current page
as you move from page to page.

Back

Click Back to return to the previous step.

120

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Next
Click Next to proceed to the next step.

Finish

Click Finish to complete the configuration after executing the all the steps in sequential order.

Save Summary to File
Click Save Summary to File to save the display in the Summary field to a file.

Configure Bitstream
Right-click Generate Bitstream in the Design Flow window and choose Configure Options to open the

Configure Bitstream dialog box.
The Configure Bitstream dialog box enables you to select which components you wish to program. Only features

that have been added to your design are available for programming.
If the design includes uPROM, it will be included in the Fabric.

| Configure Bitstream ™
Program
_ustom security
v | Fabric
Help oK | [Cancel W

Figure 84 - Configure Bitstream Dialog Box - PolarFire

Notes:
e Custom security is enabled if security was configured.
e All available features are selected by default.
e sNVMis always programmed with Fabric.

See Also
Note: "Generate Bitstream " on page 122

121

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Generate Bitstream

Generates the bitstream for use with the Run PROGRAM Action tool.

The tool incorporates the Fabric design, sSNVM configuration and custom security settings (if configured) to
generate the bitstream file. You need to configure the bitstream before you generate the bitstream. Otherwise,
default settings with all available features included will be used. Right-click Generate Bitstream and choose
Configure Options to open the Configure Bitstream dialog box to select which components you wish to program.
Only features that have been added to your design are available for programming.

If the design includes uPROM, it will be included in the Fabric.

Modifications to the Fabric design, sSNVM configuration, or security settings will invalidate this tool and require
regeneration of the bitstream file.

The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in the
Create Design, Create Constraints and Implement Design sections of the Design Flow window.

When the process is complete a green check appears next to the operation in the Design Flow window (as shown
in the figure below) and information messages appear in the Log window.

4 » Program Design

v +(] Generate FPGA Array Data
+(] Configure Design Initialization Data and Memories
v] Generate Design Initialization Data

i Configure I/O States During JTAG Programming
» Configure Programming Options
& Configure Security
@ Configure Permanent Locks (OTP)
v % Generate Bitstream
© Run PROGRAM Action

Figure 85 - Generate Bitstream (Complete)

See also
Configure Bitstream Dialog Box

Run Programming Device Actions

If you have a device programmer connected, you can double-click Run PROGRAM Action to execute your
programming in batch mode with default settings.
If your programmer is not connected, or if your default settings are invalid, the Reports view lists the error(s).

Right-click Run PROGRAM Action and choose Configure Action/Procedures to open the Select Action and
Procedures dialog box.

Programming File Actions
Libero SoC enables you to program security settings, FPGA Array, and sNVM features.
Note: If the design includes UPROM, it will be included in the Fabric.

You can program these features separately using different programming files or you can combine them into one
programming file.

In the Design Flow window, expand Program Design, click Run PROGRAM Action, and right-click Configure
Actions/Procedures.

122

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.”
8| Select Action and Procedures u
Action:
| PROGRAM -
Procedures:
VERIFY IDCODE [
PROC_ENABLE i
i DO PROGRAM i
i |[C] DO_VERIFY .
DO EXIT
]
|
L
Help | [QK i | Cancel

Figure 86 - Select Actions and Procedures
Left-click on the Action: picklist to select from the following actions:

Action:

PE! ﬁﬁ ﬂ E - l
DEVICE_INFO
ENC_DATA_AUTHENTICATION
ERASE

READ_IDCODE
VERIFY
VER]FY_.:DIGEST

Figure 87 - Action Choices
The following table lists programming file actions and supported procedures.
Table 1 - Programming File Actions and Supported Procedures

Action Procedures

DEVICE_INFO VERIFY_IDCODE
DO_DEVICE_INFO
DO_EXIT

ENC_DATA_AUTHENTICATION VERIFY_IDCODE
DO_AUTHENTICATION
DO_EXIT

123

PolarFire FPGA Design Flow User Guide

& Microsemi

Action Procedures

ERASE

VERIFY_IDCODE
PROC_ENABLE
DO ERASE
DO_EXIT

PROGRAM

VERIFY_IDCODE
PROC_ENABLE
DO_PROGRAM
DO_VERIFY
DO_EXIT

READ_IDCODE

VERIFY_IDCODE
PRINT_IDCODE
DO_EXIT

VERIFY

VERIFY_IDCODE
PROC_ENABLE
DO_VERIFY
DO_EXIT

VERIFY_DIGEST

VERIFY_IDCODE
PROC_ENABLE
DO_VERIFY_DIGEST
DO_EXIT

The table below lists programming file actions and descriptions.

Table 2 - Programming File Actions

Action

Description

PROGRAM

Programs all selected family features: FPGA Array, targeted sNVM clients, and
security settings.

ERASE

Erases the selected family features: FPGA Array and Security settings.

VERIFY_DIGEST

Calculates the digests for the components (Custom Security, Fabric, or SNVM)
included in the bitstream and compares them against the programmed values.

VERIFY

Verifies all selected family features: FPGA Array, targeted sNVM clients, and
security settings.

ENC_DATA_AUTHEN
TICATION

Encrypted bitstream authentication data.

READ_IDCODE

Reads the device ID code from the device.

DEVICE_INFO

Displays the IDCODE, the design hame, the checksum, and device security
settings and programming environment information programmed into the
device.

Power Matters.

124

PolarFire FPGA Design Flow User Guide

& Microsemi

Options Available in Programming Actions

The table below shows the options available for specific programming actions.

Table 3 - Programming File Actions - Options

Action

Option and Description

PROGRAM

DO_VERIFY - Enables or disables programming
verification

VERIFY_DIGEST

DO_ENABLE_FABRIC - Includes Fabric and Fabric
configuration in the digest check

DO_ENABLE_SNVM - Includes the sNVM in the
digest check

DO_ENABLE_SECURITY - Includes security policy
settings and UPK1 security segments in the digest
check

DO_ENABLE_UEKT1 - Includes UEK1 in the digest
check

DO_ENABLE_UKS?2 - Includes User Key Set 2 (UPK2
and UEK?2) security segment in the digest check

DO_ENABLE_DPK - Includes DPK security segment
in the digest check

DO_ENABLE_SMK - Includes the SMK security

Power Matters.

segment in the digest check

DO_ENABLE_USER_PUBLIC_KEY - Includes the
User Public Key security segment in the digest check

Exit Codes (PolarFire)

level

Error Exit Message Exit Possible Cause Possible Solution
Code Code
Passed (no error) 0 - -
0x8002 Failed to disable 5 Unstable voltage level Monitor related power supplies that cause the
programming mode issue during programming; check for transients
Signal integrity issues on outside of Microsemi specifications. See your
Failed to set JTAG pins device datasheet for more information on
programming mode transient specifications.
Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
0x8032 Device is busy 5 Unstable VDDIx voltage Monitor related power supplies that cause the

issue during programming; check for transients
outside of Microsemi specifications. See your

125

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Error Exit Message Exit Possible Cause Possible Solution
Code Code
device datasheet for more information on
transient specifications.
0x8003 Failed to enter 5 Unstable voltage level Monitor related power supplies that cause the
programming mode issue during programming; check for transients
Signal integrity issues on outside of Microsemi specifications. See your
JTAG pins device datasheet for more information on
transient specifications.
DEVRST_N is tied to LOW
Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
Tie DEVRST_N to HIGH prior to programming
the device.
0x8004 Failed to verify 6 Incorrect programming file Choose the correct programming file and select
IDCODE the correct device in the chain.
Incorrect device in chain
Measure JTAG pins and noise for reflection. If
Signal integrity issues on TRST is left floating then add pull-up to pin.
JTAG pins
Reduce the length of Ground connection.
0x8005 Failed to verify 11 Device is programmed with | Verify the device is programmed with the correct
0x8006 FPGA Array a different design or the data/design.
0x8007 component is blank.
0x8008 Failed to verify Monitor related power supplies that cause the
Fabric Configuration Unstable voltage level. issue during programming; check for transients
outside of Microsemi specifications. See your
Failed to verify Signal integrity issues on device datasheet for more information on
Security JTAG pins. transient specifications.
Failed to verify Monitor JTAG supply pins during programming;
sNVM measure JTAG signals for noise or reflection.
0x8013 External digest -18 External Digest check via Need to use a bitstream file which has a valid
check via JTAG/SPI JTAG/SPI Slave is disabled. | FlashLock/UPK1 to enable external digest check
Slave is disabled. via JTAG/SPI Slave.
0x8015 FPGA Fabric digest | -20 FPGA Fabric is either If the Fabric is erased, deselect procedure
verification: FAIL erased or the data has been | "DO_ENABLE_FABRIC" from action
corrupted or tampered with | "VERIFY_DIGEST"
Deselect procedure
'DO_ENABLE_FAB
RIC' to remove this
digest check.
0x8016 sNVM digest -20 sNVM is either erased or the | If the SNVM is erased, deselect procedure

verification: FAIL

Deselect procedure
'DO_ENABLE_SNV
M' to remove this
digest check.

data has been corrupted or
tampered with

"DO_ENABLE_SNVM" from action
"VERIFY_DIGEST"

126

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Error Exit Message Exit Possible Cause Possible Solution
Code Code

0x8018 User security -20 Security segment is either If the security is erased, deselect procedure
policices segment erased or the data has been | "DO_ENABLE_SECURITY" from action
digest verification: corrupted or tampered with | "VERIFY_DIGEST"
FAIL
Deselect procedure
'DO_ENABLE_SEC
URITY' to remove
this digest check.

0x8019 UPK1 segment -20 UPK1 segment is either If the UPK1 is erased, deselect procedure
digest verification: erased or the data has been | "DO_ENABLE_SECURITY" from action
FAIL corrupted or tampered with | "VERIFY_DIGEST"
Deselect procedure
'DO_ENABLE_SEC
URITY' to remove
this digest check.

0x801A UPK2 segment -20 UPK2 segment is either If the UPK2 is erased, deselect procedure
digest verification: erased or the data has been | "DO_ENABLE_UKS2" from action
FAIL corrupted or tampered with | "VERIFY_DIGEST"
Deselect procedure
'DO_ENABLE_UKS2
' to remove this
digest check.

0x801B Factory row and -20 Factory row and factory key
factory key segment segment have been erased
digest verification: through zeroization or the
FAIL data has been corrupted or

tampered with

0x801C Fabric configuration |-20 Fabric configuration If the Fabric configuration is erased, deselect
segment digest segment is either erased or | procedure "DO_ENABLE_FABRIC" from action
verification: FAIL has been corrupted or "VERIFY_DIGEST"

tampered with

Deselect procedure
'DO_ENABLE_FAB
RIC' to remove this
digest check.

0x8052 UEK1 segment -20 UEK1 segment is either If the UEK1 is erased, deselect procedure
digest verification: erased or the data has been | "DO_ENABLE_UEKZ1" from action
FAIL corrupted or tampered with | "VERIFY_DIGEST"
Deselect procedure
'DO_ENABLE_UEK1
' to remove this
digest check.

127

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Error Exit Message Exit Possible Cause Possible Solution
Code Code
0x8053 UEK2 segment -20 UEK2 segment is either If the UEK2 is erased, deselect procedure
digest verification: erased or the data has been | "DO_ENABLE_UEK2" from action
FAIL corrupted or tampered with | "VERIFY_DIGEST"
Deselect procedure
'DO_ENABLE_UEK2
' to remove this
digest check.
0x8054 DPK segment digest | -20 DPK segment is either If the DPK is erased, deselect procedure
verification: FAIL erased or the data has been | "DO_ENABLE_DPK" from action
corrupted or tampered with | "VERIFY_DIGEST"
Deselect procedure
'DO_ENABLE_DPK'
to remove this digest
check.
0x8057 SMK segment digest | -20 SMK segment is either If the SMK is erased, deselect procedure
verification: FAIL erased or the data has been | "DO_ENABLE_SMK" from action
corrupted or tampered with | "VERIFY_DIGEST"
0x8058 User Public Key -20 User Public Key segmentis | If the User Public Key is erased, deselect
segment digest either erased or the data has | procedure "DO_ENABLE_USER_PUBLIC_KEY"
verification: FAIL been corrupted or tampered | from action "VERIFY_DIGEST"
with
0x801D Device security -21 The device is protected with | Run DEVICE_INFO to view security features
prevented operation user pass key 1 and the that are protected.
bitstream file does not
contain user pass key 1. Provide a bitstream file with a user pass key 1
that matches the user pass key 1 programmed
User pass key 1 in the into the device.
bitstream file does not match
the device.
0x801F Programming Error. | -22 Bitstream file has been Regenerate bitstream file
corrupted or was incorrectly
Bitstream or data is generated. Monitor related power supplies that cause the
corrupted or noisy issue during programming; check for transients
Unstable voltage level. outside of Microsemi specifications. See your
device datasheet for more information on
Signal integrity issues on transient specifications.
JTAG pins. Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
0x8021 Programming Error. | -23 File contains an encrypted Provide a programming file with an encryption

Invalid/Corrupted
encryption key

key that does not match the
device

File contains user encryption
key, but device has not been
programmed with the user
encryption key

key that matches that on the device

First program security with master programming
file, then program with user encryption 1/2 field
update programming files

128

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Error Exit Message Exit Possible Cause Possible Solution
Code Code
0x8023 Programming Error. | -24 Design version is not higher | Generate a programming file with a design
than the back-level version higher than the back level version
Back level not programmed device
satisfied
0x8001 Failure to read DSN | -24 Device is in System TRSTB should be driven High or disable
Controller Suspend Mode "System Controller Suspend Mode".
Check board connections
0x8027 Programming Error. | -26 Device does not support the | Generate a programming file with the correct
capabilities specified in capabilities for the target device
Insufficient device programming file
capabilities
0x8029 Programming Error. | -27 Incorrect programming file Choose the correct programming file and select
the correct device in chain
Incorrect DEVICEID Incorrect device in chain
Measure JTAG pins and noise or reflection. If
Signal integrity issues on TRST is left floating, then add pull-up to pin
JTAG pins
Reduce the length of ground connection
0x802B Programming Error. | -28 Programming file version is | Generate programming file with latest version of
out of date Libero SoC
Programming file is
out of date, please
regenerate.
0x8030 Programming Error | -31 FAB_RESET_ N is tied to FAB_RESET_N should be tied to HIGH
ground
Invalid or
inaccessible Device
Certificate
0x8032 Instruction timed out | -32 Unstable voltage level Monitor related power supplies that cause the
0x8034 issue during programming; check for transients
0x8036 Signal integrity issues on outside of Microsemi specifications. See your
0x8038 JTAG pins device datasheet for more information on
transient specifications.
Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
0x8010 Failed to unlock user | -35 Pass key in file does not Provide a programming file with a pass key that
pass key 1 match device matches pass key programmed into the device.
0x8011 Failed to unlock user | -35 Pass key in file does not Provide a programming file with a pass key that
pass key 2 match device matches pass key programmed into the device.
0x804F Bitstream -38 Unstable voltage level Monitor related power supplies that cause the
programming action issue during programming; check for transients
is disabled Bitstream programming outside of Microsemi specifications. See your

device datasheet for more information on

129

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Error
Code

Exit Message Exit Possible Cause Possible Solution
Code

action has been disabled in | transient specifications.
Security Policy Manager
Need to use a bitsream file which has a valid
FlashLock/UPK1 to enable the bitstream
programming action.

Program SPI Flash Image

Generate SPI Flash Image

This tool generates the <design>_spi_flash_bin file in the implementation folder.
To run this tool; under the Program SPI Flash Image, right-click Generate SPI Flash Image and choose Run.

~- il Run PROGRAM Action
= # Program SPI Flash Image
% Generate SP| Sk teamon
i Run PROGRA Run
- » Debug Design Clean and Run All
¥ Handoff Design fo Elar

- # Handoff Design fo

Help

This tool depends on the Configure Design Initialization Data and Memories tool and the Generate Design
Initialization Data tool. When running, the tool verifies that the SPI Flash configuration data is saved and valid;
and that the SPI Flash initialization client was generated successfully (if required).

Configure SPI Flash Image Actions and Procedures

If SPI Flash is configured, you can select supported SPI Flash Image actions and procedures in the Select Action
and Procedures dialog box. See the following example.

130

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

® | Select Action and Procedures

Action:

| PROGRAM_SPI_IMAGE - |

Procedures:

VERIFY_DEVICE ID

ERASE_DIE

PROGRAM_IMAGE

o][com

Figure 88 - Select Action and Procedures Dialog Box
The following table lists the actions and procedures for the Run PROGRAM_SPI_Flash tool.

Action Mandatory Description
Procedures

PROGRAM_SPI_IMAGE | VERIFY_DEVICE_ID | This action will erase the entire SPI flash then
ERASE_DIE program the SPI image.
PROGRAM_IMAGE

VERIFY_SPI_IMAGE VERIFY_DEVICE_ID | This action verifies the SPI Image on the SPI Flash.
VERIFY_IMAGE

READ_SPI_IMAGE VERIFY_DEVICE_ID | This action reads the SPI Image from the SPI Flash.
READ_IMAGE

ERASE_SPI_FLASH VERIFY_DEVICE_ID | This action erases the entire SPI Flash.
ERASE_DIE

Note: If the device ID does not match when running any action, the action will fail.

Run Programming SPI Flash Actions

This tool allows the user to program the SPI Flash device connected to the PolarFire device through the JTAG
programming interface. Currently, only the Micron 1Gb SPI flash is supported, and is included with the Evaluation
Kit. This feature minimizes cost by not requiring a mux and external SPI pins on the board for SPI flash
programming by another tool. This tool always erases the entire SPI flash prior to programming. Programming
starts at address 0 of the SPI flash until the last client. Any gaps in the SPI flash are programmed with all 1's.

131

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.”

Note: This version of the programmer does not support SPI Flash security. Device security options such as
"Hardware Write Protect” should be disabled for the External SPI Flash device.

VD DIx (x = JTAG/DEDIO Bank Number)

PolarFire FPGA Extemnal
SPI Flash

System Controller

ss »CS
s0X plscx
-
St 300 S0 == 0.1 pF
so1 b

+

! mae |, = |
Controter | ITAG Programmer

Host FCwin
SFl Fazh Binary Fos

Note: The SPI pins are controlled by the Boundary Scan Register one bit at a time.
Tool 7

& Select Programmer
4 p Program Design
+ | Generate FPGA Array Data
+[] Configure Design Initialization Data and Memaories
| Generate Design Initialization Data
&= Configure [/O States During JTAG Programming
= Configure Programming Options

B Configure Security
@ Configure Permanent Locks (OTP)
‘% Generate Bitstream
i@ Run PROGRAM Action

4 p Program 5PI Flash Image

v l& Generate 5PIFlash Image
| & Run PROGRAM_SPIIMAGE Action |
4 p Debug Design Run
=[] Generate SmartDebug FPGA Array Da Clean and Run All
® SmartDebug Design Clean

L} Identify Debug Design

4 |} Handoff Design for Production
% Export Bitstream Help
4 Export FlashPro Express Job
) Export SPI Flash Image
+(] Export Pin Report
=] Export BSDL -

Figure 89 - SPI Flash Programming with PolarFire Device

The following table provides the expectations of programming the SPI flash with a FP5 programmer. Future
programmers are planned, and should greatly improve programming times. All times are in hh:mm:ss.

Configure Action/Procedures...

132

PolarFire FPGA Design Flow User Guide

& Microsemi

SPI Size | ERASE PROGRAM VERIFY/READ TCK Programmer
1MB 3:55 00:00:45 00:10:46 4MHz | FP5
1MB 3:55 00:00:28 00:10:05 15MHz FP5
9 MB 3:55 00:06:38 01:19:15 4MHz | FP5
9 MB 3:55 00:04:26 01:08:49 10MHz | FP5
18 MB 3:55 00:09:04 02:32:43 10MHz FP5
128 MB | 3:55 00:58:38 22:07:55 15MHz FP5

Recommendations:

Power Matters.

1. Since the verify time is currently not optimized, it is recommended to authenticate the SPI bitstreams with

system services for quicker verification.

2. Since this tool erases the SPI flash prior to programming and currently does not support Data Storage
clients for user data, it is recommended to program the SPI flash with Libero prior to programming other data
on the SPI flash.

3. Since programming time is currently not optimized, it is recommended to not have huge gaps between

clients in the SPI flash, since gaps are currently programmed with 1's.

If SPI Flash is configured, you can execute Run PROGRAM_SPI_IMAGE Action and select SPI Flash Image
actions and procedures.

In the Design Flow window, under Program SPI Flash Image, right-click Run PROGRAM_SPI_Image Action and
choose Configure Action/Procedures.

Note: In this release, SPI Flash programming is supported for MICRON devices only.

See Configure SPI Flash Image Actions and Procedures for information about supported actions and procedures.

133

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Debug Design

Generate SmartDebug FPGA Array Data

The Generate SmartDebug FPGA Array Data tool generates database files used in downstream tools:
e *.db used for debugging FPGA Fabric in SmartDebug

Double-click Generate SmartDebug FPGA Array Data or right-click Generate SmartDebug FPGA Array Data
in the Design Flow window and click Run to generate SmartDebug FPGA Array Data. Before running this tool, the
design should have completed the Place and Route step. If not, Libero SoC runs implicitly the upstream tools
(Synthesis, Compile Netlist, and Place and Route) before it generates the FPGA SmartDebug Array Data.

Top Module(root): single 2| o @'

Tool

Create Design

Constraints

Implement Design

Configure Hardware

Program Design

Debug Design

+_] Generate SmartDebug FPGA Array Data |
SmartDebug Design

{1 Identify Debug Design

» Handoff Design for Production

» Handoff Design for Debugging

o
v vvY vy

[+

|+

Figure 90 - Generate SmartDebug FPGA Array Data

SmartDebug

Design debug is a critical phase of FPGA design flow. Microsemi’s SmartDebug tool complements design
simulation by allowing verification and troubleshooting at the hardware level. SmartDebug can provide access to
Microsemi FPGA device's built-in probe logic, which enables designers to check the state of inputs and outputs in
real-time without re-layout of the design.

SmartDebug can be run in two modes:
e Integrated mode from the Libero Design Flow
e Standalone mode

Integrated Mode

When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug FPGA
Array.

To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click SmartDebug
Design.

134

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Standalone Mode

SmartDebug can be installed separately in the setup containing FlashPro, FlashPro Express, and Job Manager.
This provides a lean installation that includes all the programming and debug tools to be installed in a lab
environment for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow. Prior to launch
of SmartDebug standalone mode, you must to go through SmartDebug project creation and import a Design
Debug Data Container (DDC) file, exported from Libero, to access all debug features in the supported devices.

Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified 1/0.

See Also

SmartDebug User Guide

|dentify Debug Design

Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.

To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click Instrument
Design.

Identify features:
e Instrument and debug your FPGA directly from RTL source code.
e Internal design visibility at full speed.

¢ Incremental iteration - Design changes are made to the device from the ldentify environment using
incremental compile. You iterate in a fraction of the time it takes route the entire device.

e Debug and display results - You gather only the data you need using unique and complex triggering
mechanisms.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow outlined
below.
To use the Identify Instrumentor and Debugger:

1. Create your source file (as usual) and run pre-synthesis simulation.

2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a Programming
File) without starting Identify.

Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
In Synplify, click Options > Configure Identify Launch to setup Identify.
In Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.

In the Implementations Options dialog, make sure the Implementation Results > Results Directory points to
a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your resulting Verilog
Netlist file.

7. From the Instumentor Ul specify the sample clock, the breakpoints, and other signals to probe. Synplify
creates a new synthesis implementation. Synthesize the design.

8. InLibero SoC, run Synthesis, Place and Route and Generate a Programming File.
Note: Libero SoC works from the edif netlist of the current active implementation, which is the
implementation you created in Synplify for Identify debug.

9. Double-click Identify Debug Design in the Design Flow window to launch the Identify Debugger.

ook w

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

135

https://coredocs.s3.amazonaws.com/Libero/pf_2_3_0/Tool/pf_smartdebug_ug.pdf
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Handoff Design for Production

Export Bitstream
Export Bitstream Files enables you to export STAPL, DAT, and SPI programming files.

To export a bitstream file

1. Under Handoff Design for Production, double-click Export Bitstream. The Export Bitstream dialog box
opens. The dialog box options depend on your Custom Security settings and Permanent Locks for
Production settings:

e Export Bitstream tool configured with Bitstream Encryption with Default key option in Configure
Security tool
e Export Bitstream tool configured with Custom Security options in Configure Security tool

e Export Bitstream tool configured with Permanent Locks for Production tool

2. Choose your options, such as DAT file if you wish to include support for Embedded ISP, or SPI file if you
need support for IAP.

3. Choose the Zeroization Action that you want to use to re-program the device. Note: Zeroization
Action is not supported for XT and ES devices.

4. Select the bitstream components and Bypass Back Level protection option for Recovery/Golden
Bitstream that you want to program.

5. Enter your Bitstream file name and click OK to export the selected bitstream files.

See Also
Digest File

Export Bitstream tool configured with Bitstream Encryption with Default Key in
Configure Security tool

See the Export Bitstream topic for more information on exporting your bitstream.

136

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

]
x|

Bitstream file

Name: | fftousram_new Existing files:

fftousram_new_master.stp
fftousram_new_master_permanent.stp
fftousram_new_sccured_uck] stp
#ftousram_new_secured_uek?.stp

Location: [s\93412\ckint_fftousram_sc_latch_launchidesigner ftousram_newlexport ...

Formats:

¥ STAPL Support for ISP

I~ Chain STAPL Support for ISP, Single Microsemi device in a JTAG chain
I~ paT Support for Embedded ISP (JTAG and SPI-Slave)
[l Support for Auto Programming, Auto Update,

and IAP Services

™ svr Support for ISP

Zeroization actions
™ Like New (Erases alluser data; device can be immediately reprogrammed by user)

I~ Unrecoverable (Erases al data and destroys reprogrammabiiity; device must be scrapped)
Security options set with Configure Security tool
Encrypt bitstream with default key. No user keys or security settings are enabled.

Programming Options set with Configure Programming Options toal
Design version: |3 Back Level version: |0

Bitstream files to be exported
Bitstream components

File to program at trusted facility ¥ Fabric ¥ shwv

Figure 91 - Export Bitstream Dialog Box with Default Key

Bitstream file name - Sets the name of your bitstream file. The prefix varies depending on the name of your top-
level design.

Existing bitstream files - Lists bitstream files you created already.
Bitstream File Formats - Select the Bitstream File format you want to export:

e STAPL file
o DAT file
e SPIfile

Zeroization Actions — Click the Like New option to erase all user data to make the device like new and
reprogram the device immediately, or click the Unrecoverable option to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

Security options set with Configure Security tool- Provides a brief description of current security options.
Programming Options set with Configure Programming Options tool- Displays the Design version and Back
Level version set in the Configure Programming Options tool. They are read only options and cannot be modified.
Note: Info and warning messages appear based on the value set for Back Level version.

Bitstream files to be exported — Lists all the bitstream files that will be exported.

File to program at trusted facility — Click to include Fabric and/or sSNVM into the bitstream files to be
programmed at a trusted facility. If the Fabric Bitstream component is programmed, the SNVM Bitstream
component is enabled by default. Otherwise, the SNVM component can either be enabled or disabled for
programming.

137

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Export Bitstream tool configured with Custom Security Option in Configure Security tool

Note: If Permanent Locks for Production are configured along with Custom Security settings, Export
Bitstream Security options are set with Configure Permanent Lock for Production tool. Otherwise, they
are set with the Configure Security tool. The Permanent Lock Security settings can be removed by either
right-clicking on the tool in the Design Tree or by clicking the Remove Permanent Locks button in the UL.

See the Export Bitstream topic for information on exporting your bitstream.

3 Eupor =

Bitstream file

Name: | Ftousram_new Existing files:

<Mo Bitstream files found>
Location: fcs_review\pf2.2_sp1\95855\final_location\designer \fftousram_newlexport ..

Formats:
¥ STAPL Support for ISP
I™ Chain STAPL Support for ISP, Single mi device in & JTAG chain
I~ paT Support for Embedded ISP (JTAG and SPI-Slave)
[t Support for Auto Programming, Auto Update,

and IAP Services
I~ svF Support for ISP

Zeroization actions

I™" Like New (Erases all user data; device can be immediately reprogrammed by user)

[Unrecoverable (Erases all data and destroys reprogrammability; device must be scrapped)

Security options set with Configure Security tool

Disable all factory key modes and configured security settings.

Use FlashLock/UPK1 to temporarily enable settings during one programming session.

Use FlashLock/UPK1 to temporarily enable settings during one debugging session.

FlashLock/UPK1 wil be exported in plaintext (master file).

Back Level protection is enabled. Use FlashLock/UPK1 to bypass Back Level protection.
SmartDebug access control s enabled, Internal data may be accessible. Anyone can debug or access active probes, access Live Probe, and read the content of shivM,
Factory test mode is allowed. This will allow Micrasemi to perform Faildre Analysis.

i, Zeroization through JTAG/SPI Slave is enabled. This is not recommended for production devices.

External Fabric/shVM design digest check request through JTAG/SPI Slave is enabled.
Repeated external Fabric digest calculations can impact its reliability. View Datasheet for additional information.

Programming Options set with Configure Programming Options tool
Design version: |3 Back Level version: |2 0

Bitstream files to be exported
Bitstream components Bypass Back Level protection for
Recovery/Golden bitstream

(5P flles orlly)
Master file to program

at trusted fadiity ¥ Custo ¥ Fabric [& sivm i
File encrypted with UEK1 to program o
stuntrusted faciity or for Broadeast field update ¥ Fabric |7 st 5
File encrypted with UEK2 to program I Fabric [st o
at untrusted faciity or for Broadcast field update Pt 2hbis)

Figure 92 - Export Bitstream Dialog Box with Custom Security options set with Configure Security tool

Bitstream file - Sets the name of your bitstream file. The prefix varies depending on the name of your top-level
design.

Existing files: - Lists bitstream files you created already.
Formats:
Select the Bitstream file format you want to export:

e STAPL file
o DAT file
e SPIfile

Zeroization Actions — Click the Like New option to erase all user data to make the device like new and
reprogram the device immediately, or click the Unrecoverable option to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

Security options set with Configure Security tool- Provides a brief description of the current Security
settings.

Programming Options set with Configure Programming Options tool- Displays the Design version and Back
Level version set in the Configure Programming Options tool. They are read only options and cannot be modified.

138

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Note: Info and warning messages appear based on the value set for Back Level version.

Bypass Back Level protection for Recovery/Golden bitstream- If Back Level protection is enabled in the
Configure Security tool, you can bypass the back level protection for SPI bitstreams to prevent Programming
Recovery failures.

The following examples show the usage of Bypass Back Level Protection.
Example 1 — Fails without Bypass Back Level Protection

Step Bitstream Action Result Design Back Device
version Level Back
version Level
version
1 Golden/Recovery Auto Programming Pass 2 1 1
2 IAP/Update Bitstream | Auto Update/IAP Pass 3 2 2
3 IAP/Update Bitstream | Auto Update/IAP Fail, Attempt 4 N/A 2
Programming
Recovery
In the above example, the device will have Back Level version 2 after step 2. If you attempt to program with
bitstream in step 3, it will fail. If the device attempts to reprogram, it will initiate Programming Recovery with the
Golden/Recovery bitstream. Since the Golden/Recovery Bitstream has Design version 2, which is less than or
equal to the Back Level version in the device, it will fail. If the Bypass Back Level version option is selected, this
back level protection check will be bypassed for the Golden/Recovery Bitstream only and it will succeed.
Example 2 — Does not require Bypass Back Level Protection
Step Bitstream Action Result Design Back Device
version Level Back
version Level
version
1 Golden/Recovery Auto Programming Pass 2 1 1
2 IAP/Update Bitstream | Auto Update/IAP Pass 3 1 1
3 IAP/Update Bitstream | Auto Update/IAP Fail, Attempt 4 N/A 1
Programming
Recovery
In this example, the device will have Back Level version 1 after step 2. If you attempt to program with bitstream in
step 3, it will succeed since the Golden/Recovery Design version is greater than the Back Level version on the
device.
Example 3 — Requires Bypass Back Level Protection
Step Bitstream Action Result Design Back Device
version Level Back
version Level
version
1 Golden/Recovery Auto Programming Pass 1 1 1
2 IAP/Update Bitstream | Auto Update/IAP Pass 2 1 1

139

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Step Bitstream Action Result Design Back Device
version Level Back
version Level
version
3 IAP/Update Bitstream | Auto Update/IAP Fail, Attempt 3 N/A 1
Programming
Recovery

In this example, the device will have Back Level version 1 after step 2. If you attempt to program with bitstream in
step 3, it will fail. If the device attempts to reprogram, it will initiate Programming Recovery with the
Golden/Recovery bitstream. Since the Golden/Recovery Bitstream has Design version 1, which is less than or
equal to the Back Level version in the device, it will fail. If the Bypass Back Level version option is selected, this
back level protection check will be bypassed for the Golden/Recovery Bitstream only and it will succeed.

Bitstream files to be exported — Lists all the bitstream files that will be exported.

Master file to program at trusted facility — Click to include Fabric, SNVM and Bypass Back Level protection
for Recovery/Golden bitstream (this option is available only if Back Level protection is enabled in SPM
and SPI file format is selected) into the bitstream files to be programmed at a trusted facility. If the Fabric
Bitstream component is programmed, the sNVM Bitstream component must be programmed and it is
selected by default. In this case, sSNVM is disabled for the user to unselect. Otherwise, the SNVM
component can either be enabled or disabled for programming. Note that Custom Security is always
programmed in Master file.

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update — Click to include
Fabric, SNVM and Bypass Back Level protection for Recovery/Golden bitstream (this option is available
only if Back Level protection is enabled in SPM and SPI file format is selected) into the bitsream files to be
programmed. If the Fabric Bitstream component is programmed, the sSNVM Bitstream component must be
programmed and it is selected by default. In this case, sSNVM is disabled for the user to unselect.
Otherwise, the sNVM component can either be enabled or disabled for programming. If the selected
features are not protected by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted
with UEK1 that is preprogrammed into the device.

File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to include
Fabric, sSNVM and Bypass Back Level protection for Recovery/Golden bitstream (this option is available
only if Back Level protection is enabled in SPM and SPI file format is selected) into the bitsream files to be
programmed. If the Fabric Bitstream component is programmed, the sSNVM Bitstream component must be
programmed and it is selected by default. In this case, sSNVM is disabled for the user to unselect.
Otherwise, sSNVM component can either be enabled or disabled for programming. If the selected features
are not protected by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted with
UEK?2 that is preprogrammed into the device.

Note: If the sSNVM/Fabric is protected with UPK1 and included in the bitstream, UPK1 will be added to the STAPL
and DAT file, and cannot be used at untrusted location.

Note: If sSNVM/Fabric is One Time Programmable, it precluded from bitstream encrypted with UEK1/2.

Export Bitstream tool configured with Permanent Locks for Production tool

Note: If Permanent Locks for Production are configured along with Custom Security settings, Export Bitstream
Security options are set with Configure Permanent Lock for Production tool. Otherwise, they are set with the
Configure Security tool. The Permanent Lock Security settings can be removed by either right-clicking on the tool
in the Design Tree or by clicking the Remove Permanent Locks button in the UI.

See the Export Bitstream topic for information on exporting your bitstream.

140

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Bitstream file

Name: | fftousram_new

Location: [s\93412\ckint_fftousram_sc_latch_launchidesigner ftousram_newlexport ...

Formats:

¥ STAPL Support for ISP

I™ Chain STAPL Support for ISP, Single Microsemi device ir

I~ paT Support for Embedded ISP (JTAG and SPI-Slave)

[l Support for Auto Programming, Auto Update,
and IAP Services

I~ s Support for ISP

Zeroization actions

™ Like New (Erases alluser data; device can be immediately reprogrammed by user)

[Unrecoverable (Erases al data and destroys reprogrammability; device must be scrapped)

Security options set with Configure Permanent Locks for Production tool

Permanently disable al factory key modes and configured security settings.
UPK2 will be exported in plaintext (master fle).
Back Level protection is permanently enabled.

Factory test mode is permanently allowed. This will allow Microsemi to perform Failure Analysis.

Excternal Fabric/sNVM design digest check request through JTAG/SPI Slave is permanently enabled.

Programming Options set with Configure Programming Options tool
Design version: |3 Back Level version: |0 (i]
Bitstream files to be exported

Bitstream components

Master file to program
at trusted faciity

File encrypted with UEK1 to program
at untrusted faciity or for Broadcast field update

File encrypted with UEK2 to program
at untrusted faciity or for Broadcast field update

Help

Zeroization through JTAG/SPI Slave is permanently enabled. This is not recommended for production devices.

Repeated external Fabric digest calculations can impact its reliabilty. View Datasheet for additional information.

W Fabric | shvm

W Fabric [sim

¥ Fabric [shym

Existing fles:

fftousram_new_master_permanent.stp
fftousram_new_secured_uek1stp
fftousram_new_sccured_uck2 stp

Bypass Back Level protection for
Recovery/Golden bitstream
(5P files only)

-
-

-

Figure 93 - Export Bitstream Dialog Box with Security optio

ns set with Configure Permanent Locks for Production tool

Bitstream file - Sets the name of your bitstream file. The prefix varies depending on the name of your top-level

design.

Existing files: Lists bitstream files you created already.

Formats:
Select the Bitstream file format you want to export:

e STAPL file
e DAT file
e SPIfile

Zeroization Actions — Click the Like New option to erase all user data to make the device like new and
reprogram the device immediately, or click the Unrecoverable option to erase all data and destroy
reprogrammability(in this case, the device must be scrapped).

Security options - Provides a brief description about the current Security settings.

Programming Options set with Configure Programming Options - Displays the Design version and Back
Level version set in the Configure Programming Options. They are read only options and cannot be modified.

Note: Info and warning messages appear based on the value set for Back Level version.

Bypass Back Level protection for Recovery/Golden bitstream- If Back Level protection is enabled in the
Configure Security tool, you can bypass the back level protection for SPI bitstreams to prevent Programming

Recovery failures.
The following examples show the usage of Bypass

Back Level Protection.

141

PolarFire FPGA Design Flow User Guide

Example 1 — Fails without Bypass Back Level Protection

& Microsemi

Power Matters.

Step Bitstream Action Result Design Back Device
version Level Back
version Level
version
1 Golden/Recovery Auto Programming Pass 1 1
2 IAP/Update Bitstream | Auto Update/IAP Pass 2 2
3 IAP/Update Bitstream | Auto Update/IAP Fail, Attempt N/A 2
Programming
Recovery
In the above example, the device will have Back Level version 2 after step 2. If you attempt to program with
bitstream in step 3, it will fail. If the device attempts to reprogram, it will initiate Programming Recovery with the
Golden/Recovery bitstream. Since the Golden/Recovery Bitstream has Design version 2, which is less than or
equal to the Back Level version in the device, it will fail. If the Bypass Back Level version option is selected, this
back level protection check will be bypassed for the Golden/Recovery Bitstream only and it will succeed.
Example 2 — Does not require Bypass Back Level Protection
Step Bitstream Action Result Design Back Device
version Level Back
version Level
version
1 Golden/Recovery Auto Programming Pass 1 1
2 IAP/Update Bitstream | Auto Update/IAP Pass 1 1
3 IAP/Update Bitstream | Auto Update/IAP Fail, Attempt 4 N/A 1
Programming
Recovery
In this example, the device will have Back Level version 1 after step 2. If you attempt to program with bitstream in
step 3, it will succeed since the Golden/Recovery Design version is greater than the Back Level version on the
device.
Example 3 — Requires Bypass Back Level Protection
Step Bitstream Action Result Design Back Device
version Level Back
version Level
version
1 Golden/Recovery Auto Programming Pass 1 1 1
2 IAP/Update Bitstream | Auto Update/IAP Pass 2 1 1
3 IAP/Update Bitstream | Auto Update/IAP Fail, Attempt 3 N/A 1
Programming
Recovery

In this example, the device will have Back Level version 1 after step 2. If you attempt to program with bitstream in
step 3, it will fail. If the device attempts to reprogram, it will initiate Programming Recovery with the

142

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Golden/Recovery bitstream. Since the Golden/Recovery Bitstream has Design version 1, which is less than or
equal to the Back Level version in the device, it will fail. If the Bypass Back Level version option is selected, this
back level protection check will be bypassed for the Golden/Recovery Bitstream only and it will succeed.

Bitstream files to be exported — Lists all the bitstream files that will be exported.

Master file to program at trusted facility — Click to include Fabric, SNVM and Bypass Back Level protection for
Recovery/Golden bitstream (this option is available only if Back Level protection is enabled in SPM and SPI file
format is selected) into the bitstream files to be programmed at a trusted facility. If the Fabric Bitstream
component is programmed, the SNVM Bitstream component must be programmed and it is selected by default. In
this case, sSNVM is disabled for the user to unselect. Otherwise, the SNVM component can either be enabled or
disabled for programming.

Note that Custom Security is always programmed in Master file.

Note: Depending on the Permanent Locks configured in Configure Permanent Locks for Production tool, some of
the bitstream components for Master file are selected by default and they are unavailable for users to change.

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update — Click to include
Fabric , SNVM and Bypass Back Level protection for Recovery/Golden bitstream (this option is available only if
Back Level protection is enabled in SPM and SPI file format is selected) into the bitstream files to be
programmed. If the Fabric Bitstream component is programmed, the sSNVM Bitstream component must be
programmed and it is selected by default. In this case, SNVM is disabled for the user to unselect. Otherwise, the
sNVM component can either be enabled or disabled for programming. If the selected features are not protected
by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted with UEK1 that is
preprogrammed into the device.

File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to include
Fabric, SNVM and Bypass Back Level protection for Recovery/Golden bitstream (this option is available only if
Back Level protection is enabled in SPM and SPI file format is selected) into the bitstream files to be
programmed. If the Fabric Bitstream component is programmed, the SNVM Bitstream component must be
programmed and it is selected by default. In this case, SNVM is disabled for the user to unselect. Otherwise, the
sNVM component can either be enabled or disabled for programming. If the selected features are not protected
by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted with UEK2 that is
preprogrammed into the device.

Note: If the sNVM/Fabric is protected with UPK1 and included in the bitstream, UPK1 will be added to the
STAPL and DAT file, and cannot be used at untrusted location.

Note: If sSNVM/Fabric is One Time Programmable, it will be precluded from bitstream encrypted with
UEK1/2.

Security Programming Files
Export Bitstream (expand Handoff Design for Production in the Design Flow window) creates the following files:
<filename>_master.(stp/spi/dat) - Created when Enable custom security options is specified in the Security
Wizard. This is the master programming file; it includes all programming features enabled, User Key Set 1, User
Key Set 2 (optionally if specified), and your security policy settings.
<filename>_security_only_master.(stp/spi/dat) — Created when Enable custom security options is specified in
the _Security Wizard. Master security programming file; includes User Key Set 1, User Key Set 2 (optionally if
specified), and your security policy settings.
<filename>_uek1.(stp/spi/dat) — Programming file encrypted with User Encryption Key 1 used for field updates;
includes all your features for programming except security .

<filename>_uek?2.(stp/spi/dat) — Programming file encrypted with User Encryption Key 2 used for field updates;
includes all your features for programming except security.

Export FlashPro Express Job

Note: Export FlashPro Express Job uses Permanent Locks for Production configuration, if Permanent
Locks are configured. If Permanent Locks are not configured, it uses Custom Security configuration.

For PolarFire, Security Programming is supported. Use the Configure Security tool before you export the
programming job. The Export FlashPro Express Job dialog box displays the Security Options you have configured
through the Configure Security tool or Configure Permanent Locks for Production tool.

143

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

The Export FlashPro Express Job dialog box options vary depending on the Security option selected in
Configure Security tool, if Permanent Locks are not configured.

Export FlashPro Express Job configured with Bitstream Encryption with Default Key in Configure Security tool

W (=

FlashPro Express Job fle

Name: | fftousram_new

Location: | x:\10_docs_review\PF2. 3\Programming_sars\99412\ckint_fftousram_ac_latch_launch'designer fftousram_new\expart -

Existing fles:

fftousram_newjob

Zeroization actions
I~ Like New (Erases all user data; device can be immediately reprogrammed by user)

I Unrecoverable (Erases all data and destroys reprogrammability; device must be scrapped)

Security options set with Configure Security tool

Encrypt bitstream with default key. No user keys or security setfings are enabled.

Programming Options set with Configure Programming Options tool
Design version: |3 Back Level version: |0

Design bitstream file to be induded in the programming job
Bitstream companents

File to program at trusted fadiity ¥ Fabric |7 st

g job.

Configured device chain with bitstream files and programmer settings wil be nouded in the prograr

Figure 94 - Export FlashPro Express Job Dialog Box
Programming job file
Name - All names use a prefix as shown in your software.
Location - Location of the file to be exported.
Existing programming job files - Lists any existing programming job files already in your project.

Zeroization Actions — Click the Like New option to erase all user data to make the device like new and
reprogram the device immediately, or click the Unrecoverable option to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

Security Level - Provides a brief description of current Security settings.

Programming Options set with Configure Programming Options tool- Displays the Design version and Back
Level version set in the Configure Programming Options tool. They are read only options and cannot be modified.

Note: Info and warning messages appear based on the value set for Back Level version.

Design bitstream file to be included in the programming job - Lists all the available bitstream files, one of
which will be included in the programming job for the current target device.

File to program at trusted facility -Click to enable programming for Fabric and/or sSNVM bitstream components
at a trusted facility. If the Fabric Bitstream component is programmed, the sNVM Bitstream component
must be programmed and it is selected by default. In this case, sNVM is disabled for the user to unselect.
Otherwise, the sSNVM component can either be enabled or disabled for programming.

144

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Export FlashPro Express Job configured with Custom Security options in Configure
Security tool

5|

FlashPro Express Job fie

Mame: | fftousram_new

Location: [X:\10_docs_review\PF2.3\Programming_sars\38412\ckint_fftousram_ac_latch_launchidesigner\fftousram_newlexport

Existing files:

fftousram_newjob

Zeroization actions
I Like New (Erases all user data; device can be immediately reprogrammed by user)

I™ Unrecoverable (Erases all data and destroys reprogrammability; device must be scrapped)

Security options set with Configure Security tool

Disable all factory key modes and configured security settings.

Use FlashLock/UPK1 to tempararily enable settings during one programming session.
Use FlashLock/UPK 1 to temporarily enable settings during one debugaing session.
FlashLock/UPK1 will be exported in plaintext (master file).

UPK2 will be exported in plaintext (master file).

Back Level protection is enabled. Use FlashLock/UPK1 to bypass Back Level protection.

SmartDebug access control is enabled. Internal data may be accessible. Anyone can debug or access active probes, access Live Probe, and read the content of sNvM,
Factory test mode is allowed. This will allow Microsemi to perform Failure Analysis.,
i, Zeroization through JTAG/SPI Slave is enabled. This is not recommended for production devices.
External Fabric/sNVM design digest check request through JTAG/SPI Slave is enabled.
Repeated external Fabric digest calculations can impact its reliability, View Datasheet for additional information.

Programming Options set with Configure Programming Options tool
Design version: |3 Back Level version: |0 (i]

Design bitstream file to be induded in the programming job
Bitstream components

& Master file to program at trusted fadiity

W' Fabric b s

c File encrypted with UEK1 to program at untrusted fadiity or for Broadcast field update
o File encrypted with UEK2 to program at untrusted fadiity or for Broadcast field update I~ Fabric I snvm

Configured device chain with bitstream files and programmer settings will be indluded in the programming job.

Figure 95 - Export FlashPro Express Job Dialog Box with Custom Security Options
Programming job file name - All names use a prefix as shown in your software.
Existing programming job files - Lists any existing programming job files already in your project.

Zeroization Actions — Click the Like New option to erase all user data to make the device like new and
reprogram the device immediately, or click the Unrecoverable option to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

Security Level - Provides a brief description of current Security settings.

Programming Options set with Configure Programming Options tool- Displays the Design version and Back
Level version set in the Configure Programming Options Wizard. They are read only options and cannot be
modified.

Note: Info and warning messages appear based on the value set for Back Level version.

Design bitstream file to be included in the programming job - Lists all the available bitstream files, one of
which will be included in the programming job for the current target device.

Master file to program at trusted facility - Click to include Fabric and/or sSNVM into the bitstream files to be
programmed at a trusted facility. Note that Security is always programmed in Master file. If the Fabric Bitstream
component is programmed, the sNVM Bitstream component must be programmed and it is selected by
default. In this case, sSNVM is disabled for the user to unselect. Otherwise, the SNVM component can
either be enabled or disabled for programming.

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update - Click to include
Fabric and/or sNVM into the bitstream files to be programmed. If the Fabric Bitstream component is
programmed, the sSNVM Bitstream component must be programmed and it is selected by default. In this
case, sNVM is disabled for the user to unselect. Otherwise, the SNVM component can either be enabled or
disabled for programming. If the selected components are not protected by UPK1, the bitstream can be
programmed at an untrusted location, since it is encrypted with UEK1 that is preprogrammed into the device.

File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to include
Fabric and/or sNVM into the bitstream files to be programmed. If the Fabric Bitstream component is
programmed, the sSNVM Bitstream component must be programmed and it is selected by default. In this

145

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

case, sNVM is disabled for the user to unselect. Otherwise, the SNVM component can either be enabled or
disabled for programming. If the selected components are not protected by UPK1, the bitstream can be
programmed at an untrusted location, since it is encrypted with UEK2 that is preprogrammed into the device.

Export FlashPro Express Job configured with Permanent Locks in Confiqure Permanent
Locks for Production tool

T =
FlashPro Express Job file
MName: | fftousram_new
Location: [X:\10_docs_review\pf2.2_sp1\Programming_sars\33414\final_location\designer \Fftousram_new \export
Existing files:
Fftousram_newjob
Zeroization actions
I™" Like New (Erases all user data; device can be immediately reprogrammed by user)
[~ Unrecoverable (Erases all data and destroys reprogrammability; device must be scrapped)
Security aptions set with Canfigure Permanent Locks for Production tacl
j, Permanently disable al factory key modes and configured security settings.
UPK2 will be exported in plaintext (master file).
Back Level protection is permanently disabled.
SmartDebug access control is permanently enabled. Internal data may be accessible. Anyone can debug or access active probes, access Live Prabe, and read the content of sNvM.
Factory test mode is permanently allowed. This will allow Microsemi to perform Failure Analysis,
Zeroization through JTAG/SPI Slave is permanently enabled. This is not recommended for production devices.
External Fabric/sNvM design digest check request through JTAG/SPI Slave is permanently enabled.
Repeated external Fabric digest calculations can impact its reliability. View Datasheet for additional information.
Programming Options set with Configure Programming Options tool
Design version: |3 Back Level version: |0
Design bitstream file to be induded in the programming job
Bitstream components
& Master file to program at trusted fadiity [tointeeity K % oo
'8 File encrypted with UEK1 to program at untrusted fadiity or for Broadcast field update Hisie ™ snvM
C File encrypted with UEK2 to program at untrusted faciity or for Broadcast field update ™ Fabric I shvm
Configured device chain with bitsiream files and programmer settings wil be included in iy

Figure 96 - Export FlashPro Express Job Dialog Box with Permanent Locks for Production Security Options

Programming job file name - All names use a prefix as shown in your software.

Existing programming job files - Lists any existing programming job files already in your project.

Zeroization Actions — Click the Like New option to erase all user data to make the device like new and
reprogram the device immediately, or click the Unrecoverable option to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

Security Level -Provides a brief description of current Security settings configured through Permanent Locks for
Production.

Programming Options set with Configure Programming Options tool- Displays the Design version and Back
Level version set in the Configure Programming Options Wizard. They are read only options and cannot be
modified.

Note: Info and warning messages appear based on the value set for Back Level version.

Design bitstream file to be included in the programming job - Lists all the available bitstream files, one of
which will be included in the programming job for the current target device.

Master file to program at trusted facility - Click to include Fabric and/or SNVM into the bitstream files to be
programmed at a trusted facility. If the Fabric Bitstream component is programmed, the sSNVM Bitstream
component must be programmed and it is selected by default. In this case, SNVM is disabled for the user to
unselect. Otherwise, the sSNVM component can either be enabled or disabled for programming.

Note that Custom Security is always programmed in the Master file.

Note: Depending on the Permanent Locks configured in Configure Permanent Locks for Production tool, some of
the bitstream components for the Master file are selected by default and they are unavailable for users to change.

146

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update - Click to include
Fabric and/or sSNVM into the bitstream files to be programmed. If the Fabric Bitstream component is programmed,
the sNVM Bitstream component must be programmed and it is selected by default. In this case, SNVM is disabled
for the user to unselect. Otherwise, the SNVM component can either be enabled or disabled for programming. If
the selected components are not protected by UPK1, the bitstream can be programmed at an untrusted location,
since it is encrypted with UEK1 that is preprogrammed into the device.

File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to include
Fabric and/or sSNVM into the bitstream files to be programmed. If the Fabric Bitstream component is programmed,
the sNVM Bitstream component must be programmed and it is selected by default. In this case, SNVM is disabled
for the user to unselect. Otherwise, the SNVM component can either be enabled or disabled for programming. If
the selected components are not protected by UPK1, the bitstream can be programmed at an untrusted location,
since it is encrypted with UEK2 that is preprogrammed into the device.

Prepare Design for Production Programming in FlashPro Express

After you have exported a programming job you can handoff this programming job to the FlashPro Express tool
for production programming. To do so:

In FlashPro Express, from the File menu choose Create Job Project From a Programming Job. You will be
prompted to specify the Programming Job location that you just exported from Libero and the location of where to
store the Job Project. The Job Project name automatically uses the programming job name and cannot be
changed. Click OK and a new Job Project will be created and opened for production programming.

Export SPI Flash Image

Name

Location

This tool depends on the “Configure Design Initialization Data and Memories” tool. The SPI Flash configuration
can be exported to a binary file here. Use this dialog to export a SPI Flash Image file.

| Export SPI Flash Image @

SPI Flash Image file

Mame: muxd
Location: D:\2Work'junk_projinewpfi\designer imuxa\export [j
Existing files:

muxd.bin

s

[tep] [ok][cancel

Figure 97 - Export SPI Flash Image

This is the top level design name by default. Use this field to change the default name. SPI Flash Image files are
exported in binary format and have the *.bin file extension and are hamed <design_name>.bin.

The default location for the exported image file is <project_folder>\designer\<top_level_design>\export. Use the
browse button to navigate to and specify a different location for the exported SPI Flash Image file.

Existing files

Existing SPI Flash Image files are listed.

147

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

See Also
Tcl command "export_spiflash_image" on page 184
PolarFire FPGA Programming User Guide

Export Pin Report
In the Design Flow window, expand Handoff Design for Production. Right-click Export Pin Report to export a pin
report.

The Export Pin Reports Dialog Box opens. Click the Browse Button to navigate to a disk location where you want
the pin report to be saved to.

Check the checkbox to make your selections:
e Pin Report sorted by Port Name
e Pin Report sorted by Package Pin Name
e 1/O Bank Report
e |/O Register Combining Report

The Pin Report lists the pins in your device sorted according to your preference: sort by Port Name or Sorted by
Package Pin Name. The Pin Report generates two files:

e <design>_pinrpt_name.rpt - Pin report sorted by name.
e <design>_pinrpt_number.rpt - Pin report sorted by pin number.
You must select at least one report.

Export Pin Report generates a Bank Report by default; the filename is <design>-bankrpt.rpt. Export Pin Report
also generates an I/O Register Combining Report listing the I/Os which have been combined into a Register for
betting timing performance.

| Export Pin Reports lil-g_hj
Location: D:\2Work\dsfeda\designerycount 16] Browse...

[¥] Pin Report Sorted by Port Name

[¥] Pin Report Sorted by Package Pin MName
[¥] 1j0 Bank Repart

[¥] 1j0 Register Combining Repart

QK] [Cancel

Figure 98 - Export Pin Report Dialog Box

Export BSDL File

Double-click Export BSDL File (in the Libero SoC Design Flow window, Handoff Design for Production >
Export BSDL File) to generate the BSDL File report to your Design Report.

The BSDL file provides a standard file format for electronics testing using JTAG. It describes the boundary scan
device package, pin description and boundary scan cell of the input and output pins. BSDL models are available
as downloads for many Microsemi SoC devices.

See the Microsemi website for more information on BSDL Models.

148

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide
https://www.microsemi.com/products/fpga-soc/design-resources/bsdl-models

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Export IBIS Model

Note: Export Input Output Buffer Information Specification (IBIS) is supported for all the “T” devices of PolarFire
Family except the “XT” device.

Export IBIS feature is supported in the following two stages:
e Pre-Layout Flow
e Post-Layout Flow

To export the IBIS Model in the Pre-Layout Flow, the design has to pass till Synthesis/Compile stage. It is
mandatory for the user to provide the 10 placement and configuration details in the 10 PDC files to export the
resultant IBIS files in Pre-Layout Flow.

To export the IBIS Model in the Post-Layout Flow, the design has to pass till Place and Route stage. If a design
has ran through the Place and Route tool, the IBIS model for the Post-Layout Flow will be exported by default.

Double-click Export IBIS Model (in the Libero SoC Design Flow window, Handoff Design for Production >
Export IBIS Model) to open Export IBIS Model dialog box.

._. :.. ? ..:..-“E-:é |

Export IBIS Model

Output File: | Browse...

Export Options

[Enable Model Selector

Maximum length of signal names |Unlimited -

K Cancel

Figure 99 - Export IBIS Model Dialog Box
Output File:
Click Browse to specify the location where you like to export the IBIS output file along with the output file name.
Export Options:

The IBIS report *.ibs file exported from Libero SoC can optionally support the [Model Selector] keyword as
specified in the IBIS IBIS 5.0 Specifications. To generate Model Selector support in the exported IBIS file, check
the Enable Model Selector box in the Export Options. Using this, the user can also optionally limit the maximum
signal name to 40 characters.

Click OK to export the IBIS Model.

The IBIS model report provides an industry-standard file format for recording parameters like driver output
impedance, rise/fall time, and input loading, which may then be used by software applications such as Signal
Integrity tools or IBIS simulators.

The exported IBIS file has the file extension *.ibs (named <root>.ibs) and is displayed in the Files tab.

In the [Pin] section of the IBIS *.ibs file, listed under the model_name are the Model Selector tag. The IBIS *.ibs
file has a [Model Selector] section that describes the model selector and its list of models. The Model Selector tag
in the [Pin] section establishes the relationship between the pin and the [Model Selector].

149

https://ibis.org/ver5.0

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.”

[Fin] signal_names nodel_nans R_pin L pin C_pin
| uuu
AE33 PAD_0<273 LVCHOS15_Bankl15Groupl_nsiod 0.75142 £ 68346a-009 2 14353e-012
E3l PAD_1¢105% IVCHOS25_ BanklGroupl_ddrio 0. 609957 £ 61206e-009 2 478352012
a2 PAD_0¢333 LYCHOS25_Bank2Groupl_ddrio 0. 785904 7.52853e-009 2.87418e-012
4 o
Hodel Selector] LVCHOS15_BanklSGroupl_nsicd ,
VCHOS15_6mh_MSIOD LVCHOS15 6nk NSIOD e Model Selector for Pin AE33
VCHOS15_ 2nA_MSIOD IVCHOS1S Zmh HSIOD

VCHOS15_4mA_MSIOD LYCHOS1S 4md MSIOD

ﬁ_odu Salecter] IVCHOS25_BanklGreupl_ddris

LYCHOS25_2mA_MEDFAST_DDRIO
LVCHOS25_2mA_SLOV_DDRIO
LVCHOS25_ 2mA_MED_DDRIO
LVCHOS25_2mA_FAST_DDRIO
LYCHOS25_4nA_MEDFAST_DDRIO
LVCHOS25_AnA_SLOV_DDRIO

LYCHOSZE Zmad MEDFAST DDRIO
LYCMOS2E 2mid SLOW DDRIO
LYCMOS2E 2nmd MED DDRIO
LVCHMOS2ZE 2Zmd FAST DORIO
LYCHOS25 4mid MEDFAST DDRIO
LYCMOS2E 4mA SLOW DDRIO

@ Model Selector for Pin E31

LYCHOSZE 4mid MED DDRIO

tVCHDEZE_IIk_HED_mIO
LYCHOS2E 4mid FAST DORIO

0525 4mh FAST DORIO

{Eﬂ el Selector] LYCHOS2S_Bank2Groupl ddnJ‘\

VCHOS2E, h.a._smu_m:u&m LYCHOSZ5 4mA SLOW DORIO

LVCHOS25_4mh_NED_DDR IVCHOS25 dwd HED

LycHooss- 1&55&5%?3“"’ Eicicess) eDeiet howo < for Pin A2
L]

LVCHOS25_ 2mh_SLOW_DDRIO IVCMOSZ5 Zwd SLOW DDRIO Model Selector for Pin A2

LVCHOS25_2mh_MED_DDRIO IVCHOS3S Zmd WED DDRIO

VCHOSZ5_2mA_MEDEAST_DDRIO LYCHOSZ5 ZmA HEDFAST DDRIO

Figure 100 - Model Selector *.ibs File

The advantage of Model Selector feature is that you can load the *.ibs file from Libero SoC into Signal Integrity
applications or IBIS simulators and switch the 1/O to different models for individual I/Os on-the-fly in the tools.
There is no need to go back to the Libero SoC I/O Attribute Editor to change the 1/O settings and run Compile to
switch to different I/O settings.

See the Microsemi Website for more information on IBIS Models.

150

https://www.microsemi.com/products/fpga-soc/design-resources/ibis-models

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Export SmartDebug Data (Libero SoC)

Export SmartDebug Data allows the export of SmartDebug Data from Libero to be handed off to the standalone
SmartDebug environment.

In the Libero SoC Design Flow window, expand Handoff Design for Debugging, right-click Export SmartDebug
Data and click Export to open the Export SmartDebug Data dialog box. Specify the design debug data file
(*.ddc)) to be exported. This file is also used as one of the ways to create a standalone SmartDebug project.

See the following figure for an example.

151

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.”

7 Export SmartDebug Data @

—Design debug data file

Mame: I fftousram_new

Location: pf2.2_sp1125859\final_location\designer {fftousram_new'export Ak |

Existing design debug data files:

- ¥ Indude design components
[¥ FPGA Array Probe Points
v FPGA Array Memory Blocks
W shvm

WV Security

[# ITAG Chain

|7 Programmer Settings

¥ Device IO States During Programming

—Programming Options set with Configure Programming Options tool
Design version: l3 Back Level version: IIZI 'o

- [Indude bitstream file to program at trusted fadility

Bitstream compaonents: I custom security I~ Fabric [snvm

Help | Ok I Cancel

Figure 101 - Export SmartDebug Data Dialog Box
Note: SmartDebug data can be exported without connecting the hardware.
Design debug data file (*.ddc)

152

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Name
The name of the design.
Location

The location of the exported debug file. By default, the *.ddc file is exported to the
<project_location>/designer/<design>/export folder and has the *.ddc file extension.

Existing Design Debug Data Files
The existing *.ddc file, if any, in the export folder.

SmartDebug data can be exported after you run Generate FPGA Array Data for the design in the Libero Design
Flow. You can also directly export SmartDebug data after running Synthesize on the design. Other tools, such as
Place and Route, Generate FPGA Array Data, and so forth) are implicitly run before the Export SmartDebug Data
dialog box is displayed.

Include design components

A DDC file can contain the following components:

e FPGA Array Probe Points — When checked, Libero SoC exports Live and Active probes information
(<design>_probe.db file) into the *.ddb container file.

e FPGA Array Memory Blocks — When checked, Libero SoC exports information about FPGA memories
(<design>_sii_block.db) into the *.ddb container file:

o names and addresses of the memory blocks instantiated by the design
o0 data formats selected by the user in the design
e sNVM —When checked, Libero SoC exports SNVM components.

e Security — This contains the security locks, keys, and security policy information needed for debug. This
may be default or custom security (<design>.spm file). It is hidden if security is not supported for the device.

e JTAG Chain (device chain information configured using Programming Connectivity and Interface in Libero)
—When checked, Libero SoC exports chain data including devices, their programming files if loaded, device
properties, and so on (<design>.pro file). If JTAG chain is uchecked, the default JTAG chain with Libero
design device only is added to the *.ddc file.

e Programmer Settings (<design>.pro file) — If Programmer Settings is unchecked, the default programmer
settings are added to the *.ddc file.

e Device I/O States During Programming (<design>.ios file) — This setting is used by some SmartDebug
features, for example, for programming sNVM . It is NOT used during device programming in SmartDebug;
programming files used to program devices already have I/O states data.

In addition, you can include bitstream file information, which can be used for programming the device in
standalone SmartDebug.

Programming Options set with Configure Programming Options tool- Displays the Design version and Back
Level version set in the Configure Programming Options Wizard. They are read only options and cannot be
modified.

Note: Info and warning messages appear based on the value set for the Back Level version.
Include Bitstream file to program at trusted facility

e Bitstream components: Fabric

e Bitstream components: SNVM

e Bitstream components: Custom security (this option is only visible if Custom Security Option is selected in
Configure Security wizard).

Note: If the Fabric Bitstream component is programmed, the sSNVM Bitstream component must be programmed
and it is selected by default. In this case, SNVM is disabled for the user to unselect. Otherwise, the SNVM
component can either be enabled or disabled for programming.

The default location of the DDC file is: <Libero_Project_directory>/designer/<design_name>/export.
The DDC file can be exported to any user-specified location if the location has read and write permission.

153

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

References

set_client

This Tcl command specifies the client that will be added to SPI Flash Memory. This command is added to the SPI
Flash Memory configuration file that is given as the parameter to the configure_spiflash command.

set_client \
-client_name {} \

—client_type {FILE_SPI | FILE_SPI_GOLDEN | FILE_SPI_UPDATE |FILE_DATA STORAGE_INTELHEX
\

-content_type {MEMORY_FILE | STATIC_FILL} \
-content_file {} \

-start_address {} \

-client_size {} \

-program {0]1}

Arguments
-client_name
The name of the client. Maximum of 32 characters, letters or numbers or “-“ or “_".
-client_type
The -client_type can be FILE_SPI, FILE_SPI1_GOLDEN, FILE_SPI_UPDATE or
FILE_DATA_STORAGE_INTELHEX.
FILE_SPI — SPI Bitstream
FILE_SPI_GOLDEN — Recovery/Golden SPI Bitstream

FILE_SPI_UPDATE — Auto Update SPI Bitstream; available only if Auto Update is enabled. See
set_auto_update_mode.

FILE_DATA_STORAGE_INTELHEX - Data Storage client
-content_type

The -content_type can be MEMORY_FILE or STATIC_FILL.

MEMORY_FILE — content_file parameter must be specified. See below.

STATIC_FILL — client memory will be filled with 1s; no content memory file
-content_file

Absolute or relative path to the content memory file.
-start_address

The client start address. Note that some space is reserved for the SPI Flash Memory directory. Note: This
is a decimal value of bytes.

-client_size

Client’s size in bytes. If a content file is specified, the size must be equal to or larger than the file size.
Note: this is a decimal value.

-program {1}
Note: Only program | 1 is supported in this release.

Examples
The following examples show the set_client Tcl command for SPI Flash.

154

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Absolute path

set_client \
-client_name {golden} \
-client_type {FILE_SPI1_GOLDEN} \
-content_type {MEMORY_FILE} \
-content_file {E:\top_design_ver_1.spi} \
-start_address {1024} \
-client_size {9508587} \
-program {1}

set_client \
-client_name {ds} \
-client_type {FILE_DATA_STORAGE_INTELHEX} \
-content_type {MEMORY_FILE} \
-content_file {E:\intel_hex.hex} \
-start_address {9509611} \
-client_size {128} \
-program {1}

Relative path

set_client \
-client_name {golden} \
-client_type {FILE_SPI_GOLDEN} \
-content_type {MEMORY_FILE} \
-content_file {.\..\._.\top_design_ver_1._spi} \
-start_address {1024} \
-client_size {9508587} \
-program {1}
set_client \
-client_name {ds} \
-client_type {FILE_DATA_STORAGE_INTELHEX} \
-content_type {MEMORY_FILE} \
-content_file {.\.._..\intel_hex_hex} \
-start_address {9509611} \
-client_size {128} \
-program {1}

configure_uprom

Tcl command; configures uPROM from the specified configuration file.

configure_uprom -cfg_file file

Arguments
-cfg_file file
file is a valid configuration file to configure uPROM.

See Also

Configure uPROM

Sample uPROM Configuration File
set_data_storage_client \
-client_name {clientl_from_elsewhere} \
-number_of_words 37 \
-use_for_simulation {0} \
-content_type {MEMORY_FILE} \
-memory_file_format {Microsemi-Binary} \
-memory_file {C:/local_z_folder/work/memory files/sar_86586_uprom.mem} \

155

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

-base_address 1500
set_data_storage_client \
-client_name {large_1} \
-number_of_words 100 \
-use_for_simulation {0} \
-content_type {STATIC_FILL} \
-base_address 5000

configure_spiflash

This Tcl command configures SPI Flash Memory from the specified SPI Flash Memory configuration file.

configure_spiflash -cfg_file file

Arguments
-cfg_file file
Specify a valid configuration file to configure SPI Fash.

file is the SPI Flash Memory configuration file. file can be an absolute path to the SPI Flash Memory
configuration file or it can be a path relative to a Tcl file that includes the command. After running this
command, the new configuration is saved as a project spiflash.cfg file.

See Also
Configure SPI Flash

Sample SPI Flash Configuration File
set_auto_update_mode {0}
set_manufacturer {Macronix}
set_client \
-client_name {vzcx} \
-client_type {FILE_SPI} \
-content_type {MEMORY_FILE} \
-content_file {.._.._._..\memory files\spi_bitstream.spi} \
-start_address {2561} \
-client_size {388} \
-program {1}
set_client\
-client_name {golden} \
-client_type {FILE_SPI1_GOLDEN} \
-content_type {MEMORY_FILE} \
-content_file {C:\local_z_folder\work\memory files\spi_bitstream.spi} \
-start_address {1042} \
-client_size {389} \
-program {1}
set_client\
—client_name {INIT_STAGE_3 SPI_CLIENT} \
-client_type {INIT} \
-content_type {MEMORY_FILE} \
—-content_file {C:\local_z_folder\work\libero_projects\g5\SNVM_TEST_top_uic.bin} \
-start_address {4096} \

156

PolarFire FPGA Design Flow User Guide

-client_size {4124} \
-program {1}

Adding or Modifying Bus Interfaces in SmartDesign

& Microsemi

Power Matters.

SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters. You
can add a bus interface from your HDL module or you can add it from the Catalog.

To add a bus interface using your custom HDL block:

If your block has all the necessary signals to interface with the AMBA bus protocol (such as address, data, and

control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your core
and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as

necessary.
3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto

Connect find a compatible connection.

To add (or modify) a bus interface to your Component:

1. Right-click your Component and choose Edit Core Definition. The Edit Core Definition dialog box opens, as

shown in the figure below.

EN Edit Core Definition - Bus Interfaces

HOL: FiyduddelamiprojectsiSARsSIS70961EL 1hdhdl_plus. v

Module: best_hdl_plus

Add Bus Interface, .. Remave
—Bus Interfaces on this core: — —Configure bus inkerface details:
EIF_1 Bus interface (4PE): @ |B1F_1

Map by Mame | Map by Mame Prefix I

Bus Definition Core

Signal | Dir IReq Signal
T |[[racor @ [no =]
| PSELx 5 |Mo j
| PEMABLE £ |Mo j
[+ | PWRITE {5 |Mo j
5. PROATA B |Mo j
5 || |[Pwoata @ [Mo j
il PREADY B |no j
| PSLYERR L j
Help | [o]'4 Cancel

Figure 102 - Edit Core Definition Dialog Box

2. Click Add Bus Interface. Select the bus interface you wish to add and click OK.

157

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

3. If necessary, edit the bus interface details.

4. Click Map by Name to map the signals automatically. Map By Name attempts to map any similar signal
names between the bus definition and pin names on the instance. During mapping, bus definition signal
names are prefixed with text entered in the Map by Name Prefix field.

5. Click OK to continue.

Bus Interface Details

Bus Interface: Name of bus interface. Edit as necessary.
Bus Definition: Specifies the name of the bus interface.
Role: Identifies the bus role (master or slave).

Vendor: Identifies the vendor for the bus interface.
Version: Identifies the version for the bus interface.

Configuration Parameters

Certain bus definitions contain user configurable parameters.
Parameter: Specifies the parameter name.
Value: Specifies the value you define for the parameter.

Consistent: Specifies whether a compatible bus interface must have the same value for this bus parameter. If the
bus interface has a different value for any parameters that are marked with consistent set to yes, this bus
interface will not be connectable.

Signal Map Definition

Catalog

The signal map of the bus interface specifies the pins on the instance that correspond to the bus definition
signals. The bus definition signals are shown on the left, under the Bus Interface Definition. This information
includes the name, direction and required properties of the signal.

The pins for your instance are shown in the columns under the Component Instance. The signal element is a
drop-down list of the pins that can be mapped for that definition signal. .

If the Req field of the signal definition is Yes, you must map it to a pin on your instance for this bus interface to be
considered legal. If it is No, you can leave it unmapped.

In the Libero SoC, from the View menu choose Windows > Catalog.
The Catalog displays a list of available cores, busses and macros (see image below).

Catalog

Name "
Bus Interfaces

Clock & Management
DSP

1o

Macro Library
Memory & Controllers
Peripherals

PolarFire Features
Processors

User Defined

el R o 4

+ + o+

-

Figure 103 - Libero SoC Catalog

From the Catalog, you can create a component from the list of available cores, add a processor or peripheral, add
a bus interface to your SmartDesign component, instantiate simulation cores or add a macro (Arithmetic, Basic
Block, etc.) to your SmartDesign component.

158

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Double-click a core to configure it and add it to your design. Configured cores are added to your list of
Components/Modules in the Design Explorer.

Click the Simulation Mode checkbox to instantiate simulation cores in your SmartDesign Testbench. Simulation
cores are basic cores that are useful for stimulus, such as driving clocks, resets, and pulses.

Viewing Cores in the Catalog
The font indicates the status of the core:
e Plain text - In vault and available for use
e Asterisk after name (*) - Newer version of the core (VLN) available for download
e ltalics - Core is available for download but not in your vault
o Strikethrough - core is not valid for this version of Libero SoC

The colored icons indicate the license status. Blank means that the core is not license protected in any way.
Colored icons mean that the core is license protected, with the following meanings:
Green Key - Fully licensed; supports the entire design flow.

Yellow Key - Has a limited or evaluation license only. Precompiled simulation libraries are provided,
enabling the core to be instantiated and simulated within Libero SoC. Using the Evaluation version of the
core it is possible to create and simulate the complete design in which the core is being included. The
design is not synthesizable (RTL code is not provided). No license feature in the license.dat file is needed
to run the core in evaluation mode.You can purchase a license to generate an obfuscated or RTL netlist.
Yellow Key with Red Circle - License is protected; you are not licensed to use this core.

Right-click any item in the Catalog and choose Show Details for a short summary of the core specifications.
Choose Open Documentation for more information on the Core. Right-click and choose Configure Core to open
the core generator.

Click the Name column heading to sort the cores alphabetically.

You can filter the cores according to the data in the Name and Description fields. Type the data into the filter field
to view the cores that match the filter. You may find it helpful to set the Display setting in the Catalog Options to
List cores alphabetically when using the filters to search for cores. By default the filter contains a beginning and
ending ', so if you type ‘controller’ you get all cores with controller in the core name (case insensitive search) or
in the core description. For example, to list all the Accumulator cores, in the filter field type:

accu

Catalog Options

Click the Options button " (or the drop-down arrow next to it) to import a core, reload the Catalog, or modify the
Catalog Options.
You may want to import a core from a file when:

¢ You do not have access to the internet and cannot download the core, or
e A core is not complete and has not been posted to the web (you have an evaluation core)

Manually Downloading MegaVaults and Individual CPZ files

When Libero is used in an environment without automatic access to Microsemi's online IP repositories via the
Internet; see this article explaining how to download MegaVaults and individual CPZ files.

Catalog Options Dialog Box

The Catalog Options dialog box (as shown below) enables you to customize your Catalog. You can add a
repository, set the location of your vault, and change the View Settings for the Catalog. To display this dialog box,

click the Catalog Options button =,

159

https://soc.microsemi.com/kb/article.aspx?id=SL5608

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.
. Dptions HE
] It/ epositories Settings I add
H | Repositaries
o Wault location i, actel-ip.comjrepositories/SgCore Remove |
Settings vy, actel-ip. comfrepositaries/DirectCore
- Display
- Filters

Defaults |
o« |_coa |

Figure 104 - Catalog Display Options Dialog Box

Vault/Repositories Settings
Repositories

A repository is a location on the web that contains cores that can be included in your design.

The Catalog Options dialog box enables you to specify which repositories you want to display in your Vault. The
Vault displays a list of cores from all your repositories, and the Catalog displays all the cores in your Vault.

The default repository cannot be permanently deleted; it is restored each time you open the Manage Repositories
dialog box.

Any cores stored in the repository are listed by name in your Vault and Catalog; repository cores displayed in your
Catalog can be filtered like any other core.

Type in the address and click the Add button to add new repositories. Click the Remove button to remove a
repository (and its contents) from your Vault and Catalog. Removing a repository from the list removes the
repository contents from your Vault.

Vault location

Use this option to choose a new vault location on your local network. Enter the full domain pathname in the Select
new vault location field. Use the format:

\\server\share
and the cores in your Vault will be listed in the Catalog.

Set ENV variable to set vault location - In addition to setting the vault location using the Catalog dialog box, you
can set the vault location using the environment variable MSCC_IDE_VAULT_LOCATION. Setting the vault
through the environment variable takes precedence over all other options to set vault location.
To set the vault location on Linux, type the following command:

setenv MSCC_IDE_VAULT_LOCATION /home/temp_dir
To set the vault location on Windows:

Add a new environment variable MSCC_IDE_VAULT_LOCATION in System Properties and specify your vault
location.

Read only vault

In read only Mega Vault mode, you cannot download, add, or remove cores. However, you can configure and
generate cores by creating a temporary extract location to extract the core. This temporary extract location can be
set by setting the environment variable MSCC_IDE_VAULT_EXTRACT_LOCATION. By setting this environment
variable, your configured cores are retained across sessions.
To set the extract location on Linux, type the following command:

setenv MSCC_IDE_VAULT_EXTRACT_LOCATION /home/vault_extract

160

PolarFire FPGA Design Flow User Guide

Display

Filters

& Microsemi

Power Matters.

To set the extract vault location on Windows:

Add a new environment variable MSCC_IDE_VAULT_EXTRACT_LOCATION in System Properties and specify
your extract location.

If you do not specify the extract location, a temporary location will be created by Libero and it will be accessed
only while the current session is active. If the session is no longer active, the temporary extract location will be
cleaned up by Libero. If you specify the extract location, it will be available for any instance of libero on that
machine, and it is your responsibility to clean up the extract location.

View Settings

Group cores by function - Displays a list of cores, sorted by function. Click any function to expand the list and
view specific cores.

List cores alphabetically - Displays an expanded list of all cores, sorted alphabetically. Double click a core to
configure it. This view is often the best option if you are using the filters to customize your display.

Show core version - Shows/hides the core version.

Filter field - Type text in the Filter Field to display only cores that match the text in your filter. For example, to
view cores that include 'sub' in the name, set the Filter Field to Name and type sub.

Display only latest version of a core - Shows/hides older versions of cores; this feature is useful if you are
designing with an older family and wish to use an older core.

Show all local and remote cores - Displays all cores in your Catalog.
Show local cores only - Displays only the cores in your local vault in your Catalog; omits any remote cores.

Show remote cores that are not in my vault - Displays remote cores that have not been added to your vault in
your Catalog.

Changing Output Port Capacitance

Output propagation delay is affected by both the capacitive loading on the board and the I/O standard. The 1/O
Attribute Editor in ChipPlanner provides a mechanism for setting the expected capacitance to improve the
propagation delay model. SmartTime automatically uses the modified delay model for delay calculations.

To change the output port capacitance and view the effect of this change in SmartTime Timing Analyzer, refer to
the following example. The figure below shows the delay from FF3 to output port OUT2. It shows a delay of 6.603
ns based on the default loading of 35 pF.

161

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

?_..-—Maximum Delay Analysis Yiew

Figure 105 - Maximum Delay Analysis View
If your board has output capacitance of 75pf on OUT2, you must perform the following steps to update the timing

number:

1. Open the I/O Attribute Editor and change the output load to 75pf.

Analysis For scenario Fram * To |*
®8 Primary SCenatio
MAX
Apply Filker Stare Filker | Reset: Filter |
B 81 Summary
D atashest = =
{Sj Source Pin Sink Pin Delay Slal::k‘|i Amival | Required | Clock to
ns ns ns ns Out [ns
2 1139/RAMBLOCKD:CLKA [DATADUTRAM(I] £.300 8.121 8121
3 1139/RAMBLOCKO:CLEA | DATADUTRAM(1) £.234 8.055 8.055
egister bo Azprnchronous 4 1129/RAMBLOCKO:CLEA | DATADUTRAM(D) 5.801 7622 7.622
Extemal Recovery 5 1139/RAMBLOCKO:CLEA | DATADUTRAM(Z) 5.658 7479 7.479
synchronous to Fegister
CLK1 to CLEZ
E-¥ @b CLK
B @ CLK3
¥ b CLK4
=122 Pinta Pin
- Input to Dutput
Details for path ;I
From: FF3:CLK
To: OUT2
FPin Hame Type Met Hame Cell Hame Op | [
FF3:GM cell ADLIB:DFIO +
AND_2Z:4 riet $1M26 +
AND_2Y cell ADLIB:AND2 +
OUTZ pad/U0AT:D net OuTZ o +
2 OUTZ_pad/U0/U1:0OUT cell ADLIB:IOTRI_OE_EB +
E This set has no slack 0UTZ_pad/U0/UDD net 0UTZ2 pad/UD/MNETT +
g for any af fts paths. DUT2_pad/UD/UD:PAD cell ADLIB:IOPAD_TRI +
s ouTz net ouT2 +
slack distribution (ns) data arrival time -
. | LA

Pori Hame | MacroCell | Pind | Locked | Bank Hars| 10 Stendand| Gt Drive tmal] Sew | Resietor Pull] Skew | output Losd| ks 19 Reg
1 CLHD _ADLH:ELHBLF 13 F’ | Bank1 | LWTTL - T i - [
F OLHE ADLEINELF 15 o | Bank1 | LWTTL - e - ™
3 (WADDET 3N ADLBINBLF &= o | =] | LWTTL -— - For: - | r
4 |DATAOUTRAMIZ ADUBCATEUF, & | Bamd | LVTTL 12 Hg [- £ r
s [CUT: ANLEO 15] =

Figure 106 - I/O Attribute Editor View

2. Select File > Save.
3. Select File > Close.
4. Open the SmartTime Timing Analyzer.

You can see that the Clock to Output delay changed to 7.723 ns.

Core Manager

The Core Manager only lists cores that are in your current project. If any of the cores in your current project are
not in your vault, you can use the Core Manager to download them all at once.

For example, if you download a sample project and open it, you may not have all the cores in your local vault. In

this instance you can use the Core Manager to view and download them with one click. Click Download All to

add any missing cores to your vault. To add any individual core, click the green download button.
To view the Core Manager, from the View menu choose Windows > Cores.

The column headings in the Core Manager are:

e Name - Core name.
e Vendor - Source of the core.
e Core Type - Core type.

e Version - Version of the core used in your project; it may be a later version than you have in your vault. If
so, click Download All to download the latest version.

162

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

configure_design_initialization_data

This Tcl command sets the parameter values needed for generating initialization data.

configure_design_initialization_data
-second_stage_start_address {<valid_snvm_address>} \
-third_stage_start_address {<valid_address_for_third_stage memory_ type>} \
-third_stage_memory_type {<UPROM | SNVM | SPIFLASH_NONAUTH >}\
-third_stage_spi_clock divider { 1] 2 | 4 | 6} \
—-init_timeout {<int_between_1_and_128_seconds>}

Arguments
-second_stage_start_address
String parameter for the start address of the second stage initialization client.
Specified as a 32-hit hexadecimal string.

The first stage client is always placed in sSNVM, so it must be a valid SNVM address aligned on a page
boundary.

There are 221 sNVM pages and each page is 256 bytes long, so the address will be between 0 and
DCOO.

Notes:
Although the actual size of each page is 256 bytes, only 252 bytes are available to the user.

The first stage initialization client is always added to SNVM at 0OxDCOO (page 220). So the valid addresses
for the second stage initialization client are 0x0 (page 0) to 0xDBO0O (page 219).

-third_stage_start_address
String parameter for the start address of the third stage initialization client.
Specified as a 32-bit hexadecimal string, and must be one of the following:
— valid sSNVM address aligned on a page boundary
— valid UPROM address aligned on a block boundary
— valid SPIFLASH address
-third_stage_memory_type
The memory where the third stage initialization client will be placed.
The value can be UPROM, SNVM, or SPIFLASH_NONAUTH. The default is UPROM.
This parameter determines the valid value for parameter ‘third_stage_start_address’.
-third_stage_spi_clock_divider
The value can be 1, 2, 4, or 6. The default value is 1.
—-init_timeout
Timeout value in seconds. Initialization is aborted if it does not complete before timeout expires.
The value can be between 1 and 128. The default value is 128.

Example
configure_design_initialization_data
-second_stage_start_address 200 \
-third_stage_start_address 400 \
-third_stage_memory_type UPROM \
-third_stage_spi_clock_divider 4 \
-init_timeout 120

See Also
generate_design_initialization_data

163

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Configure Permanent Locks for Production

Configure Permanent Locks for Production is a GUI-based tool that guides the user step by step on how to
configure the Permanent Locks for Production. The wizard has six steps/pages executed in sequential order. One
Time Programmable (OTP) settings in the Permanent Locks page are applied to configured Security settings from
the Configure Security tool. The subsequent pages have read only fields, which will be affected by Permanent
Lock settings. These settings can only be configured by the Configure Security tool.

If you configure any Permanent Lock settings, you will be forced to go through each page to review the Security
settings to make sure they are as desired. The settings cannot be changed once they have been programmed.

. Permanent Locks
. User keys in Configure Security

. Update Policy in Configure Security

. Debug Policy in Configure Security

. Microsemi Factory Access in Configure Security

O O WON PP

. JTAG/SPI Slave Commands Policy in Configure Security

Summary Window

The summary window displays the summary of the current page configuration settings. Based on the selection
made in the first page, the summary for the subsequent pages change. The window will scroll to the current page
as you move from page to page.

Back

Click Back to return to the previous step.

Next

Click Next to proceed to the next step.

Finish

Click Finish to complete the configuration after executing the all the steps in sequential order.

Save Summary to File
Click Save Summary to File to save the display in the Summary field to a file.

configure_snvm

Tcl command; configures sNVM from the specified configuration file.

configure_snvm -cfg_file file

Arguments
-cfg_file file
file is a valid configuration file to configure SNVM.

See Also
"Configure sNVM" on page 94

Sample sNVM Configuration File
set_plain_text_client \
-client_name {pt_A} \
-number_of_bytes 64 \
-content_type {MEMORY_FILE} \

164

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {C:/local_z_folder/work/memory files/binary8x16.mem} \
-start_page 0 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O
set_plain_text_client \
—-client_name {pt_client} \
-number_of_bytes 64 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {C:/local_z_folder/work/memory Ffiles/binary32X16.mem} \
-start_page 2 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O
set_plain_text_client \
—-client_name {pt_client_16bit} \
-number_of_bytes 32 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {C:/local_z_folder/work/memory Ffiles/binaryl6X16.mem} \
-start_page 1 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O
set_plain_text_client \
-client_name {INIT_STAGE_1_SNVM_CLIENT} \
-number_of_bytes 504 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {designer\top\top_init_stage_1_ snvm.mem} \
-start_page 219 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O
set_plain_text_client \
-client_name {pt B} \
-number_of_bytes 1 \
-content_type {STATIC_FILL} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {} \
-start_page 3 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O

165

PolarFire FPGA Design Flow User Guide

See Also
set plain_text client

set plain_text auth client

set_cipher text auth client

set_usk client

SPM_OTP

Configures the parameters for SPM_OTP.

configure_tool \
[-name SPM_OTP] \

[-params
[-params
[-params
[-params
[-params
[-params

permanently_disable_debugging 0 | 1] \

permanently_disable_dpk 0 | 1] \

permanently disable factory_access 0 | 1] \
permanently disable prog_interfaces 0 | 1] \

permanently disable upkl 0 | 1] \
permanently_disable_upk2 0 | 1] \

[-params permanently_write_protect fabric 0 | 1]

The following tables list the parameter names and values.

configure_tool -name {SPM_OTP} parameter:value pair

& Microsemi

Power Matters.

Name Type

Value

Description

permanently_disable_debugg | bool
ing

false |true | 0] 1

Specifies that the SmartDebug access
control and reading temperature and
voltage sensor settings is either
permanently enabled or disabled. A value
of true/1 will permanently disable
debugging. The default value is false.

permanently_disable_dpk bool

false |true |0 | 1

Specifies that the Debug Pass Key is
either permanently enabled or disabled. A
value of true/1 will permanently disable
FlashLock DPK unlocking. The default
value is false.

permanently_disable_factory | bool
_access

false |true |0 | 1

Specifies that the access policy for
Microsemi factory test mode is either
permanently enabled or disabled. A value
of true/1 will permanently disable
Microsemi factory test mode. The default
value is false.

permanently_disable_prog_in | bool
terfaces

false |true | 0] 1

Specifies that the Programming interfaces
such as Auto Programming, JTAG, SPI
Slave are either permanently enabled or
disabled. A value of true/1 will
permanently disable all of the
programming interfaces. The default value
is false.

166

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Name

Type

Value

Description

permanently_disable_upkl bool

false |true | 0] 1

Specifies that the User Key UPK1 is either
permanently enabled or disabled. A value
of true/1 will permanently disable
FlashLock UPK1 unlocking. The default
value is false.

permanently_disable_upk2 bool

false |true | 0] 1

Specifies that the User Key UPK2 is either
permanently enabled or disabled. A value
of true/1 will permanently disable
FlashLock UPK2 unlocking. The default
value is false.

permanently_write_protect_f [bool
abric

false |true | 0] 1

Specifies that the write protection for fabric
is either permanently enabled or disabled.
A value of the true/1 will make the fabric
one-time programmable. The default value
is false.

Examples

The following example specifies that SPM_OTP tool is configured to permanently disable user keys UPK1 and

UPK2.
configure_tool \
-name {SPM_OTP} \

-params {permanently disable_debugging:false} \

-params {permanently disable_dpk:false} \
-params {permanently_disable_factory_access:false} \
-params {permanently disable_prog_interfaces:false} \

-params {permanently disable_upkl:true} \
-params {permanently_disable_upk2:true} \

-params {permanently_ write_ protect_fabric:false}

The following example specifies that SPM_OTP tool is configured to permanently disable programming interfaces.

configure_tool \
-name {SPM_OTP} \

-params {permanently disable_debugging:false} \

-params {permanently_disable_dpk:false} \
-params {permanently_disable_factory_access:false} \
-params {permanently disable_prog_interfaces:true} \

-params {permanently_disable_upkl:false} \
-params {permanently_disable_upk2:false} \
-params {permanently write_protect_fabric:false}

See Also
remove permanent locks

167

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Importing Source Files — Copying Files Locally

Designer in Libero SoC cannot import files from outside your project without copying them to your local project
folder. You may import source files from other locations, but they are always copied to your local folder. Designer
in Libero SoC always audits the local file after you import; it does not audit the original file.

When the Project Manager asks you if you want to copy files "locally", it means 'copy the files to your local project
folder'. If you do not wish to copy the files to your local project folder, you cannot import them. Your local project
folder contains files related to your Libero SoC project.

Files copied to your local folders are copied directly into their relevant directory: netlists are copied to the
synthesis folder; source files are copied to hdl folder and constraint files to constraint folder, etc. The files are also
added to the Libero SoC project; they appear in the Files tab.

Create Clock Constraint Dialog Box

Use this dialog box to enter a clock constraint setting.

It displays a typical clock waveform with its associated clock information. You can enter or modify this information,
and save the final settings as long as the constraint information is consistent and defines the clock waveform
completely. The tool displays errors and warnings if information is missing or incorrect.

To open the Create Clock Constraint dialog box (shown below) from the SmartTime Constraints Editor, choose
Constraints > Clock.

.| Create Clock Constraint ? 2
Clock Mame : Clock Source : -
M———— Period : ns ——M™ o Frequency: Mhz

r F Y

4|k

M—— Offset: ——m4— Dutycyde: ——nf
0,000 ns 50,0000 %%

Comment :

Help 0K | ‘ Cancel

Figure 107 - Create Clock Constraint Dialog Box

Clock Source
Enables you to choose a pin from your design to use as the clock source.

The drop-down list is populated with all explicit clocks. You can also select the Browse button to access all
potential clocks. The Browse button displays the Select Source Pins for Clock Constraint Dialog Box.

Clock Name

Specifies the name of the clock constraint. This field is required for virtual clocks when no clock source is
provided.

T(zero) Label

Instant zero used as a common starting time to all clock constraints.

168

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Period
When you edit the period, the tool automatically updates the frequency value.
The period must be a positive real number. Accuracy is up to 3 decimal places.

Frequency
When you edit the frequency, the tool automatically updates the period value.
The frequency must be a positive real number. Accuracy is up to 3 decimal places.

Offset (Starting Edge Selector)

Enables you to switch between rising and falling edges and updates the clock waveform.

If the current setting of starting edge is rising, you can change the starting edge from rising to falling.
If the current setting of starting edge is falling, you can change the starting edge from falling to rising.

Duty Cycle
This number specifies the percentage of the overall period that the clock pulse is high.
The duty cycle must be a positive real number. Accuracy is up to 4 decimal places. Default value is 50%.

Offset
The offset must be a positive real number. Accuracy is up to 2 decimal places. Default value is 0.

Comment
Enables you to save a single line of text that describes the clock constraints purpose.

See Also
Specifying Clock Constraints

Select Source Pins for Clock Constraint Dialog Box

Use this dialog box to find and choose the clock source from the list of available pins.

To open the Select Source Pins for the Clock Constraint dialog box (shown below) from the SmartTime
Constraints Editor, click the Browse button to the right of the Clock source field in the Create Clock Constraint
dialog box.

169

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Select Source Pins for Clock Constraint

Specify pins * by explidt lisk " by keyword and wildcard

Available Pins: Assigned Pins:
ZPUCIE,
VidRefClk,

add &l =

[likE

Fiter available objects:

Fin Type: Explicit: clocks ﬂ

| # Filter

Help (0.4 | Zancel

Figure 108 - Select Source Pins for Clock Constraint Dialog Box

Available Pins
Displays all available pins.

Filter Available Pins

Explicit clock pins for the design is the default value. To identify any other pins in the design as clock pins, right-
click the Pin Type pull-down menu and select one of the following:

e Explicit clocks
e Potential clocks
e Input ports
e All Pins
e All Nets
e Pins on clock network
¢ Nets in clock network
You can also use the Filter to filter the clock source pin name in the displayed list.

See Also
Specifying clock constraints

170

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Specifying Clock Constraints

Specifying clock constraints is the most effective way to constrain and verify the timing behavior of a sequential
design. Use clock constraints to meet your performance goals.

To specify a clock constraint:

1. Add the constraint in the editable constraints grid or open the Create Clock Constraint dialog box using one
of the following methods:

e Click the icon in the Constraints Editor.

¢ Right-click the Clock in the Constraint Browser and choose Add Clock Constraint.
e Double-click Clock in the Constraint Browser.

The Create Clock Constraint dialog box appears (as shown below).

| Create Clock Constrai

Clock Mame : Clodk Source :

———— Period: | ns —™ o Freguency:

FY &

—— Offset: —w— Dutycyde: ——n
0.000 ns 50.0000 B

Comment :

= =)

Figure 109 - Create Clock Constraint Dialog Box

2. Select the pin to use as the clock source. You can click the Browse button to display the Select Source Pins
for Clock Constraint Dialog Box (as shown below).

Note: Do not select a source pin when you specify a virtual clock. Virtual clocks can be used to define a
clock outside the FPGA that is used to synchronize I/Os.

Use the Choose the Clock Source Pin dialog box to display a list of source pins from which you can
choose. By default, it displays the explicit clock sources of the design. To choose other pins in the
design as clock source pins, select Filter available objects - Pin Type as Explicit clocks, Potential
clocks, All Ports, All Pins, All Nets, Pins on clock network, or Nets in clock network. To display a
subset of the displayed clock source pins, you can create and apply a filter.

Multiple source pins can be specified for the same clock when a single clock is entering the FPGA
using multiple inputs with different delays.

Click OK to save these dialog box settings.
Specify the Period in nanoseconds (ns) or Frequency in megahertz (MHz).
Modify the Clock Name. The name of the first clock source is provided as default.
Modify the Duty cycle, if needed.
Modify the Offset of the clock, if needed.
Modify the first edge direction of the clock, if needed.
Click OK. The new constraint appears in the Constraints List.

© No gk w

Note: When you choose File > Save, the Timing Constraints Editor saves the newly created constraint in
the database.

171

PolarFire FPGA Design Flow User Guide

¥ Constraints Editor

=|--- Constraints
|- Requirements
T

Generated Clock
Input Dielay
Output Delay

=|-- Exceptions
Max Delay
Min Delay
Multicycle
False Path

= &dvanced
Clock Source Latency
Dizable Timing
Clack Uncertainty

| Syntax| Clock Name| Clock Source (ns)

Period|

Frequency| Dutycycle|

& Microsemi

First | Dffset]

%] |Ed e|_[ns

W’ave[olm| File| Commenls|

[MHz)
1| [my_clock |CLK 10000) 10000 | S0.000 [rising | 0000 050 Gl

Figure 110 - Timing Constraint View

Create Generated Clock Constraint Dialog Box

Use this dialog box to specify generated clock constraint settings.

It displays a relationship between the clock source and its reference clock. You can enter or modify this

Power Matters.

information, and save the final settings as long as the constraint information is consistent. The tool displays errors
and warnings if the information is missing or incorrect.

To open the Create Generated Clock Constraint dialog box (shown below) from the SmartTime Constraints

Editor, choose Constraints > Generated Clock.

.| Create Generated Clock Constraint

Reference Pin:

Clack,

Conditioning
Zircuitiy|
TCIuck Port FPGA
Generated Clock Mame
The generated frequency is such as
Ficlock) = Flreference) x 1 I 1 Get Pre-Computed Facto
The generated waveform is the reference waveform
Cormrnent:
Ok l [Cancel

Figure 111 - Create Generated Clock Constraint

172

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Clock Pin
Enables you to choose a pin from your design to use as a generated clock source.

The drop-down list is populated with all unconstrained explicit clocks. You can also select the Browse button to
access all potential clocks and pins from the clock network. The Browse button displays the Select Generated
Clock Source dialog box.

Reference Pin
Enables you to choose a pin from your design to use as a generated reference pin.

Generated Clock Name

Specifies the name of the clock constraint. This field is required for virtual clocks when no clock source is
provided.

Generated Frequency
The generated frequency is a factor of reference frequency defined with a multiplication element and/or a division
element.

Generated Waveform
The generated waveform could be either the same as or inverted w.r.t. the reference waveform.

Comment
Enables you to save a single line of text that describes the generated clock constraints purpose.

See Also
create _generated_clock (SDC)
Specifying Generated Clock Constraints
Select Generated Clock Source

Select Generated Clock Source Dialog Box

Use this dialog box to find and choose the generated clock source from the list of available pins.

To open the Select Generated Clock Source dialog box (shown below) from the Timing Constraints Editor,
open the Create Generated Clock Constraint dialog box and click the Browse button for the Clock Pin.

173

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

5| Select Generated Clock Source [? &J

Filter available pins :

Pin Type : [Explicit clocks -]

=
o) [|

Figure 112 - Select Generated Clock Source Dialog Box

Filter Available Pins

Explicit clock pins for the design is the default value. To identify any other pins in the design as the generated
clock source pins, from the Pin Type pull-down list, select Explicit clocks, Potential clocks, All Ports, All
Pins, All Nets, Pins on clock network, or Nets in clock network. You can also use the Filter to filter the
generated clock source pin name in the displayed list.

Specifying Generated Clock Constraints

Specifying a generated clock constraint enables you to define an internally generated clock for your design and
verify its timing behavior. Use generated clock constraints and clock constraints to meet your performance goals.

To specify a generated clock constraint:
1. Open the Create Generated Clock Constraint dialog box using one of the following methods:

e Click the icon.

¢ Right-click the Generated Clock in the Constraint Browser and choose Add Generated
Clock.

e Double-click the Generated Clock Constraints grid. The Create Generated Clock
Constraint dialog box appears (as shown below).

174

PolarFire FPGA Design Flow User Guide

Create Generated Clock Constraint

& Microsemi

Power Matters.

Clock Reference:

Clock Pin: || ~ J

Clack,
Conditioning
Zircuitiy
Tﬂlock Fart FPGA
Generated Clock Mame |
The generated frequency is such as
Ficlock) = F{reference) x |1 ! ‘1

The gernerated waveform is the same as « the reference waveform

Comrmenk:

Help

(0.4 | Zancel

2.

Figure 113 - Create Generated Clock Constraint

Select a Clock Pin to use as the generated clock source. To display a list of available generated clock

source pins, click the Browse button. The_Select Generated Clock Source dialog box appears (as shown

below).

175

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Select Generated Clock Source

Select a pin:

¥CMP33/U0/U2_DDR.1:0Q
XCMP33/U0/U2_DOR2:Q
pll1:CLE1
pll1:CLEZ

Fiter available objects:
Type: Explicit docks ﬂ

Filter:

|* Filter
Help | QK | Cancel |

Figure 114 - Select Generated Clock Source Dialog Box

3. Modify the Clock Name if necessary.

4. Click OK to save these dialog box settings.

5. Specify a Clock Reference. To display a list of available clock reference pins, click the Browse button. The
Select Generated Clock Reference dialog box appears.

5. Click OK to save the dialog box settings.

6. Specify the values to calculate the generated frequency: a multiplication factor and/or a division factor (both
positive integers).

7. Specify the first edge of the generated waveform either same as or inverted with respect to the reference
waveform.

8. Click OK. The new constraint appears in the Constraints List.

Tip: From the File menu, choose Save to save the newly created constraint in the database.

Select Generated Clock Reference Dialog Box

Use this dialog box to find and choose the generated clock reference pin from the list of available pins.

To open the Select Generated Clock Reference dialog box (shown below) from the SmartTime Constraints Editor,
open the Create Generated Clock Constraint Dialog Box dialog box and click the Browse button for the Clock
Reference.

176

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

FDDR_ADDR a
FDDR_ADDR[0]
FDDR_ADDR[10]
FDDR_ADDR[11]
FDDR_ADDR[12]
FDDR_ADDR[13]
FDDR_ADDR[14]
FDDR_ADDR[15]
FDDR_ADDR[1] f

Filter available pins :

e L SR R
.
Help L Ok]| Concel |

Figure 115 - Select Generated Clock Reference Dialog Box

Filter Available Pins
To identify any other pins in the design as the generated master pin, select Filter available objects - Type as
Clock Network. You can also use the Filter to filter the generated reference clock pin name in the displayed list.
See Also

Specifying generated clock constraints

Design Hierarchy in the Design Explorer

The Design Hierarchy tab displays a hierarchical representation of the design based on the source files in the
project. The software continuously analyzes and updates source files and updates the content. The Design
Hierarchy tab (see figure below) displays the structure of the modules and components as they relate to each
other.

177

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Design Hierarchy B X

Show: | Components vl I%
o 0@ work

E=j_ XCVF_REF_CLE_M (XCWR_REF_CLK_M_syn_comps.v)
E=f|_ XCVR_REF_CLK (XCWR_REF_CLEK_syn_comps.v)
E=f|_ XCVR_APE_LIMK (XCVR_APB_LINK_syn_comps.v)
sdlf
» E pf_pcie_to_ddr3_top

my_transmitPLL
ry_ddr3
E=f|_ G5_APBLIMK_MASTER (g5_apblink_master.v)

il CoreAXI4SRAM_LIB

Figure 116 - Design Hierarchy
You can change the display mode of the Design Hierarchy by selecting Components or Modules from the Show
drop-down list. The components view displays the entire design hierarchy; the modules view displays only
schematic and HDL modules.
You can build the Design Hierarchy and Simulation Hierarchy by clicking the Build button.
Note: The Build button appears only if Enable On Demand Build Design Hierarchy has been enabled in Project
Settings. This option is enabled by default for PolarFire devices.

1", Build
A yellow icon ”_l indicates that the Design Hierarchy is out of date (invalidated). Any change to the
design sources/stimuli invalidates the Design Hierarchy. Click the Build button to rebuild the Design hierarchy.

The file name (the file that defines the block) appears next to the block name in parentheses.
To view the location of a component, right-click and choose Properties. The Properties dialog box displays the
pathname, created date, and last modified date.

All integrated source editors are linked with the SoC software. If a source is modified and the modification
changes the hierarchy of the design, the Design Hierarchy automatically updates to reflect the change.

If you want to update the Design Hierarchy, from the View menu, choose Refresh Design Hierarchy.

To open a component:

Double-click a component in the Design Hierarchy to open it. Depending on the block type and design state,
several possible options are available from the right-click menu. You can instantiate a component from the Design
Hierarchy to the SmartDesign Canvas. See the SmartDesign User Guide for more information.

Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.
Table 4 - Design Hierarchy Icons

Icon Description
B SmartDesign component
oD SmartDesign component with HDL netlist not generated
IP core was instantiated into SmartDesign but the HDL netlist has not

been generated

@ Core
(% 3]

Error during core validation

178

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smartdesign_ug.pdf

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Icon Description

" Updated core available for download

By HDL netlist

Digest File

Users can verify which bitstream file was programmed onto their devices by running the VERIFY or
VERIFY_DIGEST actions on each device that was programmed. This is a costly and time-consuming process. To
speed up the verification process, digests are printed during bitstream generation and bitstream programming.
These digests can be compared to verify that all of the devices were programmed with the correct bitstream file.

The bitstream file is divided into three major component sections: FPGA fabric, eNVM, and Security. A valid
bitstream will contain a combination of any of the three primary bitstream components.

Use Case

When a customer creates a design in Libero and then exports the STAPL file (for FlashPro) or programming job
(for FlashPro Express), the digest of each of the primary components is printed in the Libero log window and
saved in a digest file under the export folder. The digest file is a text file containing the bitstream component name
with its corresponding digest. The name of the digest file will match the name of the STAPL/programming job
exported, and will be appended with a “.digest” extension.

The customer then sends the STAPL/programming job to a production programming house. Now, when the
devices are programmed, the digest of each of the primary components is printed in the log window. The
production programming house saves the log files and sends the devices along with log files back to the
customer. The customer can then verify that the correct design was programmed on the device by matching the
digests in the log file with that in the *.digest file under the Libero export folder.

Example Using STAPL File

If a STAPL file is exported, the digests will be printed in the log window, as shown in the example below.
Libero log:
Opened "D:/flashpro_files/m2s005_digestl/designer/al_MSS/al MSS_fp/al MSS.pro*
The "open_project” command succeeded.
PDB file

"D:\flashpro_files\m2s005_digestl\designer\al_MSS\4a8552f8-57ee-4baa-97ee-
2baa57ee2baa.pdb”™ has

been loaded successfully.

DESIGN : al MSS; CHECKSUM : DE15; PDB_VERSION : 1.9
The "load_programming_data® command succeeded.
Sucessfully exported STAPL file:

"D:\flashpro_files\m2s005_digestl\designer\al_MSS\export\al MSS.stp"; file programs
Fabric

and eNVM.

Fabric component digest:
276fbefb0al8cc0deld45etc84589745ee02fc2adbccl1259Fheb674094754014
eNVM component digest:
6b2c2353e25¢c5982643¢c32640ac16c581874c¢8950300135622¢c126ee22d8blde
Finished: Thu Jan 22 12:37:32 2015 (Elapsed time 00:00:06)

The "export_single_stapl® command succeeded.

The "set_programming_file® command succeeded.

Project saved.

179

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

The "save_project” command succeeded.

Project closed.
The export folder will contain the exported STAPL file along with digest file. In this example, there will be two files,
“al_MSS.stp” and “al_MSS_stp.digest”. The content of the al_MSS_stp.digest file is shown below:

Fabric component digest: 276fbefb0al8cc0deld45efc84589745ee02fc2adbccl1259Fbeb674094754014

eNVM component digest: 6b2c2353e25¢c5982643c32640ac16c581874c8950300135622c126ee22d8blde
When the device is programmed in the production programming house by loading the STAPL file in FlashPro, the
log will be as follows:

programmer "73207" : Scan Chain...

Warning: programmer "73207" : Vpump has been selected on programmer AND an externally
provided Vpump has also been detected. Using externally provided Vpump voltage source.

programmer "73207" : Check Chain...

programmer "73207" : Scan and Check Chain PASSED.

programmer "73207" : device "M2S/M2GLO05(S)*" : Executing action PROGRAM

programmer "73207" : device "M2S/M2GLO05(S)*" : Family: SmartFusion2

programmer "73207" : device "M2S/M2GLO05(S)*" : Product: M2S005

programmer "73207° : device "M2S/M2GLO05(S)*" : EXPORT ISC_ENABLE_RESULT[32] = 007c6b44
programmer "73207° : device "M2S/M2GLOO5(S)*" : EXPORT CRCERR: [1] = O

programmer "73207" : device "M2S/M2GLOO5(S)" : EXPORT EDCERR: [1] = O

programmer "73207" : device "M2S/M2GLOO5(S)" : TEMPGRADE: ROOM
programmer "73207" : device "M2S/M2GLOO5(S)" : EXPORT VPPRANGE: [3]
programmer "73207" : device “M2S/M2GLO05(S)*" : VPPRANGE: HIGH
programmer "73207" : device “M2S/M2GLO05(S)*" : EXPORT TEMP: [8] = 6b
programmer "73207" : device “M2S/M2GLO05(S)*" : EXPORT VPP: [8] = 7c
programmer "73207" : device "M2S/M2GLOO5(S)*" : Programming FPGA Array and eNVM...

programmer 73207 : device "M2S/M2GLO05(S)" : EXPORT Fabric component digest[256] =
276fbefb0al8cc0deld45efc84589745ee02fc2adbccl259fbeb674094754014

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT eNVM component digest[256] =
6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8blde

programmer "73207" : device "M2S/M2GLO05(S)*

1
N

programmer "73207" : device “M2S/M2GLO05(S)*" : EXPORT DSN[128] =
c6e99c2d1a992f13cf8231c4be847ach

programmer "73207" : device “M2S/M2GLO05(S)*

programmer "73207" : device "M2S/M2GLO05(S)*" : Finished: Thu Jan 22 17:57:37 2015
(Elapsed time 00:00:19)

programmer "73207" : device "M2S/M2GLO05(S)*" : Executing action PROGRAM PASSED.
programmer "73207" : Chain programming PASSED.
Chain Programming Finished: Thu Jan 22 17:57:37 2015 (Elapsed time 00:00:19)
0-0-0-0-0-0
The log file is saved and sent back to the customer, who can verify that the device was programmed with the
correct design by comparing the digests in the log file to the contents of the al_MSS_stp.digest file.

Example Using Programming Job

If a programming job is exported, the digests will be printed in the log window, as shown in the example below.
Libero log:

Software Version: 11.5.1.5

Opened "D:/flashpro_files/m2s005_digestl/designer/al_MSS/al_MSS_fp/al_MSS._pro*

The “open_project® command succeeded.

PDB file

180

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

“D:\flashpro_files\m2s005_digestl\designer\al_MSS\83ce6816-1e56-496b-9e56-
d96b1e56d96b.pdb* has

been loaded successfully.

DESIGN : al_MSS; CHECKSUM : DE15; PDB_VERSION : 1.9
The "load_programming_data® command succeeded.
Sucessfully exported STAPL file:

"D:\flashpro_files\m2s005_digestl\designer\al_MSS\export\al MSS_M2S005.stp"; file
programs

Fabric and eNVM.

Fabric component digest:

276fbefb0al8cc0deld45efc84589745ee02fc2adbccl1259Fbeb674094754014

eNVM component digest:

6b2c2353e25¢5982643¢c32640ac16c581874c8950300135622¢c126ee22d8blde

Finished: Wed Jan 28 16:48:56 2015 (Elapsed time 00:00:06)

The "export_single_stapl®™ command succeeded.

The "set_programming_file® command succeeded.

Project saved.

The "save_project®” command succeeded.

Project closed.
The export folder will contain the exported programming job along with digest file. In this example, there will be
two files, “al_MSS.job” and “al_MSS_job.digest” . The content of the al_MSS_job.digest file is shown below:

Fabric component digest: 276fbefb0al8cc0deld45efc84589745ee02fc2adbccl1259fheb674094754014

eNVM component digest: 6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8blde
When the device is programmed in the production programming house by loading the programming job in
FlashPro Express, the log will be as follows:

programmer "73207" : Scan Chain...

Warning: programmer "73207" : Vpump has been selected on programmer AND an externally
provided Vpump has also been detected. Using externally provided Vpump voltage source.

programmer "73207" : Check Chain...

programmer "73207" : Scan and Check Chain PASSED.

programmer "73207" : device "M2S/M2GLO05(S)" : Executing action PROGRAM
programmer "73207" : device "M2S/M2GLO05(S)" : Family: SmartFusion2
programmer "73207" : device "M2S/M2GLO05(S)*" : Product: M2S005

programmer “73207° : device "M2S/M2GLO05(S)" : EXPORT I1SC_ENABLE_RESULT[32]
programmer "73207" : device "M2S/M2GLO05(S)*" : EXPORT CRCERR: [1] = O
programmer "73207" : device "M2S/M2GLO0O5(S)*" : EXPORT EDCERR: [1] = O
programmer "73207" : device "M2S/M2GLO05(S)*" : TEMPGRADE: ROOM
programmer "73207" : device “M2S/M2GLO05(S)*" : EXPORT VPPRANGE: [3]
programmer "73207" : device “M2S/M2GLO05(S)*" : VPPRANGE: HIGH
programmer "73207" : device "M2S/M2GLO05(S)*" : EXPORT TEMP: [8] =
programmer "73207" : device "M2S/M2GLOO5(S)*" : EXPORT VPP: [8] =
programmer "73207" : device "M2S/M2GLO0O5(S)" : Programming FPGA Array and eNVM.

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT Fabric component dlgest[256]
276fbefb0a18ccOde1d45ef084589745ee02f02adb001259fbeb674094754014

= 007c6b44

1
N

programmer 732077 : device "M2S/M2GLO05(S)" : EXPORT eNVM component digest[256] =
6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8blde

programmer "73207" : device "M2S/M2GLO0O5(S)*

programmer "73207" : device "M2S/M2GLOO5(S)" : EXPORT DSN[128] =
c6e99c2d1a992f13cf8231c4be847ach

programmer "73207" : device “M2S/M2GLO0O5(S)*

programmer "73207% : device "M2S/M2GLO05(S)*" : Finished: Thu Jan 22 17:57:37 2015

(Elapsed time 00:00:19)

181

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

programmer "73207" : device "M2S/M2GLO0O5(S)" : Executing action PROGRAM PASSED.
programmer "73207" : Chain programming PASSED.
Chain Programming Finished: Thu Jan 22 17:57:37 2015 (Elapsed time 00:00:19)
0O-0-0-0-0-0
The log file is saved and sent back to the customer, who can verify that the device was programmed with the
correct design by comparing the digests in the log file above to the contents of the al_MSS_job.digest file.

See Also
Export Bitstream

Design Rules Check

The Design Rules Check runs automatically when you generate your SmartDesign; the results appear in the
1] HEROrLs |m S b |

® OO0 ki
Reports tab. You can also initiate a Design Rules Check by clicking on the e ."-"‘ button

of the SmartDesign Canvas tab menu.
To view the results, from the Design menu, choose Reports.
e Status displays an icon to indicate if the message is an error or a warning (as shown in the figure below).
Error messages are shown with a small red sign and warning messages with a yellow exclamation point.

¢ Message identifies the specific error/warning (see list below); click any message to see where it appears on
the Canvas

e Details provides information related to the Message

Reports & X | StartPage & X | Em & X ‘
4 Project Summary
polarfire_countlé.log DRC RePort' XXX
4y reports
4 300 Status Message Details
o DRCxml & Floating Driver Floating output bus pin COREABC_0:10_OUT[0]
4 d3) © Required Pin Connection Unconnected input pin COREABC_0:NSYSRESET
P d;ér;s:ie;‘lf_t;d © Required Pin Connection Unconnected input pin COREABC_0:PCLK
7d3 DDRP]—I\’ BLK .. & Floating Driver Floating output pin COREABC_0:PRESETN
A Unconnected Bus Unconnected bus interface pin COREABC_0:APB3master
Interface
© Undriven Pin Unconnected input pin CoreAXI4Interconnect_0:ACLK
ndriven Pin nconnected input pin Core nterconnect_0:
@ Undri P u di in CoreAXI41 0:ARESETN
& Unconnected Bus Unconnected bus interface pin CoreAXI4Interconnect_0:AXI4mslave0
Interface
A Unconnected Bus Unconnected bus interface pin CoreAXI4Interconnect_D:AXI4mslavel
Interface
iy Unconnected Bus Unconnected bus interface pin CoreAXI4Interconnect_0:AXI4mslave2
Interface
Unconnected Bus .) .
& Unconnected bus interface pin CoreAXI4Interconnect_0:AXI4mslave3
Interface
& Unconnected Bus Hicnnnartad hie infarfaca nin Care\WTdTntarrannact (1A Tdmel:ad

Figure 117 - Design Rules Check Results

Message Types:
Unused Instance - You must remove this instance or connect at least one output pin to the rest of the design.

Out-of-date Instance - You must update the instance to reflect a change in the component referenced by this
instance.

Undriven Pin - To correct the error you must connect the pin to a driver or change the state, i.e. tie low (GND) or
tie high (VCC).

182

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Floating Driver - You can mark the pin unused if it is not going to be used in the current design. Pins marked
unused are ignored by the Design Rules Check.

Unconnected Bus Interface - You must connect this bus interface to a compatible port because it is required
connection.

Required Bus Interface Connection — You must connect this bus interface before you can generate the design.
These are typically silicon connection rules.

Exceeded Allowable Instances for Core — Some IP cores can only be instantiated a certain number of times for
legal design because of silicon limitations. You must remove the extra instances.

Incompatible Family Configuration — The instance is not configured to work with this project’'s Family setting.
Either it is not supported by this family or you need to re-instantiate the core.

Incompatible Die Configuration — The instance is not configured to work with this project’s Die setting. Either it
is not supported or you need to reconfigure the Die configuration.

No RTL License, No Obfuscated License, No Evaluation License — You do not have the proper license to
generate this core. Contact Microsemi SoC to obtain the necessary license.

No Top level Ports - There are no ports on the top level. To auto-connect top-level ports, right-click the Canvas
and choose Auto-connect

Self-Instantiation - A component cannot instantiate itself-This is reported only in the Log/Message Window.

Editable Constraints Grid

The Constraints Editor enables you to add, edit and delete.

© MainWindow - [Contraints Editor, for scenario Primary]
[-] Fi= Edit view Constraints Tools Help = | & X

Hooz2s «ws & sl neam D

Contraints Editor For scenario Primary

[=F Constraints
= Requirements Syntax Clock Name | Clock Source | Period (ns) Fr?;ﬁ'}“ Dut(yq;))fcle First Edge Offset {ns)
MY Generated Clock.
Input Delay D Click here to add a constraint
Output Delay
= Exceptions
Max Delay
Min Delay
Multicycle
False Path
= Advanced
Clock Source Laktency
Disable Timing
Clock Uncertainity
< > < Ed

Ternp: COM | |Volt: COM | | Speed: STD

Figure 118 - Constraints Editor

To add a new constraint:
1. Select a constraint type from the constraint browser.

2. Enter the constraint values in the first row and click the green check mark to apply your changes. To cancel
the changes press the red cancel mark.

3. The new constraint is added to the Constraint List. The green syntax flag indicates that the constraint was
successfully checked.

To edit a constraint:

1. Select a constraint type from the constraint browser.

2. Select the constraint, edit the values and click the green check mark to apply your changes. To cancel the
changes press the red cancel mark. The green syntax flag indicates that the constraint was successfully
checked.

To delete a constraint:

1. Select a constraint type from the constraint browser.
2. Right-click the constraint you want to delete and choose Delete Constraint.

183

https://www.microsemi.com/products/fpga-soc/design-resources/ip-cores

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

export_spiflash_image

This Tcl command exports a SPI Flash image file to a specified directory.
export_spiflash_image -file_name {name of file} -export_dir {absolute path to folder location}
Arguments
-file_name name of file
The name of the image file.

-export_dir absolute path to folder location
Folder/directory location.

See Also

Export Flash Image

extended_run_lib

Note: This is not a Tcl command; it is a shell script that can be run from the command line.
The extended_run_lib Tcl script enables you to run the multiple pass layout in batch mode from a
command line.

$ACTEL_SW_DIR/bin/libero script:$ACTEL_SW_DIR/scripts/extended_run_lib.tcl
logfile:extended_run.log “script_args:-root path/designer/module_name [-n numPasses] [-
starting_seed_index numindex] [-compare_criteria value] [-c clockName] [-analysis value] [-

slack_criteria value] [-stop_on_success] [-timing_driven|-standard] [-power_driven value]
[-placer_high_effort value]”

Note:

e There is no option to save the design files from all the passes. Only the (Timing or Power) result reports
from all the passes are saved.

Arguments
-root path/designer/module_name
The path to the root module located under the designer directory of the Libero project.
[-n numPasses]
Sets the number of passes to run. The default number of passes is 5.
[-starting_seed_index numindex]

Indicates the specific index into the array of random seeds which is to be the starting point for the passes.

Value may range from 1 to 100. If not specified, the default behavior is to continue from the last seed
index that was used.

[-compare_criteria value]

Sets the criteria for comparing results between passes. The default value is set to frequency when the —c
option is given or timing constraints are absent. Otherwise, the default value is set to violations.

Value Description

frequency Use clock frequency as criteria for comparing the results between passes. This
option can be used in conjunction with the -c option (described below).

violations Use timing violations as criteria for comparing the results between passes. This
option can be used in conjunction with the -analysis, -slack_criteria and -
stop_on_success options (described below).

184

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Value Description

power Use total power as criteria for comparing the results between passes, where lowest
total power is the goal.

[-c clockName]

Applies only when the clock frequency comparison criteria is used. Specifies the particular clock that is to
be examined. If no clock is specified, then the slowest clock frequency in the design in a given pass is
used. The clock name should match with one of the Clock Domains in the Summary section of the Timing
report.

[-analysis value]

Applies only when the timing violations comparison criteria is used. Specifies the type of timing violations
(the slack) to examine. The following table shows the acceptable values for this argument:

Value Description
max Examines timing violations (slack) obtained from maximum delay analysis. This is
the default.
min Examines timing violations (slack) obtained from minimum delay analysis.

[-slack_criteria value]

Applies only when the timing violations comparison criteria is used. Specifies how to evaluate the timing
violations (slack). The type of timing violations (slack) is determined by the -analysis option. The following
table shows the acceptable values for this argument:

Value Description

worst Sets the timing violations criteria to Worst slack. For each pass obtains the most
amount of negative slack (or least amount of positive slack if all constraints are met)
from the timing violations report. The largest value out of all passes will determine
the best pass. This is the default.

tns Sets the timing violations criteria to Total Negative Slack (tns). For each pass it
obtains the sum of negative slack values from the first 100 paths from the timing
violations report. The largest value out of all passes determines the best pass. If no
negative slacks exist for a pass, then the worst slack is used to evaluate that pass.

[-stop_on_success]

Applies only when the timing violations comparison criteria is used. The type of timing violations (slack) is
determined by the -analysis option. Stops running the remaining passes if all timing constraints have been
met (when there are no negative slacks reported in the timing violations report).

[-timing_driven|]-standard]
Sets layout mode to timing driven or standard (non-timing driven). The default is -timing_driven or the
mode used in the previous layout command.

[-power_driven value]

Enables or disables power-driven layout. The default is off or the mode used in the previous layout
command. The following table shows the acceptable values for this argument:

Value Description

off Does not run power-driven layout.

185

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Value Description

on Enables power-driven layout.

[-placer_high_effort value]

Sets placer effort level. The default is off or the mode used in the previous layout command. The following
table shows the acceptable values for this argument:

Value Description
off Runs layout in regular effort.
on Activates high effort layout mode.
Return

A non-zero value will be returned on error.

Supported Families
PolarFire

Exceptions
None

See Also
Place and Route - PolarFire

Multiple Pass Layout - PolarFire

Files Tab and File Types

The Files tab displays all the files associated with your project, listed in the directories in which they appear.

Right-clicking a file in the Files tab provides a menu of available options specific to the file type. You can delete
files from the project and the disk by selecting Delete from the right-click menu.

You can instantiate a component by dragging the component to a SmartDesign Canvas or by selecting
Instantiate in SmartDesign from the right-click menu. See the SmartDesign User Guide for more details.

You can configure a component by double-clicking the component or by selecting Open Component from the
right-click menu.

File Types

When you create a new project in the Libero SoC it automatically creates new directories and project files. Your
project directory contains all of your 'local’ project files. If you import files from outside your current project,
the files must be copied into your local project folder. (The Project Manager enables you to manage your
files as you import them.)

Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.

The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero SoC
project.

component directory - Stores your SmartDesign components (SDB and CXF files) for your Libero SoC project.
constraint directory - All your constraint files (SDC, PDC)

designer directory - *_ba.sdf, *_ba.v(hd), STP, TCL (used to run designer), designer.log (logfile)

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog, *.sv if SystemVerilog

simulation directory - meminit.dat, modelsim.ini files

186

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smartdesign_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

smartgen directory - GEN files and LOG files from generated cores
stimulus directory - BTIM and VHD stimulus files

synthesis directory - *.edn, *_syn.prj (Synplify log file), *.srr (Synplify logfile), *.tcl (used to run synthesis) and
many other files generated by the tools (not managed by Libero SoC)
tooldata directory - includes the log file for your project with device details.

generate_design_initialization_data

This Tcl command creates the memory files on disk, adds the initialization clients to the target memories, and
writes the configuration files to disk.

This command also runs validation on the saved configuration files and writes out errors (if any) in the log. This
command causes the Ul of the Configure Design Initialization Data and Memories tool to refresh and show the
latest configuration and validation errors (if any) in the tables.

This command takes no parameters.

generate_design_initialization_data

See Also

configure design initialization data

Importing Files

Anything that describes your design, or is needed to program the device, is a project source. These may include
schematics, HDL files, simulation files, testbenches, etc. Import these source files.
To import afile:

1. From the File menu, choose Import Files.

2. InFiles of type, choose the file type.

3. InLook in, navigate to the drive/folder where the file is located.

4. Select the file to import and click Open.

Note: You cannot import a Verilog File into a VHDL project and vice versa.

File Types for Import

File Type File Extension
Behavioral and Structural VHDL; VHDL Package *.vhd, *.vhdI
Design Block Core *.gen
Verilog Include *.h
Behavioral and Structural Verilog *v, *.sv
Netlist Verilog *vm
Stimulus *vhd, * .vhdl,
*V, *.sv
Memory file *.mem
Components (Designer Blocks, Synplify DSP) *.cxf

187

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Bus Interfaces

When you add a bus interface the Edit Core Definition dialog box provides the following Microsemi SoC-specific
bus interfaces:

e AHB - Master, Slave, Mirrored Master, MirroredSlave

e APB — Master, Slave, Mirroredmaster, MirroredSlave

e AXI — Master, Slave, MirroredMaster, MirrorSlave, System
e AXIl 4 - Master, Slave, MirroredMaster, MirrorSlave

Layout Error Message: layoutg4dNoValidPlacement

This is a generic error produced by the placer when it is unable to place a design. The most common cause for
this failure is that the placer was unable to find a solution which could fit the design into the chip, either because
the design is close to maximum utilization, or logic cannot be fit into user-defined region constraints.

If Libero is unable to find a legal placement, a list of unplaced cells will be provided in the log. The cells in this list
may not be the cause of the placement problem; it is quite possible that some other constrained block of logic
which was placed first and now prohibits further placement. However, starting with the unplaced cell list is the
easiest and most likely course:

e The simplest potential solution is to remove all placement constraints of the unplaced cells, and re-run Place
& Route.

However, the cells in this list may not be the cause of the placement problem; it is quite possible that some other
constrained block of logic which was placed first and now prohibits further placement. If removing the placement
constraints on the unplaced cells does not succeed:

¢ Remove all region constraints and re-run Place & Route. Some designers make it a practice to put all their
region constraints in a single, separate PDC file; in which case they need only disable that file.

e If this Place & Route re-run still fails, there may be wider issues with the design's size and
complexity that cannot be addressed by changes to P&R options.

¢ |f the unconstrained Place & Route re-run succeeds, then the user should add back constraints a
few regions at a time in order of "simplicity". Usually, big regions with lots of free space are
"simpler" for the placer, whereas tall/narrow regions with high utilization are "harder". Re-run Place
& Route with each constraint restoration and repeat the process until the failing region(s) is
identified.

Depending on requirements, the failing region may be handled by removing or changing it's
constraints, or revising its design to use less resources.

The user may also re-run the Placer in high-effort mode. Applying high-effort mode to a design which is very full
can incur additional runtime and may produce a placement solution which may not meet tight timing constraints,
owing to the fact that the placer will aggressively attempt to fit the design. In practice, customers are encouraged
to apply the previous suggestions first; and utilize high-effort mode only when other approaches have been
exhausted.

Layout Error Message: layoutg4DesignHard

This design is very difficult to place, and high-effort techniques were required to make it fit. This may lead to
increased layout runtime and diminished timing performance.

This message typically appears in designs with high utilization -- a very full design, or a design with region
constraints which are, themselves, very full. It can also occur in designs with moderate utilization but with
numerous, long carry chains.

No immediate action is required on the user's part. However, if this notice is observed during Layout, the resultant
performance of the design and the runtime of the Layout tools may not be optimal, and there is a strong possibility
that reducing the size of the design, or relaxing region and floorplanning constraints, will help to improve timing
closure and runtime.

188

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

list_clock_groups

This Tcl command lists all existing clock groups in the design.

list_clock _groups

Arguments
None

Example
list_clock_groups

See Also

set_clock groups
remove clock groups

Specifying 1/0 States During Programming - 1/0O States and BSR Details

The I/0O States During Programming dialog box enables you to set custom I/O states prior to programming.

1/0 State (Output Only)

Sets your I/O states during programming to one of the values shown in the list below.
e 1-1/Os are set to drive out logic High
e 0-1/Os are set to drive out logic Low

e Last Known State: I/Os are set to the last value that was driven out prior to entering the programming mode,
and then held at that value during programming

e Z - Tri-State: I/Os are tristated

When you set your 1/O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

Table 5 - Default /0O Output Settings

Output State Settings

Input Control Output
(Output Enable)

Z (Tri-State) 1 0 0
0 (Low) 1 1 0
1 (High) 0 1 1

Last_Known_State | Last Known_State | Last Known_State [Last_Known_State

Table Key:
e 1 - High: I/Os are set to drive out logic High
e 0-Low: I/Os are set to drive out logic Low

e Last Known_State - I/Os are set to the last value that was driven out prior to entering the programming
mode, and then held at that value during programming

189

PolarFire FPGA Design Flow User Guide

Boundary Scan Registers - Enabled with Show BSR Details

& Microsemi

Power Matters.

Sets your I/O state to a specific output value during programming AND enables you to customize the values for

the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).

For example, if you want to Tri-State a pin during programming, set Output Enable to 0; the Don't Care indicates
that the other two values are immaterial.

If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during

programming, you may set all the values to 1.
Table 6 - BSR Details 1/0 Output Settings

Output State Settings
Input Output Enable Output
Z (Tri-State) Don't Care 0 Don't Care
0 (Low) Don't Care 1 0
1 (High) Don't Care 1 1
Last Known State Last State Last State Last State

Table Key:

e 1 - High: I/Os are set to drive out logic High

0 — Low: I/Os are set to drive out logic Low

Don't Care — Don't Care values have no impact on the other settings.

Last_Known_State — Sampled value: I/Os are set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

The figure below shows an example of Boundary Scan Register settings.

Specify I/0 States During Programming

Load from file. .. | Save ko file... | ¥ show BSR. Details

_ Boundary Scan Registers -

Port HName Macro Cell Pin Number Input %l:.lapl;‘::g Dutput j
BIST ADLIB:INBUF T2 a 1 1
BvPASS_I0 ADLIB:INBUF K1 a 1 1
CLK ADLIB:INBUF B1 a 1 1
ENOUT ADLIB:INBUF J16 a 1 1
LED ADLIB:OUTBUF M3 1 1 a
MONITOR[O] ADLIB:OUTBUF ES 1 1 a
MOMITOR[] ADLIB:OUTBUF c7 1 a a
MOMITOR[Z] ADLIB:OUTBUF k] 1 a a
MONITOR[3] ADLIB:OUTBUF D7 1 a a
MONITOR[4] ADLIB:OUTBUF A1 1 a a
OEa ADLIB:INBUF E4 1 a a
OEb ADLIB:INBUF F1 1 a a
O5C_EN ADLIB:INBUF K3 1 a a
PAD[10] ADLIB:BIBUF_LYCMOS33U ME 1 a a
FPAD[11] ADLIB:BIBUF_LVCMOS 33D R7 1 1] 1]
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 1 a a
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 1 a a

PAD[14] ADLIB:BIBUF_LYCMOS33U RE 1 a a LI

Help | OF I Cancel

Figure 119 - Boundary Scan Registers

190

PolarFire FPGA Design Flow User Guide

Project Settings Dialog Box

& Microsemi

Power Matters.

The Project Settings dialog box enables you to modify your Device, HDL, and Design Flow settings and your
Simulation Options. In Libero SoC, from the Project menu, click Project Settings.

The following figure shows an example of the Project Settings dialog box.

e Project settings
Currently selected device i MPF200TS_ES.1FULLPKGE
fitians Part Filter
Famay | PolarFire s Die: | Al 3| Package AN :
Speed: | Al s Range: Al s
Simu braies Reset filters
PolarFire

Search part

Part Number ¥ | DFF Uses 1705 uSHAM LSRAM Matn H-Chip Globals PLL DL~
MPF200TS ES-1FULLPRGE | 192408 68 1764 616 588 48 8 L)
MPFI00T_ES-1FCGI1S2E 299544 512 72 952 924 a8 8 []
MPFI0OT ES-1FCGABAE | 299544 242 2772 952 924 48 8 [
MPFI00T_ES-1FCGTBAE 299544 368 2 952 924 a8]]
MPFEI00T ES-1FCSGSIBE | 299544 300 2772 952 524 48 8 8
MPFI00T ES-1FCVG4BAE 299544 284 2772 952 924 48 8 8
MPFI00T ES-FOG11S2E 299544 512 2772 952 924 48 8 a
MPF3I00T ES-FCGABAE 299544 242 2772 952 924 48 8 8
MPFI00T_ES-FOGTBAE 299544 iE8 2112 952 924 48 8 a
MPFI00T_ES-FCSGSIGE 299544 300 22 952 924 48 8 L]
MPFI00T ES-FOVGAB4E | 299544 264 2772 952 924 48 8 8
MPFI00TS_ES-1FCGIIS2E 299544 512 2172 952 924 48 8 8
MPEIDOTS ES-1FCGABAE | 299544 242 21m2 952 924 48 8]
MPF3I00TS, G536E 299544 300 mmn 952 924 a8 8 a8
MPFI00TS ES-FOGLIS2E | 299544 512 2772 952 924 48 8 a -
‘ '

Figure 120 - Project Settings Dialog Box

Device Selection

Sets the device Die and Package for your project. See the New Project Creation Wizard - Device Selection page
for a detailed description of the options.

Device Settings
Default I/O Technology - Sets all your I/Os to a default value. You can change the values for individual I/0Os in
the 1/O Attributes Editor.

System controller suspended mode - When enabled (usually for safety-critical applications), the System
Controller is held in a reset state after the completion of device initialization. This state protects the device from
unintended device programming or zeroization of the device due to SEUs (Single Event Upsets). In this mode, the
System Controller cannot provide any system services such as Flash*Freeze service, cryptographic services or
programming services.

Design Flow
See the Project Settings: Design flow topic for more information.

Analysis Operating Conditions

Sets the Operating Temperature Range, the Core Voltage Range, and Default I/O Voltage Range from the
picklist's provided. Typical values are COM/IND/MIL; but others are sometimes defined.

Only EXT and IND ranges are available for PolarFire at present.
Once the "Range" value is set, the Minimum/Typical/Maximum values for the selected range are displayed.

These settings are propagated to Verify Timing, Verify Power, and Backannotated Netlist for you to perform
Timing/Power Analysis.

Simulation Options and Simulation Libraries
Sets your simulation options. See the Project Settings: Simulation Options topic for more information.

191

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Project Settings: Simulation - Options and Libraries

Using this dialog box, you can set change how Libero SoC handles Do files in simulation, import your own Do
files, set simulation run time, and change the DUT name used in your simulation. You can also change your
library mapping.

To access this dialog box, from the Project menu choose Project Settings and click to expand Simulation
options or Simulation libraries.

For Simulation options click the option you wish to edit: DO file, Waveforms, Vsim commands, Timescale.

For Simulation libraries click on the library you wish to change the path for.

P —

e
DO fe Tep level rstance name: <top>_0

Gerer pte VD fle
Timescaie VED le rime:
SmuntFusiond user defined DO fie:

00 command perameters:

Figure 121 - Project Settings: DO File

DO file

Use automatic DO file - Select if you want the Project Manager to automatically create a DO file that will
enable you to simulate your design.

Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is empty,
there will not be a run command included in the run.do file.

Testbench module name - Specify the name of your testbench entity name. Default is “testbench,” the
value used by WaveFormer Pro.

Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project Manager
replaces <top> with the actual top level macro when you run simulation (presynth/postsynth/postlayout).

Generate VCD file - Click the checkbox to generate a VCD file.

VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click power.vcd
and type to change the name.

User defined DO file - Enter the DO file name or click the browse button to navigate to it.
DO command parameters - Text in this field is added to the DO command.

Waveforms

Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.

Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Project Manager outputs the line ‘add wave
ltestbench/*' in the DO file run.do. If you select DUT then Project Manager outputs the line ‘add wave
/testbench/DUT/* in the run.do file.

Log all signals in the design - Saves and logs all signals during simulation.

192

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Vsim Commands

e Post-layout simulation only:
e SDF timing delays - Select Minimum (Min), Typical (Typ), or Maximum (Max) timing delays in the
back-annotated SDF file.

e Disable Pulse Filtering during SDF-based Simulations - When the check box is enabled the
+pulse_int_e/l +pulse_int_r/1 +transport_int_delays switch is included with the vsim command
for post-layout simulations; the checkbox is disabled by default.

e Resolution - The default is 1ps.Some custom simulation resolutions may not work with your simulation
library. Consult your simulation help for more information on how to work with your simulation library and
detect infinite zero-delay loops caused by high resolution values.

e Additional options - Text entered in this field is added to the vsim command.

¢ SRAM ECC Simulation -
Two options can be added to specify the simulated error and correction probabilities of all ECC

SRAMs in the design.
e -gERROR_PROBABILITY=<value>, where 0 <=value <=1
e -gCORRECTION_PROBABILITY=<value>, where 0 <=value <=1

During Simulation, the SB_CORRECT and DB_DETECT flags on each SRAM block will
be raised based on generated random numbers being below the specified <value>s.

Timescale

e TimeUnit - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list, which is the time base for
each unit. The default setting is ns.
e Precision - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list. The default setting is ps.

Simulation Libraries
¢ Restore Defaults- Sets the library path to default from your Libero SoC installation.

e Library path - Enables you to change the mapping for your simulation library (both Verilog and VHDL).
Type the pathname or click the Browse button to navigate to your library directory.

Project Settings: Design flow

To access the Design flow page, from the Project menu choose Project Settings and click the Design flow tab.

1% Project settings]

Device selection

HDL source files language options

Analyss operating conditions Libsers Sat supports mixed-HOL language deckgns; you can import Virilag and VHDL in the sames project
= Simulation optians For Verilog files you can enable the System Verisog syntax option if your Verilog files contain System Veriog consirses.
DO file For VDL fles. yOu may chocse between VHDL-2008 and VHDL-53,
Wavetarms
Vsim commands Veritog
Timesc ale
Simulaticn librasies System Verilog = verilog 2001
PolarFine
VHOL
® VHIL-2008 VHDL93
HOL generated files language options
HOL files generated by Libers SoC such as conf cores. ign & and post-layout gate level netlists use the preferred language option
* Verilog VHEL
Block flow
Enabie block craation
Design Hierarchy Buikd
¥ Ensble On Demand Build Design Hierarchy
Reports
Maximum number of high fanout nets to be displayed: | 10
¥ Abort flow If errors are found in Physical Design Constraints (PDC)
« Abort fNlow if errors are found in Timing Constraints (SDC)
Help] Cless

Figure 122 - Project Settings Dialog Box — Design Flow Tab

193

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

HDL source files language options

Libero SoC supports mixed-HDL language designs. You can import Verilog and VHDL in the same project.

Sets your HDL to VHDL or Verilog. For VHDL, you can choose VHDL-2008 or VHDL-93. For Verilog, you can
choose System Verilog (if your Verilog files contain System Verilog constructs) or Verilog 2001.

Note: Libero SoC supports the following Verilog and VHDL IEEE standards:
e Verilog 2005 (IEEE Standard 1364-2005)
e Verilog 2001 (IEEE Standard 1364-2001)
e Verilog 1995 (IEEE Standard 1364-1995)
e SystemVerilog 2012 (IEEE Standard 1800-2012)
e VHDL-2008 (IEEE Standard 1076-2008)
e VHDL-93 (IEEE Standard 1076-1993)

HDL generated files language options

Block flow

HDL files generated by Libero SoC can be set to use VHDL or Verilog. If there are no other considerations, it is
generally recommended to use the same HDL language as you are using for HDL source files, as this may
reduce the cost of simulation licenses.

Enable block creation - Enables you to create and publish design blocks (*.cxz files) in Libero SoC. Design
blocks are low-level components that may have completed the place-and-route step and met the timing and
power requirements. These low-level design blocks can then be imported into a Libero SoC project and re-used
as components in a higher level design. See Designing with Designer Block Components in Online Help for more
information.

Design Hierarchy Build

Reports

Enable On Demand Build Design Hierarchy - Allows you to build the design hierarchy on demand and avoid
the automatic build. This option is enabled by default for PolarFire devices.

Maximum number of high fanout nets to be displayed - Enter the number of high fanout nets to be displayed.
The default value is 10. This means the top 10 nets with the highest fanout will appear in the
<root>_compile_netlist_resource.xml> Report.

Abort Flow Conditions

Abort Flow if Errors are found in Physical Design Constraints (PDC) — Check this checkbox to abort Place
and Route if the 1/0 or Floorplanning PDC constraint file contains errors.

Abort Flow if Errors are found in Timing Constraints (SDC) — Check this checkbox to abort Place and Route if
the Timing Constraint SDC file contains errors.

remove_clock_groups

This Tcl command removes a clock group by name or by ID.

remove_clock groups [-id id# | —name groupname] \
[-physically_exclusive | -logically_exclusive | -asynchronous]

194

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_block_flow_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Note: The exclusive flag is not needed when removing a clock group by ID.

Arguments
-id id#
Specifies the clock group by the ID.
-name groupname
Specifies the clock group by name (to be always followed by the exclusive flag).
[-physically_exclusive | -logically_exclusive | - asynchronous]

Supported Families

Example

Removal by group name

remove_clock_groups —name mygroup3 —physically_exclusive
Removal by goup ID

remove_clock_groups —id 12

See Also

set_clock _groups
list_clock groups

remove_permanent_locks

Removes all the locks configured in SPM_OTP. This command can only be used when at least one lock is
disabled using SPM_OTP.

remove_permanent_locks

Example
remove_permanent_locks

See Also
SPM_OTP

Search in Libero SoC

Search options vary depending on your search type.

To find a file:
1. Use CTRL + F to open the Search window.

2. Enter the name or part of name of the object you wish to find in the Find field. *' indicates a wildcard, and [*-
*] indicates a range, such as if you search for al, a2, ... a5 with the string a[1-5].

3. Set the Options for your search (see below for list); options vary depending on your search type.

4. Click Find All (or Next if searching Text).
Searching an open text file, Log window or Reports highlights search results in the file itself.
All other results appear in the Search Results window (as shown in the figure below).

Match case: Select to search for case-sensitive occurrences of a word or phrase. This limits the search so it only
locates text that matches the upper- and lowercase characters you enter.

Match whole word: Select to match the whole word only.

195

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

| Search Results & i
| s

¥ Besuits for WOLE in 'Current Open Sneresgn’ for B

ol poin 1o dded lopaACLEK Pin
vy and intercornect w RACLE |Pin
my_coresXMSRAM DACLE Pin

a 9

-

£

Figure 123 - Search Results

Current Open SmartDesign

Searches your open SmartDesign, returns results in the Search window.
Type: Choose Instance, Net or Pin to narrow your search.

Query: Query options vary according to Type.

Type Query Option Function
Instance Get Pins Search restricted to all pins
Get Nets Search restricted to all nets
Get Unconnected Pins Search restricted to all unconnected pins
Net Get Instances Searches all instances
Get Pins Search restricted to all pins
Pin Get Connected Pins Search restricted to all connected pins
Get Associated Net Search restricted to associated nets
Get All Unconnected Pins Search restricted to all unconnected pins

Current Open Text Editor

Searches the open text file. If you have more than one text file open you must place the cursor in it and click
CTRL + F to search it.

Find All: Highlights all finds in the text file.

Next: Proceed to next instance of found text.

Previous: Proceed to previous instance of found text.

Replace with: Replaces the text you searched with the contents of the field.
Replace: Replaces a single instance.

Replace All: Replaces all instances of the found text with the contents of the field.

Design Hierarchy
Searches your Design Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Stimulus Hierarchy
Searches your Stimulus Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

196

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Log Window

Searches your Log window; results are highlighted in the Log window - they do not appear in the Search Results
window.

Find All: Highlights all finds in the Log window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Reports

Searches your Reports; returns results in the Reports window.
Find All: Highlights all finds in the Reports window.

Next: Proceed to next instance of found text.

Previous: Proceed to previous instance of found text.

Files
Searches your local project file names for the text in the Search field; returns results in the Search window.
Find All: Lists all search results in the Search window.

Files on disk

Searches the files' content in the specified directory and subdirectories for the text in the Search field; returns
results in the Search window.

Find All: Lists all finds in the Search window.
File type: Select a file type to limit your search to specific file extensions, or choose *.* to search all file types.

set_clock_groups

set_clock_groups is an SDC command which disables timing analysis between the specified clock groups. No
paths are reported between the clock groups in both directions. Paths between clocks in the same group continue
to be reported.

set_clock _groups [-name name]
[-physically_exclusive | -logically_exclusive | -asynchronous]
[-comment comment_string]
—group clock_list

Note: If you use the same name and the same exclusive flag of a previously defined clock group to create a new
clock group, the previous clock group is removed and a new one is created in its place.

Arguments
-name name
Name given to the clock group. Optional.
-physically_exclusive

Specifies that the clock groups are physically exclusive with respect to each other. Examples are multiple
clocks feeding a register clock pin. The exclusive flags are all mutually exclusive. Only one can be
specified.

-logically_exclusive
Specifies that the clocks groups are logically exclusive with respect to each other. Examples are clocks
passing through a mux.

—-asynchronous
Specifies that the clock groups are asynchronous with respect to each other, as there is no phase
relationship between them. The exclusive flags are all mutually exclusive. Only one can be specified.

Note: The exclusive flags for the arguments above are all mutually exclusive. Only one can be specified.
—-group clock_list

197

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Specifies a list of clocks. There can any number of groups specified in the set_clock_groups command.

Example
set_clock_groups —name mygroup3 —physically_exclusive \
—group [get_clocks clk_1] —group [get_clocks clk_2]

See Also

list_clock groups
remove_clock groups

set_auto_update_mode

This command enables or disables auto update.
set_auto_update_mode {0]1}

If set_auto_update_mode is 0, auto update is disabled. If set_auto_update_mode is 1, auto update is enabled.

set_plain_text_client

This Tcl command is added to the sSNVM .cfg file that is given as the parameter to the configure_snvm command.
Plain-text Non-Authenticated clients have 252 bytes available for user data in each page of SNVM.
set_plain_text_client

-client_name {<name>}

-number_of_bytes <number>

-content_type {MEMORY_FILE | STATIC_FILL}

-content_file_format {Microsemi-Binary 8/16/32 bit}

-content_file {<path>}

-start_page <number>

-use_for_simulation 0O

-reprogram 0 | 1

-use_as_rom 0 | 1

Arguments
-client_name

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number_of_bytes
The size of the client specified in bytes.
-content_type

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content_file_format

Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.
-content_file

Path of the memory file. This can be absolute, or relative to the project.
-start_page

The page number in SNVM where data for this client will be placed.
-use_for_simulation

Only value 0 is allowed.
-reprogram

198

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
are O or 1.

-use_as_rom O

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
are O or 1.

Example

set_plain_text_client \
-client_name {a} \
-number_of_bytes 12 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {D:/local_z_folder/work/memory_files/binary8x12.mem} \
-start_page 1 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O

See Also
set plain_text auth client

set_cipher_text _auth client

set_usk_client
set_plain_text_auth_client

This Tcl command is added to the sNVM .cfg file that is given as the parameter to the configure_snvm command.
Plain-text Authenticated clients have 236 bytes available for user data in each page of SNVM.
set_plain_text _auth_client

-client_name {<name>}

-number_of_bytes <number>

-content_type {MEMORY_FILE | STATIC_FILL}

-content_file_format {Microsemi-Binary 8/16/32 bit}

-content_file {<path>}

-start_page <number>

-use_for_simulation O

-reprogram 0 | 1

-use_as_rom 0 | 1

Arguments
-client_name

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number_of_bytes
The size of the client specified in bytes.
-content_type

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content_file_format

Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.
-content_file

Path of the memory file. This can be absolute, or relative to the project.
-start_page

The page number in sSNVM where data for this client will be placed.

199

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

-use_for_simulation

Only value 0 is allowed.
-reprogram

Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
are O or 1.

-use_as_rom O

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
are O or 1.

Example

set_plain_text_auth_client \
-client_name {b} \
-number_of_bytes 12 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {D:/local_z_folder/work/memory_files/binary8x12.mem} \
-start_page 2 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O

See Also
set plain_text client

set_cipher_text _auth client

set_usk client

set_cipher_text_auth_client

This Tcl command is added to the sNVM .cfg file that is given as the parameter to the configure_snvm command.
Cipher-text Authenticated clients have 236 bytes available for user data in each page of SNVM.

set_cipher_text_auth_client
-client_name {<name>}
-number_of_bytes <number>
-content_type {MEMORY_FILE | STATIC_FILL}
-content_file_format {Microsemi-Binary 8/16/32 bit}
-content_file {<path>}
-start_page <number>
-use_for_simulation O
-reprogram 0 | 1
-use_as_rom 0 | 1

Arguments
-client_name

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number_of_bytes
The size of the client specified in bytes.
-content_type

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content_file_format
Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.
-content_file

200

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Path of the memory file. This can be absolute, or relative to the project.
-start_page
The page number in sSNVM where data for this client will be placed.
-use_for_simulation
Only value 0 is allowed.
-reprogram
Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
are O or 1.
-use_as_rom O

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
are O or 1.

Example

set_cipher_text_auth_client \
-client_name {c} \
-number_of_bytes 12 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {D:/local_z_folder/work/memory_files/binary8x12.mem} \
-start_page 3 \
-use_for_simulation 0 \
-reprogram 1 \

See Also
set plain_text client

set plain_text auth client

set_usk client

set_usk_client

This Tcl command is added to the sSNVM .cfg file that is given as the parameter to the configure_snvm command.
The USK client is required if SNVM has one or more clients of type ‘Authenticated’.
set_cipher_text_auth_client
-start_page <number>
-key <Hexadecimal string of size 24>

-use_for_simulation 0 | 1
-reprogram 0 | 1

Arguments
-start_page
The page number in sSNVM where data for this client will be placed.
-key
A string of 24 hexadecimal characters.
-use_for_simulation
Boolean field specifies whether the client will be used for simulation or not. Possible values are 0 or 1.
-reprogram
Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
are O or 1.

Example

set_usk_client \
-start_page 4 \
-key {D8C8831F3A2F72EDC569503F} \

201

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

-use_for_simulation 0 \
-reprogram 1

See Also
set plain_text client

set plain_text auth client

set_cipher text auth client

set_clock _uncertainty

Tcl command; specifies a clock-to-clock uncertainty between two clocks (from and to) and returns the ID
of the created constraint if the command succeeded.

set_clock uncertainty uncertainty -from | -rise_from | -fall_from from _clock_list -to | -
rise_to | -fall_to to_clock_list -setup {value} -hold {value}

Arguments
uncertainty
Specifies the time in nanoseconds that represents the amount of variation between two clock edges.
-from

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. Only one of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to
be valid.

-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. Only one
of the -from, -rise_from, or -fal1_from arguments can be specified for the constraint to be valid.

-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. Only one
of the —from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.

from_clock_list

Specifies the list of clock names as the uncertainty source.

-to
Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. Only one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.
-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. Only
one of the -to, -rise_to, or -fall_to arguments can be specified for the constraint to be valid.

-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. Only
one of the -to, -rise_to, or -fall_to arguments can be specified for the constraint to be valid.

to_clock_list
Specifies the list of clock names as the uncertainty destination.
-setup
Specifies that the uncertainty applies only to setup checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.
-hold

Specifies that the uncertainty applies only to hold checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

202

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Description

The set_clock_uncertainty command sets the timing uncertainty between two clock waveforms or
maximum clock skew. Timing between clocks have no uncertainty unless you specify it.

Examples

set_clock _uncertainty 10 -from Clkl -to Clk2
set_clock_uncertainty 0 -from Clkl -fall_to { Clk2 CIk3 } -setup
set_clock _uncertainty 4.3 -fall_from { Clkl CIk2 } -rise_to *

set_clock _uncertainty 0.1 -rise_from [get _clocks { Clkl Clk2 }] -fall_to { CIk3
Clk4 } -setup

set_clock_uncertainty 5 -rise_from Clkl -to [get_clocks {*}]

Organize Source Files Dialog Box — Synthesis

The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.
Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

To specify the file order:
1. Inthe Design Flow window under Implement Design, right-click Synthesize and choose Organize Input
Files > Organize Source Files. The Organize Source Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to change the
order of the Associated Source files.
4. Click OK.
Ml Organize Source files of alpha_proj2 for Synthesize tool HE

Click ko select a Source File in the praject, and use the Add button ko pass the file to the koal,
Use the Remaove button to remove Source files,

Use the UpfDown arrow buttons to specify the order of the Source files when they're passed to the kool

Use list of files organized by
i Libero {default list)

& User LI il

Source files in the projeck Otigin Associated Source Files Otigin

j hdl_w10_1.% User j custom_apb_peripheral.v User

Add

Remove |

| o

Figure 124 - Organize Source Files Dialog Box

SmartDesign Testbench

SmartDesign Testbench is a GUI-based tool that enables you to design your testbench hierarchy. Use
SmartDesign Testbench to instantiate and connect stimulus cores or modules to drive your design.

You can create a SmartDesign Testbench by right-clicking a SmartDesign component in the Design Hierarchy
and choosing Create Testbench > SmartDesign.

SmartDesign Testbench automatically instantiates the selected SmartDesign component into the Canvas.

You can also double-click Create SmartDesign Testbench in the Design Flow window to add a new
SmartDesign testbench to your project.

203

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

New testbench files appear in the Stimulus Hierarchy.

SmartDesign Testbench automatically instantiates your SmartDesign component into the Canvas.

You can instantiate your own stimulus HDL or simulation models into the SmartDesign Testbench Canvas and
connect them to your DUT (design under test). You can also instantiate Simulation Cores from the Catalog.
Simulation cores are simulation models (such as DDR memory simulation models) or basic cores that are useful
for stimulus generation (such as Clock Generator, Pulse Generator, or Reset Generator).

Click the Simulation Mode checkbox in the Catalog to view available simulation cores.

Refer to the SmartDesign User Guide for more information.

Specify 1/O States During Programming Dialog Box

The I/O States During Programming dialog box enables you to specify custom settings for 1/Os in your
programming file. This is useful if you want to set an 1/O to drive out specific logic, or if you want to use a custom
1/0 state to manage settings for each Input, Output Enable, and Output associated with an 1/O.

Load from file

Load from file enables you to load an I/O Settings (*.ios) file. You can use the 10S file to import saved custom
settings for all your 1/0s. The exported I0S file have the following format:

e Used I/Os have an entry in the 10S file with the following format:

set_prog_io_state -portName {<design_port_name>} -input <value> -outputEnable
<value> -output <value>

e Unused I/Os have an entry in the 10S file with the following format:

set_prog_io_state -pinNumber {<device_pinNumber>} -input <value> -outputEnable
<value> -output <value>

Where <value> is:
e 1-1/Ois setto drive out logic High
e 0-1/Ois set to drive out logic Low

e Last Known_State: I/O is set to the last value that was driven out prior to entering the programming mode,
and then held at that value during programming

e 7 - Tri-State: I/O is tristated

Save to file

Saves your I/O Settings File (*.ios) for future use. This is useful if you set custom states for your 1/0Os and want to
use them again later in conjunction with a PDC file.

Port Name
Lists the names of all the ports in your design.

Macro Cell
Lists the 1/O type, such as INBUF, OUTBUF, PLLs, etc.

Pin Number
The package pin associate with the 1/O.

1/0 State (Output Only)

Your custom I/O State set during programming. This heading changes to Boundary Scan Register if you select
the BSR Details checkbox; see the Specifying I/0 States During Programming - I/O States and BSR Details help
topic for more information on the BSR Details option.

204

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smartdesign_ug.pdf

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Specify I/0 States During Programming
Load from file. .. Save ko file... [™ show BSR Details
Port Hame Macro Cell Pin Humber 1/0 State [Output Only) j
BIST ADLIB:INBUF T2 1
BvPASS_I0 ADLIB:INBUF K1 1
CLK ADLIB:INBUF B1 1
ENOUT ADLIB:INBUF J16 1
LED ADLIB:OUTBUF M3 a
MONITOR[O] ADLIB:OUTBUF ES a
MOMITOR[] ADLIB:OUTBUF c7 d
MOMITOR[Z] ADLIB:OUTBUF k] d
MONITOR[3] ADLIB:OUTBUF D7 d
MONITOR[4] ADLIB:OUTBUF A1 d
OEa ADLIB:INBUF E4 d
OEb ADLIB:INBUF F1 d
O5C_EN ADLIB:INBUF K3 d
PAD[10] ADLIB:BIBUF_LYCMOS33U ME d
PAD[11] ADLIB:BIBUF_LYCMOS33D R? d
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 d
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 d
PAD[14] ADLIB:BIBUF_LYCMOS33U RE d LI
Help | OF I Cancel |

Figure 125 - 1/O States During Programming Dialog Box

Specifying 1/0O States During Programming - 1/O States and BSR Details

The I/O States During Programming dialog box enables you to set custom I/O states prior to programming.

1/0 State (Output Only)

Sets your I/O states during programming to one of the values shown in the list below.
e 1-1/Os are set to drive out logic High
e 0-1/Os are set to drive out logic Low

e Last Known State: I/Os are set to the last value that was driven out prior to entering the programming mode,
and then held at that value during programming

e 7 - Tri-State: I/Os are tristated

When you set your 1/O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

Table 7 - Default /0O Output Settings

Output State Settings

Input Control Output
(Output Enable)

Z (Tri-State) 1 0 0
0 (Low) 1 1 0
1 (High) 0 1 1

Last_Known_State | Last Known_State |Last Known_State |[Last _Known_State

205

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Table Key:
e 1 —High: I/Os are set to drive out logic High
e 0-Low: I/Os are set to drive out logic Low

e Last Known_State - I/Os are set to the last value that was driven out prior to entering the programming
mode, and then held at that value during programming

Boundary Scan Registers - Enabled with Show BSR Details

Sets your I/O state to a specific output value during programming AND enables you to customize the values for
the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).

For example, if you want to Tri-State a pin during programming, set Output Enable to 0; the Don't Care indicates
that the other two values are immaterial.

If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during
programming, you may set all the values to 1.

Table 8 - BSR Details 1/0 Output Settings

Output State Settings
Input Output Enable Output
Z (Tri-State) Don't Care 0 Don't Care
0 (Low) Don't Care 1 0
1 (High) Don't Care 1 1
Last Known State Last State Last State Last State

Table Key:
e 1 - High: I/Os are set to drive out logic High
e 0-Low: I/Os are set to drive out logic Low
e Don't Care — Don’t Care values have no impact on the other settings.

e Last Known_State — Sampled value: I/Os are set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

The figure below shows an example of Boundary Scan Register settings.

206

PolarFire FPGA Design Flow User Guide

Specify I/0 States During Programming

& Microsemi

Load from file. .. Save ko file... ¥ show BSR. Details
_ Boundary Scan Registers -
Port HName Macro Cell Pin Number Input %l:.lapl;‘::g Dutput
BIST ADLIB:INBUF T2 a 1 1
BvPASS_I0 ADLIB:INBUF K1 a 1 1
CLK ADLIB:INBUF B1 a 1 1
ENOUT ADLIB:INBUF J16 a 1 1
LED ADLIB:OUTBUF M3 1 1 a
MONITOR[O] ADLIB:OUTBUF ES 1 1 a
MOMITOR[] ADLIB:OUTBUF c7 1 a a
MOMITOR[Z] ADLIB:OUTBUF k] 1 a a
MONITOR[3] ADLIB:OUTBUF D7 1 a a
MONITOR[4] ADLIB:OUTBUF A1 1 a a
OEa ADLIB:INBUF E4 1 a a
OEb ADLIB:INBUF F1 1 a a
O5C_EN ADLIB:INBUF K3 1 a a
PAD[10] ADLIB:BIBUF_LYCMOS33U ME 1 a a
PAD[11] ADLIB:BIBUF_LYCMOS33D R? 1 a a
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 1 a a
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 1 a a
PAD[14] ADLIB:BIBUF_LYCMOS33U RE 1 a a LI

Help |

Cancel |

Stimulus Hierarchy

Figure 126 - Boundary Scan Registers

To view the Stimulus Hierarchy, from the View menu choose Windows > Stimulus Hierarchy.

Power Matters.

The Stimulus Hierarchy tab displays a hierarchical representation of the stimulus and simulation files in the
project. The software continuously analyzes and updates files and content. The tab (see figure below) displays
the structure of the modules and component stimulus files as they relate to each other.

207

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Stimulus Hierarchy & X

Show: [7] show Root Testbenches

4 . Q top_tbench
4 E pf_pcie_to_ddr3_top
my_axid_interconnect_w
my_corefX45RAM
my_pcie
ry_transceiver_ref CLE
* E=§|_ pf_pcie_to_ddr3_top PF_TX_PLL 0_PF_TX_PLL (pf_pcie_to_ddr3_top_
4 [_f,'=f[testhench (testbench.v)
E=j_ axi_master (axi_master.v)
=1 my_corefAXISRAM_my_coreAXI4SRAM_0_COREAXI4SRAM (CoreAXI45E,
* E'=j_ th (User_Test_wv)
» [_f,'=f[protocolChecker (ProtocolCheckery)
fifl CoreAXISRAM_LIB

Design Flow Design Hierarchy Stimulus Hierarchy Catalog | Files |

Figure 127 - Stimulus Hierarchy Dialog Box

Expand the hierarchy to view stimulus and simulation files. Right-click an individual component and choose Show
Module to view the module for only that component.

Select Components, instance or Modules from the Show drop-down list to change the display mode. The
Components view displays the stimulus hierarchy; the modules view displays HDL modules and stimulus files.

The file name (the file that defines the module or component) appears in parentheses.
Click Show Root Testbenches to view only the root-level testbenches in your design.

Right-click and choose Properties; the Properties dialog box displays the pathname, created date, and last
modified date.

All integrated source editors are linked with the SoC software; if you modify a stimulus file the Stimulus Hierarchy
automatically updates to reflect the change.

To open a stimulus file:

Double-click a stimulus file to open it in the HDL text editor.

Right-click and choose Delete from Project to delete the file from the project. Right-click and choose Delete
from Disk and Project to remove the file from your disk.

Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

208

& Microsemi

PolarFire FPGA Design Flow User Guide

Table 9 - Design Hierarchy Icons

Ilcon

Description

SmartDesign component

SmartDesign component with HDL netlist not generated

SmartDesign testbench

SmartDesign testbench with HDL netlist not generated

IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

HDL netlist

Timing Exceptions Overview

Power Matters.

Use timing exceptions to overwrite the default behavior of the design path. Timing exceptions include:

e Setting multicycle constraint to specify paths that (by design) will take more than one cycle.

e Setting a false path constraint to identify paths that must not be included in the timing analysis or the
optimization flow.

e Setting a maximum delay constraint on specific paths to relax or to tighten the original clock constraint
requirement.

Tool Profiles Dialog Box

The Tool Profiles dialog box enables you to add, edit, or delete your project tool profiles.
Each Libero SoC project can have a different profile, enabling you to integrate different tools with different

projects.

To set or change your tool profile:

1. From the Project menu, choose Tool Profiles. Select the type of tool you wish to add.

2. When you are done, click OK.

To add a tool: Select the tool type and click the Add button. Fill out the tool profile and click OK.

To change atool profile: After selecting the tool, click the Edit button to select another tool,
change the tool name, or change the tool location.

To remove a tool from the project:After selecting a tool, click the Remove button.

209

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

4 Tools e e
Synithasis Symahess profles E IS
Simulaban Active Ha Path
Stimulus it
Pacigraraming | 5 Synplfy Pro ME D Microsemi\Ubera 11, P\ Eynphfy ibinlsynplify_pro. e
Ientify Debugger |) s

| syrgify_batch production Svnopsys Synpifriacsmpdfy_120 1503M5P 1- 2,

| sympifyfF iemS'gqatest Sreleases'ite st \Smonsys S ympify \Smpkfy_L2016...

I GE_syrpbfy idm S'sqatest Sreleasss ttest\Synapsys \Symplify Symplfy_L2086.
Hep | EportFrofes., | oK concel

Figure 128 - Libero SoC Tool Profiles Dialog Box
The tool profile with the padlock icon indicates that it is a pre-defined tool profile (the default tool that comes with
the Libero SoC Installation.)

To export the tool profile and save it for future use, click the Export Tool Profiles dialog box and save the tool
profile file as a tool profile *.ini file. The tool profile *.ini file can be imported into a Libero SoC project (File >
Import > Others) and select Tool Profiles (*.ini) in the File Type pull-down list.

User Preferences Dialog Box — Design Flow Preferences

This dialog box allows you to set your personal preferences for how Libero SoC manages the design flow across
the projects you create.

r — e — Bl
#¥ Preferences @Iﬂ
o - . e = oy . -
S
of'tu\ra.re update Constraint flow
Log window
Startup Warn me when derived timing constraints generation override existing constraints (enhanced constraint flow).
Internet Access
Text editor Design flow rule checks
IP Cores
T Mo Warn me when Firmware application must be recompiled because of hardware configuration changes.
Proxy Warn me when I/Os are not all assigned and locked before programming data generation.

SmartDesign generation options

(7) Generate recursively

@ Generate non-recursively

Help OK Cancel
[J |)

Figure 129 - Preferences Dialog Box — Design Flow Preferences

Constraint Flow

e Warn me when derived timing constraints generation override existing constraints (enhanced
constraint flow).

210

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Libero SoC can generate/derive timing constraints for known hardware blocks and IPs such as
SERDES, CCC. Check this box to have Libero SoC pop up a warning message when the generated
timing constraints for these blocks override the timing constraints you set for these blocks. This box is
checked by default.

Design Flow Rule Checks

e Warn me when Firmware applications must be recompiled because of hardware configuration
changes.

Check this box if you want Libero SoC to display a warning message. This box is checked by default.
e Warn me when I/Os are not all assigned and locked before programming data generation.

1/0s should always be assigned and locked before programming data generation. Check this box if
you want Libero SoC to display a warning message. This box is checked by default.

SmartDesign Generation Options

e Generate recursively

In this mode, all subdesigns must be successfully generated before a parent can be generated. An
attempt to generate a SmartDesign results in an automatic attempt to generate all subdesigns.

e Generate non-recursively

In this mode, the generation of only explicitly selected SmartDesigns is attempted. The generation of a
design can be marked as successful even if a subdesign is ungenerated (either never attempted or
unsuccessful).

Note: These preferences are stored on a per-user basis across multiple projects; they are not project-specific.

Synopsys Design Constraints (SDC)

Synopsys Design Constraints (SDC) is a Tcl-based format used by Synopsys tools to specify the design intent,
including the timing and area constraints for a design. Microsemi tools use a subset of the SDC format to capture
supported timing constraints. Any timing constraint that you can enter using Designer tools can also be specified

in an SDC file.
Use the SDC-based flow to share timing constraint information between Microsemi tools and third-party EDA
tools.
Command Action
create clock Creates a clock and defines its characteristics
create_generated clock Creates an internally generated clock and defines its
characteristics
set_clock_latency Defines the delay between an external clock source and the
definition pin of a clock within SmartTime
set_clock_uncertainty Defines the timing uncertainty between two clock
waveforms or maximum skew
set false path Identifies paths that are to be considered false and
excluded from the timing analysis
set_input_delay Defines the arrival time of an input relative to a clock
set_max_delay Specifies the maximum delay for the timing paths
set_min_delay Specifies the minimum delay for the timing paths
set_multicycle path Defines a path that takes multiple clock cycles

211

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Command Action

set_output_delay Defines the output delay of an output relative to a clock

See Also
SDC Syntax Conventions

libero_design_flow_SDC_commands

SDC Syntax Conventions

The following table shows the typographical conventions that are used for the SDC command syntax.

Syntax Notation Description
command -argument Commands and arguments appear in Courier New typeface.
variable Variables appear in blue, italic Courier New typeface. You must

substitute an appropriate value for the variable.

[-argument value] Optional arguments begin and end with a square bracket.

Note: SDC commands and arguments are case sensitive.
Example
The following example shows syntax for the create_clock command and a sample command:
create_clock -period period_value [-waveform edge_list] source
create_clock —period 7 —waveform {2 4}{CLK1}

Wildcard Characters
You can use the following wildcard characters in names used in the SDC commands:

Wildcard What it does

\ Interprets the next character literally

* Matches any string

Note: The matching function requires that you add a backslash (\) before each slash in the pin names in
case the slash does not denote the hierarchy in your design.

Special Characters ([],{}, and)

Square brackets ([]) are part of the command syntax to access ports, pins and clocks. In cases where these
netlist objects names themselves contain square brackets (for example, buses), you must either enclose the
names with curly brackets ({}) or precede the open and closed square brackets ([]) characters with a backslash
(\). If you do not do this, the tool displays an error message.

For example:

create_clock -period 3 clk\[O\]

set_max_delay 1.5 -from [get_pins FF1\[5\]:CLK] -to [get_clocks {clk[0]}]

212

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Although not necessary, Microsemi recommends the use of curly brackets around the names, as shown in the
following example:

set_false_path —from {datal} —to [get_pins {regl:D}]

In any case, the use of the curly bracket is mandatory when you have to provide more than one name.
For example:

set_false_path —from {data3 data4} —to [get_pins {reg2:D reg5:D}]

Entering Arguments on Separate Lines

If a command needs to be split on multiple lines, each line except the last must end with a backslash (\) character
as shown in the following example:

set_multicycle_path 2 —from \
[get_pins {regl*}] \
-to {reg2:D}

See Also
About SDC Files

create_clock

SDC command; creates a clock and defines its characteristics.

create_clock -name clock_name -add -period period_value [-waveform edge_list] source

Arguments
-name clock_name

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.

-add

Specifies that a new clock constraint is created at the same source as the existing clock without overriding
the existing constraint. The name of the new clock constraint with the -add option must be different than
the existing clock constraint. Otherwise, it will override the existing constraint, even with the -add option.
The -name option must be specified with the -add option.

-period period_value
Specifies the clock period in nanoseconds. The value you specify is the minimum time over which the
clock waveform repeats. The period_value must be greater than zero.

-waveform edge_list
Specifies the rise and fall times of the clock waveform in ns over a complete clock period. There must be
exactly two transitions in the list, a rising transition followed by a falling transition. You can define a clock
starting with a falling edge by providing an edge list where fall time is less than rise time. If you do not
specify -waveform option, the tool creates a default waveform, with a rising edge at instant 0.0 ns and ©a
falling edge at instant (period_value/2)ns.

source
Specifies the source of the clock constraint. The source can be ports or pins in the design. If you specify a

clock constraint on a pin that already has a clock, the new clock replaces the existing one. Only one
source is accepted. Wildcards are accepted as long as the resolution shows one port or pin.

Description

Creates a clock in the current design at the declared source and defines its period and waveform. The
static timing analysis tool uses this information to propagate the waveform across the clock network to the
clock pins of all sequential elements driven by this clock source.

The clock information is also used to compute the slacks in the specified clock domain that drive
optimization tools such as place-and-route.

213

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Exceptions

e None

Examples

The following example creates two clocks, one on port CK1 with a period of 6, and the other on port CK2 with a
period of 6, a rising edge at 0, and a falling edge at 3:

create_clock -name {my_user_clock} -period 6 CK1

create_clock -name {my_other_user_clock} —period 6 —waveform {0 3} {CK2}

The following example creates a clock on port CK3 with a period of 7, a rising edge at 2, and a falling edge at 4:
create_clock —period 7 —waveform {2 4} [get_ports {CK3}]

The following example creates a new clock constraint clk2, in addition to clk1, on the same source port clkl
without overriding it.

create_clock -name clkl -period 10 -waveform {0 5} [get_ports clkl]
create_clock -name clk2 —add -period 20 -waveform {0 10} [get_ports clkl]

The following example does not add a new clock constraint, even with the -add option, but overrides the existing
clock constraint because of the same clock names. Note: To add a new clock constraint in addition to the existing
clock constraint on the same source port, the clock names must be different.

create_clock -name clkl -period 10 -waveform {0 5} [get_ports clkl]
create_clock -name clkl -add -period 50 -waveform {0 25} [get_ports clkl]

Microsemi Implementation Specifics

e The -waveform in SDC accepts waveforms with multiple edges within a period. In Microsemi design
implementation, only two waveforms are accepted.

e SDC accepts defining a clock on many sources using a single command. In Microsemi design
implementation, only one source is accepted.

e The source argument in SDC create_clock command is optional. This is in conjunction with the -name
argument in SDC to support the concept of virtual clocks. In Microsemi implementation, source is a
mandatory argument as -name and virtual clocks concept is not supported.

e The -domain argument in the SDC create_clock command is not supported.

See Also
SDC Syntax Conventions

create_generated_clock

SDC command; creates an internally generated clock and defines its characteristics.

create_generated_clock -name clock name [—add] [-master_clock clock _name] -source
reference_pin [-divide_by divide_factor] [-multiply_by multiply factor] [-invert] source -
pll_output pll_feedback clock -pll_feedback pll_feedback_input

Arguments
-name clock_name
Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.
-add
Specifies that the generated clock constraint is a new clock constraint in addition to the existing one at the

same source. The name of the clock constraint should be different from the existing clock constraint. With
this option, -master_clock option and -name options must be specified.

-master_clock clock_name

Specifies the master clock used for the generated clock when multiple clocks fan into the master pin. This
option must be used in conjuction with -add option of the generated clock.

214

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Notes:
1. The master_clock option is used only with the -add option for the generated clocks.

2. If there are multiple master clocks fanning into the same reference pin, the first generated clock specified will
always use the first master clock as its source clock.

3. The subsequent generated clocks specified with the -add option can choose any of the master clocks as
their source clock (including the first master clock specified).

-source reference_pin
Specifies the reference pin in the design from which the clock waveform is to be derived.
-divide_bydivide_factor
Specifies the frequency division factor. For instance if the divide_factor is equal to 2, the generated clock
period is twice the reference clock period.
-multiply_by multiply_factor
Specifies the frequency multiplication factor. For instance if the multiply_factor is equal to 2, the generated
clock period is half the reference clock period.
-invert
Specifies that the generated clock waveform is inverted with respect to the reference clock.
source

Specifies the source of the clock constraint on internal pins of the design. If you specify a clock constraint
on a pin that already has a clock, the new clock replaces the existing clock. Only one source is accepted.
Wildcards are accepted as long as the resolution shows one pin.

-pll_output pll_feedback_clock

Specifies the output pin of the PLL which is used as the external feedback clock. This pin must drive the
feedback input pin of the PLL specified using the —pll_feedback option. The PLL will align the rising edge
of the reference input clock to the feedback clock. This is a mandatory argument if the PLL is operating in
external feedback mode.

-pll_feedback pll_feedback_input

Specifies the feedback input pin of the PLL. This pin must be driven by the output pin of the PLL specified
using the —pll_output option. The PLL will align the rising edge of the reference input clock to the external
feedback clock. This is a mandatory argument if the PLL is operating in external feedback mode.

Description
Creates a generated clock in the current design at a declared source by defining its frequency with
respect to the frequency at the reference pin. The static timing analysis tool uses this information to
compute and propagate its waveform across the clock network to the clock pins of all sequential elements
driven by this source.
The generated clock information is also used to compute the slacks in the specified clock domain that
drive optimization tools such as place-and-route.

Examples
The following example creates a generated clock on pin U1/regl:Q with a period twice as long as the period at
the reference port CLK.
create_generated_clock -name {my user_clock} —divide_by 2 —source [get_ports
{CLK}] Ul/regl:Q
The following example creates a generated clock at the primary output of myPLL with a period % of the period at
the reference pin clk.
create_generated_clock —divide_by 3 —multiply_by 4 -source clk [get_pins
{myPLL:CLK1}]
The following example creates a new generated clock gen2 in addition to genl derived from same master clock
as the existing generated clock, and the new constraints is added to pin r1/CLK.

create_generated_clock -name genl -multiply by 1 -source [get_ports clkl] [get_pins
r1/CLK]

215

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

create_generated_clock -name gen2 -add -master_clock clkl -source [get_ports clkl]
-multiply_by 2 [get pins r1/CLK]
The following example does not create a new generated clock constraint in addition to the existing clock, but will
override even with the -add option enabled, because the same names are used.

create_generated_clock -name gen2 -source [get_ports clkl] -multiply_by 3 [get_pins
r1/CLK]

create_generated_clock -name gen2 -source [get_ports clkl] -multiply by 4 -
master_clock clkl -add [get_pins rl1/CLK]

The following example creates a generated clock on pin U1l/regl:Q with a period twice as long as the period at
the reference port CLK.

create_generated_clock -name {my user_clock} —divide_by 2 —source [get_ports {CLK}]
Ul/regl/Q

The following example creates a generated clock at the primary output of myPLL with a period % of the period at
the reference pin clk.

create_generated_clock —divide_by 3 —multiply_by 4 -source clk [get_pins
{myPLL/CLK1}]

The following example creates a generated clock named system_clk on the GL2 output pin of FCCC_0 with a
period equal to half the period of the source clock. The constraint also identifies GL2 output pin as the external
feedback clock source and CLK2 as the feedback input pin for FCCC_0.

create_generated_clock -name { system_clk } \
-multiply_by 2 \

-source { FCCC_0O/CCC_INST/CLK3_PAD } \
-pll_output { FCCC_O/CCC_INST/GL2 } \
-pll_feedback { FCCC_0O/CCC_INST/CLK2 } \

{ FCCC_O/CCC_INST/GL2 }

Microsemi Implementation Specifics

e SDC accepts either —multiply_by or —divide_by option. In Microsemi design implementation, both are
accepted to accurately model the PLL behavior.

e SDC accepts defining a generated clock on many sources using a single command. In Microsemi design
implementation, only one source is accepted.

e The -duty_cycle ,-edges and —edge_shift options in the SDC create_generated_clock command are not
supported in Microsemi design implementation.
See Also
SDC Syntax Conventions

set_clock_latency

SDC command; defines the delay between an external clock source and the definition pin of a clock
within SmartTime.

set_clock_latency -source [-rise][-fall][-early][-l1ate] delay clock

Arguments
-source
Specifies a clock source latency on a clock pin.
-rise
Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.
-fall

216

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.

—-invert
Specifies that the generated clock waveform is inverted with respect to the reference clock.
-late

Optional. Specifies that the latency is late bound on the latency. The appropriate bound is used to provide
the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-early",
optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and "-late”
are provided, the same latency is used for both bounds, which results in the latency having no effect for
single clock domain setup and hold checks.

-early

Optional. Specifies that the latency is early bound on the latency. The appropriate bound is used to
provide the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-
early", optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and
"-late" are provided, the same latency is used for both bounds, which results in the latency having no
effect for single clock domain setup and hold checks.

delay
Specifies the latency value for the constraint.
clock
Specifies the clock to which the constraint is applied. This clock must be constrained.

Description

Clock source latency defines the delay between an external clock source and the definition pin of a clock
within SmartTime. It behaves much like an input delay constraint. You can specify both an "early" delay
and a"late" delay for this latency, providing an uncertainty which SmartTime propagates through its
calculations. Rising and falling edges of the same clock can have different latencies. If only one value is
provided for the clock source latency, it is taken as the exact latency value, for both rising and falling
edges.

Exceptions
None

Examples

The following example sets an early clock source latency of 0.4 on the rising edge of main_clock. It also
sets a clock source latency of 1.2, for both the early and late values of the falling edge of main_clock. The
late value for the clock source latency for the falling edge of main_clock remains undefined.

set_clock_latency —source —-rise —early 0.4 { main_clock }
set_clock_latency —source —fall 1.2 { main_clock }

Microsemi Implementation Specifics

SDC accepts a list of clocks to -set_clock_latency. In Microsemi design implementation, only one clock pin can
have its source latency specified per command.

See Also
SDC Syntax Conventions

set_clock_to_output

SDC command; defines the timing budget available inside the FPGA for an output relative to a clock.

set_clock _to_output delay value -clock clock_ref [-max] [-min] output_list

217

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Arguments
delay_value

Specifies the clock to output delay in nanoseconds. This time represents the amount of time available
inside the FPGA between the active clock edge and the data change at the output port.

-clock clock _ref

Specifies the reference clock to which the specified clock to output is related. This is a mandatory
argument.

-max
Specifies that delay_value refers to the maximum clock to output at the specified output. If you do not

specify —max or —min options, the tool assumes maximum and minimum clock to output delays to be
equal.

Specifies that delay_value refers to the minimum clock to output at the specified output. If you do not
specify —max or —min options, the tool assumes maximum and minimum clock to output delays to be
equal.

output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).

set_clock_uncertainty

SDC command; defines the timing uncertainty between two clock waveforms or maximum skew.

set_clock_uncertainty uncertainty (-from | -rise_from | -fall_from) from clock_ list (-to | -
rise_to | -fall_to) to_clock_list [-setup | -hold]

Arguments
uncertainty

Specifies the time in nanoseconds that represents the amount of variation between two clock edges. The
value must be a positive floating point number.

-from

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. You can specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be
valid. This option is the default.

-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. You can
specify only one of the -from, -rise_from, or —fall_from arguments for the constraint to be valid.

-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

from_clock_list
Specifies the list of clock names as the uncertainty source.

-to
Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. You can specify only one of the -to, -rise_to, or -fall_to arguments for the constraint to be valid.
-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. You
can specify only one of the -to, -rise_to, or -fall_to arguments for the constraint to be valid.

-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. You
can specify only one of the -to, -rise_to, or -fall_to arguments for the constraint to be valid.

218

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

to_clock_list
Specifies the list of clock names as the uncertainty destination.
-setup

Specifies that the uncertainty applies only to setup checks. If you do not specify either option (-setup or -
hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

-hold

Specifies that the uncertainty applies only to hold checks. If you do not specify either option (-setup or -
hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

Description
Clock uncertainty defines the timing between an two clock waveforms or maximum clock skew.

Both setup and hold checks must account for clock skew. However, for setup check, SmartTime looks for
the smallest skew. This skew is computed by using the maximum insertion delay to the launching
sequential component and the shortest insertion delay to the receiving component.

For hold check, SmartTime looks for the largest skew. This skew is computed by using the shortest
insertion delay to the launching sequential component and the largest insertion delay to the receiving
component. SmartTime makes this distinction automatically.

Exceptions
None

Examples

The following example defines two clocks and sets the uncertainty constraints, which analyzes the inter-
clock domain between clkl and clk2.

create_clock —period 10 clkl
create_generated_clock —name clk2 -source clkl -multiply_by 2 sclkl
set_clock_uncertainty 0.4 -rise_from clkl -rise_to clk2

Microsemi Implementation Specifics

e SDC accepts a list of clocks to -set_clock_uncertainty.

See Also
SDC Syntax Conventions

set_disable_timing

SDC command; disables timing arcs within the specified cell and returns the ID of the created constraint if
the command succeeded.

set_disable_timing [-from from_port] [-to to_port] cell_name

Arguments
-from from_port
Specifies the starting port.
-to to_port
Specifies the ending port.
cell_name

Specifies the name of the cell in which timing arcs will be disabled.

219

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Description

This command disables the timing arcs in the specified cell, and returns the ID of the created constraint if
the command succeeded. The —from and —to arguments must either both be present or both omitted for
the constraint to be valid.

Examples

The following example disables the arc between a2:A and a2:Y.
set_disable_timing -from portl -to port2 cellname

This command ensures that the arc is disabled within a cell instead of between cells.

Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

set_external_check

SDC command; defines the external setup and hold delays for an input relative to a clock.

set_external_check delay_value -clock clock ref [-setup] [-hold] input_list

Arguments
delay_value

Specifies the external setup or external hold delay in nanoseconds. This time represents the amount of
time available inside the FPGA for the specified input after a clock edge.

-clock clock_ref

Specifies the reference clock to which the specified external check is related. This is a mandatory
argument.

-setup or -hold

Specifies that delay_value refers to the setup/hold check at the specified input. This is a mandatory
argument if —hold is not used. You must specify either -setup or -hold option.

input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Description

The set_external_check command specifies the external setup and hold times on input ports relative to a clock
edge. This usually represents a combinational path delay from the input port to the clock pin of a register internal
to the current design. For in/out (bidirectional) ports, you can specify the path delays for both input and output
modes. The tool uses external setup and external hold times for paths starting at primary inputs.

A clock is a singleton that represents the name of a defined clock constraint. This can be an object accessor that
will refer to one clock. For example:

[get_clocks {system clk}]
[get_clocks {sys* clk}]

Examples

The following example sets an external setup check of 12 ns and an external hold check of 6 ns for port data_in
relative to the rising edge of CLK1:
set_external_check 12 -clock [get_clocks CLK1] -setup [get_ports data_in]

set_external_check 6 -clock [get clocks CLK1] -hold [get_ports data_in]

220

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

See Also
SDC Syntax Conventions

set_false_path

SDC command; identifies paths that are considered false and excluded from the timing analysis.

set_false_path [-from from_list] [-through through_list] [-to to_list]

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through_list
Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-to to_list
Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.
Description

The set_false_path command identifies specific timing paths as being false. The false timing paths are
paths that do not propagate logic level changes. This constraint removes timing requirements on these
false paths so that they are not considered during the timing analysis. The path starting points are the
input ports or register clock pins, and the path ending points are the register data pins or output ports.
This constraint disables setup and hold checking for the specified paths.

The false path information always takes precedence over multiple cycle path information and overrides
maximum delay constraints. If more than one object is specified within one -through option, the path can
pass through any objects.

Examples

The following example specifies all paths from clock pins of the registers in clock domain clk1 to data pins
of a specific register in clock domain clk2 as false paths:

set_false_path —from [get_clocks {clkl}] —to reg_2:D

The following example specifies all paths through the pin UO/UL:Y to be false:
set_false_path -through UO/Ul:Y

Microsemi Implementation Specifics
SDC accepts multiple -through options in a single constraint to specify paths that traverse multiple points in the
design. In Microsemi design implementation, only one —through option is accepted.
See Also
SDC Syntax Conventions

set_input_delay

SDC command; defines the arrival time of an input relative to a clock.
set_input_delay delay_value -clock clock_ref [-max] [-min] [-clock_fall] [-rise] [-fall] [-
add_delay] input_list

Arguments
delay_value

221

PolarFire FPGA Design Flow User Guide

& Microsemi

Power Matters.

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal is
available at the specified input after a clock edge.

-clock clock_ref

-max

Specifies the clock reference to which the specified input delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.

Specifies that delay_value refers to the longest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

-min
Specifies that delay_value refers to the shortest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

-clock_fall
Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.

-rise
Specifies that the delay is relative to a rising transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

-fall
Specifies that the delay is relative to a falling transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

-add_delay
Specifies that this input delay constraint should be added to an existing constraint on the same port(s).
The -add_delay option is used to capture information on multiple paths with different clocks or clock edges
leading to the same input port(s).

input_list
Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Notes:

e The behavior of the -add_delay option is identical to that of PrimeTime(TM)

e If, using the -add_delay mechanism, multiple constraints are otherwise identical, except they specify
different -max or -min values

e the surviving -max constraint will be the maximum of the -max values
e the surviving -min constraint will be the minimum of the -min values

Description

The set_input_delay command sets input path delays on input ports relative to a clock edge. This usually
represents a combinational path delay from the clock pin of a register external to the current design. For
in/out (bidirectional) ports, you can specify the path delays for both input and output modes. The tool adds
input delay to path delay for paths starting at primary inputs.

A clock is a singleton that represents the name of a defined clock constraint. This can be:

e asingle port name used as source for a clock constraint

e asingle pin name used as source for a clock constraint; for instance reg1:CLK. This name can be
hierarchical (for instance toplevel/block1/reg2:CLK)

e an object accessor that will refer to one clock: [get_clocks {clk}]

Examples

The following example sets an input delay of 1.2ns for port datal relative to the rising edge of CLK1:

set_input_delay 1.2 -clock [get_clocks CLK1] [get_ports datal]

The following example sets a different maximum and minimum input delay for port IN1 relative to the
falling edge of CLK2:

222

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

set_input_delay 1.0 -clock_fall -clock CLK2 —min {IN1}
set_input_delay 1.4 -clock_fall -clock CLK2 —max {IN1}

The following example demonstrates an override condition of two constraints. The first constraint is
overridden because the second constraint specifies a different clock for the same output:

set_input_delay 1.0 -clock CLK1 —max {IN1}
set_input_delay 1.4 -clock CLK2 —max {IN1}

The next example is almost the same as the previous one, however, in this case, the user has specified -
add_delay, so both constraints will be honored:

set_input_delay 1.0 -clock CLK1 —max {IN1}
set_input_delay 1.4 -add_delay -clock CLK2 —max {IN1}
The following example is more complex:

e All constraints are for an input to port PAD1 relative to a rising edge clock CLK2. Each combination of {-rise,
-fall} x {~-max, -min} generates an independent constraint. But the max rise delay of 5 and the max rise delay
of 7 interfere with each other.

e For a -max option, the maximum value overrides all lower values. Thus the first constraint will be overridden
and the max rise delay of 7 will survive.

set_input_delay 5 -max -rise -add_delay [get_clocks CLK2] [get_ports PAD1] # will
be overridden

set_input_delay 3 -min -fall -add_delay [get_clocks CLK2] [get_ports PAD1]
set_input_delay 3 -max -fall -add_delay [get_clocks CLK2] [get_ports PAD1]
set_input_delay 7 -max -rise -add_delay [get _clocks CLK2] [get_ports PAD1]

Microsemi Implementation Specifics

In SDC, the -clock is an optional argument that allows you to set input delay for combinational designs.
Microsemi's implementation currently requires this argument.

See Also
SDC Syntax Conventions

set_max_delay (SDC)

SDC command; specifies the maximum delay for the timing paths.

set_max_delay delay value [-from from list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay value for
specified paths.

o |If the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

o If the path starting point has an input delay specified, the tool adds that delay value to the
path delay.

e If the path ending point is on a sequential device, the tool includes clock skew and library
setup time in the computed delay.

¢ If the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

223

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description

This command specifies the required maximum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.

The tool automatically derives the individual maximum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create clock, set input_delay, and set_output delay
commands.

The maximum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples

The following example sets a maximum delay by constraining all paths from ffla:CLK or ff1b:CLK to
ff2e:D with a delay less than 5 ns:

set_max_delay 5 -from {ffla:CLK fflb:CLK} -to {ff2e:D}

The following example sets a maximum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set_max_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The —through option in the set_max_delay SDC command is not supported.

See Also
SDC Syntax Conventions

set_min_delay

SDC command; specifies the minimum delay for the timing paths.

set_min_delay delay value [-from from list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required minimum delay value for
specified paths.

o If the path starting point is on a sequential device, the tool includes clock skew in the computed
delay.

o |f the path starting point has an input delay specified, the tool adds that delay value to the path delay.

o |f the path ending point is on a sequential device, the tool includes clock skew and library setup time
in the computed delay.

o |If the ending point has an output delay specified, the tool adds that delay to the path delay.
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to_list
Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

224

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Description

This command specifies the required minimum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.

The tool automatically derives the individual minimum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.

The minimum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples

The following example sets a minimum delay by constraining all paths from ff1a:CLK or ff1b:CLK to ff2e:D
with a delay less than 5 ns:

set_min_delay 5 -from {ffla:CLK fflb:CLK} -to {ff2e:D}

The following example sets a minimum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set_min_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The —through option in the set_min_delay SDC command is not supported.

See Also
SDC Syntax Conventions

set_multicycle_path

SDC command; defines a path that takes multiple clock cycles.

set_multicycle_path ncycles [-setup] [-hold] [-from from list] [—through through_list] [-to
to_list]

Arguments
ncycles

Specifies an integer value that represents a number of cycles the data path must have for setup or hold
check. The value is relative to the starting point or ending point clock, before data is required at the ending
point.

-setup
Optional. Applies the cycle value for the setup check only. This option does not affect the hold check. The

default hold check will be applied unless you have specified another set_multicycle_path command for the
hold value.

-hold
Optional. Applies the cycle value for the hold check only. This option does not affect the setup check.

Note: If you do not specify "-setup” or "-hold", the cycle value is applied to the setup check and the
default hold check is performed (ncycles -1).

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through_list
Specifies a list of pins or ports through which the multiple cycle paths must pass.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

225

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

Description

Setting multiple cycle paths constraint overrides the single cycle timing relationships between sequential
elements by specifying the number of cycles that the data path must have for setup or hold checks. If you
change the multiplier, it affects both the setup and hold checks.

False path information always takes precedence over multiple cycle path information. A specific maximum
delay constraint overrides a general multiple cycle path constraint.

If you specify more than one object within one -through option, the path passes through any of the
objects.

Examples

The following example sets all paths between regl and reg?2 to 3 cycles for setup check. Hold check is
measured at the previous edge of the clock at reg2.

set_multicycle_path 3 -from [get_pins {regl}] —to [get pins {reg2}]
The following example specifies that four cycles are needed for setup check on all paths starting at the

registers in the clock domain ckl1. Hold check is further specified with two cycles instead of the three
cycles that would have been applied otherwise.

set_multicycle_path 4 -setup -from [get _clocks {ckl}]
set_multicycle_path 2 -hold -from [get_clocks {ckl}]

Microsemi Implementation Specifics

e SDC allows multiple priority management on the multiple cycle path constraint depending on the scope of
the object accessors. In Microsemi design implementation, such priority management is not supported. All
multiple cycle path constraints are handled with the same priority.

See Also
SDC Syntax Conventions

set_output_delay

SDC command; defines the output delay of an output relative to a clock.

set_output_delay delay value -clock clock_ref [-max] [-min] [-clock fall] [-rise] [-fall] [-
add_delay] output_list

Arguments
delay_value

Specifies the amount of time before a clock edge for which the signal is required. This represents a
combinational path delay to a register outside the current design plus the library setup time (for maximum
output delay) or hold time (for minimum output delay).

-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.

-max

Specifies that delay_value refers to the longest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.

Specifies that delay_value refers to the shortest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.

-clock_fall
Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.

226

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

-rise
Specifies that the delay is relative to a rising transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

-fall

Specifies that the delay is relative to a falling transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

-add_delay

Specifies that this output delay constraint should be added to an existing constraint on the same port(s).
The -add_delay option is used to capture information on multiple paths with different clocks or clock edges
leading from the same output port(s).

output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).

Notes:

e The behavior of the -add_delay option is identical to that of PrimeTime(TM)

e If, using the -add_delay mechanism, multiple constraints are otherwise identical, except they specify
different -max or -min values

e the surviving -max constraint will be the maximum of the -max values
e the surviving -min constraint will be the minimum of the -min values

Description

The set_output_delay command sets output path delays on output ports relative to a clock edge. Output
ports have no output delay unless you specify it. For in/out (bidirectional) ports, you can specify the path
delays for both input and output modes. The tool adds output delay to path delay for paths ending at
primary outputs.

Examples
The following example sets an output delay of 1.2ns for port OUT1 relative to the rising edge of CLK1:
set_output_delay 1.2 -clock [get_clocks CLK1] [get_ports OUT1]

The following example sets a different maximum and minimum output delay for port OUT1 relative to the
falling edge of CLK2:

set_output_delay 1.0 -clock fall -clock CLK2 —min {OUT1}
set_output_delay 1.4 -clock fall -clock CLK2 —max {OUT1}

The following example demonstrates an override condition of two constraints. The first constraint is
overridden because the second constraint specifies a different clock for the same output:

set_output_delay 1.0 {OUT1} -clock CLK1 —max
set_output_delay 1.4 {OUT1} -clock CLK2 —max

The next example is almost the same as the previous one, however, in this case, the user has specified -
add_delay, so both constraints will be honored:

set_output_delay 1.0 {OUT1} -clock CLK1 —max
set_output_delay 1.4 {OUT1} -add_delay -clock CLK2 -max
The following example is more complex:

e All constraints are for an output to port PADL1 relative to a rising edge clock CLK2. Each combination of {-
rise, -fall} x {-max, -min} generates an independent constraint. But the max rise delay of 5 and the max rise
delay of 7 interfere with each other.

e For a -max option, the maximum value overrides all lower values. Thus the first constraint will be overridden
and the max rise delay of 7 will survive.

set_output_delay 5 [get_clocks CLK2] [get_ports PAD1] -max -rise -add_delay #
will be overridden

set_output_delay 3 [get_clocks CLK2] [get_ports PAD1] -min -fall -add_delay

227

& Microsemi

PolarFire FPGA Design Flow User Guide

set_output_delay 3 [get_clocks CLK2] [get_ports PAD1] -max -fall -add_delay
set_output_delay 7 [get_clocks CLK2] [get_ports PAD1] -max -rise -add_delay

Microsemi Implementation Specifics

Power Matters.

e In SDC, the -clock is an optional argument that allows you to set the output delay for combinational designs.

Microsemi Implementation currently requires this option.

See Also
SDC Syntax Conventions

Design Object Access Commands

Design object access commands are SDC commands. Most SDC constraint commands require one of these

commands as command arguments.
Microsemi software supports the following SDC access commands:

Design Object Access Command
Cell get_cells
Clock get_clocks
Net get nets
Port get_ports
Pin get_pins
Input ports all_inputs
Output ports all_outputs
Registers all_reqisters

See Also
About SDC Files

all_inputs

Design object access command; returns all the input or inout ports of the design.

all_inputs

Arguments

e None
Exceptions

e None
Example

set_max_delay -from [all_inputs] -to [get_clocks ckl]

228

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

all_outputs
Design object access command; returns all the output or inout ports of the design.

all_outputs

Arguments

e None
Exceptions

e None
Example

set_max_delay -from [all_inputs] -to [all_outputs]
Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

all_registers
Design object access command; returns either a collection of register cells or register pins, whichever you specify.

all_registers [-clock clock name] [-cells] [-data_pins]
[-clock pins] [-async_pins] [-output_pins]

Arguments

-clock clock_name
Creates a collection of register cells or register pins in the specified clock domain.
-cells

Creates a collection of register cells. This is the default. This option cannot be used in combination with
any other option.

-data_pins

Creates a collection of register data pins.
-clock_pins

Creates a collection of register clock pins.
-async_pins

Creates a collection of register asynchronous pins.

229

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

-output_pins
Creates a collection of register output pins.

Description
This command creates either a collection of register cells (default) or register pins, whichever is specified.
If you do not specify an option, this command creates a collection of register cells.
Exceptions
e None
Examples

set_max_delay 2 -from [all_registers] -to [get_ports {out}]
set_max_delay 3 —to [all_registers —async_pins]
set_false_path —from [all_registers —clock clk150]
set_multicycle_path —to [all_registers —clock c* -data_pins
—clock_pins]

Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

get_cells

Design object access command; returns the cells (instances) specified by the pattern argument.

get_cells pattern

Arguments
pattern
Specifies the pattern to match the instances to return. For example, "get_cells U18*" returns all instances
starting with the characters "U18", where “*” is a wildcard that represents any character string.
Description
This command returns a collection of instances matching the pattern you specify. You can only use this
command as part of a —from, -to, or —through argument for the following constraint exceptions: set_max
delay, set_multicycle_path, and set_false_path design constraints.
Exceptions
None
Examples

set_max_delay 2 -from [get_cells {reg*}] -to [get_ports {out}]

230

& Microsemi

PolarFire FPGA Design Flow User Guide Power Matters.

set_false_path —through [get_cells {Rblock/muxA}]
Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

get_clocks
Design object access command; returns the specified clock.

get_clocks pattern

Arguments
pattern
Specifies the pattern to match to the SmartTime on which a clock constraint has been set.
Description

e If this command is used as a —from argument in maximum delay (set_max_path_delay), false path
(set_false_path), and multicycle constraints (set_multicycle path), the clock pins of all the registers related
to this clock are used as path start points.

o If this command is used as a —to argument in maximum delay (set_max_path_delay), false path
(set_false_path), and multicycle constraints (set_multicycle_path), the synchronous pins of all the
registers related to this clock are used as path endpoints.

Exceptions
e None
Example

set_max_delay -from [get_ports datal] -to \
[get_clocks ckil]

Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

get_pins
Design object access command; returns the specified pins.

get_pins pattern

Arguments

pattern

231

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

Specifies the pattern to match the pins.
Exceptions
None
Example
create_clock -period 10 [get_pins clock _gen/reg2:Q]
Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

get_nets
Design object access command; returns the named nets specified by the pattern argument.

get_nets pattern

Arguments
pattern
Specifies the pattern to match the names of the nets to return. For example, "get_nets N_255*" returns all
nets starting with the characters "N_255", where “*” is a wildcard that represents any character string.
Description
This command returns a collection of nets matching the pattern you specify. You can only use this
command as source objects in create clock (create_clock) or create generated clock
(create_generated_clock) constraints and as -through arguments in set false path (set_false_path), set
minimum delay (set_min_delay), set maximum delay (set_max_delay), and set multicycle path
(set_multicycle path) constraints.
Exceptions
None
Examples

set_max_delay 2 -from [get_ports RDATA1l] -through [get nets {net_chkpl net_chkqi}]
set_false_path —through [get_nets {Tblk/rm/n*}]
create_clcok -name mainCLK -per 2.5 [get_nets {cknet}]

Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

232

& Microsemi

Power Matters.

PolarFire FPGA Design Flow User Guide

get_ports
Design object access command; returns the specified ports.

get_ports pattern

Argument
pattern
Specifies the pattern to match the ports. This is equivalent to the macros $in()[<pattern>] when used as —
from argument and $out()[<pattern>] when used as —to argument or $ports()[<pattern>] when used as a —
through argument.
Exceptions
None
Example

create_clock -period 10[get_ports CK1]
Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

233

	Table of Contents
	Welcome to Microsemi's Libero® SoC PolarFire™ v2.3 Release 4
	Libero SoC PolarFire Design Flow 5
	Constraint Flow and Design Sources 8
	File Types in Libero SoC 9
	Software Tools - Libero SoC 10
	Starting the Libero GUI 12
	Design Report 13
	Using the New Project Wizard to Start a Project 14
	Create SmartDesign 19
	Create Core from HDL 20
	Designing with HDL 22
	Designing with Block Flow 23
	Create New SmartDesign Testbench 23
	HDL Testbench 24
	Verify Pre-Synthesized Design - RTL Simulation 25
	Invocation of Constraint Manager From the Design Flow Window 29
	Libero SoC Design Flow 29
	Introduction to Constraint Manager 30
	Import a Constraint File 34
	Constraint Types 38
	Constraint Manager – I/O Attributes Tab 39
	Constraint Manager – Timing Tab 41
	Derived Constraints 43
	Constraint Manager – Floor Planner Tab 43
	Constraint Manager – Netlist Attributes Tab 45
	Synthesize 47
	Verify Post-Synthesized Design 52
	Compile Netlist 53
	Constraint Flow in Implementation 54
	Place and Route 59
	Multiple Pass Layout Configuration 63
	Resource Usage 65
	Global Net Report 66
	Verify Post Layout Implementation 71
	Programming Connectivity and Interface 83
	Programmer Settings 85
	Select Programmer 86
	Generate FPGA Array Data 88
	Configure Design Initialization Data and Memories 88
	Generate Design Initialization Data 107
	Configure I/O States During JTAG Programming 107
	Configure Programming Options 108
	Configure Security 109
	Permanent Locks 119
	Configure Permanent Locks for Production 120
	Configure Bitstream 121
	Generate Bitstream 122
	Run Programming Device Actions 122
	Program SPI Flash Image 130
	Generate SmartDebug FPGA Array Data 134
	SmartDebug 134
	Identify Debug Design 135
	Export Bitstream 136
	Export FlashPro Express Job 143
	Export SPI Flash Image 147
	Export Pin Report 148
	Export BSDL File 148
	Export IBIS Model 149

	Libero SoC Introduction
	Welcome to Microsemi's Libero® SoC PolarFire™ v2.3 Release
	More Information

	Libero SoC PolarFire Design Flow
	Create Design
	Constraints
	Implement
	Configure Hardware
	Program Design
	Debug Design
	Handoff Design for Production
	Handoff Design for Debugging (Export SmartDebug Data)

	Constraint Flow and Design Sources
	Constraint Flow for HDL designs
	Constraint Flow for Netlist designs

	File Types in Libero SoC
	Internal Files

	Software Tools - Libero SoC

	Libero Design Flow
	Starting the Libero GUI
	The Design Flow Window

	Design Report
	Using the New Project Wizard to Start a Project
	New Project Creation Wizard – Project Details
	Project

	See Also
	New Project Creation Wizard – Device Selection
	New Project Creation Wizard – Device Settings
	New Project Creation Wizard – Add HDL Source Files
	New Project Creation Wizard - Add Constraints

	Create and Verify Design
	Create SmartDesign
	About SmartDesign
	Create New SmartDesign
	Generating a SmartDesign Component
	Generate Recursively vs. Non-Recursively

	Create Core from HDL
	To create a core from your HDL:
	Edit Core Definition
	Remove Core Definition

	Designing with HDL
	Create HDL
	Using the HDL Editor
	HDL Syntax Checker
	Commenting Text
	Find
	Column Editing

	Importing HDL Source Files
	Mixed-HDL Support in Libero SoC

	Designing with Block Flow
	Create New SmartDesign Testbench
	HDL Testbench
	HDL Type
	Name
	Clock Period (ns)

	Verify Pre-Synthesized Design - RTL Simulation
	Project Settings: Simulation - Options and Libraries
	DO file
	Waveforms
	Vsim Commands
	Timescale
	Simulation Libraries

	Selecting a Stimulus File for Simulation
	Selecting Additional Modules for Simulation
	Performing Functional Simulation

	Libero SoC Constraint Management
	Invocation of Constraint Manager From the Design Flow Window
	Libero SoC Design Flow
	Introduction to Constraint Manager
	Synthesis Constraints
	Synplify Netlist Constraints (*.fdc)
	Compile Netlist Constraints (*.ndc)
	SDC Timing Constraints (*.sdc)
	Derived Timing Constraints (*.sdc)

	Place and Route Constraints
	I/O PDC Constraints
	Floorplanning PDC Constraints
	Timing SDC Constraint file (*.sdc)

	Timing Verifications Constraints
	Constraint Manager Components
	Constraint File and Tool Association
	Derive Constraints in Timing Tab
	Create New Constraints
	Constraint File Order

	Import a Constraint File
	Link a Constraint File
	Check a Constraint File
	Check Result

	Edit a Constraint File
	See Also:

	Constraint Types
	Constraint Manager – I/O Attributes Tab
	File and Tool Association
	I/O Settings

	Constraint Manager – Timing Tab
	File and Tool Association
	Example

	Derived Constraints
	Constraint Manager – Floor Planner Tab
	File and Tool Association
	See Also

	Constraint Manager – Netlist Attributes Tab
	File and Tool Association

	Implement Design
	Synthesize
	Synthesize Options
	HDL Synthesis Language Settings
	Global Nets (Promotions and Demotions)
	Optimizations
	Additional options for Synplify Pro synthesis

	Synplify Pro ME
	Identify Debug Design

	Verify Post-Synthesized Design
	Generate Simulation File
	Verify Post-Synthesis Implementation - Simulate

	Compile Netlist
	Options

	Constraint Flow in Implementation
	Design State Invalidation
	Constraints and Design Invalidation

	Check Constraints
	Design State and Constraints Check

	Edit Constraints
	Constraint Type and Interactive Tool

	Place and Route
	Place and Route Options
	Timing-Driven
	Power-Driven
	I/O Register Combining
	Global Pins Demotion
	Driver Replication
	High Effort Layout
	Repair Minimum Delay Violations
	Incremental Layout
	Use Multiple Pass
	Block Creation – Number of row-global resources

	See Also

	Multiple Pass Layout Configuration
	Iteration Summary Report
	See Also

	Resource Usage
	Overlapping of Resource Reporting

	Global Net Report
	Global Nets Information
	I/O to GB Connections
	Fabric to GB Connections
	CCC to GB Connections
	CCC Input Connections
	Local Clock Nets to RGB Connections
	Global Clock Nets to RGB Connections

	Verify Post Layout Implementation
	Verify Timing
	Verify Timing Configuration
	Types of Timing Reports

	SmartTime
	Verify Power
	Verify Power sub-commands
	SmartPower

	Simultaneous Switching Noise
	Introduction
	Supported Die/Package
	Supported I/O Standard
	Supported I/O Types
	SSN Analyzer
	Noise Report
	Right-click Menu Items
	Search and Filter
	Pulse Width
	Run Analysis
	Save Report

	Excluded I/Os
	Summary
	User Action When SSN Noise Analyzer Reports Failure

	See Also

	Configure Hardware
	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-Click Properties

	Programmer Settings
	FlashPro5/4/3/3X Programmer Settings
	TCK Setting (ForceTCK Frequency)
	Default TCK frequency

	Select Programmer
	See Also
	Programmer Settings

	Program Design
	Generate FPGA Array Data
	Configure Design Initialization Data and Memories
	See Also
	Design Initialization Specification Tab
	Common Commands for All Configure Design Initialization Data and Memories Tabs
	First Stage (sNVM)
	Second Stage (sNVM)
	Third Stage (uPROM/sNVM/SPI Flash)
	Time-Out
	Custom Configuration File

	See Also
	Configure uPROM
	Common Commands for All Configure Design Initialization Data and Memories Tabs
	Add
	Edit
	Delete
	Load Design Configuration
	Usage Statistics

	See Also
	Add/Edit uPROM Client
	Client name
	Content from File
	Content filled with 0s
	Start Address
	Number of 9-bit words
	Use for initialization of RAMs
	Use Content for simulation

	Configure sNVM
	Common Commands for All Configure Design Initialization Data and Memories Tabs
	Add
	Adding Text Clients
	Adding a USK Client
	Edit
	Delete
	Load Design Configuration
	Usage Statistics

	See Also
	Add sNVM Clients
	Add Text client
	Client name
	Content from File
	Content filled with 0s
	No Content
	Start Page
	Number of bytes
	Use Content for simulation
	Use as ROM

	Add USK client
	Start Page
	USK Key
	Reprogram
	Use Content for Simulation
	Use as ROM

	Configure SPI Flash
	Common Commands for All Configure Design Initialization Data and Memories Tabs
	Enable Auto Update
	Manufacturer
	Usage Statistics
	SPI Flash Clients
	SPI Bitstream Client for Recovery/Golden
	SPI Bitstream Client for Auto Update
	SPI Bitstream Client for IAP
	Data Storage Client

	Add
	Edit
	Delete

	See Also
	Add/Edit SPI Bitstream Client
	Name
	Content
	SPI Bitstream for IAP
	SPI Bitstream for Recovery/Golden
	SPI Bitstream for Auto Update

	Browse Button
	Filled with 1s
	Start Address (HEX)
	Size in bytes (decimal)
	See Also

	Add/Edit Data Storage Client for SPI Flash
	Name
	Content
	Memory file
	Filled with 1s

	Start Address (HEX)
	Size in bytes (decimal)
	See Also

	Configure Fabric RAMs Initialization
	Common Commands for All Configure Design Initialization Data and Memories Tabs
	Fabric RAM Clients Configuration:
	Fabric RAM Client Table
	Edit Fabric RAM Initialization Client

	See Also

	Generate Design Initialization Data
	See Also

	Configure I/O States During JTAG Programming
	Configure Programming Options
	Configure Security
	Configure Security Wizard
	Summary Window
	Security Key Mode
	Back
	Next
	Finish
	Save Summary to File

	User Keys
	FlashLock/UPK1
	User Encryption Key 1 (UEK1)
	User Encryption Key 2 (UEK2)
	User Pass Key 2 (UPK2)

	Update Policy
	Fabric update protection
	sNVM update protection options:
	Enable Back Level protection
	Design version (number between 0 to 65535)
	Back Level version (number between 0 to 65535)

	Disable programming interfaces
	Disable Bitstream Programming Actions (JTAG/SPI Slave)
	Reset to Default

	Debug Policy
	Debug with DPK (Debug Pass Key) - Optional
	SmartDebug Access Control

	Microsemi Factory Access Policy
	JTAG/SPI Slave Command Policy
	Security Features Frequently Asked Questions

	Permanent Locks
	Remove Permanent Locks
	See Also

	Configure Permanent Locks for Production
	Summary Window
	Back
	Next
	Finish
	Save Summary to File

	Configure Bitstream
	See Also

	Generate Bitstream
	See also

	Run Programming Device Actions
	Programming File Actions
	Options Available in Programming Actions

	Exit Codes (PolarFire)

	Program SPI Flash Image
	Generate SPI Flash Image
	Configure SPI Flash Image Actions and Procedures
	Run Programming SPI Flash Actions

	Debug Design
	Generate SmartDebug FPGA Array Data
	SmartDebug
	Integrated Mode
	Standalone Mode
	See Also
	SmartDebug User Guide

	Identify Debug Design

	Handoff Design for Production
	Export Bitstream
	See Also
	Export Bitstream tool configured with Bitstream Encryption with Default Key in Configure Security tool
	Export Bitstream tool configured with Custom Security Option in Configure Security tool
	Export Bitstream tool configured with Permanent Locks for Production tool
	Security Programming Files

	Export FlashPro Express Job
	Export FlashPro Express Job configured with Bitstream Encryption with Default Key in Configure Security tool
	Export FlashPro Express Job configured with Custom Security options in Configure Security tool
	Export FlashPro Express Job configured with Permanent Locks in Configure Permanent Locks for Production tool
	Prepare Design for Production Programming in FlashPro Express

	Export SPI Flash Image
	Name
	Location
	Existing files
	See Also

	Export Pin Report
	Export BSDL File
	Export IBIS Model
	Output File:
	Export Options:

	Export SmartDebug Data (Libero SoC)
	References
	set_client
	Arguments
	Examples

	configure_uprom
	Arguments

	See Also
	Configure uPROM
	Sample uPROM Configuration File
	configure_spiflash
	Arguments
	See Also
	Sample SPI Flash Configuration File

	Adding or Modifying Bus Interfaces in SmartDesign
	Catalog
	Viewing Cores in the Catalog
	Catalog Options
	Manually Downloading MegaVaults and Individual CPZ files

	Catalog Options Dialog Box
	Vault/Repositories Settings
	Repositories
	Vault location
	Read only vault

	View Settings
	Display
	Filters

	Changing Output Port Capacitance
	Core Manager
	configure_design_initialization_data
	Arguments
	Example

	See Also
	Configure Permanent Locks for Production
	Summary Window
	Back
	Next
	Finish
	Save Summary to File

	configure_snvm
	Arguments

	See Also
	Sample sNVM Configuration File

	See Also
	SPM_OTP
	configure_tool –name {SPM_OTP} parameter:value pair
	Examples

	See Also
	Importing Source Files – Copying Files Locally
	Create Clock Constraint Dialog Box
	Clock Source
	Clock Name
	T(zero) Label
	Period
	Frequency
	Offset (Starting Edge Selector)
	Duty Cycle
	Offset
	Comment

	See Also
	Select Source Pins for Clock Constraint Dialog Box
	Available Pins
	Filter Available Pins

	See Also
	Specifying Clock Constraints
	Create Generated Clock Constraint Dialog Box
	Clock Pin
	Reference Pin
	Generated Clock Name
	Generated Frequency
	Generated Waveform
	Comment

	See Also
	Select Generated Clock Source Dialog Box
	Filter Available Pins

	Specifying Generated Clock Constraints
	Select Generated Clock Reference Dialog Box
	Filter Available Pins

	See Also
	Design Hierarchy in the Design Explorer
	Digest File
	Use Case
	Example Using STAPL File
	Example Using Programming Job

	Design Rules Check
	Message Types:

	Editable Constraints Grid
	export_spiflash_image
	Arguments

	See Also
	Export Flash Image
	extended_run_lib
	Arguments
	Return
	Supported Families
	Exceptions

	See Also
	Files Tab and File Types
	File Types

	generate_design_initialization_data

	See Also
	configure_design_initialization_data
	Importing Files
	File Types for Import

	Bus Interfaces
	Layout Error Message: layoutg4NoValidPlacement
	Layout Error Message: layoutg4DesignHard
	list_clock_groups
	Arguments
	Example

	See Also
	Specifying I/O States During Programming - I/O States and BSR Details
	I/O State (Output Only)
	Boundary Scan Registers - Enabled with Show BSR Details

	Project Settings Dialog Box
	Device Selection
	Device Settings
	Design Flow
	Analysis Operating Conditions
	Simulation Options and Simulation Libraries

	Project Settings: Simulation - Options and Libraries
	DO file
	Waveforms
	Vsim Commands
	Timescale
	Simulation Libraries

	Project Settings: Design flow
	HDL source files language options
	HDL generated files language options
	Block flow
	Design Hierarchy Build
	Reports
	Abort Flow Conditions

	remove_clock_groups
	Arguments
	Supported Families
	Example

	See Also
	remove_permanent_locks
	Example

	See Also
	Search in Libero SoC
	Current Open SmartDesign
	Current Open Text Editor
	Design Hierarchy
	Stimulus Hierarchy
	Log Window
	Reports
	Files
	Files on disk

	set_clock_groups
	Arguments
	Example

	See Also
	set_auto_update_mode
	set_plain_text_client
	Arguments
	Example

	See Also
	set_plain_text_auth_client
	Arguments
	Example

	See Also
	set_cipher_text_auth_client
	Arguments
	Example

	See Also
	set_usk_client
	Arguments
	Example

	See Also
	set_clock_uncertainty
	Arguments
	Description
	Examples

	Organize Source Files Dialog Box – Synthesis
	SmartDesign Testbench
	Specify I/O States During Programming Dialog Box
	Load from file
	Save to file
	Port Name
	Macro Cell
	Pin Number
	I/O State (Output Only)

	Specifying I/O States During Programming - I/O States and BSR Details
	I/O State (Output Only)
	Boundary Scan Registers - Enabled with Show BSR Details

	Stimulus Hierarchy
	Timing Exceptions Overview
	Tool Profiles Dialog Box
	User Preferences Dialog Box – Design Flow Preferences
	Constraint Flow
	Design Flow Rule Checks
	SmartDesign Generation Options

	Synopsys Design Constraints (SDC)
	See Also
	libero_design_flow_SDC_commands
	SDC Syntax Conventions
	Example
	Wildcard Characters
	Special Characters ([], { }, and \)
	Entering Arguments on Separate Lines

	See Also
	create_clock
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	create_generated_clock
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_clock_latency
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	set_clock_to_output
	Arguments

	set_clock_uncertainty
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	set_disable_timing
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_external_check
	Arguments
	Description
	Examples

	See Also
	set_false_path
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_input_delay
	Arguments
	Notes:
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_max_delay (SDC)
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_min_delay
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_multicycle_path
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_output_delay
	Arguments
	Notes:
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	Design Object Access Commands

	See Also
	all_inputs
	Arguments
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	all_outputs
	Arguments
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	all_registers
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_cells
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_clocks
	Arguments
	Description
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	get_pins
	Arguments
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	get_nets
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_ports
	Argument
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also

