

Motor Driver with Four Half-Bridge Drivers, Rotation and Position Sensing for Space

Description

The LX7720 is a spacecraft motor driver that is radiationhardened by design and works with either a space FPGA controller such as <u>RTG4</u>, <u>RTAX-S/SL</u>, and <u>RT</u> <u>PolarFire</u>, or a space MCU such as <u>SAMRH71F20</u>, <u>SAMV71Q21RT</u>, and <u>SAM3X8ERT</u>.

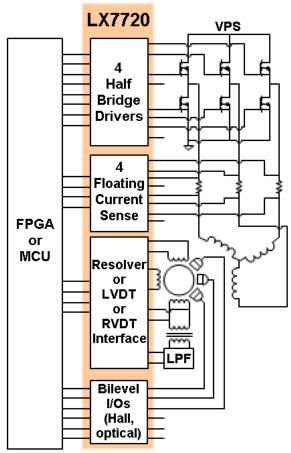
The LX7720 contains four half-bridge drivers with floating current sense for motor coil driving, six bi-level inputs for sensing Hall effect sensors or rotary encoders, and a resolver or LVDT interface to digital with primary coil driver.

The LX7720 works with an FPGA or MCU system controller to provide a complete closed loop motor driver with coil current feedback and rotation or linear position sensing. With flexible programming, the combined system can provide motor control for stepper motors, brushless DC and permanent magnet motors. Position sensing supports encoders, Hall effect sensors, resolvers, synchros, and LVDTs.

FPGA and MCU IP modules are available to support motor driving functions from open loop cardinal step driving to space vector modulation using field-oriented control.

The LX7720 contains 7 sigma delta modulators for analog sampling. Sinc3 filtering and decimation is performed in the FPGA or microcontroller with available IP modules. Four of the modulators sample the voltage across floating current sense inputs and three modulators sample differential analog inputs such as the outputs of a resolver transformer. Speed versus accuracy tradeoffs can be exploited.

The LX7720 supports a ground potential difference between the motor and signal grounds in the range of -10V to +8V and motor supply voltages up to 60V. Resolver or LVDT carrier frequencies from 360Hz to 20kHz are supported.


The LX7720MFQ is packaged in a 132 pin hermetic ceramic quad flat pack. The LX7720MMF is packaged in a lead-free 208 pin non-hermetic plastic quad flat pack. Both parts operate over a -55°C to 125°C temperature range, and are radiation tolerant to 100krad(Si) TID and 50krad(Si) ELDRs, as well as single event effects.

Features

- Four half-bridge N-channel MOSFET drivers
- Four floating differential current sensors
- Pulse modulated resolver/LVDT transformer driver
- Three differential resolver/LVDT sense inputs
- Six threshold adjustable bi-level logic inputs for Hall effect sensor/encoder interfaces
- Fault detection
- Radiation tolerant: 100krad(Si) TID, 50krad(Si) ELDRS, SEL immune up to 60MeV.cm²/mg and 125°C (fluence of 10⁷ particles/cm²)

Applications

- Motor driver servo control
- Linear actuator servo control
- Stepper, BLDC, PMSM motor driver
- Robotics

Typical Motor Drive System

CQFP-132 Pin Configuration and Pinout with Recommended Layout 1 1µI 1µF 10µF 1μF 113 TESTMODE VFLT_D 104 CSPS_D 119 BL_TH 103 RTN_D VPROG 18 TESTM 115 SGND 116 TESTM 114 DMOD 108 SW_D a'an cs_D 130 BLO2 MGND 0 0 131 BLO3 129 BLO1 123 BLI2 122 BLM 120 VCC 117 SCP 127 BLI6 111 VGSI 24 BLI3 112 106 102 109 105 101 10µF BLO5 99 VG BLO6 2 98 LD_C 97 UD IN A 3 1µI 96 SW_C LD_IN_A 95 UD_C UD_IN_B LD IN B 94 VFLT C 6 93 UDINC 92 CSPS_C 1μF 91 RTN_C LD IN D 10 90 CS_C 89 11 88 MGND 12 87 EXT_VEE_EN 13 CP CLK R FAULT 14 86 M 1μF 85 VGS 15 OTW_FAULT 16 84 CPN SM EN 17 83 470nF 1µF RESET 18 82 0.47µF C Microsemi. F_OUT 19 81 CP REF_IN 20 1µF 79 1uF VCC 21 78 ND 22 LX7720MFO 23 77 1µF 24 76 CS_B SNS_OUT_A 75 RTN_B SNS_OUT_B 25 1µF SNS_OUT_C 26 74 SNS_OUT_D 27 73 ADC1 28 72 VFLT_B ADC2 29 71 UD_B 1µF Signal GND Motor GND ADC3 30 70 SW_B plane plane MOD_CLK 31 69 SGND 32 68 LD_B CLK_OUT 33 67 VGS 10µF CS_A 64 ADC2_P 39 ADC1_N 40 65 ADC3_P 37 MGND 43 VCC 34 DC3_N 36 ADC2_N 38 ADC1_P 41 VEE 51 MGND 54 57 UD_A 59 61 SGND 42 53 DMOD_OUT_N 44 DMOD_PS 45 DMOD_OUT_P 46 MGND 47 VGS 48 'EE_CP_P 49 VEE_CP_N 50 MGND 52 GSA 55 SW_A 58 /FLT_A 60 CSPS_A 62 RTN_A 63 GND 66 GND SPARE ۲D_A 1 1μF 1µF 1µF 2.2µF 10µF 1uF

2 Ordering Information

Operating Temperature	Package Type	Package	Part Number	SMD Number	Flow	Shipping Type
	Hermetic	CQFP	LX7720MFQ-EV	TBD	MIL-PRF-38535 Class V	
	Ceramic	- 132L	LX7720MFQ-EQ	TBD	MIL-PRF-38535 Class Q	
-55°C to 125°C	Ceramic		LX7720-ES	-	Engineering Samples	Tray
	Plastic	QFP 208L	LX7720MMF	-	JEDEC	

- **QFP-208** Pin Configuration and Pinout with Recommended Layout 3 1 176 VGSD 176 LD_D D S D 168 VFLT_D 163 CS_D 174 LD_D 178 177 h 165 162 169 159 158 158 1 2 155 3 154 4 153 V 152 LD_C BLO5 151 LD_C UD IN A F 150 LD_IN_A 8 149 SW_C 8 148 SW_C UD_IN_B 9 147 UD_C 146 UD_C 145 144 V 13 143 142 15 141 1μF 140 RTN_0 IOD IN N 17 139 CS_C 138 OC FAULT 20 137 / 138 W FAULT 21 135 EXT_VEE_EN 22 134 133 VGS 24 132 CPN 25 131 470nF 129 128 0 SM_EN 29 🍋 Microsemi. 127 0.47uF 125 VCC 33 124 123 VCC 34 122 CS_ LX7720MMF 121 RTN_ 120 📕 1μF 119 118 117 \ OUT_D 40 116 115 UD_ ADC3 114 UD_B 113 SW_B D CLK 44 SGND 45 112 SW_ Signal GND 111 SGND 46 Motor GND 110 LD_B plane plane 109 LD_B 48 49 108 V 50 107 51 106 52 105 67 68 69 70 77 78 79 56 58 58 60 61 61 62 81 101 102 103 65 64 63 72 74 75 92 E_CP_N 82 92 26 98 93 73 sGND SGND (DC3_N (DC3_N (DC3_P (DC1_N (DC1_P (DC1_N (DC1_P SGND SGND DMOD_OUT_N DMOD_PS DMOD_PS a_tuo_o MOD_OUT_P MGND v⁻an MGND SW_A RTN_A cs_A 1µF 1µF 1µF 2.2µF 10uF 8 7 1
- Note 1. The layout examples show split planes for SGND and MGND. Separate SGND and MGND planes can be used
- Note 2. Capacitors are shown as . Diodes are shown as .
- Note 3. The plastic package has many unused pins, shown above as un-named pins. These pins are not bonded internally. The recommended layout above either connects these pins to one or the other of the ground planes to assist with connectivity, or leaves the pin open to increase spacing between higher voltage nodes
- Note 4. Conformal coating is recommended either locally over the plastic package pins between pin 89 and pin 173 inclusive, or over the whole PCB, due to the high voltages present

4 CQFP-132 Pin Numbering and Pin Descriptions

Pin	Name	Pin Type	Pin Function	Description
1	BLO5	Logic Output	Bi-Level Output 5	Output of fixed threshold bi-level monitor (comparator) input BLI5 at pin 126
2	BLO6	Logic Output	Bi-Level Output 6	Output of fixed threshold bi-level monitor (comparator) input BLI6 at pin 127
3	UD_IN_A	Logic Input	High-side FET A	Active high enable for upper N-channel MOSFET of the phase A half bridge
4	LD_IN_A	Logic Input	Low-side FET A	Active high enable for lower N-channel MOSFET of the phase A half bridge
5	UD_IN_B	Logic Input	High-side FET B	Active high enable for upper N-channel MOSFET of the phase B half bridge
6	LD_IN_B	Logic Input	Low-side FET B	Active high enable for lower N-channel MOSFET of the phase B half bridge
7	UD_IN_C	Logic Input	High-side FET C	Active high enable for upper N-channel MOSFET of the phase C half bridge
8	LD_IN_C	Logic Input	Low-side FET C	Active high enable for lower N-channel MOSFET of the phase C half bridge
9	UD_IN_D	Logic Input	High-side FET D	Active high enable for upper N-channel MOSFET of the phase D half bridge
10	LD_IN_D	Logic Input	Low-side FET D	Active high enable for lower N-channel MOSFET of the phase D half bridge
11	DMOD_ IN_P	Logic Input	PWM Exciter Input	Resolver or LVDT transformer primary differential drive input signal working with DMOD_IN_N (pin 12). DMOD_IN_P is buffered and level shifted and output as DMOD_OUT_P (pin 46) with output swing between DMOD_PS (pin 45) and MGND
12	DMOD_ IN_N	Logic Input	PWM Exciter Input	Resolver or LVDT transformer primary differential drive input signal working with DMOD_IN_P (pin 11). DMOD_IN_N is buffered and level shifted and output as DMOD_OUT_N (pin 44) with output swing between DMOD_PS (pin 45) and MGND
13	CP_CLK	Logic Input	Charge Pump Clock	Connect a square wave clock (150kHz ±50kHz recommended) to operate the floating high-side MOSFET driver charge pump
14	PR_ FAULT	Logic Output	Power Rail Fault	Active high when one or more of the power rails is below its under voltage threshold or either the VGS or DMOD_PS supply is overloaded
15	OC_ FAULT	Logic Output	Over Current Fault	Active high when an over-current fault condition is detected at one of the floating current sensor amplifiers
16	OTW_ FAULT	Logic Output	Over Temperature Warning	Active high when the die temperature is has exceeded the over temperature warning threshold
17	SM_EN	Logic Input (1M Ω to VDD)	Safe Mode Enable	Active high input enable protection countermeasures when faults are detected. Faults are reported regardless of SM_EN setting
18	RESET	Logic Input	Fault Reset	Active high input when SM_EN = 1 resets safe mode latched fault conditions
19	VREF_ OUT	Analog Output	Internal VREF Output	Internal +2.5V $\pm 0.8\%$ reference voltage output. Connect a 0.47µF or greater capacitor from VREF to SGND pin 22
20	VREF_IN	Analog Input	External VREF Input	Reference voltage for the ADC sigma delta modulators. To use the internal +2.5V ±0.8% reference voltage, connect VREF_IN to VREF_OUT pin 19. Alternatively, connect to an external 2.5V ±0.2V reference voltage
21	VCC	Power	Signal Supply	Connect to the signal power supply (4.75V to 5.25V). All VCC pins 21, 34, and 120 must be used. Bypass close to the pin with a 1μ F capacitor to SGND
22	SGND	Power	Signal Ground	All SGND pins 22, 32, 35, 42, 115, and 128 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
23	VDD	Power	I/O Supply	Connect to the external logic controller's (FPGA, MCU) I/O power supply (2.1V to 5.5V) to set the I/O logic level for all logic I/Os. Bypass close to the pin with a 1μ F capacitor to SGND
24	SNS_ OUT_A	Logic Output	Phase A Current Sense Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between CS_A pin 64 and RTN_A pin 63
25	SNS_ OUT_B	Logic Output	Phase B Current Sense Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between CS_B pin 76 and RTN_B pin 75
26	SNS_ OUT_C	Logic Output	Phase C Current Sense Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between CS_C pin 90 and RTN_C pin 91
27	SNS_ OUT_D	Logic Output	Phase D Current Sense Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between CS_D pin 102 and RTN_D pin 103
28	ADC1	Logic Output	ADC 1 Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between ADC1_P pin 41 and ADC1_N pin 40
29	ADC2	Logic Output	ADC 2 Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between ADC2_P pin 39 and ADC2_N pin 38

Pin	Name	Pin Type	Pin Function	Description
				Pulse train output of 2nd order Σ - Δ modulator where the output pulse train
30	ADC3	Logic Output	ADC 3 Data	represents the magnitude and polarity of the differential voltage potential between ADC3_P pin 37 and ADC3_N pin 36
31	MOD_CLK	Logic Input	Σ-Δ Mod Clock	Connect a 24MHz to 32MHz sample rate clock for the Σ - Δ modulators
32	SGND	Power	Signal Ground	All SGND pins 22, 32, 35, 42, 115, and 128 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
33	CLK_OUT	Logic Output	Σ-Δ Output Clock	Output clock for the SNS_OUT_A, SNS_OUT_B, SNS_OUT_C, SNS_OUT_D, ADC1, ADC2, ADC3 Σ - Δ modulators, rising edge active
34	VCC	Power	Signal Supply	Connect to the signal power supply (4.75V to 5.25V). All VCC pins 21, 34, and 120 must be used. Bypass close to the pin with a 1μ F capacitor to SGND
35	SGND	Power	Signal Ground	All SGND pins 22, 32, 35, 42, 115, and 128 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
36	ADC3_N	Analog Input	ADC3 differential	ADC3_P and ADC3_N form a differential analog signal feeding into the ADC3
37	ADC3_P	Analog Input	input	sigma delta modulator
38 39	ADC2_N ADC2_P	Analog Input Analog Input	ADC2 differential input	ADC2_P and ADC2_N form a differential analog signal feeding into the ADC2 sigma delta modulator
40	ADC2_F ADC1_N	Analog Input	ADC1 differential	ADC1 P and ADC1 N form a differential analog signal feeding into the ADC1
41	ADC1 P	Analog Input	input	sigma delta modulator
42	SGND	Power	Signal Ground	All SGND pins 22, 32, 35, 42, 115, and 128 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
43	MGND	Ground	Motor Ground	All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
44	DMOD_ OUT_N	Analog Output	PWM Exciter Output	Resolver or LVDT transformer primary differential drive output working with DMOD_OUT_P (pin 46). Input is PWM signal at DMOD_IN_N (pin 12). Output swing is between DMOD_PS (pin 45) and MGND
45	DMOD_PS	Power	PWM Exciter Supply	Connect to the demodulator driver power supply (10V to 18V), typically VGS. Bypass close to the pin with a 10μ F capacitor to MGND DMOD_PS provides power to the DMOD_OUT_P (pin 46) and DMOD_OUT_N (pin 44) differential drivers
46	DMOD_ OUT_P	Analog Output	PWM Exciter Output	LVDT transformer primary differential drive output working with DMOD_OUT_N (pin 44). Input is PWM signal at DMOD_IN_P (pin 11). Output swing is between DMOD_PS (pin 45) and MGND
47	MGND	Ground	Motor Ground	All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
48	VGS	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 1μ F capacitor to MGND
49	VEE_ CP_P	Output	Charge Pump Flying Capacitor inverting	Flying capacitor positive node for the internal VEE inverting charge pump. Connect a 1µF capacitor between this pin and VEE_CP_N pin 50. VEE_CP_P swings between MGND and VGS
50	VEE_ CP_N	Output	Charge Pump Flying Capacitor inverting	Flying capacitor negative node for the internal VEE inverting charge pump. Connect a 1µF capacitor between this pin and VEE_CP_P pin 49. VEE_CP_N swings between MGND and VEE
51	VEE	Power	Negative power rail	To use the internal VEE charge pump, tie EXT_VEE_EN pin 87 to VGS. Alternatively, connect an external negative supply in the range -VGS to -8V to VEE and tie EXT_VEE_EN pin 87 to MGND to disable the VEE charge pump. Connect a 2.2µF capacitor between this pin and MGND at pin 52
52	MGND	Ground	Motor Ground	All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect
				to SGND

Pin	Name	Pin Type	Pin Function	Description
				All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used,
54	MGND	Ground	Motor Ground	connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
55	VGS_A	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10 μ F capacitor to MGND
56	LD_A	FET Driver	Low-side FET Driver	Phase A lower N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
57	-	-	-	Pin is not fitted to the package
58	SW_A	FET Switch	MOSFET Source	Phase A upper N-channel MOSFET gate driver source connection
59	UD_A	FET Driver	High-side FET Driver	Phase A upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
60	VFLT_A	Power	High-side FET Gate Drive Rail	Floating gate drive power rail for upper N-channel MOSFET gate driver A. Bypass close to the pin with a 1µF capacitor to SW_A. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_A and VGS_A pin 55
61	-	-	-	Pin is not fitted to the package
62	CSPS_A	Power	Phase A Current Sense Supply	Power to phase A floating current sense. Connect to either VFLT_A pin 60 for SW_A sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_A pin 63
63	RTN_A	Signal/Power	Phase A Current Sense Return	Ground reference for phase A floating current sense and current measurement power rail
64	CS_A	Analog Input	Phase A current sense	Current measurement input for phase A floating current sensing, with a ±200mV linear range across the phase A sense resistor
65	-	-	-	Pin is not fitted to the package
66	MGND	Ground	Motor Ground	All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
67	VGS_B	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10μ F capacitor to MGND
68	LD_B	FET Driver	Low-side FET Driver	Phase B lower N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
69	-	-	_	Pin is not fitted to the package
70	SW_B	FET Switch	MOSFET Source	Phase B upper N-channel MOSFET gate driver source connection
71	UD_B	FET Driver	High-side FET Driver	Phase B upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
72	VFLT_B	Power	High-side FET Gate Drive Rail	Floating gate drive power rail for upper N-channel MOSFET gate driver B. Bypass close to the pin with a 1µF capacitor to SW_B. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_B and VGS_B pin 67
73	-	-	-	Pin is not fitted to the package
74	CSPS_B	Power	Phase B Current Sense Supply	Power to phase B floating current sense. Connect to either VFLT_B pin 72 for SW_B sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_B pin 75
75	RTN_B	Signal/Power	Phase B Current Sense Return	Ground reference for phase B floating current sense and current measurement power rail
76	CS_B	Analog Input	Phase B current sense	Current measurement input for phase B floating current sensing, with a ±200mV linear range across the phase B sense resistor
77	-	-	-	Pin is not fitted to the package
78	MGND	Ground	Motor Ground	All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
79	-	-	-	Pin is not fitted to the package
80	VMPS	Power	Motor Power supply	Motor power rail, used for the upper MOSFET drivers charge pump, VBOOST pin 82. Connect a 1µF capacitor between this pin and MGND

CQFP-132 Pin	Numbering and F	Pin Descriptions
--------------	-----------------	------------------

81 CPP Output Flying Capacitor negative node for the internal VBOST charge pump. Inverting 82 VBOOST Power Upper MOSTET Driver Charge pump output which is VGS volts above VMPS, unloaded. Connect a 1µF capacitor between this pin and VMPS pin 80 83 - - - Prover 84 CPN Output Charge Pump Flying Capacitor between this pin and VMPS pin 80 84 CPN Output Flying Capacitor apparture this pin and VMPS pin 80 85 VGS Power FET Gate Drive Rail Sci 7 8.6, 9.8, 9.8, 0.9, 0.10 MIVS pin 80.00ST charge pump. Connect a 0.47/F capacitor between this pin and VMSP pin 80.0 86 MGND Ground FET Gate Drive Rail Sci 7 8.6, 9.8, 9.8, 0.9, and 112 must be used. Connect to the MOSFET of the repower to the MOSFET of there submoted to the provem to the MOSFET of there return rail to the pin were MOSFE of there subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor and repative mode for subdices to the return rail of the motor	Pin	Name	Pin Type	Pin Function	Description
81 CPP Output Flying Capacitor Connect a 0.47µF Capacitor between this pin and CPN pin 84. CPP swings between VMPS and VMPS and VMPS and VMPS pin 80. 82 VBOOST 83 Power Upper MOSFET Pump Draw Charge pump output which is VGS volts above VMPS, unloaded. Connect a 1µF capacitor between this pin and CPP pin 81. CPN swings between VMPS and VMPS pin 80. 84 CPN Output First Gate Drive Flying Capacitor Pring Capacitor between this pin and CPP pin 81. CPN swings Connect a 0.47µF capacitor between this pin and CPP pin 81. CPN swings Connect a 0.47µF capacitor between this pin and CPP pin 81. CPN swings Connect a 0.47µF capacitor between this pin and CPP pin 81. CPN swings Connect a 0.47µF capacitor to MGND 85 VGS Power FET Gate Drive Rait 43.55.67.85.98.01.011 must be used. connected to GMDD 86 MGND Ground Motor Ground Motor Ground AdlW RMIC Digme vary from 10V to 48 WH respect to SGND 87 EXT_VEE EN Control Input (MQ to VGS) External VEE Enable Control Input Enable External VEE Enable Control Input Respect VMI prever supplies. MGND any vary from 10V to 48 WH respect to SGND 88 MGND Ground Motor Ground Motor Ground Motor Ground AdlW respect MOSFET divers. MGND connect a bind connect a negative suppin (the range v/GS to 49 VIO VEE pin 51.					
82 VBOOST Power Driver Charge Pump Onlight pump upunt with a volta above final doubles, during the package 83 - - - Pinis in of fitted to the package 84 CPN Output Finis capacitor between this pin and VMPS pin 80 84 CPN Output Finis capacitor between this pin and CPP power supply (10V to 18V). All VGS pin 80 85 VGS Power FET Gate Drive Rail A8, 56, 74, 52, 54, 56, 78, 68, 80, and 11 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Sypass close to the power MCSFET drivers. MOND connectat together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Sypass close to the power MCSFET drivers. MOND connectat together via a plane or split-plane on the PCB, for the power supples. MOND connectat MOSFET drivers. MOND connectat together via a plane or split-plane on the PCB, for the power supples. MOND connectat MOSFET drivers. MOND connectat performance and the motor and resolvert. MOT power supples. MOND connectat MOSFET drivers. MOND connectat to mediation the split split in the range -VGS to -8V to VEE pin 51. 88 MGND Ground Motor Ground Motor Ground All MOND MOSFET drivers. MOND connectat the motor and resolvert. VDT power supples. MOND may vary from -10V to +8V with respect to SGND 89 - - Phase C current Sensere tris in and Fitted to the package	81	CPP	Output	Flying Capacitor	Connect a 0.47µF capacitor between this pin and CPN pin 84. CPP swings
83 - - Pin is not fitted to the package 84 CPN Output Flying capacitor Flying capacitor Connect a 0.47µ F capacitor between this pin and CPP pin 81. CPN swings between MGND and VGS 85 VGS Power FET Gate Drive Connect to the MOSFET gate driver power suppl (101 to 183). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µ f capacitor to MGND connects to the return rail of the re	82	VBOOST	Power	Driver Charge	
84 CPN Output Charge Pump Flying capacitor negative node for the internal VBOST charge pump. Connect to the MOSTET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSTET drivers. Rail Connect to the MOSTET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, 55, 25, 46, 67, 88, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, to the MOSTET drivers. MOSTET drivers. MGND connects to the return rail to the resolver/LVDT power supplies. MGND many any from -10V to +8V with respect to SGND 87 EXT_VEE EN Control Input (1M0 to VGS) External VEE External VEE (1M0 to VGS) External VEE External VEE (1M0 to VGS) External VEE External VEE External VEE (1M0 to VGS) External VEE External VEE Connect to MGND to disable the VEE charge pump, connect of MGND to disable the VEE charge pump, and connect a negative supply in the range -VGS to -8V to VEE pin 51 88 MGND Ground Motor Ground All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connect of MOSTET drivers. MGND connects to the return rail to the lower MOSTET drivers. MGND connects to the return rail to the lower MOSTET drivers. MGND connects to the return rail to the lower MOSTET drivers. MGND connects to the return rail to the lower MOSTET drivers. MGND connects to the return rail to the lower rail for upper N-channel MOSTET drivers. Connect to vot to +8V with respect to SGND 91 RTN_C Signal/Power<	83	-	-	-	Pin is not fitted to the package
85 VGS Power FET Gate Drive Rail 48, 55, 67, 89, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µ ² capacitor to MGND 86 MGND Ground All MGND pins 34, 75, 25, 46, 67, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the power num rail of the motor and resolvert/ VDT power supplies. MGND may vary from -10V to +8V with respect to SGND 87 EXT_VEE EN Control Input (IMΩ to VGS) External VEE Enable Connected together via a plane or split-plane on the PCB, for the routm rail of disable the VEE charge pump. Connected to MGND to disable the VEE charge pump. Connected to MGND to disable the VEE pin 51. 88 MGND Ground Motor Ground All MGND pins 34, 75, 25, 46, 67, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the roum rail on the lower MOSFET drivers. MGND connects to the return rail of the motor and resolvert/VD power supplies. MGND may vary from -10V to +8V with respect bo SND 89 - - - Phase C current sense Current measurement input for phase C floating current sense and current measurement sense supply 91 RTN_C Signal/Power Phase C Current Sense Supply Power rail Power rail 93 - - - Pin is not fit	84	CPN	Output	Flying Capacitor	Flying capacitor negative node for the internal VBOOST charge pump. Connect a 0.47μ F capacitor between this pin and CPP pin 81. CPN swings between MGND and VGS
86 MGND Ground All MCND pins 43, 47, 52, 54, 66, 78, 66, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND 87 EXT_VEE EN Control Input (1MQ to VGS) External VEE Enable External VEE Enable Control MGND to disable the VEE charge pump, connect to MGND to disable the VEE charge pump, connect of MGND connects to the return rail to the Notor Ground 88 MGND Ground Motor Ground All MOND pins 43, 47, 52, 54, 66, 78, 66, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the Normal view MGNET drivers. MGND connects to the return rail to the Normal view MGNET drivers. MGND connects to the return rail to the lower MGNET drivers. MGND connects to the return rail to the lower MGNET drivers. MGND connects to the return rail to the sense exception 91 RTN_C Signal/Power Phase C Current Sense Return Phase C Grang current sense. Connect to either VFLT_C pin 94 for Sw_C Sensing or to VGS for low-side sensing. Connect a 1µF capacitor bewer to plans 200,01 the power rail Phase C Current Sense. Connect to SW_C C connect a full Grant return can reture driver secase and current measurement power rail </td <td>85</td> <td>VGS</td> <td>Power</td> <td></td> <td>48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to</td>	85	VGS	Power		48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to
87 EXT VPE EN Control input (MQ to VGS) External vEE Connect to MGND to disable the VEE charge pump, and connect a negative supply in the range -VGS to 48V to VEE pin 51 88 MGND Ground Motor Ground All MGND pins 43, 47, 52, 54, 66, 78, 68, 80, 00, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail of the the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND 90 CS_C Analog Input Phase C current sense Current measurement input for phase C floating current sensing, with a ±200mV linear range across the phase C sense resistor 91 RTN_C Signal/Power Phase C Current Sense Return Power rail 92 CSPS_C Power Phase C Current Sense Return Power rail 93 - - - Pin is not fitted to the package 93 - - - Pin is not fitted to the package 94 VFLT_C Power High-side FET Gate Drive Rail Schottky diode such as 1NS809US, 1N5811US or 1M6864US between VFLT 2 and VGS_C pin 99 95 UD_C FET Driver High-side FET Driver Phase C uoper N-channel MOSFET gate driver connect through a resisto	86	MGND	Ground	Motor Ground	All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect
88 MGND Ground Motor Ground connected together via a plane or split-plane on the PCB, for the return rail of the motor and resolver/LVDT power supplies. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND 89 - - - Pin Is not fitted to the package 90 CS_C Analog Input Phase C current Sense return Current measurement input for phase C floating current sense and current measurement power rail 91 RTN_C Signal/Power Phase C Current Sense Return Sense Return Sense Return Sense Supply Power to phase C floating current sense. Connect to either VFLT_C pin 94 for SW_C sensing or to VGS for Iov-side sensing. Connect a 1µF capacitor between this pin and RTN C pin 91 93 - - Pin is not fitted to the package 94 VFLT_C Power Phase C Current SW_C sensing or to VGS for Iov-side sensing. Connect a 1µF capacitor between this pin and RTN C pin 91 95 UD_C FET Driver Driver Shottky divide such as 1N5809US, 1N5811US or 1N6864US between VFLT_C and VGS_C pin 99 96 UD_C FET Driver Driver Pin as current NoSFET gate driver. Connect through a resistor such as 200 to the MOSFET gate driver. Connect through a resistor such as 200 to the MOSFET gate driver. Connet through a resistor such as 200	87				Connect to MGND to disable the VEE charge pump, and connect a negative supply in the range -VGS to -8V to VEE pin 51
88 - - Pin is not fitted to the package 90 CS_C Analog Input Phase C current sense Current measurement input for phase C floating current sense, and current measurement power rail 91 RTN_C Signal/Power Phase C Current Sense Return Sense Supply Cround reference for phase C floating current sense and current measurement power rail 92 CSPS_C Power Phase C Current Sense Supply Power to phase C floating current sense. Connect to either VFLT_C pin 94 for Sw_C sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_C pin 91 93 - - Pin is not fitted to the package 94 VFLT_C Power High-side FET Gate Drive Rail Schottky diode such as IN8309US, INS811US or IN8664US between VFLT_C and VGS_C pin 99 95 UD_C FET Driver High-side FET Driver Driver Such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor 96 SW_C FET Switch MOSFET Source Phase C upper N-channel MOSFET gate driver. Connect through a resistor 97 - - Pin is not fitted to the package Connect to the MOSFET gate driver. Connect through a resistor	88	MGND	Ground	Motor Ground	connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect
90 CS_C Analog Input Phase C current sense Current measurement input for phase C floating current sensing, with a ±200mV linear range across the phase C sense resistor 91 RTN_C Signal/Power Phase C current Sense Return Ground reference for phase C floating current sense and current measurement power rail 92 CSPS_C Power Phase C Current Sense Supply Phase C Current Sense Supply Power to phase C floating current sense. Connect to either VFLT_C pin 94 for SW_C sensing or to VGS for low-side sensing. Connect a 1µF capacitor 93 - - Pin is not fitted to the package 94 VFLT_C Power High-side FET Gate Drive Rail Floating gate drive power rail Power to Stability or Ncancel to SW_C. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_C and VGS_C pin 99 95 UD_C FET Driver High-side FET Driver Phase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or the pin with a 10µF capacitor to MGND 99 VGS_C	89	-	-	-	
30 CS_C Analog input sense ±200mV linear range across the phase C sense resistor 91 RTN_C Signal/Power Phase C Current Sense Return Ground reference for phase C floating current sense and current measurement power rail 92 CSPS_C Power Phase C Current Sense Supply Power to phase C floating current sense. Connect a 1µF capacitor between this pin and RTN_C pin 91 93 - - Power Power to phase C floating current sense. Connect a 1µF capacitor between this pin and RTN_C pin 91 94 VFLT_C Power High-side FET Gate Drive Rail Power to phase C pin 99 95 UD_C FET Driver High-side FET Driver Phase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate. MIOD provides the return current path 96 SW_C FET Driver High-side FET Driver Phase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate. MGND provides the return current path 98 LD_C FET Driver Low-side FET Driver Phase C Current NeOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate. MGND provides the return current path 99 VGS_C Power FET Gate Driver Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 9		00.0	A	Phase C current	
91 RTN_C Signal/Power Sense Return power rail 92 CSPS_C Power Phase C Current Sense Supply Power to phase C floating current sense. Connect to either VFLT_C pin 94 for Sense Supply 93 - - Pin is not fitted to the package 94 VFLT_C Power High-side FET Gate Drive Rail Floating gate drive power rail for upper N-channel MOSFET gate driver C. Bypass close to the pin with a 1µF capacitor to SW_C. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_C and VGS_C pin 99 95 UD_C FET Driver High-side FET Driver Phase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate. MGND provides the return current path Driver 99 VGS_C Power FET Gate Drive Rail Phase C upper N-channel MOSFET gate driver. Connect a plane or split-plane on the PCB, for the return current path Driver 100 MGND Ground Motor Ground All MOND privat 3, 47, 52, 54, 66, 78, 86, 80, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to th	90	ເຣ_ເ	Analog Input	sense	
92 CSPS_C Power Private C Cultering Sense Supply Sw_C sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_C pin 91 93 - - Pin is not fitted to the package 94 VFLT_C Power High-side FET Gate Drive Rail Floating gate drive power rail for upper N-channel MOSFET gate driver C. Bypass close to the pin with a 1µF capacitor to SW_C. Connect a silicon or Stottky diode such as 1NS809US, 1NS811US or 1N6864US between VFLT_C and VGS_C pin 99 95 UD_C FET Driver High-side FET Driver Phase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver source connection 97 - - Pin is not fitted to the package 98 LD_C FET Driver Driver Such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor 98 LD_C FET Driver Driver Such as 20Ω to the MOSFET gate driver. Connect through a resistor 99 VGS_C Power FET Gate Drive Rail Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 45, 56, 78, 86, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µF capacitor to MGND 100 MGND Ground Mot	91	RTN_C	Signal/Power		
94 VFLT_C Power High-side FET Gate Drive Rail Floating gate drive power rail for upper N-channel MOSFET gate driver C. Bypass close to the pin with a 1µF capacitor to SW_C. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_C and VGS_C pin 99 95 UD_C FET Driver High-side FET Driver Phase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver source connection 96 SW_C FET Switch MOSFET Source Phase C upper N-channel MOSFET gate driver source connection 97 - - Pin is not fitted to the package Phase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver source connection 98 LD_C FET Driver Low-side FET Driver Phase C upper N-channel MOSFET gate driver source connection 99 VGS_C Power FET Gate Drive Rail Phase C upper N-channel MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µF capacitor to MGND 100 MGND Ground Motor Ground All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND	92	CSPS_C	Power		SW_C sensing or to VGS for low-side sensing. Connect a 1µF capacitor
94VFLT_CPowerHigh-side FET Gate Drive RailBypass close to the pin with a 1µF capacitor to SW_C. Connect a silicon or Schottky diode such as 1NS09US, 1NS11US or 1N8864US between VFLT_C and VGS_C pin 9995UD_CFET DriverHigh-side FET DriverPhase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path96SW_CFET SwitchMOSFET SourcePhase C upper N-channel MOSFET gate driver source connection97Pin is not fitted to the package98LD_CFET DriverLow-side FET DriverPhase C lower N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path99VGS_CPowerFET Gate Driver RailConnect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µC capacitor to MGND100MGNDGroundMotor GroundAll MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND101Phase D current senseCurrent measurement input for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor101Pin is not fitted to the package102CS_DAnalo	93	-	-	-	Pin is not fitted to the package
95UD_CFET DriverHigh-side FET DriverPhase C upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path96SW_CFET SwitchMOSFET SourcePhase C upper N-channel MOSFET gate driver source connection9798LD_CFET DriverLow-side FET DriverPhase C lower N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µF capacitor to MGND100MGNDGroundMotor GroundAll MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND may vary from -10V to +8V with respect to SGND101Phase D current sense102CS_DAnalog Input Signal/PowerPhase D Current Sense ReturnGround reference for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor103RTN_DSignal/PowerPhase D Current Sense ReturnGround reference for phase D floating current sense and current measurement power rail104CSPS_DPowerPhase D Current Sense SupplyPower to Joase D floating current sense. Connect to either VFLT_D pin 106 for SW_D sensing or to VGS for Iow-side sensing. Connect a 1µF capacitor <b< td=""><td>94</td><td>VFLT_C</td><td>Power</td><td></td><td>Bypass close to the pin with a 1µF capacitor to SW_C. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between</td></b<>	94	VFLT_C	Power		Bypass close to the pin with a 1µF capacitor to SW_C. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between
96SW_CFET SwitchMOSFET SourcePhase C upper N-channel MOSFET gate driver source connection97Pin is not fitted to the package98LD_CFET DriverLow-side FET DriverPhase C lower N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path99VGS_CPowerFET Gate Driver RailPhase C lower N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µF capacitor to MGND100MGNDGroundMotor GroundAll MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND101102CS_DAnalog InputPhase D current senseGround reference for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor103RTN_DSignal/PowerPhase D Current Sense ReturnGround reference for phase D floating current sense and current measurement power rail104CSPS_DPowerPhase D Current Sense SupplyPower to phase D floating current sense. Connect to either VFLT_D pin 106 for SW_D sensing or	95	UD_C	FET Driver		Phase C upper N-channel MOSFET gate driver. Connect through a resistor
97Pin is not fitted to the package98LD_CFET DriverLow-side FET DriverPhase C lower N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µF capacitor to MGND100MGNDGroundMotor GroundAll MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail of the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND101Phase D current SenseCurrent measurement input for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor103RTN_DSignal/PowerPhase D Current Sense ReturnGround reference for phase D floating current sense and current measurement power rail104CSPS_DPowerPhase D Current Sense SupplyPower to phase D floating current sense. Connect to either VFLT_D pin 106 for SW_D sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103	96	SW_C	FET Switch		
98LD_CFET Driversuch as 20Ω to the MOSFET's gate. MGND provides the return current path99VGS_CPowerFET Gate Drive RailFET Gate Drive RailConnect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µF capacitor to MGND100MGNDGroundMotor GroundAll MGND provides the return rail to the pin with a 10µF capacitor to MGND101102CS_DAnalog InputPhase D current senseCurrent measurement input for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor103RTN_DSignal/PowerPhase D Current Sense ReturnGround reference for phase D floating current sense and current measurement power rail104CSPS_DPowerPhase D Current Sense SupplyPower to phase D floating current sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103	97	-	-	-	Pin is not fitted to the package
99VGS_CPowerFET Gate Drive Rail48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10µF capacitor to MGND100MGNDGroundMotor GroundAll MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND101102CS_DAnalog InputPhase D current senseCurrent measurement input for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor103RTN_DSignal/PowerPhase D Current Sense ReturnGround reference for phase D floating current sense and current measurement power rail104CSPS_DPowerPhase D Current Sense SupplyPower to phase D floating current sense. Connect to either VFLT_D pin 106 for SW_D sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103	98	LD_C	FET Driver		such as 20Ω to the MOSFET's gate. MGND provides the return current path
100MGNDGroundMotor GroundAll MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND101102CS_DAnalog InputPhase D current senseCurrent measurement input for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor103RTN_DSignal/PowerPhase D Current Sense ReturnGround reference for phase D floating current sense and current measurement power rail104CSPS_DPowerPhase D Current Sense SupplyPower to phase D floating current sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103	99	VGS_C	Power		48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10μ F capacitor to MGND
102 CS_D Analog Input Phase D current sense Current measurement input for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor 103 RTN_D Signal/Power Phase D Current Sense Return Ground reference for phase D floating current sense and current measurement power rail 104 CSPS_D Power Phase D Current Sense Supply Power to phase D floating current sense. Connect to either VFLT_D pin 106 for SW_D sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103				Motor Ground	All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
102 CS_D Analog input sense ±200mV linear range across the phase D sense resistor 103 RTN_D Signal/Power Phase D Current Sense Return Ground reference for phase D floating current sense and current measurement power rail 104 CSPS_D Power Phase D Current Sense Supply Power to phase D floating current sense. Connect to either VFLT_D pin 106 for SW_D sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103	101		-	-	
103 RTN_D Signai/Power Sense Return power rail 104 CSPS_D Power Phase D Current Sense Supply Power to phase D floating current sense. Connect to either VFLT_D pin 106 for SW_D sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103	102	CS_D	Analog Input	sense	±200mV linear range across the phase D sense resistor
104 CSPS_D Power Phase D Current Sense Supply for SW_D sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103	103	RTN_D	Signal/Power		power rail
	104	CSPS_D	Power		for SW_D sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_D pin 103
	105	-	-	-	Pin is not fitted to the package

Pin	Name	Pin Type	Pin Function	Description
				Floating gate drive power rail for upper N-channel MOSFET gate driver D.
106	VFLT_D	Power	High-side FET Gate Drive Rail	Bypass close to the pin with a 1µF capacitor to SW_D. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_D and VGS_D pin 111
107	UD_D	FET Driver	High-side FET Driver	Phase D upper N-channel MOSFET gate driver. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
108	SW_D	FET Switch	MOSFET Source	Phase D upper N-channel MOSFET gate driver source connection
109	-	-	-	Pin is not fitted to the package
110			Low-side FET	Phase D lower N-channel MOSFET gate driver. Connect through a resistor
110	LD_D	FET Driver	Driver	such as 20Ω to the MOSFET's gate. MGND provides the return current path
111	VGS_D	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 48, 55, 67, 85, 99, and 111 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 1μ F capacitor to MGND
112	MGND	Ground	Motor Ground	All MGND pins 43, 47, 52, 54, 66, 78, 86, 88, 100, and 112 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
113	TEST MODE2	Factory Use	Test	Internally bonded test node. Tie this pin to MGND
114	DMOD_ BW	Logic Input (1MΩ to SGND)	DMOD Driver Bandwidth	Active high (recommended for 100krad TID lifetime) to select a shorter exciter propagation delay. Leave open or tie to SGND for increased exciter propagation delay and lower current consumption
115	SGND	Power	Signal Ground	All SGND pins 22, 32, 35, 42, 115, and 128 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
116	TEST MODE1	Factory Use	Test	Internally bonded test node. Tie this pin to SGND
117	SCP	Logic Input (1MΩ to VDD)	Simultaneous Conduction Protection	Active high to prevent both UD# and LD# for a given switch pin from being held on simultaneously. If SCP is low, UD# and LD# are operated completely independently
118	TEST MODE0	Factory Use	Test	Internally bonded test node. Tie this pin to SGND
119	BL_TH	Analog Input	Bi-Level (-) threshold input	Negative (-) threshold voltage between 0.5V and 4.5V for the fixed threshold bi-level monitors (comparators) BL1 to BLI6
120	VCC	Power	Signal Supply	Connect to the signal power supply (4.75V to 5.25V). All VCC pins 21, 34, and 120 must be used. Bypass close to the pin with a 1μ F capacitor to SGND
121	VPROG	Factory Use	Test	Internally bonded test node. Tie this pin to VCC
122	BLI1	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 1 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 119. The output is BLO1 pin 129
123	BLI2	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 2 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 119. The output is BLO2 pin 130
124	BLI3	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 3 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 119. The output is BLO3 pin 131
125	BLI4	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 4 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 119. The output is BLO4 pin 132
126	BLI5	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 5 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 119. The output is BLO5 pin 1
127	BLI6	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 6 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 119. The output is BLO6 pin 2
128	SGND	Power	Signal Ground	All SGND pins 22, 32, 35, 42, 115, and 128 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
129	BLO1	Logic Output	Bi-Level Output 1	Output of fixed threshold bi-level monitor (comparator) input BLI1 at pin 122
130	BLO2	Logic Output	Bi-Level Output 2	Output of fixed threshold bi-level monitor (comparator) input BLI2 at pin 123
131	BLO3	Logic Output	Bi-Level Output 3	Output of fixed threshold bi-level monitor (comparator) input BLI3 at pin 124
132	BLO4	Logic Output	Bi-Level Output 4	Output of fixed threshold bi-level monitor (comparator) input BLI4 at pin 125

5 QFP-208 Pin Numbering and Pin Descriptions

Pin	Name	Pin Type	Pin Function	Description
1 - 4	Not bonded	unused	-	Unused pins. Leave open or connect to SGND as convenient
5	BLO5	Logic Output	Bi-Level Output 5	Output of fixed threshold bi-level monitor (comparator) input BLI5 at pin 200
6	BLO6	Logic Output	Bi-Level Output 6	Output of fixed threshold bi-level monitor (comparator) input BLI6 at pin 201
7	UD_IN_A	Logic Input	High-side FET A	Active high enable for upper N-channel MOSFET of the phase A half bridge
8 9	LD_IN_A UD_IN_B	Logic Input	Low-side FET A High-side FET B	Active high enable for lower N-channel MOSFET of the phase A half bridge
9 10	LD IN B	Logic Input Logic Input	Low-side FET B	Active high enable for upper N-channel MOSFET of the phase B half bridge Active high enable for lower N-channel MOSFET of the phase B half bridge
11		Logic Input	High-side FET C	Active high enable for upper N-channel MOSFET of the phase C half bridge
12	LD IN C	Logic Input	Low-side FET C	Active high enable for lower N-channel MOSFET of the phase C half bridge
13	Not bonded	unused	-	Unused pin. Leave open or connect to SGND as convenient
13	UD IN D	Logic Input	High-side FET D	Active high enable for upper N-channel MOSFET of the phase D half bridge
14	LD IN D	Logic Input	Low-side FET D	Active high enable for lower N-channel MOSFET of the phase D half bridge
15	DMOD_ IN_P	Logic Input	PWM Exciter Input	Resolver or LVDT transformer primary differential drive input signal working with DMOD_IN_N (pin 16). DMOD_IN_P is buffered and level shifted and output as DMOD_OUT_P (pins 75 and 76) with output swing between DMOD_PS (pins 73 and 74) and MGND
16	DMOD_ IN_N	Logic Input	PWM Exciter Input	Resolver or LVDT transformer primary differential drive input signal working with DMOD_IN_P (pin 15). DMOD_IN_N is buffered and level shifted and output as DMOD_OUT_N (pins 71 and 72) with output swing between DMOD_PS (pins 73 and 74) and MGND
17	CP_CLK	Logic Input	Charge Pump Clock	Connect a square wave clock (150kHz ±50kHz recommended) to operate the floating high-side MOSFET driver charge pump
18	PR_ FAULT	Logic Output	Power Rail Fault	Active high when one or more of the power rails is below its under voltage threshold or either the VGS or DMOD_PS supply is overloaded
19	OC_ FAULT	Logic Output	Over Current Fault	Active high when an over-current fault condition is detected at one of the floating current sensor amplifiers
20	OTW_ FAULT	Logic Output	Over Temperature Warning	Active high when the die temperature is has exceeded the over temperature warning threshold
21 - 28	Not bonded	unused	-	Unused pins. Leave open or connect to SGND as convenient
29	SM_EN	Logic Input (1M Ω to VDD)	Safe Mode Enable	Active high input enable protection countermeasures when faults are detected. Faults are reported regardless of SM_EN setting
30	RESET	Logic Input	Fault Reset	Active high input when SM_EN = 1 resets safe mode latched fault conditions
31	VREF_ OUT	Analog Output	Internal VREF Output	Internal +2.5V ±0.8% reference voltage output. Connect a 0.47µF or greater capacitor from VREF to SGND pin 35
32	VREF_IN	Analog Input	External VREF Input	Reference voltage for the ADC sigma delta modulators. To use the internal +2.5V ±0.8% reference voltage, connect VREF_IN to VREF_OUT pin 31. Alternatively, connect to an external 2.5V ±0.2V reference voltage
33- 34	VCC	Power	Signal Supply	Connect to the signal power supply (4.75V to 5.25V). All VCC pins 33, 34, 53, 54, and 187 must be used. Bypass close to the pin with a 1μ F capacitor to SGND
35	SGND	Power	Signal Ground	All SGND pins 35, 45, 46, 55, 56, 63, 64, 181, 184, and 202 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
36	VDD	Power	I/O Supply	Connect to the external logic controller's (FPGA, MCU) I/O power supply (2.1V to 5.5V) to set the I/O logic level for all logic I/Os. Bypass close to the pin with a 1μ F capacitor to SGND
37	SNS_ OUT_A	Logic Output	Phase A Current Sense Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between CS_A pin 99 and RTN_A pin 98
38	SNS_ OUT_B	Logic Output	Phase B Current Sense Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between CS_B pin 122 and RTN_B pin 121
39	SNS_ OUT_C	Logic Output	Phase C Current Sense Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between CS_C pin 139 and RTN_C pin 140
40	SNS_ OUT_D	Logic Output	Phase D Current Sense Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between CS_D pin 163 and RTN_D pin 164

Pin	Name	Pin Type	Pin Function	Description
	Hume	i il i jpe		
41	ADC1	Logic Output	ADC 1 Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between ADC1_P pin 62 and ADC1_N pin 61
42	ADC2	Logic Output	ADC 2 Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between ADC2 P pin 60 and ADC2 N pin 59
43	ADC3	Logic Output	ADC 3 Data	Pulse train output of 2nd order Σ - Δ modulator where the output pulse train represents the magnitude and polarity of the differential voltage potential between ADC3_P pin 58 and ADC3_N pin 57
44	MOD_CLK	Logic Input	Σ-Δ Mod Clock	Connect a 24MHz to 32MHz sample rate clock for the Σ - Δ modulators
45 - 46	SGND	Power	Signal Ground	All SGND pins 35, 45, 46, 55, 56, 63, 64, 181, 184, and 202 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
47	CLK_OUT	Logic Output	Σ - Δ Output Clock	Output clock for the SNS_OUT_A, SNS_OUT_B, SNS_OUT_C, SNS_OUT_D, ADC1, ADC2, ADC3 Σ-Δ modulators, rising edge active
48 - 52	Not bonded	unused	-	Unused pins. Leave open or connect to SGND as convenient
53 - 54	VCC	Power	Signal Supply	Connect to the signal power supply (4.75V to 5.25V). All VCC pins 33, 34, 53, 54, and 187 must be used. Bypass close to the pin with a 1μ F capacitor to SGND
55 - 56	SGND	Power	Signal Ground	All SGND pins 35, 45, 46, 55, 56, 63, 64, 181, 184, and 202 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
57	ADC3_N	Analog Input	ADC3 differential	ADC3_P and ADC3_N form a differential analog signal feeding into the ADC3
58	ADC3_P	Analog Input	input	sigma delta modulator
59	ADC2_N	Analog Input	ADC2 differential	ADC2_P and ADC2_N form a differential analog signal feeding into the ADC2
60	ADC2_P	Analog Input	input ADC1 differential	sigma delta modulator
61 62	ADC1_N ADC1_P	Analog Input		ADC1_P and ADC1_N form a differential analog signal feeding into the ADC1 sigma delta modulator
63 - 64	SGND	Analog Input Power	input Signal Ground	All SGND pins 35, 45, 46, 55, 56, 63, 64, 181, 184, and 202 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
65 - 68	Not bonded	unused	-	Unused pins. Leave open or connect to SGND or MGND as convenient
69 - 70	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
71 - 72	DMOD_ OUT_N	Analog Output	PWM Exciter Output	Resolver or LVDT transformer primary differential drive output working with DMOD_OUT_P (pins 75 and 76). Use both pins tied together. Input is PWM signal at DMOD_IN_N (pin 16). Output swing is between DMOD_PS (pins 73 and 74) and MGND
73 - 74	DMOD_PS	Power	PWM Exciter Supply	Connect to the demodulator driver power supply (10V to 18V), typically VGS. Use both pins tied together. Bypass close to the pin with a 10µF capacitor to MGND DMOD_PS provides power to the DMOD_OUT_P (pin 46) and DMOD_OUT_N (pin 44) differential drivers
75 - 76	DMOD_ OUT_P	Analog Output	PWM Exciter Output	LVDT transformer primary differential drive output working with DMOD_OUT_N (pins 71 and 72). Use both pins tied together. Input is PWM signal at DMOD_IN_P (pin 15). Output swing is between DMOD_PS (pins 73 and 74) and MGND
77 - 78	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
79	Not bonded	unused	_	Unused pin. Leave open or connect to MGND as convenient
80	VGS	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 80, 86, 108, 133, 153, and 176 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 1μ F capacitor to MGND
81	VEE_ CP_P	Output	Charge Pump Flying Capacitor inverting	Flying capacitor positive node for the internal VEE inverting charge pump. Connect a 1μ F capacitor between this pin and VEE_CP_N pin 82. VEE_CP_P swings between VMPS and VMPS + VGS

QFP-208 Pin Numbering and Pin Descriptions

Pin	Name	Pin Type	Pin Function	Description
82	VEE_ CP_N	Output	Charge Pump Flying Capacitor inverting	Flying capacitor negative node for the internal VEE inverting charge pump. Connect a 1µF capacitor between this pin and VEE_CP_P pin 81. VEE_CP_N swings between MGND and VEE
83	VEE	Power	Negative power rail	To use the internal VEE charge pump, tie <u>EXT_VEE_EN</u> pin 135 to VGS. Alternatively, connect an external negative supply in the range -VGS to -8V to VEE and tie <u>EXT_VEE_EN</u> pin 135 to MGND to disable the VEE charge pump. Connect a 2.2µF capacitor between this pin and MGND at pins 84 and 85
84 - 85	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
86	VGS_A	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 80, 86, 108, 133, 153, and 176 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10μ F capacitor to MGND
87 - 88	LD_A	FET Driver	Low-side FET Driver	Phase A lower N-channel MOSFET gate driver. Use both pins tied together. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
89	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
90 - 91	SW_A	FET Switch	MOSFET Source	Phase A upper N-channel MOSFET gate driver source connection. Use both pins tied together
92 - 93	UD_A	FET Driver	High-side FET Driver	Phase A upper N-channel MOSFET gate driver. Use both pins tied together. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
94	VFLT_A	Power	High-side FET Gate Drive Rail	Floating gate drive power rail for upper N-channel MOSFET gate driver A. Bypass close to the pin with a 1µF capacitor to SW_A. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_A and VGS_A pin 86
95	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
96	CSPS_A	Power	Phase A Current Sense Supply	Power to phase A floating current sense. Connect to either VFLT_A pin 94 for SW_A sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_A pin 98
97	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
98	RTN_A	Signal/Power	Phase A Current Sense Return	Ground reference for phase A floating current sense and current measurement power rail
99	CS_A	Analog Input	Phase A current sense	Current measurement input for phase A floating current sensing, with a ±200mV linear range across the phase A sense resistor
100	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
101	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
102 - 107	Not bonded	unused	-	Unused pins. Leave open or connect to MGND as convenient
108	VGS_B	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 80, 86, 108, 133, 153, and 176 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10μ F capacitor to MGND
109 - 110	LD_B	FET Driver	Low-side FET Driver	Phase B lower N-channel MOSFET gate driver. Use both pins tied together. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
111	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
112 - 113	SW_B	FET Switch	MOSFET Source	Phase B upper N-channel MOSFET gate driver source connection. Use both pins tied together
114 - 115	UD_B	FET Driver	High-side FET Driver	Phase B upper N-channel MOSFET gate driver. Use both pins tied together. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path

Pin	Name	Pin Type	Pin Function	Description
116	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
117	VFLT_B	Power	High-side FET Gate Drive Rail	Floating gate drive power rail for upper N-channel MOSFET gate driver B. Bypass close to the pin with a 1µF capacitor to SW_B. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_B and VGS_B pin 108
118	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
119	CSPS_B	Power	Phase B Current Sense Supply	Power to phase B floating current sense. Connect to either VFLT_B pin 117 for SW_B sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_B pin 121
120	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
121	RTN_B	Signal/Power	Phase B Current Sense Return	Ground reference for phase B floating current sense and current measurement power rail
122	CS_B	Analog Input	Phase B current sense	Current measurement input for phase B floating current sensing, with a ±200mV linear range across the phase B sense resistor
123	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
124	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
125	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
126	VMPS	Power	Motor Power supply	Motor power rail, used for the upper MOSFET drivers charge pump, VBOOST pin 130. Connect a 1μ F capacitor between this pin and MGND
127	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
128	CPP	Output	Charge Pump Flying Capacitor inverting	Flying capacitor negative node for the internal VBOOST charge pump. Connect a 0.47µF capacitor between this pin and CPN pin 132. CPP swings between VMPS and (VMPS + VGS)
129	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
130	VBOOST	Power	Upper MOSFET Driver Charge Pump	Charge pump output which is VGS volts above VMPS, unloaded. Connect a $1\mu F$ capacitor between this pin and VMPS pin 126
131	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
132	CPN	Output	Charge Pump Flying Capacitor inverting	Flying capacitor negative node for the internal VBOOST charge pump. Connect a 0.47µF capacitor between this pin and CPP pin 128. CPN swings between MGND and VGS
133	VGS	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 80, 86, 108, 133, 153, and 176 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 1μ F capacitor to MGND
134	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
135	EXT_VEE_ EN	Control Input (1M Ω to VGS)	External VEE Enable	Active high (leave open or tie to VGS) to enable the VEE charge pump. Connect to MGND to disable the VEE charge pump, and connect a negative supply in the range -VGS to -8V to VEE pin 83
136	Not bonded	unused	-	Unused pin. Leave open or connect to MGND as convenient
137	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
138	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage

QFP-208 Pin Numbering and Pin Descriptions

Pin	Name	Pin Type	Pin Function	Description
139	CS_C	Analog Input	Phase C current sense	Current measurement input for phase C floating current sensing, with a ±200mV linear range across the phase C sense resistor
140	RTN_C	Signal/Power	Phase C Current Sense Return	Ground reference for phase C floating current sense and current measurement power rail
141	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
142	CSPS_C	Power	Phase C Current Sense Supply	Power to phase C floating current sense. Connect to either VFLT_C pin 144 for SW_C sensing or to VGS for low-side sensing. Connect a 1μ F capacitor between this pin and RTN_C pin 140
143	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
144	VFLT_C	Power	High-side FET Gate Drive Rail	Floating gate drive power rail for upper N-channel MOSFET gate driver C. Bypass close to the pin with a 1μ F capacitor to SW_C. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_C and VGS_C pin 153
145	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
146, 147	UD_C	FET Driver	High-side FET Driver	Phase C upper N-channel MOSFET gate driver. Use both pins tied together. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
148, 149	SW_C	FET Switch	MOSFET Source	Phase C upper N-channel MOSFET gate driver source connection. Use both pins tied together
150	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
151, 152	LD_C	FET Driver	Low-side FET Driver	Phase C lower N-channel MOSFET gate driver. Use both pins tied together. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
153	VGS_C	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 80, 86, 108, 133, 153, and 176 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10μ F capacitor to MGND
154 - 160	Not bonded	unused	-	Unused pins. Leave open or connect to MGND as convenient
161	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
162	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
163	CS_D	Analog Input	Phase D current sense	Power to phase D floating current sense. Connect to either VFLT_D pin 168 for SW_D sensing or to VGS for low-side sensing. Connect a 1µF capacitor between this pin and RTN_D pin 164
164	RTN_D	Signal/Power	Phase D Current Sense Return	Current measurement input for phase D floating current sensing, with a ±200mV linear range across the phase D sense resistor
165	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
166	CSPS_D	Power	Phase D Current Sense Supply	Ground reference for phase D floating current sense and current measurement power rail
167	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
168	VFLT_D	Power	High-side FET Gate Drive Rail	Floating gate drive power rail for upper N-channel MOSFET gate driver D. Bypass close to the pin with a 1µF capacitor to SW_D. Connect a silicon or Schottky diode such as 1N5809US, 1N5811US or 1N6864US between VFLT_D and VGS_D pin 176
169, 170	UD_D	FET Driver	High-side FET Driver	Phase D upper N-channel MOSFET gate driver. Use both pins tied together. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
171, 172	SW_D	FET Switch	MOSFET Source	Phase D upper N-channel MOSFET gate driver source connection. Use both pins tied together
173	Not bonded	unused	-	Unused pin. Leave open since adjacent pin can be at high voltage
174, 175	LD_D	FET Driver	Low-side FET Driver	Phase D lower N-channel MOSFET gate driver. Use both pins tied together. Connect through a resistor such as 20Ω to the MOSFET's gate. MGND provides the return current path
June 2	2020			LX7720 rev 1.1 13

Pin	Name	Pin Type	Pin Function	Description
	Nume	Thrippe	T III T direction	
176	VGS_D	Power	FET Gate Drive Rail	Connect to the MOSFET gate driver power supply (10V to 18V). All VGS pins 80, 86, 108, 133, 153, and 176 must be used, connected together via a plane or split-plane on the PCB, for the power to the MOSFET drivers. Bypass close to the pin with a 10μ F capacitor to MGND
177	MGND	Ground	Motor Ground	All MGND pins 69, 70, 77, 78, 84, 85, 101, 124, 134, 137, 161, and 177 must be used, connected together via a plane or split-plane on the PCB, for the return rail to the lower MOSFET drivers. MGND connects to the return rail of the motor and resolver/LVDT power supplies. MGND may vary from -10V to +8V with respect to SGND
178	TEST MODE2	Factory Use	Test	Internally bonded test node. Tie this pin to MGND
179	DMOD_ BW	Logic Input (1MΩ to SGND)	DMOD Driver Bandwidth	Active high (recommended for 100krad TID lifetime) to select a shorter exciter propagation delay. Leave open or tie to SGND for increased exciter propagation delay and lower current consumption
180	Not bonded	unused	-	Unused pin. Leave open or connect to SGND as convenient
181	SGND	Power	Signal Ground	All SGND pins 35, 45, 46, 55, 56, 63, 64, 181, 184, and 202 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
182	TEST MODE1	Factory Use	Test	Internally bonded test node. Tie this pin to SGND
183	SCP	Logic Input $(1M\Omega \text{ to VDD})$	Simultaneous Conduction Protection	Active high to prevent both UD# and LD# for a given switch pin from being held on simultaneously. If SCP is low, UD# and LD# are operated completely independently
184	SGND	Power	Signal Ground	All SGND pins 35, 45, 46, 55, 56, 63, 64, 181, 184, and 202 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
185	TEST MODE0	Factory Use	Test	Internally bonded test node. Tie this pin to SGND
186	BL_TH	Analog Input	Bi-Level (-) threshold input	Negative (-) threshold voltage between 0.5V and 4.5V for the fixed threshold bi-level monitors (comparators) BL1 to BLI6
187	VCC	Power	Signal Supply	Connect to the signal power supply (4.75V to 5.25V). All VCC pins 33, 34, 53, 54, and 187 must be used. Bypass close to the pin with a 1μ F capacitor to SGND
188 - 194	Not bonded	unused	-	Unused pins. Leave open or connect to SGND as convenient
195	VPROG	Factory Use	Test	Internally bonded test node. Tie this pin to VCC
196	BLI1	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 1 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 186. The output is BLO1 pin 203
197	BLI2	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 2 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 186. The output is BLO2 pin 204
198	BLI3	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 3 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 186. The output is BLO3 pin 205
199	BLI4	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 4 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 186. The output is BLO4 pin 206
200	BLI5	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 5 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 186. The output is BLO5 pin 5
201	BLI6	Analog Input	Bi-Level (+) input 1	Fixed threshold bi-level monitor (comparator) positive (+) input 6 which is compared against either an external voltage between 0.5V and 4.5V on the BL_TH pin 186. The output is BLO5 pin 6
202	SGND	Power	Signal Ground	All SGND pins 35, 45, 46, 55, 56, 63, 64, 181, 184, and 202 must be used, connected together via a plane or split-plane on the PCB, for the signal ground. SGND may vary from -10V to +8V with respect to MGND
203	BLO1	Logic Output	Bi-Level Output 1	Output of fixed threshold bi-level monitor (comparator) input BLI1 at pin 196
204	BLO2	Logic Output	Bi-Level Output 2	Output of fixed threshold bi-level monitor (comparator) input BLI2 at pin 197
205 206	BLO3 BLO4	Logic Output Logic Output	Bi-Level Output 3 Bi-Level Output 4	Output of fixed threshold bi-level monitor (comparator) input BLI3 at pin 198 Output of fixed threshold bi-level monitor (comparator) input BLI4 at pin 199
200	Not			
208	bonded	unused	-	Unused pins. Leave open or connect to SGND as convenient

6 Absolute Maximum Ratings

Note: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Parameter	Min	Мах	Units
Motor power supply (VMPS) to MGND	-0.5	80	V
Switch pin (SW_#) and RTN_# to MGND	-1.0	80	V
Signal Power Supply (VCC) to SGND	-0.5	7	V
Logic Supply Voltage (VDD) to SGND	-0.5	7	V
Ground potential difference (SGND to MGND)	-10	10	V
Gate Driver Power Supply (VGS) to MGND	-0.5	22	V
Negative Power Supply (VEE_IN) to MGND	-22	0.5	V
Voltage reference (VREF_IN) to SGND	-0.5	7	V
Resolver power (DMOD_PS) to MGND	-0.5	22	V
Current sense power sup (CSPS_#) to RTN_#	-0.5	22	V
Current sense (CS_#) to RTN_#	-5	5	V
FPGA interface (Pins 1 to 18, 24 to 31, 33, 117, 129 to 132) to SGND	-0.5	(VDD + 0.5), <7	V
Bi-Level Inputs (BLI1 to BLI6, BL_TH) to SGND	-0.5	7	V
Bi-Level Inputs clamp current	-3	3	mA
ADC#_P, ADC#_N to SGND	-0.5	7	V
Operating Junction Temperature	-55	150	°C
Storage Junction Temperature	-65	160	О°
Peak Lead Solder Temperature (10 seconds)		260 (+0, -5)	°C

7 Electrostatic Discharge Ratings

Note: JEDEC JEP155 states that 500V HBM allows safe manufacturing with a standard ESD controlled process. JEDEC JEP157 states that 250V CDM allows safe manufacturing with a standard ESD controlled process. ESD ratings apply to all pins.

ESD Test	Minimum Capability
HBM: Human Body Model, per MIL-STD-883 TM3015	±500V
CDM: Charged Device Model, per ANSI/ESDA/JEDEC JS-002	±250V

8 **Operating Ratings**

Note: Performance is generally guaranteed over this range as further detailed below under Electrical Characteristics.

Parameter	Min	Мах	Units
Motor Power Supply (VMPS) to MGND	20	60	V
Signal Power Supply (VCC) to SGND	4.75	5.25	V
Logic Supply Voltage (VDD) to SGND	2.1	5.5	V
Gate Driver Power Supply (VGS) to MGND (with VGS to SGND > 7V)	10	18	V
Negative voltage reference (VEE_IN)	-VGS	-8	V
VGS voltage if using internally generated VEE	12	18	V
VFLT_# bootstrap diode forward DC current	0	100	mA
VFLT_# bootstrap diode peak repetitive current		1	Α
VFLT_# bootstrap diode forward current at hard switching to reverse bias		50	mA
VFLT_# bootstrap diode maximum dissipated power	0	120	mW
Voltage reference (VREF_IN) to SGND	2.3	2.7	V
DMOD_PS exciter voltage to MGND (with DMOD_PS to SGND > 7V)	10	18	V
DMOD_PS exciter current		100	mA
One MOSFET driver average source/sink (Qg x Fsw)		25	mA
Current sense power sup (CSPS_#) to RTN_#		18	V
Current sense (CS_#) to RTN_#	-250	250	mV
Ground potential difference (MGND to SGND)	-10	8	V

C Microsemi.

Radiation Tolerant Power Driver with Four Half-Bridge Drivers, Rotation and Position Sensing

9 Thermal Properties

Thermal resistance, θ_{JB} , is provided from die to the back surface of the package. Junction temperature T_J is calculated using $T_J = T_B + (PD \times \theta_{JB})$, where T_B is the temperature maintained on the back surface of the package. See also the Heatsink Recommendations section 11 on page 19

Package	Thermal Resistance	Тур	Units
CQFP-132	Ο	1.93	°C/W
QFP-208	θ_{JB}	6.5	C/VV

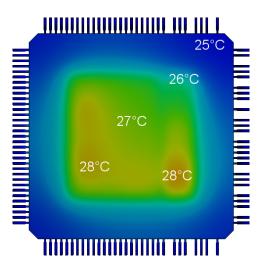
10 Electrical Characteristics

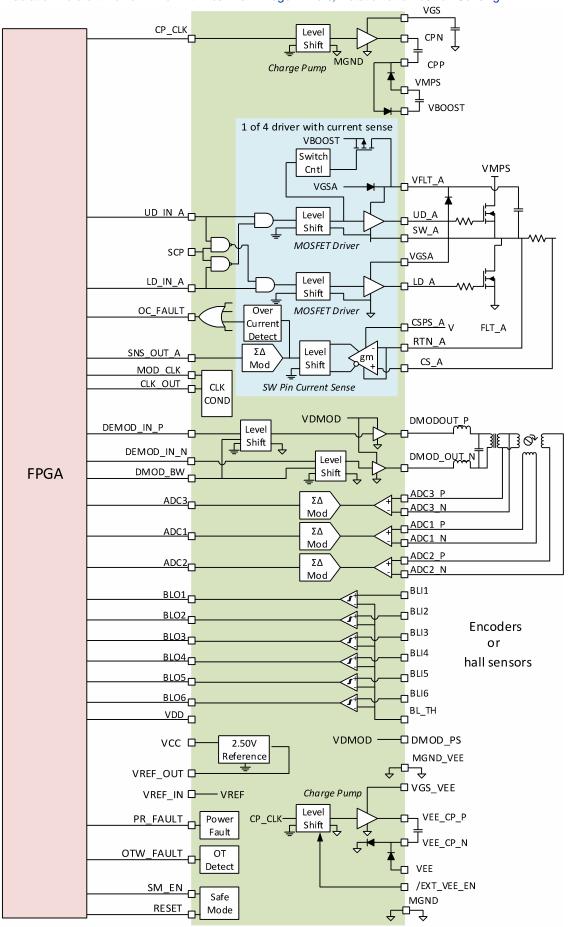
The following specifications apply over the operating ambient temperature of $-55^{\circ}C \le T_A \le 125^{\circ}C$ except where otherwise noted with the following test conditions: $V_{VCC} = 5.0V$, $V_{VDD} = 3.3V$; $V_{VREF_IN} = 2.5V$; $V_{VGS} = 15.0V$; $V_{VEE} = -15.0V$; $(EXT_VEE=GND)$; $V_{DMOD_PS} = 15.0V$; $V_{BL_TH} = 2.5V$; MOD_CLK = 32MHz; CP_CLK = 200kHz, $V_{VMPS} = 50V$. Typical parameters refer to $T_J = 25^{\circ}C$. Positive currents flow into pins. THD is measured based on fundamental and harmonics up to seventh order.

Symbol	Parameter	Test Conditions/Comments	Min	Тур	Max	Units
Operating Curren	nt					
		All ADCs off, all current sense off	5	15	20	mA
Ivcc	VCC Current	All ADCs on, all current sense off	25	46	55	mA
	VCC Current	All ADCs off, all current sense on	35	67	80	mA
		All ADCs on, all current sense on	60	98	120	mA
lygs	VGS Current	All UD_IN# and LD_IN# low	10	20	26	mA
IVGS	VGS Cullent	All LD_IN# and UD_IN# high	15	26	33	mA
		All UD_IN# and LD_IN# low	-12	-8	-4	mA
I _{VEE}	VEE Current	All UD_IN# and LD_IN# low; VEE = -15V; no load on DMOD_OUT_N/P; DMOD_IN_P high; DMOD_IN_N low; DMOD_BW low; DMOD_PS = 15V	-21	-14	-6	mA
		No load on DMOD_OUT_N/P; DMOD_IN_P and DMOD_IN_N low; DMOD_BW low; DMOD_PS = 15V	0.2	1	1.5	mA
I _{DMOD_PS}	DMOD_PS Current	No load on DMOD_OUT_N/P; DMOD_IN_P high; DMOD_IN_N low; DMOD_BW low; DMOD_PS = 15V	2	6	11	mA
		No load on DMOD_OUT_N/P; DMOD_IN_P high; DMOD_IN_N low; DMOD_BW high; DMOD_PS = 15V	4	10	17	mA
I _{VDD}	VDD Current	All LD_IN# = HI and UD_IN# = HI	0	25	42	mA
Under Voltage De	etection					
V _{VCC}	VCC UVLO	Voltage rising; 200mV Hysteresis	4	4.25	4.5	V
V _{VDD}	VDD UVLO	Voltage rising; 200mV Hysteresis	1.6	1.8	2.0	V
V _{VGS} to MGND	VGS UVLO to MGND	Voltage falling; 200mV Hysteresis	9.1	9.4	9.8	V
V _{VGS} to SGND	VGS UVLO to SGND	Voltage rising; 120mV Hysteresis	6.2	6.4	6.6	V
V _{VEE}	VEE_IN UVLO	Voltage falling; 350mV Hysteresis	-8	-7	-6	V
Internally Regula	ted Voltages and Currents					
V _{VREF_OUT}	VREF reference		2.48	2.5	2.52	V
V _{VEE}	Inverting charge pump	No external load; EXT_VEE = open;	1.0	1.9	2.4	V
V _{VBOOST}	Charge pump	Boot strap not connected;10mA load	0.5	1.6	2.1	V
V _{VBOOST} - V _{VFLT#}	VBOOST switch	With UD IN # high		0.3	0.6	V
IVREF OUT	VREF reference	Short Circuit Current		50		mA
I _{VGS#}	Fault threshold	VGS_A, VGS_B, VGS_C and VGS_D fault			360	mA
I _{VGS#}	Fault blanking	VGS# spike duration to trigger fault with 400mA load	110 1.5	3.5		μs
IDMOD PS	Fault threshold	DMOD PS fault current threshold	110		360	mA
IDMOD_PS	Fault blanking	DMOD_PS spike duration to trigger fault with 400mA load	1.5	3.5		μs

Symbol	Parameter	Test Conditions/Comments	Min	Тур	Мах	Units
MOSFET DRIV	ER (C _{load} = 1000pF)					
		VFLT# to UD #; UD IN # = high	0.85		10.0	
R _{UD#}	Upper driver impedance	UD_# to SW_#; UD_IN_# = low	0.85		10.0	Ω
		UD # to SW #, VGS = 0 to UVLO	0.00		20k	
		VGS_OUT to UD_#; LD_IN_# = high	0.85		10.0	
R _{LD#}	Lower driver impedance	LD # to MGND; LD IN $\#$ = low	0.85		10.0	Ω
· ·LD#		LD # to MGND; VGS = 0 to UVLO			20k	
		Upper Driver; UD IN # to UD A	140	250	400	
t _{PHL, PLH}	Propagation delay	Lower Driver; LD IN # to LD A	140	250	400	ns
<pre>FIL, FLII</pre>		Matching all drivers, all edges		200	150	
t _{R,F}	Rise time and fall time	10% to 90%	20	60	120	ns
413,1	Minimum input pulse	Output reaches 67% VGS for t _{PWH} and 1V for				
t _{PWH} , t _{PWL}	width (high or low)	for t _{PWL}			300	ns
I _{UD#}	Leakage current with VGS and VCC = 0V	UD_#, SW_#, VFLT_# wired together; V _{SW_#} = 0V to 80V ref to MGND	-50		50	μA
V _{UD#}	Upper drive voltage with 100% duty cycle	UD_IN# held high, UD_# loaded with 4mA. Measured relative to VMPS	11.5		15	V
dV _{SW} /dt	Max SW # slew rate				10	kV/µs
Internal bootst					-	
V _{ON_B}	Forward voltage	IF = 100mA, T _i = 25°C	0.9		1.1	V
V _{ON_B}	Forward voltage	$IF = 100 \text{mA}, T_i = -55^{\circ}\text{C} \text{ and } 125^{\circ}\text{C}$	0.8		1.2	v
t _{RR_B}	Reverse recovery time	$IF = 100 \text{mA}, V_B = 9V, dI_F/dt = 1A/\mu s$	0.0	600	1.2	ns
I _{RM B}	Peak reverse recovery	$IF = 100 \text{mA}, V_R = 9V, dI_F/dt = 1A/\mu s$		90		mA
-		256, input common mode = 2.1V unless other	wice one			ША
			wise spe			
FSR _{ADC} # SLR _{ADC} #	Max differential input Specified linear range	Extrapolated Clipping points of PDM output		±1400 ±800		mV mV
		With Vdiff = ±800mV and THD <		1000	VCC-	
Vcmr_adc_#	Input common mode	THD24/32 _{ADC} (Max) - 3dB	0.5		2.1V	V
V _{CMR_ADC_#}	Common mode rejection Max frequency	With attenuation < 0.1dB	43 20			dB kHz
BW _{ADC_#}	Min frequency	By design	20		0	Hz
		$T_i = 25^{\circ}C$ and $125^{\circ}C$	-0.65		0.65	%
AV _{ADC_#}	Gain error	$T_i = -55^{\circ}C$	-0.8		0.8	%
		Equivalent input for code measured to shorted inputs. $T_i = 25^{\circ}C$	-0.05		0.05	%FSR
VOS_ADC	Offset error	Equivalent input for code measured to shorted inputs. $T_i = 125^{\circ}C$	-0.12		0.12	%FSR
		Equivalent input for code measured to shorted inputs. $T_i = -55^{\circ}C$	-0.5		0.5	%FSR
INL24 _{ADC}	Integral Non-Linearity	Gain error from straight line at 24MHz	-0.03	±0.01	0.03	%FSR
INL32 _{ADC}	Integral Non-Linearity	Gain error from straight line at 32MHz	-0.06	±0.02	0.06	%FSR
RES24 _{ADC}	No missing codes resolution at 24MHz	Histogram test using triangular wave	14	15		bits
RES32 _{ADC}	No missing codes resolution at 32MHz	Histogram test using triangular wave	13	14		bits
SNR24 _{ADC}	Signal to Noise Ratio at	Full scale sinewave RMS / noise RMS in 1kHz	93	100		dB
THD24 _{ADC}	24MHz clock Total Harmonic Distortion	bandwidth Input frequency = 1kHz, amplitude = 800mV		-79	-73	dB
SNR32 _{ADC}	at 24MHz clock Signal to Noise Ratio at	Full scale sinewave RMS / noise RMS in 1kHz	92	98		dB
-	32MHz clock Total Harmonic Distortion	bandwidth	32		70	
THD32 _{ADC}	at 32MHz clock	Input frequency = 1 kHz , amplitude = 800mV ADC# P= ADC# N > V _{SWTO} to cause ADC		-78	-70	dB
t _{swto}	ADC Timeout	modulator sleep mode	225	1/25	325	μs
V _{SWTO}	ADC timeout threshold		VCC - 0.25	VCC - 0.1	VCC	V
CADC#	Diff input capacitance			10		pF
RADC#	Diff input resistance		50	250		kΩ

Symbol	Parameter	Test Conditions/Comments	Min	Тур	Max	Units	
Floating Current	Sense (with sinc3 filter and	OSR = 256, input common mode = 0V unless of	otherwise	specifie	d)		
FSR _{CS_#}	Max differential input	Clipping points of PDM output		±350		mV	
SLR _{CS} #	Specified linear range			±200		mV	
	Input common mode	la suit a sum as us da faura 0 ta 50) (-0.15		0.45		
E _{CMR_CS}	induced gain error	Input common mode from 0 to 50V			0.15	%	
V _{CMR_CS}	Input common mode	CM = 50V				dB	
	rejection		85			-	
BW _{CS} #	Max frequency	With attenuation < 3dB	75			kHz	
	Min frequency	With attenuation < 0.1dB			0	Hz	
AV _{CS_#}	Gain error	$T_j = 25^{\circ}C$	-0.5		0.5	%	
AV _{CS_#}	Gain error	$T_{j} = -55^{\circ}C$ and $125^{\circ}C$	-1.3		1.3	%	
Vos_cs	Offset error	VCS_# = VRTN_#, T _j = 25°C	-0.4		0.4	%FSF	
Vos_cs	Offset error	VCS_# = VRTN_#, T _j = -55°C and 125°C	-1.2		1.2	%FSF	
RES24 _{CS}	No missing codes	Histogram test using triangular wave	14	14		bits	
	resolution at 24MHz						
RES32 _{CS}	No missing codes resolution at 32MHz	Histogram test using triangular wave	13	14		bits	
INL24 _{CS}	Integral Non-Linearity at 24MHz clock.	Gain error from straight line	-0.06	±0.03	0.06	%FSR	
INL32 _{CS}	Integral Non-Linearity at 32MHz clock.	Gain error from straight line	-0.06	±0.03	0.06	%FSR	
SNR24 _{CS}	Signal to Noise Ratio at 24MHz clock	Full scale sinewave RMS / noise RMS in 4kHz bandwidth, OSR = 64	74	78		dB	
THD24 _{CS}	Total Harmonic Distortion at 24MHz clock	Input frequency = 1kHz, amplitude = 200mV, OSR = 64		-75	-65	dB	
SNR32 _{CS}	Signal to Noise Ratio at 32MHz clock	Full scale sinewave RMS / noise RMS in 4kHz bandwidth, OSR = 64	73	77		dB	
THD32 _{CS}	Total Harmonic Distortion at 32MHz clock	Input frequency = 1kHz, amplitude = 200mV, OSR = 64		-75	-65	dB	
ZIN CS	Differential Input Imped.	CS # to RTN #	0.1	2		MΩ	
2.11_00	Common mode	RTN # or CS # to MGND	50	150		kΩ	
IBIAS_CS#	CS # bias current		-0.2	100	0.2	mA	
IBIAS RTN#	RTN # bias current		-1		1	mA	
	Over Current Sense	Current flow into SW # pin	260	320	380	mV	
V _{CS_#}	Threshold	Current flow out of SW # pin	-380	-320	-260		
V _{CS #}	Over Current Blanking	Spike filter pole	10		20	μs	
ICS_#	Leakage current with	CPS_#, RTN_#, CS_# wired together; $V_{CS} =$	-50		50	μA	
_	VCPS_# and VCC = 0V	0V to 80V referenced to MGND					
	ver (differential load of 100 Ω	,				-	
Vdmod out p, N	Voltage Range	Either output relative to MGND	10		18	V	
Rdmod_out_p, N	Source Impedance	WRT DMOD_PS; Sourcing current	0.8	2	4	Ω	
		WRT MGND; Sinking current	0.8	2	4		
Rdmod_out_p, N	High-Z state leakage	DMOD_IN_P/N inactive; WRT DMOD_PS or MGND	-50		50	μA	
+	Propagation Delay H to L	DMOD_IN_# to DMOD_OUT_#; DMOD_BW = HI	65		145		
t _{PHL}		DMOD_IN_# to DMOD_OUT_#; DMOD_BW = LOW	75		155	ns	
		DMOD_IN_# to DMOD_OUT_#; DMOD_BW = HI	65		145		
t _{PLH}	Propagation Delay L to H	DMOD_IN_# to DMOD_OUT_#; DMOD_BW = LO	75		155	– ns	
t _{PHL} , _{PLH}	Propagation Delay	Matching between DMOD_OUT_P and DMOD_OUT_N; HL to HL and LH to LH		7	20	ns	
t _R	Rise time	10% to 90%	4	17	30	ns	
	Fall time	10% to 90%	6	33	60	ns	
	1						
t _F							
t _⊧ Clocks		Frequency range	24		30	М⊔⇒	
t _F Clocks F _{MOD CLK}	MOD_CLK MOD_CLK missing	Frequency range	24	200	32	MHz	
t _⊧ Clocks	MOD_CLK MOD_CLK missing CLK OUT	Frequency range Minimum non-transition dead time Delay CLK_OUT to ADC# and SENS_OUT_#	24 0.5	200 7	32 15	MHz ns ns	


Symbol	Parameter	Test Conditions/Comments	Min	Тур	Max	Units	
Logic Levels							
	Input logic threshold for	VIH	70			%VDD	
VLOG_IN	VDD related inputs: UD IN #, DMOD IN #,	VIL			30	%VDD	
VDD	SM_EN, RESET,		400	100		-	
	MOD_CLK, SCP	Hysteresis at VDD = 3.3V	100	160	220	mV	
ILOG_IN VDD	Input current for above VDD related inputs	VLOG_IN = 3.3V (with pull down resistor) VLOG_IN = 0V (with pull up resistor)	-7	4	7	μA	
VLOG IN	Input logic threshold for		1.2	-4			
EXT VEE	EXT VEE	VIL	1.2		0.25	V	
ILOG_IN EXT_VEE	Input current for EXT_VEE	VLOG_IN = 0V	-80	-38	-10	μA	
VLOG_IN	Input logic threshold for	VIH	1.8			V	
DMOD_BW	DMOD_BW	VIL			0.4	v	
ILOG_IN	Input current for	VLOG_IN = 3.3V	10	37	80	μA	
DMOD_BW	DMOD_BW	VLOG_IN = 0V	-1	0	1	μ, ι	
VLOG OUT	Logic output levels for VDD related outputs:	High logic level (100µA source)	VDD - 0.3		VDD	V	
VDD -	BLO_#, PR_FAULT, OC_FAULT, CLK_OUT, SNS_OUT_#, ADC#	Low logic level (100µA sink)	0		0.3		
Fixed Threshold	d Bi-Level Inputs						
V _{BL_TH#}	Threshold, rising voltage		2.4	2.5	2.6	V	
V _{BL_HYS#}	Hysteresis	Rising threshold = $V_{BL_TH\#}$ Falling threshold = ($V_{BL_TH\#} - V_{BL_HYS\#}$)	80	150	200	mV	
V _{BLI#}	Voltage Clamp	Clamp Current = 1mA into pin	6.5	10	13	v	
♥ BLI#		Clamp Current = -1mA out of pin	-1.9	-1.4	-0.9	V	
I _{BLI#}	Bias Current	Clamp Current = 1mA into pin	-2	0	2	μA	
I _{BLI#}	Leakage Current	VBLI1 = 0V to 5V	-1	0	1.2	μA	
t _{BLI#}	Propagation Delay	VBLI1 = 0V to 5V; IC powered off	10	40	80	ns	
I _{BL TH}	Threshold Pin Leakage	V _{BL TH} = 0V to 5V	-1	0	1.5	μA	
Thermal Shutdo	own						
OT_SDN	Thermal shutdown threshold; SM_EN = 1	Threshold Temperature	135	150	165	- °C	
	Over temperature	Warning Temperature (T _{SD} - T _{OTW})	15	25	35		
	warning threshold	Hysteresis	10	15	25		
OTW_FAULT	Logic output levels. Logic low level is untested at	High logic level (100µA source)	VDD - 0.3		VDD	v	
	125°C because output is typically high at 125°C	Low logic level (100µA sink)	0		0.3	, v	


11 Heatsink Recommendations

Use the base of the package as the surface for conducting heat from the package. The metal package top is attached to the package body at the top of relatively thin cavity walls, and so has a much higher thermal resistance from the die than the base of the package.

It is recommended to apply a thermal interface material between the base of the package and the heat dissipater. The heat dissipater can be copper layers within a multilayer circuit board to spread heat laterally across the board, or a direct mounted dissipation element.

The steady-state thermal model opposite shows the localized temperature rises when the base of the package is maintained at 25°C while dissipating 2.07W.

Figure 1. Typical Application June 2020 © 2020 Microsemi Corporation

12 Introduction to the LX7720

The LX7720 targets motors that can be managed by 4 independent low-side FET drivers and 4 independent high-side FET drivers, with PWM control up to 40kHz. Typical motor applications include:

- A 3-phase star-connected Permanent Magnet Synchronous Motor (PMSM) or Brushless DC Motor (BLDC)
- Each of the 3 motor phase windings is driven by a half-bridge
- The 4th half-bridge drive is available for an electromagnetic brake
- A 2-winding bipolar stepper motor, operated in full-step, half-step, or micro-stepping mode
- Each winding is driven by an H-bridge comprising a half-bridge at each side of the winding

Position feedback options built in to the LX7720 allow any combination of the interfaces below:

- One or more optical encoder using the 6 built in BLI/BLO comparators
- Up to six Hall effect sensors using some of the 6 built in BLI/BLO comparators
- An LVDT, RVDT, or resolver using the built-in primary driver and dual ADCs for the two secondaries

FPGAs are traditionally used as the system controller for space motor drives, and user guides for Microsemi provided FPGA IP can be found here: <u>https://www.microsemi.com/applications/motor-control#ip-suite</u>. Further information is also available at <u>https://www.microsemi.com/applications/motor-control#resources</u>.

Higher end microcontrollers with embedded PWM peripherals are also capable of managing the LX7720. For example, the radiation-hardened <u>SAMRH71F20</u> and the radiation-tolerant <u>SAMV71Q21RT</u> ARM-based MCUs include two 16-bit PWM blocks. Each PWM block provides 4 complementary outputs with dead-time control, enough to control up to 4 half-bridges driving a motor. One of these MCUs can therefore manage two independent motor-driving LX7720s.

The LX7720 Daughter Board User Guide also contains useful information supplementary to this data sheet.

13 Power Supplies, Sequencing, and Voltage Reference

13.1 Power Supply Configurations and Decoupling

The LX7720 requires several supply voltages (Table 1) and generates floating high-side gate drive rails for the external half-bridges. A negative supply rail, VEE, is generated by an internal charge pump or supplied externally (Table 2).

Supply Pin	Voltage Range	Notes	Capacitor	Ground
VMPS	20V to 60V	Motor supply, as reference for the upper MOSFET drivers	1µF	MGND
VCC	4.75V to 5.25V	Main circuitry positive power supply	3x 1µF	SGND
VDD	2.1V to 5.5V	External FPGA or MCU controller's I/O power supply	1µF	SGND
VEE	-VGS to -8V	Main circuitry negative power supply	2.2µF	MGND
DMOD_PS	10V to 18V	Resolver or LVDT power supply	10µF	SGND
VREF_OUT	2.5V	Internal voltage reference	0.47µF	SGND
VGS, VGS_A, VGS_B, VGS_C, VGS_D	10V to 18V	FET gate drive rail. Use 1µF on the VGS pins, and 10µF on the VGS_A, VGS_B, VGS_C, and VGS_D pins	2x 1µF, and 4x 10µF	MGND
VFLT_A, VFLT_B, VFLT_C, VFLT_D	VMPS + VGS	Floating gate driver power rails	4x 1µF	SW_#
CS_A, CS_B, CS_C, CS_D	VFLT_# or VGS	Floating or low-side current sense power rails	4x 1µF	RTN_#

Table 1. Power Supplies and Recommended Decoupling Capacitors

13.2 VEE Options

The negative signal supply, VEE, is generated by default by an internal charge pump operating from VGS. The charge pump can be disabled to allow an external -VGS to -8V supply to be used instead (Table 2).

Table 2. VEE Supply Methods

VEE Supply Method	EXT_VEE_EN pin	Capacitor Between VEE_CP_P pin and VEE_CP_N pin	Capacitor on VEE pin
VEE internally generated by inverting charge pump from VGS	Open or VGS	1µF	2.2µF to
VEE externally supplied (-VGS to -8V) directly to VEE pin	SGND	Not fitted. Leave VEE_CP_P and VEE_CP_N pins open	MGND

.

Radiation Tolerant Power Driver with Four Half-Bridge Drivers, Rotation and Position Sensing

13.3 Power Rail Sequencing

Power rail sequencing ensures that the internal half-bridge gate drivers are reset from random start-up states to their off states before the external MOSFETs are able to be enhanced. The half-bridge gate drivers are reset when the VDD rail rises above 1V. This needs to occur before all VMPS, VCC and VGS are powered up to avoid inadvertent MOSFET turnon. If a half-bridge channel's random start-up state is on for both the high-side and low-side MOSFET, then the VMPS motor drive supply is shorted through the half-bridge.

Sequencing recommendations are either:

- Power up VDD before one or more of the VCC, VGS, or VMPS rails
- VCC has a 300µs power-on-reset, so VDD can be brought up safely coincident with VCC
- Ensure that VDD is biased to at least 1V by one of the VCC, VGS, or VMPS rails
 - VDD can be biased from the 5V VCC rail by fitting a Zener from VCC (+5V) to VDD. If moderate power rated Zener is used, the voltage drop will be lower than the nominal zener voltage rating due to the relatively low operating current. For example, a 4.3V 1W 1N4731A Zener is specified at 58mA. When used in the circuit of Figure 2 below, the voltage drop was 3.5V with 0.5mA current, therefore biasing VDD to 1.5V
 - Figure 2 shows VDD being fed through a Schottky diode D2 to isolate other 3.3V loads (and their capacitance) from the Zener D1. If the LX7720 has its own independent 3.3V supply, D2 can be omitted

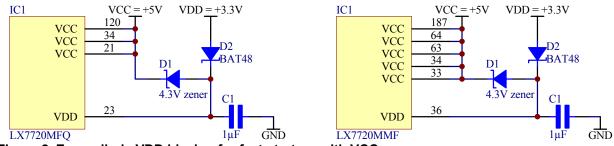


Figure 2. Zener diode VDD biasing for fast start-up with VCC

13.4 Voltage Reference

The LX7720 includes a 2.5V \pm 0.8% voltage reference, available at the VREF_OUT pin. To use this reference, connect VREF_OUT to the adjacent VREF_IN pin. Alternatively, connect an external 2.3V to 2.7V reference to VREF_IN. In either case, connect a 0.47µF capacitor from VREF_OUT to SGND.

14 LX7720 Operation

14.1 MOSFET Driver

The LX7720 contains four high speed N channel MOSFET half bridge drivers with independent high-side and low-side controls. Isolation up to -10V and +8V is provided between the system ground (SGND) and the motor ground (MGND).

Both high-side and low-side MOSFET drivers are powered from the VGS gate driver power supply. Each floating upper driver is powered from a bootstrap capacitor to its SW_# pin and/or the VBOOST charge pump to support long duration on-times. The bootstrap capacitor is charged via a combination of internal diode and an external Schottky diode from VGS.

Slew rate control is recommended to keep dV/dt at the SW_# pins under 3kV/µs to manage EMI and to minimize ringing. Control is typically achieved via the half-bridge NFETs gate drive series resistors and/or RC filters from SW_# to MGND.

The MOSFET drivers provide a pull-down impedance to bias the MOSFETs into the off state if power is lost. The drivers continue to float relative to MGND if power is removed from the LX7720. The SCP logic input enables optional shoot-through protection that prevents the high-side and low-side switches from conducting simultaneously.

14.2 Floating Current Sense

Each MOSFET driver offers a floating current sense circuit that can be referenced to either MGND (low-side measurement) or to the driver's SW_# pin (high-side measurement). The current sense inputs accept voltages up to ±200mV to measure either MGND return current or SW_ motor winding current.

The sensed voltage is amplified and level shifted to an SGND referenced 2nd order sigma delta modulator using the sample clock MOD_CLK and with internal sampling synchronized to CLK_OUT. The CS_# voltage relative to RTN_# of 0V is converted to a 50% full scale output. Positive amplitudes (current flow from CS_# to RTN_#) register as >50% of full scale and negative differential amplitudes register as <50% of full scale. The resultant bit stream is sent to the FPGA/MCU controller to be processed using a sinc3 filter and decimator. A decimation ratio (OSR) of 16 provides almost 9 bits of accuracy with a filter response time of 5µs with a 32MHz sample rate.

If high-side current measurement is used, it is recommended to apply a median filter to the output of the current sense sinc3 filter (Figure 3) before the data is used by the motor control algorithm. The median filter rejects artifacts in the current sense Σ - Δ modulator output pulse train due to transitions at the SW_# pin. An *n* order median filter is a rolling or sliding window filter which examines the most recent *n* samples, sorts them, and outputs the value of the median sample.

OSR	Median Order n
16	13
32	9
64	7
128	5
256	3

Figure 3. Median Filter Recommendation

A modulator will enter sleep mode after both UD_IN_# and LD_IN_# are simultaneously de-asserted for more than 8192 MOD_CLK cycles.

The floating current sense is powered from its CSPS_# pin. The current sense continues to float relative to MGND when power to the LX7720 is removed.

14.3 Fixed Bi-Level Comparators Inputs and Outputs - Hall Effect Sensors and Encoders

The bi-level comparators comprise 6 comparators with non-inverting inputs at pins BLI1 to BLI6, and logic outputs at pins BLO1 to BLO6. The 6 inverting inputs share a common rising-input trip threshold at the BL_TH pin. Bias BL_TH between 0.5V and 4.5V. The hysteresis is typically 150mV on falling edges. Low pass input filters and threshold hysteresis provides high frequency noise rejection. The bi-level inputs are cold spared.

14.4 FPGA/MCU Controller Interface

I/O logic levels are set by the voltage at the VDD logic supply pin, in the range 2.1V to 5.5V. Logic input pins have an internal $1M\Omega$ pull down resistor to ground.

14.5 Over-Current Detection

The current sense detection circuitry detects when a driven winding current exceeds typically ±320mV across the current sense resistor, and latches the OC_FAULT logic output. A low pass filter prevents very short duration spikes (under typically 15µs) from triggering over-current detection.

14.6 Power Faults and Driver Overload

The MOSFET drivers and DMOD_OUT_# drivers latch the PR_FAULT logic output if an average drive current level exceed the over-current thresholds. The VGS current is monitored for all the MOSFET drivers. The DMOD_PS current is monitored for the resolver demodulator driver.

PR_FAULT is also latched if the monitored voltage rails fall below the UVLO threshold levels specified in the Electrical Characteristics table.

14.7 Over-temperature Warning

If the die temperature exceeds the over temperature warning threshold, the OTW_FAULT logic output will be asserted. This warning allows a small operating window before the die temperature reaches the over-temperature shutdown threshold. The over-temperature shutdown is a latched fault state when safe mode is enabled.

14.8 RESET and SAFE MODE

Once a fault is latched, it can be reset by clearing the fault condition and then either toggling RESET pin 18 or cycling the power.

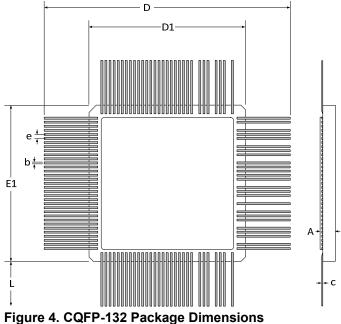
Safe mode is enabled by leaving the SM_EN logic input either open or tied to VDD. Safe mode is armed after power up by the power on reset and UVLO de-assertions. When enabled, the LX7720 exerts counter measures whenever a fault is latched:

- If an OC_FAULT is detected, the LX7720 will place all external MOSFET switches in the off state
- If a PR_FAULT is detected, the LX7720 will place all external MOSFET switches in the off state and place both DMOD_OUT_P and DMOD_OUT_N in the low state
- If the over-temperature shut down threshold is exceeded and latched or if MOD_CLK is stopped, the LX7720 enters a low power state except for the FPGA control lines and the RESET function circuitry. All external MOSFETs default to the off state in low power mode. The MOD_CLK stopped fault is not a latched fault; operation resumes when MOD_CLK is restored

If safe mode is not enabled, the LX7720 will rely exclusively on the system FPGA or MCU to manage fault mitigation such as shutting off the external MOSFETs or disconnecting a power rail.

14.9 Resolver/LVDT to Digital Interface

The resolver interface consists of a differential driver output DMOD_OUT_P and DMOD_OUT_N to drive a resolver or LVDT's primary, plus three differential acquisition inputs ADC1, ADC2, and ADC3. ADC1 and ADC2 are typically used to sense the two secondary output voltages. ADC3 is typically used to sense the primary voltage. If the DMOD_IN_N and DMOD_IN_P inputs remain low for more than 65536 MOD_CLK cycles, the DMOD_OUT_N and DMOD_OUT_P outputs both become a high impedance.


The resolver primary is typically driven with a sinusoidal carrier voltage with a frequency that ranges from 360Hz to 20kHz. The DMOD_OUT_P and DMOD_OUT_N differential outputs are driven with a pulse width modulated signal from DEMOD_IN_P and DEMOD_IN_N respectively. The differential output can be filtered similar to a class-D audio signal. The DMOD_OUT_P and DMOD_OUT_N output drivers are powered from a separate higher voltage rail (DMOD_PS) so they can provide a wide dynamic range; the DMOD_PS rail is referenced to the MGND. The driver bias current can be reduced by grounding the DMOD_BW input, which also reduces the maximum pulse rate of the driver.

The ADC1, ADC2, and ADC3 differential inputs are referenced to VREF, and may require an external attenuation voltage divider to be compatible with the voltage range of these inputs (SGND to VCC). A differential input voltage of 0V is converted to a 50% full scale output. Positive amplitudes are registered as >50% of full scale, and negative differential amplitudes are registered as <50% of full scale.

The 2nd order sigma delta modulator samples at the MOD_CLK rate or a sample range of 24 MHz to 32 MHz. The resultant bit stream is sent to the FPGA to be processed using a sinc3 filter and decimator. A decimation ratio of 64 to 256 provides accuracies from 10 to 14 bits. The sample rate is set by MOD_CLK and sampling is synchronized to CLK_OUT.

A modulator will enter sleep mode after both ADC#_P and ADC#_N are simultaneously held to VCC for more than 8192 MOD_CLK cycles.

15 CQFP-132 (Ceramic Quad Flat Pack) Dimensions

Dim	Millin	neters	Inches		
	MIN	MAX	MIN	MAX	
Α	1.93	2.39	0.076	0.094	
b	0.23	0.33	0.009	0.013	
С	0.125	0.20	0.0049	0.0079	
D	39.37 typ		1.55 typ		
D1	24.00	24.26	0.945	0.955	
е	0.635 BSC		0.025 BSC		
Е	39.37 typ		1.55 typ		
E1	24.00	24.25	0.945	0.955	
L	7.62 typ		0.30 typ		

Figure 4. CQFF-152 Fackage Di

Note:

- 1. Package includes non-conductive ceramic tie-bars mechanically connected to all pins
- 2. Parts are shipped with untrimmed and unformed leads
- 3. Package mass is 4.6g typ with 14mm leads (trimmed flush with non-conductive ceramic tie-bars, tie bars discarded)
- 4. The metal package top is electrically isolated from the body of the package
- 5. The lid and lead material is Kovar with NiAu plating

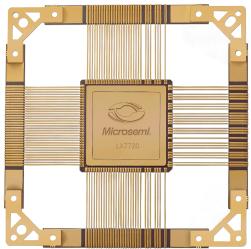
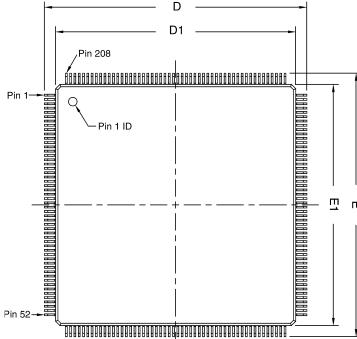
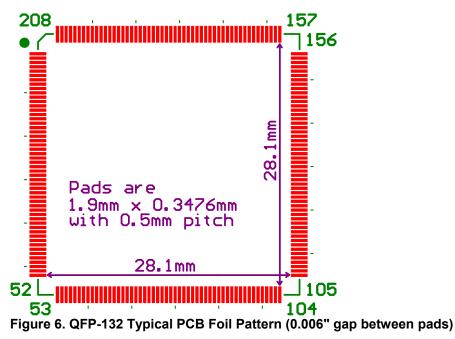
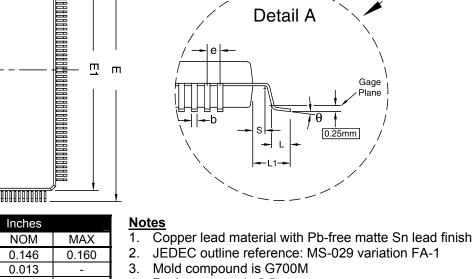



Figure 5. Package as shipped with non-conductive ceramic tie-bars, untrimmed and unformed leads


Microsemi


Radiation Tolerant Power Driver with Four Half-Bridge Drivers, Rotation and Position Sensing

16 QFP-208 (Metric Quad Flat Pack) Dimensions

Dim	Millimeters			_ Inches _			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	-	3.70	4.07	-	0.146	0.160	
A1	0.25	0.33	-	0.010	0.013	-	
A2	3.20	2.37	3.60	0.126	0.093	0.142	
b	0.17	0.22	0.27	0.007	0.009	0.011	
D	30.60 BSC			1.20 BSC			
D1	28.00 BSC			1.10 BSC			
е	0.50 BSC			0.01969			
E	30.60 BSC			1.20 BSC			
E1	28.00 BSC			1.10 BSC			
L	0.50	0.60	0.75	0.020	0.024	0.030	
L1	1.30 REF			0.051 REF			
S	0.40	-	-	0.016	-	-	
Θ	0°	-	7°	0°	-	7°	

4. Package mass is 6.5g typ

Ą ∣≻

Ż

See Detail A

Gage Plane

17 Change Log

Date	Issue	Part Type
2019-11-20	1.0	First release
2020-6-17	1.1	Added plastic package. Noted that CQFP-132 ES part is not hermetic, lid and lead material is Kovar, lid is isolated, $\theta_{JB} = 1.93^{\circ}$ C/W from package back. Added CDM ESD, moved ESD ratings to separate section. Updated ceramic pinout drawing to show ground planes and decoupling. Shipping type updated to tray in order table. Added introduction section. Added power supply section including sequencing recommendations. Section 11 text cleanup for clarity. Corrected omitted package pins in Figure 2 and Figure 3. Corrected pin descriptions: VGS pins mislabeled ground instead of power, diodes go to VGS_# not SW_#, swapped pin 91/92 and pins 103/104 text, VFLT_# capacitors go to SW_# not MGND, VBOOST capacitor goes to VMPS not MGND, CPP swing, VEE_CP_N swing. Added description for SPARE pin 53. Corrected pin reference numbers in description for pins 11, 12, 44, 46. Added gate drive resistor value to pin descriptions. Added gate drive resistors to block diagram. Updated EC table to show that OTW_FAULT output can not be tested at +125^{\circ}C2V pin renamed TESTMODE0. Clarified krad to krad(Si), added SAM3X8ERT to first page

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2020 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at <u>www.microsemi.com</u>.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.