Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.
Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.0

Revision 1.0 was published in March 2017. It was the first publication of this document.
Contents

Revision History ... 3
 1.1 Revision 1.0 ... 3

2 Product Overview ... 7

3 Electrical Specifications .. 8
 3.1 Absolute Maximum Ratings ... 8
 3.2 Electrical Characteristics ... 8
 3.3 Functional Characteristics .. 8
 3.4 Typical Broadband Performance Data ... 9

4 Package Information .. 10
 4.1 Transistor Test Fixture Overall Dimension ... 10
 4.2 55-QQ Package .. 10
 4.3 55-QQP Package ... 11
 4.4 Pallet Package .. 12
Figures

Figure 1 55-QQ Case Outline (E) ... 7
Figure 2 55-QQP Case Outline (EL) .. 7
Figure 3 Pallet Outline (EP) ... 7
Figure 4 Typical Broadband Performance Data Graphs .. 9
Figure 5 Transistor Test Fixture Dimensions ... 10
Figure 6 55-QQ Package Outline .. 10
Figure 7 55-QQP Package Outline ... 11
Figure 8 Pallet Package Outline .. 12
Tables

Table 1 Absolute Maximum Ratings .. 8
Table 2 Electrical Characteristics ... 8
Table 3 Functional Characteristics ... 8
Table 4 Typical Broadband Performance Data .. 9
Table 5 55-QQ Package Dimensions .. 11
Table 6 55-QQP Package Dimensions .. 12
2 Product Overview

The 1214GN-50E/EL/EP device provides the following key features:

- 1200 MHz–1400 MHz, 50 W output power at 300 µs and 10% pulsing
- Common source, class AB, 50 V bias voltage
- >60% typical efficiency across the frequency band
- Extremely compact size
- Over 16 dB typical power gain
- Excellent gain flatness
- Ideal for radar, L-Band avionics, communications, and industrial applications
- All-gold metallization and eutectic die attach for highest reliability
- 50 Ω IN/OUT lumped element, very small footprint, plug-and-play pallets available
- Export classification: EAR-99

The following illustrations show the case outlines of the 1214GN-50E/EL/EP device.

Figure 1 55-QQ Case Outline (E)

Figure 2 55-QQP Case Outline (EL)

Figure 3 Pallet Outline (EP)
3 Electrical Specifications

This section details the electrical specifications of the 1214GN-50E/EL/EP device.

3.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the 1214GN-50E/EL/EP device.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum power dissipation</td>
<td>Device dissipation at 25 °C</td>
<td>100</td>
<td>W</td>
</tr>
<tr>
<td>Maximum voltage and current</td>
<td>Drain-source voltage (V_{DSS})</td>
<td>150</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Gate-source voltage (V_{GS})</td>
<td>–8 to 0</td>
<td>V</td>
</tr>
<tr>
<td>Maximum temperatures</td>
<td>Storage temperature (T_{STG})</td>
<td>–55 to 125</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Operating junction temperature</td>
<td>200</td>
<td>°C</td>
</tr>
</tbody>
</table>

3.2 Electrical Characteristics

The following table shows the typical electrical characteristics of the 1214GN-50E/EL/EP device at 25 °C.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{OUT}</td>
<td>Output power</td>
<td>P_{IN} = 1.6 W, Freq = 1200 MHz, 1300 MHz, 1400 MHz</td>
<td>50</td>
<td>58</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>G_{P}</td>
<td>Power gain</td>
<td>P_{IN} = 1.6 W, Freq = 1200 MHz, 1300 MHz, 1400 MHz</td>
<td>15.2</td>
<td>15.9</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>η_{D}</td>
<td>Drain efficiency</td>
<td>P_{IN} = 1.6 W, Freq = 1200 MHz, 1300 MHz, 1400 MHz</td>
<td>55</td>
<td>60</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Dr</td>
<td>Droop</td>
<td>P_{IN} = 1.6 W, Freq = 1200 MHz, 1300 MHz, 1400 MHz</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>VSWR-T</td>
<td>Load mismatch tolerance</td>
<td>P_{OUT} = 50 W, Freq = 1300 MHz, 300 µs, 10%</td>
<td></td>
<td></td>
<td>5:1</td>
<td></td>
</tr>
</tbody>
</table>

Bias Condition: V_{DD} = 50 V, I_{DQ} = 10 mA constant current (V_{GS} = –2.0 V to –4.5 V typical)

3.3 Functional Characteristics

The following table shows the typical functional characteristics of the 1214GN-50E/EL/EP device at 25 °C.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{D(Off)}</td>
<td>Drain leakage current</td>
<td>V_{GS} = –8 V, V_{D} = 150 V</td>
<td>4</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{G(Off)}</td>
<td>Gate leakage current</td>
<td>V_{GS} = –8 V, V_{D} = 0 V</td>
<td>0.5</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
3.4 **Typical Broadband Performance Data**

The following table shows the typical broadband performance data of the 1214GN-50E/EL/EP device at 50 V, 300 μs, and 10% pulsing, and $I_{DQ} = 20$ mA.

<table>
<thead>
<tr>
<th>Freq (MHz)</th>
<th>P_{IN} (dBm)</th>
<th>P_{IN} (W)</th>
<th>P_{OUT} (dBm)</th>
<th>P_{OUT} (W)</th>
<th>G_P (dB)</th>
<th>RL (dB)</th>
<th>I_D (A)</th>
<th>Droop (dB)</th>
<th>η_D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>960</td>
<td>32</td>
<td>1.6</td>
<td>47.5</td>
<td>56.2</td>
<td>15.5</td>
<td>–8</td>
<td>0.210</td>
<td>0.30</td>
<td>59</td>
</tr>
<tr>
<td>1090</td>
<td>32</td>
<td>1.6</td>
<td>47.9</td>
<td>61.4</td>
<td>15.9</td>
<td>–18</td>
<td>0.216</td>
<td>0.25</td>
<td>63</td>
</tr>
<tr>
<td>1215</td>
<td>32</td>
<td>1.6</td>
<td>47.6</td>
<td>57.7</td>
<td>15.6</td>
<td>–7.6</td>
<td>0.192</td>
<td>0.20</td>
<td>67</td>
</tr>
</tbody>
</table>

The following graphs show the typical broadband performance of the 1214GN-50E/EL/EP device.

Figure 4 Typical Broadband Performance Data Graphs
4 Package Information

This section details the package information of the 1214GN-50E/EL/EP device.

4.1 Transistor Test Fixture Overall Dimension

The following illustration shows the overall transistor test fixture dimensions of the 1214GN-50E/EL/EP device. The dimensions are in inches. Contact your Microsemi sales representative for test fixtures.

![Transistor Test Fixture Dimensions](image)

4.2 55-QQ Package

The following illustration shows the 55-QQ package outline of the 1214GN-50E/EL/EP device. PIN 1 is the drain, PIN 2 is the source, and PIN 3 is the gate.

![55-QQ Package Outline](image)
The following table shows the 55-QQ dimensions of the 1214GN-50E/EL/EP device, and it corresponds to Figure 5 above.

Table 5 55-QQ Package Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Millimeters</th>
<th>Tol (mm)</th>
<th>Inches</th>
<th>Tol (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13.970</td>
<td>0.250</td>
<td>0.550</td>
<td>0.010</td>
</tr>
<tr>
<td>B</td>
<td>4.570</td>
<td>0.250</td>
<td>0.160</td>
<td>0.010</td>
</tr>
<tr>
<td>C</td>
<td>3.860</td>
<td>0.330</td>
<td>0.152</td>
<td>0.013</td>
</tr>
<tr>
<td>D</td>
<td>1.270</td>
<td>0.130</td>
<td>0.050</td>
<td>0.005</td>
</tr>
<tr>
<td>E</td>
<td>1.020</td>
<td>0.130</td>
<td>0.040</td>
<td>0.005</td>
</tr>
<tr>
<td>F</td>
<td>1.700</td>
<td>0.130</td>
<td>0.067</td>
<td>0.005</td>
</tr>
<tr>
<td>G</td>
<td>0.130</td>
<td>0.025</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>H</td>
<td>8.130</td>
<td>0.250</td>
<td>0.320</td>
<td>0.010</td>
</tr>
<tr>
<td>I</td>
<td>45°</td>
<td>5°</td>
<td>45°</td>
<td>5°</td>
</tr>
<tr>
<td>J</td>
<td>5.080</td>
<td>0.250</td>
<td>0.200</td>
<td>0.010</td>
</tr>
<tr>
<td>K</td>
<td>2.54 DIA</td>
<td>0.130</td>
<td>0.100 DIA</td>
<td>0.005</td>
</tr>
<tr>
<td>L</td>
<td>1.270</td>
<td>0.130</td>
<td>0.050</td>
<td>0.005</td>
</tr>
<tr>
<td>M</td>
<td>9.530</td>
<td>0.130</td>
<td>0.375</td>
<td>0.005</td>
</tr>
</tbody>
</table>

4.3 55-QQP Package

The following illustration shows the 55-QQP package outline of the 1214GN-50E/EL/EP device. PIN 1 is the drain, PIN 2 is the source, and PIN 3 is the gate.

Figure 7 55-QQP Package Outline
The following table shows the 55-QQP dimensions of the 1214GN-50E/EL/EP device, and it corresponds to Figure 6 above.

Table 6 55-QQP Package Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Millimeters</th>
<th>Tol (mm)</th>
<th>Inches</th>
<th>Tol (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.840</td>
<td>0.250</td>
<td>0.230</td>
<td>0.010</td>
</tr>
<tr>
<td>B</td>
<td>4.060</td>
<td>0.250</td>
<td>0.160</td>
<td>0.010</td>
</tr>
<tr>
<td>C</td>
<td>3.170</td>
<td>0.050</td>
<td>0.125</td>
<td>0.002</td>
</tr>
<tr>
<td>D</td>
<td>1.270</td>
<td>0.130</td>
<td>0.050</td>
<td>0.005</td>
</tr>
<tr>
<td>E</td>
<td>1.020</td>
<td>0.130</td>
<td>0.040</td>
<td>0.005</td>
</tr>
<tr>
<td>F</td>
<td>1.570</td>
<td>0.130</td>
<td>0.062</td>
<td>0.005</td>
</tr>
<tr>
<td>G</td>
<td>0.130</td>
<td>0.020</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>H</td>
<td>8.120</td>
<td>0.250</td>
<td>0.320</td>
<td>0.010</td>
</tr>
<tr>
<td>I</td>
<td>45°</td>
<td>5°</td>
<td>45°</td>
<td>5°</td>
</tr>
<tr>
<td>J</td>
<td>5.080</td>
<td>0.250</td>
<td>0.200</td>
<td>0.010</td>
</tr>
<tr>
<td>K</td>
<td>1.400</td>
<td>0.130</td>
<td>0.055</td>
<td>0.005</td>
</tr>
</tbody>
</table>

4.4 Pallet Package

The following illustration shows the pallet outline and the overall pallet dimensions of the 1214GN-50E/EL/EP device. It is 1.200 inches long, 0.600 inches wide, and 0.150 inches high.

Figure 8 Pallet Package Outline