
SmartFusion2 and
IGLOO2 SmartDebug Hardware Design

Debug Tools - Libero SoC v11.7

TU0530 Tutorial

Sup
ers

ed
ed

Contents

1 Preface . 6
1.1 About this Document . 6

1.2 Intended Audience . 6

1.3 References . 6
1.3.1 Microsemi Publications . 6
1.3.2 Others . 6

2 SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 7
2.1 Introduction . 7

2.2 Design Requirements . 7
2.2.1 Reference Documents . 7
2.2.2 Project Files . 7

2.3 Design Overview . 7

2.4 Programming the Device . 10

2.5 Launching SmartDebug from Libero . 13

2.6 Debugging the Design . 14
2.6.1 View Device Status . 14
2.6.2 View Flash Memory (eNVM) Content . 15
2.6.3 Debug FPGA Array . 16

2.6.3.1 Specifying Live Probe Points in Libero . 17
2.6.3.2 Active Probes . 19
2.6.3.3 Writing Active Probes . 20
2.6.3.4 Fabric SRAM Memory Debug . 21

2.6.4 Writing to Fabric SRAM Blocks . 23
2.6.5 Probe Insertion . 23
2.6.6 SERDES Debug . 24
2.6.7 Far-End Loop Back Support . 35
2.6.8 Near-End Serial Loopback . 36
2.6.9 Tcl Support . 37
2.6.10 Executing SERDES Debug from SmartDebug Tcl . 40

2.6.10.1 PRBS . 40
2.6.10.2 Loopback . 41

2.7 Stand-Alone SmartDebug . 41

2.8 Conclusion . 44

3 Appendix . 45
3.1 Tcl Script Examples . 45

3.1.1 Example 1: Change M/N/F registers for Lane1 and Lane2 of SERDESIF_0 45
3.1.2 Example 2: Change RX LEQ registers Lane2 of SERDESIF_0 . 46
3.1.3 Example 3: Change TX De-emphasis registers Lane2 of SERDESIF_0 46

4 Revision History . 47

5 Product Support . 48
5.1 Customer Service . 48

5.2 Customer Technical Support Center . 48

5.3 Technical Support . 48

5.4 Website . 48

Sup
ers

ed
ed
Revision 8 2

5.5 Contacting the Customer Technical Support Center . 48
5.5.1 Email . 48
5.5.2 My Cases . 48
5.5.3 Outside the U.S. . 49

5.6 ITAR Technical Support . 49

Sup
ers

ed
ed
Revision 8 3

Revision 8 4

Figures

Figure 1. SmartDebug Top-Level Blocks . 8
Figure 2. SERDES_Debug Overall Design Blocks (IGLOO2 Design Block) . 9
Figure 3. Fabric_Debug Overall Design Blocks (IGLOO2 Design Block) . 9
Figure 4. Update eNVM Memory Content in Design Flow Window . 10
Figure 5. eNVM Update Tool Window . 11
Figure 6. Modify Data Storage Client Window . 11
Figure 7. Modify Data Storage Client Window - Specifying Start_prog.hex File . 12
Figure 8. Programming the Device . 12
Figure 9. Launching SmartDebug Design Tools . 13
Figure 10. SmartDebug Window Debug Options . 13
Figure 11. Device Status Report Sample . 14
Figure 12. Memory File Content Saved into the eNVM . 15
Figure 13. Flash Memory (eNVM) Content Read from the Device . 16
Figure 14. Debug FPGA Array Window . 17
Figure 15. Reserving Probe Pin for Probes . 17
Figure 16. Identifying Probe Pins using Package Viewer Inside Libero I/O Editor . 18
Figure 17. Live Probes Channels Assignments . 19
Figure 18. Selecting Active Probes From the Design . 19
Figure 19. Selecting Desired Points to Read and Reading the Values . 20
Figure 20. Active Probe Writing . 21
Figure 21. Memory Blocks Tab . 22
Figure 22. DPSRAM_0 Contents . 22
Figure 23. Modifying DPSRAM Contents . 23
Figure 24. Assigning Package Pin and Running the Flow . 24
Figure 25. Debug SERDES Operation Selection . 25
Figure 26. SERDES Configuration Tab . 26
Figure 27. SERDES Test Tab . 27
Figure 28. SERDES Link Status . 28
Figure 29. Sending Serial Tx Data Off-Die . 29
Figure 30. Lane 1 Transmitting Data Through On-Board Loopback . 30
Figure 31. External Cable Loopback . 31
Figure 32. Evaluation Kit Board with External Coax Loopback Setup . 32
Figure 33. Lane 2 Transmitting Data Off-Board . 33
Figure 34. Connecting Lane 2 to the Test Equipment . 34
Figure 35. PCS Far-End Rx to Tx Loopback . 35
Figure 36. Far-End Loopback on the Evaluation Board . 35
Figure 37. Loopback Test Feature . 36
Figure 38. Tcl Script Execution User Interface . 39
Figure 39. SERDES Access Log . 39
Figure 40. Export SmartDebug Data . 42
Figure 41. Starting Standalone SmartDebug . 42
Figure 42. New SmartDebug Project . 43
Figure 43. Create SmartDebug Project . 43
Figure 44. Standalone SmartDebug UI . 44

Sup
ers

ed
ed

Revision 8 5

Tables

Table 1. Design Requirements . 7

Sup
ers

ed
ed

Preface

Revision 5 6

1 Preface

1.1 About this Document
This tutorial describes the following topics:

• Launching SmartDebug from Libero: Accessing SmartDebug from Libero® System-on-Chip (SoC)
• View Device Status: Checking the device status
• View Flash Memory (eNVM) Content: Checking the flash memory (eNVM) content
• Debug FPGA Array: Debugging FPGA array (setting Live Probes, Active Probes, and reading and

modifying fabric SRAM content)
• Probe Insertion: Post-Layout Probe Insertion
• SERDES Debug: Debugging SERDES blocks

1.2 Intended Audience
This tutorial is intended for:

• FPGA designers
• System-level designers

1.3 References

1.3.1 Microsemi Publications
Refer to the following web page for a complete and up-to-date listing of the SmartFusion2 device
documentation: http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2

Refer to the following web page for a complete and up-to-date listing of the IGLOO2 device
documentation: http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga

• SmartDebug for Software v11.7 User’s Guide
• FPGA On-Chip Debug Tools
• IGLOO2 FPGA Evaluation Kit
• SmartFusion2 Security Evaluation Kit Board
• http://soc.microsemi.com/kb/article.aspx?id=SL5636
• UG0451: SmartFusion2 and IGLOO2 Programming User Guide
• UG0447: SmartFusion2 and IGLOO2 FPGA High Speed Serial Interfaces User Guide

1.3.2 Others
Pasternack® PE39429-12 technical datasheet:

Pasternack Industries part number PE39429-12Sup
ers

ed
ed

http://www.microsemi.com/index.php?option=com_content&view=article&id=1664&catid=1676&Itemid=2842
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011
URL http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014
http://www.microsemi.com/index.php?option=com_content&view=article&id=2034&catid=1674&Itemid=2837
http://coredocs.s3.amazonaws.com/Libero/11_7_0/Tool/smartdebug_ug.pdf
http://www.microsemi.com/index.php?option=com_content&view=article&id=1791&catid=1647&Itemid=3118
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
http://soc.microsemi.com/kb/article.aspx?id=SL5636
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014
http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1 SmartFusion2 and IGLOO2 SmartDebug
Hardware Design Debug Tools

1.1 Introduction
Design debug is a critical phase of the field programmable gate array (FPGA) design flow. Microsemi
multiple design debug tools and features complement design simulations by allowing verification and
troubleshooting at the hardware level. Microsemi SmartDebug tools help the designer to analyze the key
elements of a flash design, such as the embedded non-volatile memory (eNVM) data, SRAM data, and
probes capabilities. Microsemi SmartFusion®2 system-on-chip (SoC) field programmable gate array
(FPGA) and IGLOO®2 FPGA devices have built-in probe points that greatly enhance the ability to debug
logic elements within the device. The enhanced debug features implemented in the SmartFusion2 and
IGLOO2 devices give access to any logic element through Live Probe and Active Probe features, which
enable designers to check the state of inputs and outputs in real-time, without any re-layout of the
design.

1.2 Design Requirements

1.2.1 Reference Documents
For more information on using SmartDebug, see the SmartDebug for Software v11.7 User’s Guide.

1.2.2 Project Files
Extract the http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_tu0530_liberov11p7_df

Libero SoC project along with the Readme.txt file and programming (.stp) file to a folder on the PC (for
example: C:\Microsemiprj). Confirm that the following design files are extracted from the downloaded
folder:

• m2gl_SmartDebug_Tutorial - For IGLOO2 Evaluation Kit (M2GL010T)
• m2s_SmartDebug_Tutorial - For SmartFusion2 Security Evaluation Kit (M2S090TS)

1.3 Design Overview
The design consists of two main blocks: the SERDES debug block (SERDES_Debug) and the fabric
debug block (Fabric_Debug), as shown in Figure 1.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

SMA Male-to-SMA Male Precision Cables, such as Pasternack
Industries part number PE39429-12 (or equivalent)

Optionally recommended for evaluation board
SERDES testing.

IGLOO2 Evaluation Kit
or
SmartFusion2 Security Evaluation Kit (M2S090TS-FGG484)

Rev D or later

Software Requirements

Libero SoC software v11.7

FlashPro4 v11.7

Sup
ers

ed
ed
Revision 8 7

http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx
http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
http://coredocs.s3.amazonaws.com/Libero/11_7_0/Tool/smartdebug_ug.pdf
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_tu0530_liberov11p7_df

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
The SERDES_Debug block is used to demonstrate the SmartDebug capabilities that can be used to
perform SERDES real-time signal integrity testing and debugging. The design consists of a System
Builder block (SD_DEMO) and an instance of SERDES Interface block (SERDES_IF), as shown in
Figure 2. Within the System Builder, a Data Storage client is stored in the flash memory (eNVM).
SmartDebug provides the capabilities to view the eNVM content by reading the content in
real-time from the device.

The Fabric_Debug block demonstrates the way to use SmartDebug to perform FPGA array debugging.
To demonstrate this, the Fabric_Debug uses a counter to load a counting pattern into the LSRAM
instance (DPSRAM). The data stored is the same as the address. On the read side of the LSRAM, there
is a count checker (count_chk) to ensure that the count progresses as expected. If there is an error, the
output (error) is latched high, as shown in Figure 3. This Fabric_Debug block design is used to
demonstrate the different silicon built-in capabilities, such as setting Live Probes to monitor an internal
user-selected point on the device in real-time.

In addition, you can set Active Probes, which provide the capabilities for dynamic asynchronous read and
write to a flip-flop or probe point. This enables you to quickly observe the output of the logic internally or
to quickly experiment on how the logic is affected by writing to a probe point. Finally, the Fabric_Debug
design block is used to demonstrate the SmartDebug capabilities, where you can read and modify the
fabric SRAM content in real-time.

Figure 1 • SmartDebug Top-Level Blocks

Sup
ers

ed
ed
Revision 8 8

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 2 • SERDES_Debug Overall Design Blocks (IGLOO2 Design Block)

Figure 3 • Fabric_Debug Overall Design Blocks (IGLOO2 Design Block)

A_WEN is used to pause the write operation to the SRAM while demonstrating the SmartDebug write to
the SRAM capability. It is assigned to SW2 on the board. When SW2 is pressed, the write operation from
the counter pauses and does not overwrite the SmartDebug write into the SRAM.Sup

ers
ed

ed
Revision 8 9

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1.4 Programming the Device
The following steps describe how to program the IGLOO2 or SmartFusion2 Security Evaluation Kit
board:

1. Connect the FlashPro4/5 programmer to the J5 connector on the IGLOO2 or SmartFusion2
Security Evaluation Kit.

2. Connect the power supply to the J6 connector.
3. Switch ON the power supply (SW7). For more information, refer to the IGLOO2 FPGA Evaluation Kit

Board or SmartFusion2 Security Evaluation Kit Board.
4. Launch Libero SoC v11.7.
5. From the Project menu, select Open Project.
6. Browse to the folder where the design files are extracted and open the appropriate design file

(IGLOO2 or SmartFusion2). For more information, refer to the "Project Files" section on page 7.
7. Based on the location where the project files are extracted, update the paths in the eNVM data

clients as follows:
a. On the Design Flow window, double-click Update eNVM Memory Content as shown in Figure 4.

Figure 4 • Update eNVM Memory Content in Design Flow Window

The eNVM Update Tool window is displayed, as shown in Figure 5.

b. Double-click the sram_envm client.

Sup
ers

ed
ed
Revision 8 10

http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 5 • eNVM Update Tool Window

c. In the Modify Data Storage Client window, browse to the location of the sram_envm.mem file
located in the eNVM_files folder included in the project as shown in Figure 6.

Figure 6 • Modify Data Storage Client Window

d. If the SmartFusion2 Security Evaluation Kit is used, double-click the Start_prog client (see
Figure 5). In the Modify Data Storage Client window, browse to the location of the
Start_prog.hex file located in the eNVM_files folder included in the project as shown in Figure 7.

Sup
ers

ed
ed
Revision 8 11

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 7 • Modify Data Storage Client Window - Specifying Start_prog.hex File

Note: The .hex file is a simple user boot code loop program that is programmed into address zero (eNVM
address 0x60000000). This is to ensure that there is a valid user boot code for the ARM® Cortex®-M3 to
execute on power-up or at power-on reset. For more information, refer to http://soc.microsemi.com/kb/
article.aspx?id=SL5636

8. In the Design Flow window, select Run PROGRAM Action, as shown in Figure 8. This programs
the design into the device.

Figure 8 • Programming the Device

Sup
ers

ed
ed
Revision 8 12

http://soc.microsemi.com/kb/article.aspx?id=SL5636
http://soc.microsemi.com/kb/article.aspx?id=SL5636

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1.5 Launching SmartDebug from Libero
On the Design Flow window, double-click SmartDebug Design, as shown in Figure 9.

Figure 9 • Launching SmartDebug Design Tools

The SmartDebug window is displayed, as shown in Figure 10.

Figure 10 • SmartDebug Window Debug Options

SmartDebug tools provide the following features and capabilities:

• Live Probes: Two dedicated probes can be configured to observe a probe point, which is any output
of a register. After selecting the probe points, the probe data can be sent to two dedicated pins
(PROBE_A and PROBE_B). PROBE_A and PROBE_B are two dedicated pins on the device. You
can connect an oscilloscope to the probe pins and monitor the signals status.

Sup
ers

ed
ed
Revision 8 13

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
• Active Probes: Active probes allow dynamic asynchronous read and write to a flip-flop or probe
point. This enables you to quickly observe the output of the logic internally, or to quickly experiment
on how the logic is affected by writing to a probe point.

• SRAM and eNVM Debug Capabilities: SmartDebug includes test capabilities that can access
SRAM and eNVM to assist with checking the flash memory (eNVM) content and reading and
modifying the fabric SRAM content.

• Probe Insertion: Probe insertion is a post-layout process that enables you to insert probes into the
design and brings signals out to the FPGA package pins to evaluate and debug the design.

• SERDES Debug Capabilities: SERDES debug capabilities makes debugging high-speed serial
designs simple. The SmartDebug JTAG interface extends access to configure, control, and observe
SERDES operations and is accessible in every SERDES design. The designs are implemented
using the Libero System Builder to incorporate the SERDESIF block enabling SERDES access from
the SmartDebug toolset. The SERDES Debug window displays real-time system and lane status
information. SERDES configurations are supported with Tcl scripting, allowing access to the entire
SERDES register map for real-time customized tuning.

1.6 Debugging the Design

1.6.1 View Device Status
The View Device Status option provides the device status report. It summarizes the device information,
programmer information, user information, factory serial number, and security information, if any are set.
Figure 11 shows a sample of the device status information.

Figure 11 • Device Status Report Sample

Sup
ers

ed
ed
Revision 8 14

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1.6.2 View Flash Memory (eNVM) Content
The View Flash Memory Content can be accessed from the SmartDebug window, as shown in
Figure 10. This option provides the capabilities to retrieve the eNVM content from the device using the
Memories pages of the System Builder under the SERDES_Debug block. To demonstrate how to retrieve
the content of the eNVM, the data to be programmed into the eNVM is defined first. One way to perform
this is by defining an eNVM data storage client using the eNVM configurator. The client can be stored
into any page of the eNVM. eNVM Page 64 is used here for demonstration purposes. Figure 12 shows
an excerpt of the data storage client content that was defined in the eNVM.

Figure 12 • Memory File Content Saved into the eNVM

The content of eNVM is retrieved from the device, displayed, and is equivalent to what is shown in
Figure 12.

Sup
ers

ed
ed
Revision 8 15

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
The following steps describe how the eNVM content can be read in real-time from the device:

1. On the SmartDebug window, click View Flash Memory Content (see Figure 10). The Flash
Memory window is displayed, as shown in Figure 13.

2. Enter the Start Page and End Page as 64. Page 64 is used here for demonstration purpose.
3. Click Read from Device. The content related to page 64 is displayed.

Figure 13 • Flash Memory (eNVM) Content Read from the Device

eNVM UI shows the status of the page selected eNVM page. When you click the View All Page Status
button, a dialog appears, and displays details such as:

• Number of images that have ECC errors.
• Number of overwrite threshold warnings.

After these details, eNVM UI shows the status of each page that you select to view in the eNVM debug
page.

1.6.3 Debug FPGA Array
The SmartFusion2 and IGLOO2 devices have built-in probe points that enhance the ability to debug the
logic within the device using the Live Probes and Active Probes features. The enhanced debug features
implemented in the devices give access to any logic element and enable you to check the state of inputs
and outputs in real-time, without re-layout of the design.

In addition to the ability to specify probe points, SmartDebug also provides the capability to read, modify,
and write into the fabric SRAM block. The Debug UI includes both a Hierarchical and Netlist view to
easily find test points. The Hierarchical View lets you view the instance-level hierarchy of the design
programmed on the device. This view also lets you select the signals that are required to add to the Live
Probes, Active Probes, and Probe Insertion tabs in the Debug FPGA Array dialog box.

You can expand the hierarchy tree to see the lower level logic. Signals with the same name are grouped
automatically into a bus that is presented at instance level in the instance tree. The probe points are
added by selecting any instance or the leaf level instance in the Hierarchical View. Adding an instance
adds all the probe-able points available in the instance to Live Probes, Active Probes, and Probe
Insertion.

The Netlist View displays a flattened net view of all the probe-able points present in the design, along
with the associated cell type.

This section demonstrates the abilities of setting Live Probes, Active Probes, and reading/writing from/to
the fabric SRAM.

Sup
ers

ed
ed
Revision 8 16

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
The Debug FPGA Array can be accessed from the SmartDebug window, as shown in Figure 10. On the
SmartDebug window, click Debug FPGA Array to display the Debug FPGA Array window, as shown in
Figure 14. The Debug FPGA Array window has a left and right pane. The left pane has two tabs that
allow you to toggle between the Hierarchical View and Netlist View debug points in the design. This
information is read into SmartDebug from the Libero SoC design database.

Figure 14 • Debug FPGA Array Window

The following steps describe how to use the Live Probes, Active Probes, and the Memory Block
debugging features:

1.6.3.1 Specifying Live Probe Points in Libero
With Live Probe, two dedicated probes can be configured to observe a probe point, which is any output
of a register. The probe data can be sent to the two dedicated probe pins (PROBE_A and PROBE_B).
You can connect an oscilloscope to the probe pins and monitor the signals status. The probe points
location can be changed without recompiling or reprogramming the design. The probes can capture data
at a speed of up to 100 MHz.

The PROBE_A and PROBE_B pins are dedicated dual-purpose pins. These pins are regular I/Os, if not
used by the Live Probes channels. These pins can be reserved for probing by selecting Reserve Pins
for Probes in the Project Settings window, as shown in Figure 15.

Figure 15 • Reserving Probe Pin for Probes

In addition, the probe pin on your package can be identified from the pin description document for that
particular package. Another option is to check the Function column in the Package Pins tab of the I/O
Editor in the Libero SoC software, as shown in Figure 16.

Y10 and W10 are the two dedicated probe pins in M2GL010T and M2S090T in the 484 FBGA package,
which can be used for probing, as shown in Figure 16.

Sup
ers

ed
ed
Revision 8 17

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 16 • Identifying Probe Pins using Package Viewer Inside Libero I/O Editor

Note: The probe pins, PROBE_A/PROBE_B, are not exposed and not accessible on the IGLOO2 Evaluation
Kit Rev C board. These pins are accessible on the IGLOO2 Evaluation Kit board Rev D and
SmartFusion2 M2S090TS Security Evaluation Kit Rev D on J29 and J30 jumpers.

Figure 17 shows an example of setting two probe points: coutA[23]:Q and coutA[24]:Q to be probed on
ChannelA and ChannelB respectively.The Live Probes tab shows the probe point name and pin type
(SRAM, Logic, or I/O). When a probe point is selected, it can be assigned to either ChannelA
(PROBE_A) or ChannelB (PROBE_B) as follows:

1. Select the point to be probed, as shown in Figure 17.
2. From the Netlist View, select the Net to be probed, and click Add to that Net to the FPGA Array

debug data.
3. Click Assign to Channel A or Assign to Channel B.
4. Click Close.

A message is displayed in the Log window of Libero SoC, showing the signals that are assigned to be
probed, as follows:

Live probe has been set:

PROBE_A:

Channel A: Fabric_Debug_0/count_0/coutA[23]:Fabric_Debug_0/count_0/coutA[23]:Q

PROBE_B:

Channel B: LED1_c:Fabric_Debug_0/count_0/coutA[24]:Q.

After setting the channels, SmartDebug configures the ChannelA and ChannelB I/Os to monitor the
desired probe points. On the SmartFusion and IGLOO2 Evaluation Kit Rev D boards, the PROBE_A and
PROBE_B pins are exposed on the J29 and J30 connectors. An oscilloscope can be connected to these
probe points to monitor the signals that are assigned to be probed. The maximum number of
simultaneous probes is two internal signals. A filter box is provided to filter out the Net Names.

Note: The Active Probes WRITE overwrites the settings of the Live Probe channels, if any.

Sup
ers

ed
ed
Revision 8 18

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 17 • Live Probes Channels Assignments

Note: Click the Unassign Channels button to clear the live probe names to the right of the channel buttons,
and to also discontinue the live probe function during debug.

1.6.3.2 Active Probes
Active Probe allows dynamic asynchronous read and write to a flip-flop or probe point. It enables you to
observe the output of the logic internally or to experiment on how the logic is affected by writing to a
probe point. The following steps describe how to select a specific set of probe pins by reading the current
value and then writing different values.

1.6.3.2.1 Selecting Active Probes
1. On the Debug FPGA Array window, click the Active Probes tab.
2. Add search filter to find desired net to add probe., as shown in Figure 18.

Figure 18 • Selecting Active Probes From the Design

A window that shows all the available probe points in the design opens. In this tutorial, the following
points are monitored:

• Three bits of the counter output coutA—coutA[24]:Q, coutA[25]:Q and coutA[26]:Q.
• The monitoring signal error, which is also connected to the LED (H5) on the board. If the LED is

ON, it indicates that the RAM count and the expected value mismatch.
To find these points in the list of available probe points, use the Filter control, as shown in Figure 19.

Note: As Active Probe only deals with individual signals, the coutA bus segment is broken up into three
separate probe lines.

Sup
ers

ed
ed
Revision 8 19

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
3. Select the desired points and click Add to move to the Selected Probe Points window and click
Read Active Probes, as shown in Figure 19.

Note: The coutA bus counts constantly. As a result, the value that you read may be different from the value
shown. Also, the error signal must be High (LED H5 is OFF), which indicates that there are no errors in
the counting pattern.

Figure 19 • Selecting Desired Points to Read and Reading the Values

Note: The “+” and “-” icons expand or collapse the bus or group present in the Active Probes UI. In Figure 19,
there is no bus or group, as a result, these buttons are not enabled.

1.6.3.3 Writing Active Probes
The write operation is similar to the read operation. After specifying points you can define new write
values that are applied to the device, when Write Active Probes is selected. Figure 20 shows the results
of a first write of the design.

Sup
ers

ed
ed
Revision 8 20

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 20 • Active Probe Writing

Note: To toggle the states between High and Low, select a new Write Value from the drop-down menu and
click Write Active Probe to update the state.

Use the Save button to save a set of Active probes, and to save them to a file. Use the Load button to
load a saved active probe setup. This allows the user to use various setups while debugging without
needing to recreate the active probe settings.

The coutA bus counts constantly, therefore, the value that you read may be different from the value
shown in Figure 20.

Also, the error signal must be High (LED H5 is OFF), indicating that there are no errors in the counting
pattern.

The Probe grouping feature is available with Active Probes. This feature is useful to manage large
designs with many signals. This feature gathers multiple signals as a single entity. Probe nets with the
same name are automatically grouped in a bus when they are added to the Active Probes tab. Create
Custom probe groups by manually selecting and adding probe nets of a different name into the group.

1.6.3.4 Fabric SRAM Memory Debug
To view the content of the Large SRAM in this design, click the Memory Blocks tab, as shown in
Figure 21.

Sup
ers

ed
ed
Revision 8 21

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 21 • Memory Blocks Tab

This design contains a single Large SRAM, named DPSRAM_0, and it is the only one available on the
left side window that shows the list of all the available RAM blocks in your design. If your design has
more RAM blocks, the RAM blocks are shown on this left side panel window. Highlight the memory block
from the left panel, and double-click or click Select to make it the "Current Memory Block" to debug.
After selecting the block, click on Read Block.

The contents of the DPSRAM_0 is displayed, as shown in Figure 22. See the counting pattern that is
loaded into the RAM.

Figure 22 • DPSRAM_0 Contents

Note: The left pane displays all the memory blocks contained in the design. The right pane only displays the
current memory block that is selected.

Sup
ers

ed
ed
Revision 8 22

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1.6.4 Writing to Fabric SRAM Blocks
The design reads the contents of the DPSRAM and compares it with a synchronized counter in the
checker, which looks for errors. If the content of the DPSRAM is modified, it breaks the count pattern and
causes an error in the checker.

The following steps describe how to modify the RAM content and force an error:

1. Read the memory content, as shown in Figure 22.
2. Select an entry and double-click. Each entry is 9-bits wide.
3. Modify the value from the current value to break the count pattern. An example is shown in

Figure 23.
Note: The counter writes to the SRAM constantly. To prevent the overwrite of the changes that are forced into

the SRAM, the writing is stopped by forcing A_WEN LOW through Switch2 (SW2). This drives a SELECT
of a mux that selects between High and Low inputs. When SW2 is pressed, A_WEN becomes low, which
prevents any write from the counter to the SRAM block.

4. Press and hold SW2 and click Write Block to write the modified value to the SRAM.
5. The error LED(H5) light turns ON, indicating an error in the counting pattern.
6. Release SW2 to resume the write operation from the counter to the SRAM.

This overwrites the error that was injected into the SRAM. The content of the SRAM can be
rechecked by clicking Read Block.

Figure 23 • Modifying DPSRAM Contents

1.6.5 Probe Insertion
Probe insertion is a post-layout process that enables you to insert probes into the design and bring
signals out to the FPGA package pins to evaluate and debug the design. Probe insertion enables you to
select internal nets anywhere in the design, connect those nets to unused pins, and then run layout
incrementally to manage the physical connection to the pin. Nets are selected and assigned using the
SmartDebug Probe Insertion feature. For more information, refer to the FPGA On-Chip Debug Tools.

The following steps describe how to probe a net:

1. On the Debug FPGA Array window, click the Probe Insertion tab and click Add Probe, as shown
in Figure 24.

2. In the Filter field, enter the *couta* signal, as shown in Figure 24, and click Search. Select signal
Fabric_Debug_0/count_0/coutA_s[24]. The goal is to add a probe by routing the counter bit 24
signal out into the E1 LED and check if it toggles.

Sup
ers

ed
ed
Revision 8 23

http://www.microsemi.com/index.php?option=com_content&view=article&id=1791&catid=1647&Itemid=3118

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
3. Click Add.
4. In the Probe Insertion window, assign Package Pin - E1, as shown in Figure 24.

Figure 24 • Assigning Package Pin and Running the Flow

5. Click Run.
The place and route tool is run incrementally in the background re-routing the coutA_s[24] signal to
package pin E1, which is the LED on the board. The LED E1 on the board starts toggling when the
incremental place and route is completed, which indicates that the counter output bit[24] is routed to
the E1 package pin.

6. Click Close to exit the Debug FPGA Array window.
Note: The Probe Insertion tab is not available with stand-alone SmartDebug.

1.6.6 SERDES Debug
This SmartDebug SERDES tutorial helps the FPGA and board designers to perform SERDES real-time
signal integrity testing and tuning in a system that:

• Provides real-time access to SERDESIF block control and status registers
• Provides testing functions with pseudo-random binary sequence (PRBS) pattern generators and

checkers
• Runs link tests with various loop back options
• Provides overview for tuning many combinations of physical medium attachment (PMA) analog

settings to find the optimal set for a SERDES channel

Sup
ers

ed
ed
Revision 8 24

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
The following steps describe how to perform SERDES debug:

1. On the SmartDebug window, click Debug SERDES, as shown in Figure 25.

Figure 25 • Debug SERDES Operation Selection

The Configuration tab is displayed as shown in Figure 26. The Configuration tab auto-identifies and
populates SERDESIF and the lanes used in the design. The status of each lane and the pro-
grammed lane mode are displayed. This example demonstrates the use of SERDESIF_0 block and
the lock status of TxPLL and RxCDR.

2. Click Refresh Report, to update the data.

Sup
ers

ed
ed
Revision 8 25

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 26 • SERDES Configuration Tab

3. The PRBS Test tab provides several capabilities for each lane of the SERDES block. Based on the
selected SERDES lane, information is provided for each channel. For example, select Lane 0, Near-
end Serial Loopback, PRBS7, and click Start, as shown in Figure 29.
This test generates and checks PRBS7 data without going off-chip. The green LEDs indicate the
lock status of TxPLL and RxCDR for the selected lane.

Sup
ers

ed
ed
Revision 8 26

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 27 • SERDES Test Tab

In this example setup, the data stream is expected to have zero errors as the datapath does not go
off-chip while using the Near-end Serial Loopback as shown in Figure 27.

The Data Rate value is entered optionally based on the actual targeted data rate of the design. This
rate is entered in Gbps, and is used to derive the bit-error rate (BER). When the Data Rate is
entered, the bit-error rate is calculated based on the following formula:

BER = (1 + Error count) / (data rate * seconds)

If the Data Rate is left blank, BER is not calculated. The Reset button clears the Cumulative Error
Count and the Bit-Error Rate.

Sup
ers

ed
ed
Revision 8 27

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 28 • SERDES Link Status

Note: Lane 0 is the PCIe® lane. This lane is connected to the PCIe edge fingers of the Evaluation board.

4. Click Stop and select Serial Data (Off-Die). Click Start and observe that the Lock to data status
indicator is red. This indicates that the data is no longer looping between Tx and Rx and Lane 0 is
not looped together on the PCB.

Sup
ers

ed
ed
Revision 8 28

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 29 • Sending Serial Tx Data Off-Die

5. The Evaluation Kit board connects Lane 1 on the PCB to loop back Tx and Rx. This loopback
demonstrates a complete path with data transmitted and received. For example, select Lane 1,
Serial Data (Off-Die), PRBS7, and click Start, as shown in Figure 32.
This test generates and checks PRBS7 data going off-chip and folded back on the PCB to the
receiver.

Sup
ers

ed
ed
Revision 8 29

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 30 • Lane 1 Transmitting Data Through On-Board Loopback

6. The Tx and Rx channels of Lane 2 can be interconnected in a loopback configuration using coaxial
cables. In this example, as shown in Figure 33 and Figure 34, after connecting a pair of high-quality
50 SMA cables to the SMA connections on the Evaluation Kit board, SERDES debug can be used
to send data off-board and check for errors. Select Lane 2, Serial Data (Off-Die), PRBS7, and click
Start.

Sup
ers

ed
ed
Revision 8 30

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 31 • External Cable Loopback

Sup
ers

ed
ed
Revision 8 31

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 32 • Evaluation Kit Board with External Coax Loopback Setup

Eval Kit PCB Tx (P/N)

Rx (P/N)

P
M
A

Eval Kit PCB Tx (P/N)

Rx (P/N)

Eval Kit PCB Tx (P/N)

Rx (P/N)

IGLOO2/
SmartFusion2

IGLOO2/
SmartFusion2

Sup
ers

ed
ed
Revision 8 32

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
7. The Lane 2 SMA test connections can be used for interconnecting with high-speed coaxial cables to
test equipment or other test fixtures like test backplanes. In the example shown in Figure 35, when
the Lane 2 test is started without any means to connect the Tx and Rx together, Lock to data status
goes red as the link is broken between the pattern generator and the checker. This setup sends a
data pattern of the board for analysis on the test equipment.

Note: SMA Male-to-SMA Male Precision Cables, such as Pasternack Industries part number PE39429-12 (or
equivalent), are recommended.

Figure 33 • Lane 2 Transmitting Data Off-Board

Sup
ers

ed
ed
Revision 8 33

http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 34 • Connecting Lane 2 to the Test Equipment

Eval Kit PCB Tx (P/N)

Rx (P/N)

P
M
A

Eval Kit PCB Tx (P/N)

Rx (P/N)

Eval Kit PCB Tx (P/N)

Rx (P/N)

IGLOO2/
SmartFusion2

IGLOO2/
SmartFusion2

Sup
ers

ed
ed
Revision 8 34

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Several test patterns are available from the test pattern generator. PRBS7 is a very typical pattern for
testing signal integrity in communication applications.

Bit error rate (BER) is the count of the number of errors over time to provide a level of confidence for a
high-speed link. For a 2.5 Gbps test, it takes about three minutes with zero errors to achieve a BER of
10e-12. The SmartDebug SERDES provides an error counter that can be used for BER test.

1.6.7 Far-End Loop Back Support
Far-end loopback is supported from the Loopback Test tab. From this tab, you can receive data from a
far-end source and fold the received data (Rx) back out of the transmitter (Tx).

In the example shown in Figure 37 and Figure 38, by using the Evaluation Kit board, data is received
from a far-end transmit source, such as a device or test equipment. It is received into Lane 2 and looped
back out of the transmitter.

This is performed by selecting SERDES Lane 2, PCS Far End PMS Rx to Tx Loopback Test Type, and
clicking Start.

Data entering the SMA connectors on Lane 2 of the Evaluation Kit board is observed coming off the
board on the Tx SMA connectors.

Note: In this test, the IGLOO2 Evaluation board or SmartFusion2 Evaluation Kit board must use the same
SERDES reference clock as the far-end device that is sending and receiving the data. The datapath
through the SERDEIF goes through the CDR and reclocks the data to the local REFCLK. This requires 0
ppm difference between the far-end clock source and the Evaluation Kit clock source. For this, use the
SMA inputs (designators J17 and J21) of the board as the input for the SERDES REFCLK.

Figure 35 • PCS Far-End Rx to Tx Loopback

Figure 36 • Far-End Loopback on the Evaluation Board

Sup
ers

ed
ed
Revision 8 35

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1.6.8 Near-End Serial Loopback
The Near-end Serial Loopback Test feature, as shown in Figure 37, includes a loopback that folds back
the TX to the RX. This feature requires the FPGA design to verify the correct operation of the looping
data stream.

Use this feature to allow an FPGA application to send a data stream into the SERDES, and to bring the
data stream back into the FPGA from the SERDES. This operation is done at the device pins without
leaving the device. All data generation and checking is done in the FPGA application design.

Figure 37 • Loopback Test Feature

Sup
ers

ed
ed
Revision 8 36

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1.6.9 Tcl Support
The SERDES Debug tool set permits execution of Tcl scripts. This allows customized writes and reads of
the entire SERDES register base. Tcl can be used to update or check status of the SERDES system,
PCIe system, and SERDES lane registers.

Tcl command syntax is:

read_register –addr <RegisterAddress >

write_register –addr <RegisterAddress> -value <RegisterValue>

where RegisterAddress is 8 hex character (with optional 0x prefix) example:
0x4002200C

RegisterValue is 1-8 hex character (with optional 0x prefix) example: 0x1,
0x1F

Example:

read_register –addr 0x4002200C

write_register –addr 0x4002E008 –value 0x3

Address for the SERDES blocks are as follows:

SERDESIF_0 0x40028000 – 0x4002A3FF

SERDESIF_1 0x4002C000 – 0x4002E3FF

SERDESIF_2 0x40030000 – 0x400323FF

SERDESIF_3 0x40034000 – 0x400363FF

Within each SERDES block, the memory map is as follows:

Name – Offset from the base address (example, for SERDESIF_0 the base address is 0x40028000).

PCIe Core register map 0x0000 – 0x0FFF

Lane 0 registers 0x1000 – 0x13FF

Lane 1 registers 0x1400 – 0x17FF

Lane 2 registers 0x1800 – 0x1BFF

Lane 3 registers 0x1C00 – 0x1FFF

SERDESIF system register map 0x2000 – 0x23FF

Example Tcl applications:

1. To access the Tx Impedance Ratio register for lane 2 in SERDESIF_1, the address is 0x4002C000
(SERDESIF_1 base) + 0x1800 (lane 2 offset) + 0x0C (register offset) = 0x4002D80C

2. To access the PRBS Control register for lane 0 in SERDESIF_0, the address is 0x40028000
(SERDESIF_0 base) + 0x1000 (lane 0 offset) + 0x190 (register offset) = 0x40029190

For register map details, refer to the UG0447: IGLOO2 and SmartFusion2 High Speed Serial Interfaces
User Guide.

Read only the lanes that are programmed by the design. Also, read the PCIe registers only if any of the
lanes have PCIe protocol.

Sup
ers

ed
ed
Revision 8 37

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Example:

The Tcl script below is used to alter the TX_PST (Transmit Post Emphasis) setting of Lane 0 of
SERDESIF_0.

Serdes block 0

Set the config_phy_mode_1 value by separately running the following Tcl
command "" in separate script and write the value without '0x' prefix

set config_phy_mode_1 80f

set config_phy_mode_1

scan $config_phy_mode_1 %x phyMode1Val

set CONFIG_REG_LANE_SEL for this lane

set lane0PhyMode [expr { ($phyMode1Val & 255) | 256 }]

scan [format %x $lane0PhyMode] %s lane0PhyMode

write_register -addr 0x4002a028 -val $lane0PhyMode

puts "Serdes lane0 registers"

write_register -addr 0x40029028 -val 0x1a

puts "TX_PST_RATIO"

read_register -addr 0x40029028

#Reset the config_phy_mode_1 value to original value

write_register -addr 0x4002a028 -val $config_phy_mode_1

The value of the CONFIG_PHY_MODE_1 register must be known in the example shown above. This
register contains the value of the CONFIG_REG_LANE_SEL, which defines the lanes accessed in the
design. In this example, reading the CONFIG_PHY_MODE_1 register and passing its value and the
associated offset targets the correct lane.

Note: Some SERDES PMA register settings are updated only after the assertion of a PHY_RESET or writing to
the UPDATE_SETTINGS register.

Tcl commands and syntax are found in the SmartFusion2 and IGLOO2 FPGAs Tcl for SoC – Tcl
Documentation.

From the Debug SERDES Configuration tab, an executable Tcl script can be imported. Browse to the
Tcl script file and click Execute, as shown in Figure 39. The script contains commands to write or read
registers using a flattened top for most address mapping.Sup

ers
ed

ed
Revision 8 38

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 38 • Tcl Script Execution User Interface

After execution of the Tcl SERDES access, the log of the access is displayed in the SmartDebug Console
Log pane, as shown in Figure 40.

Figure 39 • SERDES Access Log

Refer to "Appendix" on page 45 for more Tcl examples.

Sup
ers

ed
ed
Revision 8 39

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1.6.10 Executing SERDES Debug from SmartDebug Tcl

1.6.10.1 PRBS
User-level command: Used in PRBS test to start, stop, reset the error counter, and read the error counter
value.

prbs_test [-deviceName <device_name>] -start -serdes <num> -lane <num> [-
near] -pattern <PatternType> [-value <PatternValue>]

prbs_test [-deviceName <device_name>] -stop -serdes <num> -lane <num>

prbs_test [-deviceName <device_name>] -reset_counter -serdes <num> -lane
<num>

prbs_test [-deviceName <device_name>] -read_counter -serdes <num> -lane <num>

-deviceName <device_name>: Parameter is optional, if only one device is available in the current
configuration or set for debug (see the SmartDebug User Guide, for details).

-start: To start PRBS test.

-stop: To stop PRBS test.

-reset_counter: To reset the PRBS error count value to 0.

-read_counter: To read and print the error count value.

-serdes <num>: SERDES block number. Must be between 0 and 4 and varies between dies.

-lane <num>: SERDES lane number. Must be between 0 and 4.

-near: Corresponds to near-end (on-die) option for PRBS test. Not specifying this option implies
off-die.

-pattern <PatternType>: The pattern sequence to be used for the PRBS test. It can be one of the
following:

prbs7 or prbs11 or prbs23 or prbs31

custom

user

-value <PatternValue>: Specifies the pattern type value for cases other than PRBS* sequences. It can
be one of the following:

If custom is selected above, then it must be one of all_zeros, all_ones, alternated, or
dual_alternated.

If user is selected above, then it must be 20 hexadecimal characters.

Example:

prbs_test -start -serdes 1 -lane 0 -near -pattern prbs11

prbs_test -start -serdes 2 -lane 2 -pattern custom -value all_zeros

prbs_test -start -serdes 0 -lane 1 -near -pattern user -value
0x0123456789ABCDEF0123

Sup
ers

ed
ed
Revision 8 40

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
1.6.10.2 Loopback
User level command: Used to start and stop the loopback tests.

loopback_test [-deviceName <device_name>] -start -serdes <num> -lane <num> -
type <LoopbackType>

loopback_test [-deviceName <device_name>] -stop -serdes <num> -lane <num>

deviceName <device_name>: Parameter is optional, if only one device is available in the current
configuration or set for debug (see the SmartDebug User Guide, for details).

start: To start loopback test.

stop: To stop loopback test.

serdes <num>: SERDES block number. Must be between 0 and 4 and varies between dies.

lane <num>: SERDES lane number. Must be between 0 and 4.

type <LoopbackType>: Specifies the loopback test type. Must be one of the following:

1. plesio (PCS Far End PMA Rx to Tx Loopback)
2. parallel
3. meso (PCS Far End PMA Rx to Tx Loopback)

Example:

loopback_test –start –serdes 1 -lane 1 -type meso

loopback_test –start –serdes 0 -lane 0 -type plesio

loopback_test –start –serdes 1 -lane 2 -type parallel

loopback_test –stop –serdes 1 -lane 2

Tcl scripting for SERDES SmartDebug can be used in batch mode without launching SmartDebug. The
following is an example batch script:

open_project -project {D:/my_serdes_design/my_serdes.pro}

set_debug_device -name {M2S/M2GL050(T|S|TS)}

read_id_code

set_programming_file -name {M2S/M2GL050(T|S|TS)} -file {./
SERDES1_REFCLK1_EPCS_MODE_SF2_DEV_KIT/SERDES1_REFCLK1_EPCS_MODE/designer/
SERDES_LOOPBACK_top/export/SERDES_LOOPBACK_top.stp}

run_selected_actions

set_debug_device -name {M2S/M2GL050(T|S|TS)}

//Place serdes tcl commands after here

1.7 Stand-Alone SmartDebug
SmartDebug is offered as a stand-alone utility. This allows SmartDebug to be used on other host
computer systems without the full installation of the Libero SoC Software. The stand-alone SmartDebug
flow requires the user to create standalone SmartDebug project.

There are two ways to create a stand-alone SmartDebug project:

• Import DDC files from Libero
• Construct automatically

Sup
ers

ed
ed
Revision 8 41

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
The following procedure describes how to import a DDC file from Libero:

1. Enable the appropriate debug features such as probe insertion of the targeted devices in the Libero
design project prior to creating the DDC file.

2. Double-click Export SmartDebug Data to generate the DDC file from the Libero SoC design flow.

Figure 40 • Export SmartDebug Data

The exported DDC file is located at: <project path>\designer\Project\export\Project_top.ddc

The exported DDC file and programming file need to be transferred to a stand-alone PC for debug
sessions.

The following procedure describes how to create a SmartDebug project:

1. Connect a FlashPro programmer to a valid hardware device.
2. Start SmartDebug stand-alone utility. The Standalone SmartDebug is found in the Program Debug

program group of the Microsemi Libero SoC v11.7 program group, as shown in Figure 41. You can
also find it as an icon on your desktop.

Figure 41 • Starting Standalone SmartDebug

3. Click New.
Sup

ers
ed

ed
Revision 8 42

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 42 • New SmartDebug Project

The Create SmartDebug Project window is displayed.

4. Enter the name of the SmartDebug project.
5. Browse to the desired directory location and select the DDC file related to the Libero SoC project.
6. Click OK.

Figure 43 • Create SmartDebug Project

The SmartDebug project is created. At this point SmartDebug works exactly the same as when it is
launched from Libero. See the prior sections for operation. The Standalone SmartDebug UI is shown in
Figure 44.

Sup
ers

ed
ed
Revision 8 43

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
Figure 44 • Standalone SmartDebug UI

1.8 Conclusion
This tutorial demonstrated the capabilities of SmartDebug. SmartDebug provides the capabilities to
observe and analyze many embedded device features. Live Probe gives real-time access to device test
points and internal logic states can be easily accessed using Active Probes. The SmartDebug SERDES
utility assists FPGA and board designers to validate signal integrity of high-speed serial links in a system
and improve board bring-up time. This is completed in real-time without any design modifications.
Adjustments and tuning the PMA analog settings for optimal link performance is easily accomplished to
match the design to the system. Using the SmartDebug utility with the Evaluation Kit board provides
designers a good understanding of its features and capabilities.

Sup
ers

ed
ed
Revision 8 44

Appendix
2 Appendix

2.1 Tcl Script Examples

2.1.1 Example 1: Change M/N/F registers for Lane1 and Lane2
of SERDESIF_0
set CONFIG_REG_LANE_SEL

write_register -addr 0x4002a028 -val 20F

read_register -addr 0x4002a028

write_register -addr 0x40029410 -val 0x0

puts "PLL_F_PCLK_RATIO_Lane1"

write_register -addr 0x40029414 -val 0x13

puts "PLL_M_N_Lane1"

write_register -addr 0x40029600 -val 0x1

puts "UPDATE_SETTINGS_Lane1"

puts "Serdes lane1 registers"

set CONFIG_REG_LANE_SEL

write_register -addr 0x4002a028 -val 40F

write_register -addr 0x40029810 -val 0x0

puts "PLL_F_PCLK_RATIO_Lane2"

write_register -addr 0x40029814 -val 0x13

puts "PLL_M_N_Lane2"

write_register -addr 0x40029a00 -val 0x1

puts "UPDATE_SETTINGS_Lane2"

puts "Serdes lane2 registers"

Sup
ers

ed
ed
Revision 8 45

Appendix
2.1.2 Example 2: Change RX LEQ registers Lane2 of
SERDESIF_0
set CONFIG_REG_LANE_SEL

write_register -addr 0x4002a028 -val 40F

write_register -addr 0x4002981c -val 0x00

puts "RE_AMP_RATIO_Lane2"

write_register -addr 0x40029820 -val 0x00

puts "RE_CUT_RATIO_Lane2"

write_register -addr 0x40029a00 -val 0x1

puts "UPDATE_SETTINGS_Lane2"

2.1.3 Example 3: Change TX De-emphasis registers Lane2 of
SERDESIF_0
set CONFIG_REG_LANE_SEL

write_register -addr 0x4002a028 -val 40F

write_register -addr 0x40029828 -val 0xa

puts "TX_PST_RATIO_Lane2"

write_register -addr 0x4002982c -val 0x0

puts "TX_PRE_RATIO_Lane2"

write_register -addr 0x40029a00 -val 0x1

puts "UPDATE_SETTINGS_Lane2"

Sup
ers

ed
ed
Revision 8 46

Revision History

Revision 8 47

3 Revision History

The following table shows the important changes made in this document for each revision.

Date Version Page

Revision 8
(April 2016)

Updated the document for Libero v11.7 software release (SAR 75567). NA

Revision 7
(October 2015)

Updated the document for Libero v11.6 software release (SAR 68374). NA

Revision 6
(January 2015)

Updated the document for Libero v11.5 software release (SAR 62936). NA

Revision 5
(October 2014)

Updated the document for SERDES core change (SAR 61612). NA

Revision 4
(September 2014)

Updated the document for Libero v11.4 software release (SAR 59069). NA

Updated the document for M2S025 Evaluation Kit board details (SAR 59069). NA

Updated the document for M2GL010 Evaluation Kit board details (SAR 59069). NA

Revision 3
(April 2014)

Added Note in "Specifying Live Probe Points in Libero" section(SAR 56593). 17

Revision 2
(March 2014)

Updated the software version from 11.2 SP1 to 11.3 (SAR 56012). NA

Updated design files using the latest 11.3 SERDES core (SAR 56012). NA

Revision 1
(January 2014)

Initial release. NA

Sup
ers

ed
ed

Product Support
4 Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

4.1 Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

4.2 Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

4.3 Technical Support
For Microsemi SoC Products Support, visit
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support.

4.4 Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products
Group home page, at http://www.microsemi.com/products/fpga-soc/fpga-and-soc.

4.5 Contacting the Customer Technical Support
Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

4.5.1 Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.

4.5.2 My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Sup
ers

ed
ed
Revision 8 48

http://www.microsemi.com/index.php?option=com_content&view=article&id=2112&catid=1731&Itemid=3022
http://www.microsemi.com/index.php?option=com_content&view=article&id=2038&catid=1642&Itemid=2800
http://www.microsemi.com/index.php?option=com_content&view=article&id=2038&catid=1642&Itemid=2800
mailto:soc_tech@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/

Product Support
4.5.3 Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and
corporate contacts.

4.6 ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms
Regulations (ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases, select Yes
in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web
page.

Sup
ers

ed
ed
Revision 8 49

mailto:soc_tech@microsemi.com
http://www.microsemi.com/index.php?option=com_content&view=article&id=135&catid=85&Itemid=1915
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
mailto:soc_tech@microsemi.com

Micros
Headq
One Ent
CA 9265

Within th
Outside
Sales: +
Fax: +1
E-mail: s

ctor
trial
nal

and
ice
ble

l as
and

© 2016
rights r
Microse
Microse
tradema
property

n or
any
sold
 not
 are
and
 rely
er's
The
ntire
y or
uch
t is

 this
emi Corporate
uarters
erprise, Aliso Viejo,
6 USA

e USA: +1 (800) 713-4113
 the USA: +1 (949) 380-6100
1 (949) 380-6136
(949) 215-4996
ales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semicondu
and system solutions for communications, defense & security, aerospace and indus
markets. Products include high-performance and radiation-hardened analog mixed-sig
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing
synchronization devices and precise time solutions, setting the world's standard for time; vo
processing devices; RF solutions; discrete components; security technologies and scala
anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as wel
custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif,
has approximately 4,800 employees globally. Learn more at www.microsemi.com.

 Microsemi Corporation. All
eserved. Microsemi and the
mi logo are trademarks of
mi Corporation. All other
rks and service marks are the

Microsemi makes no warranty, representation, or guarantee regarding the information contained herei
the suitability of its products and services for any particular purpose, nor does Microsemi assume
liability whatsoever arising out of the application or use of any product or circuit. The products
hereunder and any other products sold by Microsemi have been subject to limited testing and should
be used in conjunction with mission-critical equipment or applications. Any performance specifications
believed to be reliable but are not verified, and Buyer must conduct and complete all performance
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
on any data and performance specifications or parameters provided by Microsemi. It is the Buy
responsibility to independently determine suitability of any products and to test and verify the same.
information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the e
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitl
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to s
information itself or anything described by such information. Information provided in this documen
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in

Sup
ers

ed
ed
50200530-8/4.16

 of their respective owners. document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 andIGLOO2 SmartDebug Hardware DesignDebug Tools - Libero SoC v11.7
	Contents
	Figures
	Tables
	1 Preface
	1.1 About this Document
	1.2 Intended Audience
	1.3 References
	1.3.1 Microsemi Publications
	1.3.2 Others

	1 SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
	1.1 Introduction
	1.2 Design Requirements
	1.2.1 Reference Documents
	1.2.2 Project Files

	1.3 Design Overview
	1.4 Programming the Device
	1.5 Launching SmartDebug from Libero
	1.6 Debugging the Design
	1.6.1 View Device Status
	1.6.2 View Flash Memory (eNVM) Content
	1.6.3 Debug FPGA Array
	1.6.3.1 Specifying Live Probe Points in Libero
	1.6.3.2 Active Probes
	1.6.3.2.1 Selecting Active Probes

	1.6.3.3 Writing Active Probes
	1.6.3.4 Fabric SRAM Memory Debug

	1.6.4 Writing to Fabric SRAM Blocks
	1.6.5 Probe Insertion
	1.6.6 SERDES Debug
	1.6.7 Far-End Loop Back Support
	1.6.8 Near-End Serial Loopback
	1.6.9 Tcl Support
	1.6.10 Executing SERDES Debug from SmartDebug Tcl
	1.6.10.1 PRBS
	1.6.10.2 Loopback

	1.7 Stand-Alone SmartDebug
	1.8 Conclusion

	2 Appendix
	2.1 Tcl Script Examples
	2.1.1 Example 1: Change M/N/F registers for Lane1 and Lane2 of SERDESIF_0
	2.1.2 Example 2: Change RX LEQ registers Lane2 of SERDESIF_0
	2.1.3 Example 3: Change TX De-emphasis registers Lane2 of SERDESIF_0

	3 Revision History
	4 Product Support
	4.1 Customer Service
	4.2 Customer Technical Support Center
	4.3 Technical Support
	4.4 Website
	4.5 Contacting the Customer Technical Support Center
	4.5.1 Email
	4.5.2 My Cases
	4.5.3 Outside the U.S.

	4.6 ITAR Technical Support

