
UG0743
User Guide

PolarFire FPGA Debugging

50200743. 4.0 3/18

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

UG0743 User Guide Revision 4.0 iii

Contents

1 Revision History . 1
1.1 Revision 4.0 . 1

1.2 Revision 3.0 . 1

1.3 Revision 2.0 . 1

1.4 Revision 1.0 . 1

2 PolarFire FPGA Debugging . 2
2.1 SmartDebug . 2

2.1.1 Standalone Mode . 3
2.1.2 Integrated Mode from the Libero SoC PolarFire Design Flow . 3
2.1.3 View Device Status . 4
2.1.4 Debug FPGA Array . 5
2.1.5 Debug µPROM . 12
2.1.6 Debug TRANSCEIVER . 14
2.1.7 Signal Integrity . 20
2.1.8 sNVM Debug . 27

2.2 Demo Mode . 32
2.2.1 View Device Status . 34
2.2.2 Debug FPGA Array . 34
2.2.3 Debug TRANSCEIVER . 37

2.3 DDR Debug . 40

2.4 Identify . 40
2.4.1 System Components . 41
2.4.2 Libero Design Flow With Identify . 43

2.5 ModelSim . 44

3 Debugging Examples . 45

4 Board Design Recommendations For Probes . 46

UG0743 User Guide Revision 4.0 iv

Figures

Figure 1 SmartDebug—Standalone Mode . 3
Figure 2 SmartDebug–Integrated Mode . 3
Figure 3 Viewing Device Status . 4
Figure 4 Viewing Device Status Report . 5
Figure 5 Debug FPGA Array . 6
Figure 6 Adding Probe Points . 7
Figure 7 Reserve Pins for Live Probes . 8
Figure 8 Assign Live Probes . 9
Figure 9 Add Memory Block . 10
Figure 10 View Memory Blocks . 10
Figure 11 Read-Write Memory Blocks . 11
Figure 12 Inserting Probes . 11
Figure 13 Debug µPROM . 12
Figure 14 View User Design . 13
Figure 15 Viewing Direct Address . 13
Figure 16 Debug Transceiver . 14
Figure 17 Configuration Report . 15
Figure 18 SmartBert with PRBS Generator . 16
Figure 19 SmartBERT in Transceiver . 16
Figure 20 Viewing the Status of TXPLL, RXPLL Lock to Data, Data Rate, and BER 17
Figure 21 Viewing Error Counter and Error Injection . 17
Figure 22 Transceiver Loopback . 18
Figure 23 Static Pattern Transmit . 19
Figure 24 Viewing the Eye Monitor Diagram . 20
Figure 25 View Signal Integrity for SmartBERT . 21
Figure 26 Viewing Signal Integrity for a Selected Lane . 22
Figure 27 Applying the Changes for the Signal Integrity . 22
Figure 28 Viewing a Confirmation Message . 23
Figure 29 Viewing the Design Default Constraints . 23
Figure 30 Exporting the Selected Lane Details . 24
Figure 31 Exporting All Lane Details . 25
Figure 32 Importing a Selected Lane Details . 25
Figure 33 Importing All Lane Details . 26
Figure 34 Viewing Signal Integrity Features in Demo Mode . 27
Figure 35 SmartDebug—Debug SNVM . 28
Figure 36 Viewing the Client View . 29
Figure 37 Reading the Client View Details . 30
Figure 38 Viewing the Page Status Report . 31
Figure 39 Viewing Page View . 31
Figure 40 Viewing Page View Details . 32
Figure 41 Launching SmartDebug in Demo Mode . 33
Figure 42 Viewing Device Status . 34
Figure 43 Assigning Live Probes to Channels . 35
Figure 44 Reading or Writing Live Probe Values . 36
Figure 45 Memory Blocks in Demo Mode . 37
Figure 46 Debug TRANSCEIVER—Configuration Report . 38
Figure 47 Debug TRANSCEIVER—SmartBERT . 38
Figure 48 Debug TRANSCEIVER—Loopback Modes . 39
Figure 49 Debug TRANSCEIVER—Static Pattern Transmit . 39
Figure 50 Debug TRANSCEIVER—Eye Monitor . 40
Figure 51 Host PC-Identify Interface . 41
Figure 52 Libero Design Flow With Identify . 43
Figure 53 ModelSim Window . 44

Revision History

UG0743 User Guide Revision 4.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 4.0
This version of the document is the update with respect to Libero® SoC PolarFire v2.1 release.

1.2 Revision 3.0
The following is a summary of the changes made in revision 3.0 of this document:

• Added the Demo Mode section (see Demo Mode, page 32).
• Updated the Eye Monitor section as part of the Debug TRANSCEIVER section (see Eye Monitor,

page 19).
• Updated the sNVM Debug section for its features (see sNVM Debug, page 27).
• Updated the Signal Integrity sections for its features (see Signal Integrity, page 20).
• Updated the SmartBERT section for its features (see SmartBERT, page 15).

1.3 Revision 2.0
The following was a summary of the changes made in revision 2.0 of this document.

• Added additional information about SmartDebug. For more information, see SmartDebug, page 2.
• Updated the view device status section. For more information, see View Device Status, page 4.
• Updated the debug FPGA array section. For more information, see Debug FPGA Array, page 5.
• Updated the debug µPROM section. For more information, see Debug µPROM, page 12.
• Updated the debug transceiver section. For more information, see Debug TRANSCEIVER, page 14.

1.4 Revision 1.0
Revision 1.0 was the first publication of this document.

PolarFire FPGA Debugging
2 PolarFire FPGA Debugging

Microsemi PolarFire® devices support the following on-chip debug capabilities:

• Built-in dedicated probe interface in the fabric (hard block)
• Embedded logic analyzer (soft block)

Microsemi’s SmartDebug tool is integrated in the Libero® SoC PolarFire Design Suite.
SmartDebug enables hardware debugging using the in-built dedicated signal probe. It offers the following
advantages:

• Enables live on-chip debugging
• Avoids extra FPGA resource utilization
• Reduces the FPGA design debug cycles
• Enables read-write capability to logic elements and memory blocks during debug

The Identify debug tool integrated in to Libero SoC PolarFire, enables hardware debugging using the
embedded logic analyzer.

In addition to SmartDebug and Identify, external test equipments such as Oscilloscopes and Logic
Analyzer are also supported. For functional debugging of the FPGA design, Libero SoC PolarFire also
integrates the ModelSim simulator.

SmartDebug, Identify, and ModelSim are described in the following sections. For information about
debugging examples, see Debugging Examples, page 45.

2.1 SmartDebug
Design debugging is a critical phase of the FPGA design flow. SmartDebug enables you to debug the
design by allowing verification and troubleshooting at the hardware level. It provides access to probe
points, non-volatile memory (NVM), fabric and memory, transceivers, and the DDR controller.

SmartDebug uses the JTAG interface to retrieve information from the fabric probe points via the fabric
control bus. As SmartDebug does not require any fabric logic or change in the design flow, it runs in two
modes–standalone and integrated with Libero SoC PolarFire.
UG0743 User Guide Revision 4.0 2

PolarFire FPGA Debugging
2.1.1 Standalone Mode
SmartDebug can also be installed separately with program and debug installer. This setup provides a
lean installation that configures all of the programming and debugging tools in a lab environment for
debugging. In this mode, SmartDebug opens as a separate tool. The debug process is invoked through
SmartDebug after programming the FPGA with the programming file. When SmartDebug is invoked in
standalone mode, create a new project and import the design debug data container file (.ddc file that
needs to be exported from Libero SoC PolarFire) to access all of the debug features.

Figure 1 • SmartDebug—Standalone Mode

Note: In standalone mode, the probe insertion feature is not available for FPGA Array Debug, as this feature
needs incremental place and route to connect the user net to the specified I/O.

2.1.2 Integrated Mode from the Libero SoC PolarFire Design Flow
SmartDebug has access to all design files that allow you to debug the device. Certain I/O states during
programming, and JTAG clock frequency, however, cannot be changed through SmartDebug. To invoke
SmartDebug in the Integrated mode, expand Debug Design and double-click SmartDebug Design.

Figure 2 • SmartDebug–Integrated Mode
UG0743 User Guide Revision 4.0 3

PolarFire FPGA Debugging
The following sections describe SmartDebug features, which include:

• View Device Status, page 4
• Debug FPGA Array, page 5
• Debug µPROM, page 12
• Debug TRANSCEIVER, page 14
• Signal Integrity, page 20
• sNVM Debug, page 27
• DDR Debug, page 40

2.1.3 View Device Status
The View Device Status feature provides the device status report.

To view the device status report, click View Device Status in the SmartDebug window.

Figure 3 • Viewing Device Status
UG0743 User Guide Revision 4.0 4

PolarFire FPGA Debugging
The device status report is displayed. It is a complete summary of ID Code, device certificate, design
information, programming information, digest, and device security information, as shown in the following
figure.

Figure 4 • Viewing Device Status Report

Device certificate—displays that certificate is valid if device certificate is installed on a device. If the
device certificate is not installed, a message is displayed, stating that the device certificate needs to be
installed to generate the device certificate related information.

2.1.4 Debug FPGA Array
The Debug FPGA array provides an interface to probe the user logic implemented in the logic elements
(LEs) of the FPGA using active and live probes, read-write access to the fabric flip-flops, and read-write
access to the memories implemented using LSRAMs/µRAMs.

Probe insertion allows assignment of the internal signals to the assigned or unassigned pins. These
signals can be monitored using the oscilloscope in real-time.
UG0743 User Guide Revision 4.0 5

PolarFire FPGA Debugging
The Debug FPGA array supports the following four features:

• Active Probes, page 6
• Live Probes, page 8
• Memory Blocks, page 10
• Probe Insertion, page 11

Figure 5 • Debug FPGA Array

2.1.4.1 Active Probes
Active probes enable you to read or change the values of probe points in a design through JTAG.

The value of probe points maybe changed for various reasons, such as:

• To verify that a reset signal is in the active and required state.
• To test a logic function by writing to a probe point.
• To initiate a state machine transition by quickly setting an input value to isolate a control flow

problem.

Active probes dynamically and asynchronously read or write to any logic element register bit. The probe
points of a design are selected using active probes. Active probes are particularly useful for a quick
observation of an internal signal. All of the probe points for the design are displayed in Hierarchical View
and Netlist View in the left pane of the Active Probe window.

• Hierarchical View—available probe points are listed in hierarchical order.
• Netlist View—available probe points are listed with the Name and Type, which are physical

locations of flip-flops.

To add probe points to a list:

1. Select the Active Probes tab in the right pane. The probe signals are displayed in the left pane.
2. Select the probe points that you want to add from the Hierarchical View or Netlist View in the left

pane.
UG0743 User Guide Revision 4.0 6

PolarFire FPGA Debugging
3. Right-click the selected points and click Add to add them to the Active Probes. You can also add
the selected probe points by clicking Add in the top-right corner of the left pane. The probes signals
can be filtered with the Filter option.

Figure 6 • Adding Probe Points

The added probe points appear in the active probe data chart and you can read or write multiple probe
points at a time.

Note: All of the registered locations of a device are not accessible for writing new probe values due to a silicon
limitation. This will be fixed in the next release of the PolarFire silicon.
UG0743 User Guide Revision 4.0 7

PolarFire FPGA Debugging
2.1.4.2 Live Probes
Live probes enable the monitoring of two internal signals at a time in the design without having to rerun
place and route.

PolarFire devices have two dedicated live probe channels (for example, pin H6 and G6 of PolarFire
MPF300TS device). To use live probes, reserve pins, using Reserve Pins for Probes under
Constraints Manager in the Libero SoC PolarFire. If you do not reserve pins for live probes, the live
probe I/O’s function as GPIOs and are used for routing nets in the design.

Figure 7 • Reserve Pins for Live Probes

Any probe point from the design can be routed to one of these channels without having to re-run place
and route. The probe points assigned to live probe channels can be modified through the SmartDebug
live probes Assign and Unassign options without having to recompile and reprogram the design.

Channel A and Channel B are available in live probes. When an internal signal is selected, it can be
assigned to either, Channel A or Channel B.

To assign and unassign probe points to Channel A or Channel B:

1. Select the required probe points in the left pane and click Add in the top-right corner. The signals are
displayed in the right pane.

2. Click the signal to be monitored and click Assign to Channel A or Assign to Channel B. The
signal is assigned to the selected channel. When the assignment is complete, the probe name
appears next to channels. SmartDebug configures Channel A and Channel B I/O to monitor the
desired probe points.
UG0743 User Guide Revision 4.0 8

PolarFire FPGA Debugging
3. Click Unassign Channels to disconnect the selected internal net from the live probe channel that
appears in the bottom-right corner of the live probes window.

Figure 8 • Assign Live Probes
UG0743 User Guide Revision 4.0 9

PolarFire FPGA Debugging
2.1.4.3 Memory Blocks
SmartDebug provides the Memory Blocks tab to dynamically and asynchronously read from and write to
a selected FPGA fabric SRAM block. Memory blocks are categorized into two views:

• Physical View—shows the actual memory view of the RAM in FPGA.
• Logical View—shows a logical representation of RAM block.

Using the Memory Blocks tab, you can select the required memory block to:

• Read
• Capture a snapshot of the memory
• Modify memory values, and then write the values back to that block.

This feature is useful for checking or setting data buffers used in communication interfaces; debugging
complex data dependent errors.

Note: For RAM blocks used in the design through RTL inference, logical representation of the memory blocks
may not be available.

To read and write memory blocks:

1. Select the Memory Blocks tab in the right pane of the SmartDebug window.
2. View the memory blocks in the left pane in the Hierarchical View.
3. Select the memory block in the left pane and click Select in the top-right corner of the pane.
4. Right-click the selected memory block and click Add.

Figure 9 • Add Memory Block

The memory blocks are displayed in the right pane.

Figure 10 • View Memory Blocks

5. Click Read Block. The specified memory block is read.
6. Enter a hexadecimal value in the memory block locations and click Write Block. The memory blocks

are replaced with the specified values.
UG0743 User Guide Revision 4.0 10

PolarFire FPGA Debugging
7. Click Save Block Data to save the recent changes.

Figure 11 • Read-Write Memory Blocks

2.1.4.4 Probe Insertion
Probe insertion is a post-layout process that enables you to insert probes into the design and to bring
signals out to the FPGA package pins. Probe insertion enables selecting internal ports in the design,
connecting of those ports to used or unused pins, and then running the layout.

Note: FlashPro programmer must be connected to SmartDebug before inserting probes.

To insert probes into the design:

1. Double-click SmartDebug Design in the Design Flow window. The SmartDebug Design window
is displayed.

2. Select Debug FPGA Array and click the Probe Insertion tab.

Figure 12 • Inserting Probes

3. Select the Probe Insertion tab in the right pane. The probe signals are displayed in the left pane.
4. Select probe points from the Hierarchical View or Netlist View in the left pane.
5. Select the probe points and right-click and then click Add to add them in the right pane. You can also

add the selected probe points by clicking Add in the top-right corner in the left pane. The probes
signals can be filtered with the Filter option.

6. Assign a package pin to the probe using the drop-down list in the package pin. You can assign a
probe to any unused package pin or spare I/O.
UG0743 User Guide Revision 4.0 11

PolarFire FPGA Debugging
7. Click Run in the bottom-right corner of the window to run the Place and Route in the incremental
mode. The selected probe nets are routed to the selected package pins. After incremental place and
route, Libero SoC automatically reprograms the device with the added probes.

8. To delete the probe, select the probe and click Delete or Delete All. Deleting probes from the probe
list without performing the Run functionality does not remove probes from the design.

2.1.5 Debug µPROM
SmartDebug enables debugging µPROM and reading its µPROM contents. The clients added in the
design can be debugged using the SmartDebug Debug uPROM feature.

To debug µPROM and its contents, select Debug µPROM in the SmartDebug window.

Figure 13 • Debug µPROM

The µPROM Debug dialog box displays µPROM instance used in the design.There are two tabs in the
µPROM debug window:

• User Design View—lists all the µPROM clients configured in the design.
• Direct Address View—provides access to µPROM memory. You can read a part of a client or more

than one client by specifying the start address and number of 9-bit words.
Note: µPROM clients added in Design and Memory Initialization tab and the UIC clients cannot be debugged

through SmartDebug.

To view µPROM clients in the user design:

1. Select the User Design View tab.
2. Select the Client Name from the client list. The start address and number of words that are

reprogrammed are displayed in the window.
UG0743 User Guide Revision 4.0 12

PolarFire FPGA Debugging
3. Click Read from Device. The data of the selected client address is displayed. The client address is
associated with a start address and number of 9-bit words. Therefore, the table contains as many
locations as the number of 9-bit words.

Figure 14 • View User Design

To view direct address of a µPROM client:

1. Select the Direct Address View tab.
2. Enter the Start address and Number of 9-bit words.

Note: The start address must be a hexadecimal value.

3. Click Read from Device. The data of the range specified is displayed.

Figure 15 • Viewing Direct Address
UG0743 User Guide Revision 4.0 13

PolarFire FPGA Debugging
2.1.6 Debug TRANSCEIVER
SmartDebug enables transceiver debugging, which includes checking lane functionality and health for
different settings of lane parameters. To access the debug transceiver feature, select Debug
TRANSCEIVER in the SmartDebug window.

Debug Transceiver supports the following features:

• Configuration Report, page 15
• SmartBERT, page 15
• LoopBack Modes, page 18
• Static Pattern Transmit, page 18
• Eye Monitor, page 19

Figure 16 • Debug Transceiver
UG0743 User Guide Revision 4.0 14

PolarFire FPGA Debugging
2.1.6.1 Configuration Report
The Configuration Report feature creates a report that shows the physical location, TX and RX PLL
lock status, and data width of all enabled transceiver lanes. This report includes the following lane
parameters:

• Physical Location—physical location of the transceiver lanes in the system.
• Tx PMA Ready—Tx lane of the transceiver is powered up and ready for transactions.
• Rx PMA Ready—Rx lane is powered up and ready for transactions.
• TX PLL—TX PLL of the transceiver is Locked.
• Rx PLL—Rx PLL of the transceiver is Locked.
• Data Width—configured data width of the corresponding lanes in the transceiver.

Figure 17 • Configuration Report

Note: Red indicates that the lanes are not configured in the current system.

2.1.6.2 SmartBERT
For any transceiver design, PRBS tests from XCVR PMA are available by default. SmartBERT enables
you to run diagnostic tests on the transceiver lanes.

2.1.6.2.1 Running with PRBS generator
SmartBERT uses the PRBS generator and checker functionality available in each transceiver lane to
determine the bit error rate (BER) of a lane. The various PRBS patterns supported are PRBS7, PRBS9,
PRBS15, PRBS23, and PRBS31. Near-end loopback can be performed using one of these PRBS
patterns. Bit Error Rate (BER) displays the BER for the PRBS test in progress.The formula for calculating
BER is as follows:

BER = (1 + Error Count)/(Data Rate × Seconds)

To run a PRBS pattern:

1. Select one of the Patterns from the drop-down list.
2. Select the EQ-NearEnd check box.
3. Click Start in the bottom-left corner of the window. The loopback cycle is initiated and the result is

displayed.
UG0743 User Guide Revision 4.0 15

PolarFire FPGA Debugging
4. Click Stop in the bottom-right corner of the window to stop the loopback.

Figure 18 • SmartBert with PRBS Generator

2.1.6.2.2 Running with SmartBERT IP
In addition to the PRBS generator and checker available on transceiver lane, SmartDebug provides the
user interface to control the SmartBERT IP instantiated in the design. The transceiver lanes configured
with SmartBERT IP show PRBS patterns generated from XCVR PMA as well as the PRBS patterns
generated from IP residing in the fabric in the dropdown. Each SmartBERT IP can have 4 lanes
configured and each lane can have PRBS7, PRBS9, PRBS23, and PRBS31 patterns configured in the
design.

The Debug Transceiver feature shows all lanes that are configured in the design. SmartDebug
automatically detects the presence of the CoreSmartBERT in the design. It also identifies the lanes that
use SmartBERT IP and distinguish them by appending SmartBERT IP next to the SmartBERT IP
instance.

To run SmartBERT in transceiver follow these steps:

1. Select the SmartBERT tab in the SmartDebug TRANSCEIVER window.
2. Select the Pattern from the drop-down list where the lanes are visible.
3. Select the EQ-Nearend check box. When checked, the selected lane gets added to the right hand

side where PRBS test can be performed. When unchecked, the selected lane gets removed from
the added list.

Figure 19 • SmartBERT in Transceiver
UG0743 User Guide Revision 4.0 16

PolarFire FPGA Debugging
4. Click Start on the lower-left corner of the pane. It enables both transmitter and the receiver for a
particular lane and for a particular PRBS pattern.The GUI shows the status of the TXPLL,
RXPLL,Lock to Data, Data rate, and the BER.

Figure 20 • Viewing the Status of TXPLL, RXPLL Lock to Data, Data Rate, and BER

Error Injection

When a SmartBERT IP lane is added, the Error Injection column is displayed in the right pane. The
Error Injection feature is provided to inject an error while running a PRBS pattern. This feature is
unavailable if regular lanes are added. Also, this feature is disabled for a SmartBERT IP lane that has a
non-configured PRBS pattern selected.

Error Count

Error count is displayed when the lane is added and PRBS pattern is run. Click Reset to clear the error
count under Error Counter.

Figure 21 • Viewing Error Counter and Error Injection
UG0743 User Guide Revision 4.0 17

PolarFire FPGA Debugging
2.1.6.3 LoopBack Modes
Loopback modes help you perform the following types of loopback tests:

• EQ-Near End Looback—Serialized data from PMA is looped from Tx to Rx internally before the
transmit buffer. This is called near-end serial loopback. EQ-Near End Looback supports data
transmission rates of up to 10.315 Gbps.

• EQ-Far End Looback—Serialized data from Rx is looped back to Tx in PMA. This is called
far-end serial loopback. EQ-Far End Looback supports data transmission rates of up to 1.25 Gbps.

• CDR-Far End Looback—De-serialized data from PCS Rx channel is looped back to Tx.
• No-Loop Back—Data is not looped internally.

Figure 22 • Transceiver Loopback

2.1.6.4 Static Pattern Transmit
Static pattern transmit enables the selection of pattern to be transmitted on a specific transceiver (Tx)
lane. The following patterns are supported:

• Fixed pattern
• Max run length pattern
• User pattern—The pattern is defined in the value column. It must be hex numbers and not greater

than the configured data width.
• TX-PLL—Indicates lane lock onto TX PLL when a static pattern is transmitted.
• RX-PLL—Indicates RX PLL lock when a static pattern is transmitted.
• Data Width—Displays the data width configured for a transceiver lane.

To view static pattern transmit:
UG0743 User Guide Revision 4.0 18

PolarFire FPGA Debugging
1. Select the Static Pattern Transmit tab.
2. Select the Transceiver Hierarchy in the left pane of the window. The selected lane data is displayed

in the right pane.
3. Select a pattern from the Pattern drop-down list.
4. Click Start. The static pattern for the selected lanes is transmitted.
5. Click Stop. The static pattern transmission is stopped for the selected lanes.

Figure 23 • Static Pattern Transmit

2.1.6.5 Eye Monitor
Eye monitor enables visualizing the eye diagram present within the receiver. This feature plots the
receive eye after the CTLE and DFE functions. The diagram representation provides vertical and
horizontal measurements of the eye and BER performance measurements. Eye Monitor is supported for
data rates above 3.125 Gbps.
UG0743 User Guide Revision 4.0 19

PolarFire FPGA Debugging
Click the Eye Monitor tab in the Debug TRANSCEIVER window to see the eye monitor representation
within the receiver.

Figure 24 • Viewing the Eye Monitor Diagram

2.1.7 Signal Integrity
The signal integrity feature in SmartDebug works with Signal Integrity in the I/O Editor, allowing the
import and export of.pdc files.

The Signal Integrity pane appears in the following SmartDebug pages:

• SmartBERT, page 15
• LoopBack Modes, page 18
• Static Pattern Transmit, page 18
• Eye Monitor, page 19
UG0743 User Guide Revision 4.0 20

PolarFire FPGA Debugging
When you open Debug Transceiver in SmartDebug and click the SmartBERT, Loopback Modes, Static
Pattern Transmit, or Eye Monitor tab, all parameters in the Signal Integrity pane are disabled. Only
the Export All Lanes and Import All Lanes options are enabled, as shown in the following figure.

Figure 25 • View Signal Integrity for SmartBERT
UG0743 User Guide Revision 4.0 21

PolarFire FPGA Debugging
When a lane is selected in the SmartBERT, Loopback Modes, Static Pattern Transmit, or Eye
Monitor pages, the corresponding Signal Integrity parameters that are configured in the I/O Editor or
changed in SmartDebug, are enabled, as shown in the following figure.

Figure 26 • Viewing Signal Integrity for a Selected Lane

The selected lane instance name is displayed in the Signal Integrity group box, and the Export, Import,
and Design Defaults options are enabled.

You can select options for each parameter from the drop-down for that parameter.

Click Apply to set the selected transceiver instance with the selected options.

Note: The Apply button is enabled when you make a selection for any parameter, as shown in the following
figure.

Figure 27 • Applying the Changes for the Signal Integrity
UG0743 User Guide Revision 4.0 22

PolarFire FPGA Debugging
If you change parameter options and click another lane, move to another tab, or click Import, Import All,
or Design Defaults without applying the changes, an alert message is displayed.

Figure 28 • Viewing a Confirmation Message

Click Apply to apply or click Discard to discard the changes.

2.1.7.1 Design Defaults

Click Design Defaults to load the Signal Integrity parameter options for the selected lane instance.

Figure 29 • Viewing the Design Default Constraints

Design Default parameter options are applied to the device and updated in Modified Constraints.
UG0743 User Guide Revision 4.0 23

PolarFire FPGA Debugging
Note: Modified Constraints is a list of I/O constraints set on the TXP and RXP lane ports. For a selected lane,
this set is created in the SmartDebug session and is updated when a Signal Integrity parameter option is
modified and applied or an external PDC file is imported.

2.1.7.2 Export

Click Export to export the current selected parameter options along with other physical information of the
selected lane instance to an external PDC file.

Figure 30 • Exporting the Selected Lane Details

The exported content is in the form of two set_io commands, one for the TXP port and one for the RXP
port of the selected lane instance.
UG0743 User Guide Revision 4.0 24

PolarFire FPGA Debugging
2.1.7.3 Export All Lanes

Click Export All Lanes to export the current selected parameter options and other physical information
for all lane instances in the design to an external PDC file.

Figure 31 • Exporting All Lane Details

2.1.7.4 Import

Click Import to import Signal Integrity parameter options and other physical information for the selected
lane from an external PDC file.

Figure 32 • Importing a Selected Lane Details

The Signal Integrity parameter options are applied to the device and updated in Modified Constraints.
UG0743 User Guide Revision 4.0 25

PolarFire FPGA Debugging
2.1.7.5 Import All Lanes

Click Import All Lanes to import Signal Integrity parameter options and other physical information for all
lanes from an external PDC file.

Figure 33 • Importing All Lane Details

The Signal Integrity parameter options are applied to the device and updated in Modified Constraints.
UG0743 User Guide Revision 4.0 26

PolarFire FPGA Debugging
2.1.7.6 Demo Mode

Signal Integrity in Demo Mode, lets users experience and understand the debug activities that can be
performed with the Signal Integrity feature in SmartDebug. All debug activities except Apply are available
in demo mode.

Figure 34 • Viewing Signal Integrity Features in Demo Mode

2.1.8 sNVM Debug
sNVM Debug enables reading from and writing to the sNVM during debug. It can be done by reading
each page or reading multiple pages based on the authentication. Debug Pass Key is required to carry
out SNVM_DEBUG instruction.This feature supports debugging of plain text non-authenticated,
authenticated plain text, and cipher authenticated plain text.

Following are the two ways of sNVM debugging which can be performed in SmartDebug:

• When the USK is programmed using USK client, it applies to all the authenticated pages or clients.
• SmartDebug has to read the USK client and store it as the key whenever the content is read

from a client or a page.
• You can override the USK at runtime by changing it for a specific client or page using system

services (IP).
• If you select the option of using sNVM client as ROM, then USK cannot be overridden by

system services where the authenticated pages always use the USK client to unlock and read.
• You can override the type of page using system services. For example, if a page is

non-authenticated, then it can be authenticated using system service routines at runtime.

You can also perform the following operations even after the design is programmed into the device:

• Change the content of a page
• Encrypt a page
• Change the security key of each page configured

Note: The preceding operations are not possible if the page is used as ROM.

The following sections describe the two views of sNVM Debug:

• Client View, page 28
• Page View, page 31
UG0743 User Guide Revision 4.0 27

PolarFire FPGA Debugging
2.1.8.1 Client View
To view the client view, follow these steps:

1. Click Debug SNVM in the SmartDebug window. The sNVM Debug window is displayed.

Figure 35 • SmartDebug—Debug SNVM
UG0743 User Guide Revision 4.0 28

PolarFire FPGA Debugging
2. Click the Client View tab. The client view details are listed. It shows Client Names, Start Page,
Number of Bytes, Write Cycles, Page Type, Used as ROM, and USK Status as shown in the
following figure.

Figure 36 • Viewing the Client View
UG0743 User Guide Revision 4.0 29

PolarFire FPGA Debugging
3. Select a client from the list in the Client View and click Read From Device. The client details are
listed in the second pane.

Figure 37 • Reading the Client View Details

Note: Only one client can be selected at a time to read the client details. Pages inside the client cannot be
selected.

2.1.8.1.1 Refreshing sNVM Status
To view the latest details in the client page, Click Check SNVM status. The client pages are refreshed
and display the recently updated details.
UG0743 User Guide Revision 4.0 30

PolarFire FPGA Debugging
2.1.8.1.2 Viewing the Page Status
Click View All Page Status to view the page status such as Write Cycle Count, Page Type, Use as
ROM, and Data Read Status.

Figure 38 • Viewing the Page Status Report

2.1.8.2 Page View
Page view displays the client details of the required pages. You can read pages from 0-220 in the page
view.

To read data in page view:

1. Click the Page View in the sNVM Debug window.
2. Enter the page number that you want to read in the Start Page and Number of Bytes in the

respective boxes.
3. Click Check Page Status. The page status information is displayed.

Figure 39 • Viewing Page View
UG0743 User Guide Revision 4.0 31

PolarFire FPGA Debugging
4. Select pages from the list, and click Read from Device. The page details are displayed.

Figure 40 • Viewing Page View Details

5. Click View All Page Status. The page status details are displayed.

2.2 Demo Mode
The demo mode allows you to experience SmartDebug functionalities (Active Probe, Live Probe,
Memory Blocks, and Debug Transceiver) without having to connect a board to the system running
SmartDebug.

Note: The demo mode is for demonstration purposes only, and does not provide the full functionality of the
standalone mode.
You cannot switch between demo mode and normal mode while SmartDebug is running.
UG0743 User Guide Revision 4.0 32

PolarFire FPGA Debugging
The following figure is displayed when you open SmartDebug in demo mode.

Figure 41 • Launching SmartDebug in Demo Mode

Demo mode supports all the following functionalities that Standalone mode supports:

• View Device Status, page 34
• Debug FPGA Array, page 34
• Debug TRANSCEIVER, page 37
UG0743 User Guide Revision 4.0 33

PolarFire FPGA Debugging
2.2.1 View Device Status
The following figure shows an example of the Device Status Report in Demo Mode.

Figure 42 • Viewing Device Status

2.2.2 Debug FPGA Array
In the Debug FPGA Array dialog box, you can view your Live Probes, Active Probes, Memory Blocks,
and Insert Probes (Probe Insertion).

Note: Insert Probes (Probe Insertion) is not supported in Demo mode.
UG0743 User Guide Revision 4.0 34

PolarFire FPGA Debugging
2.2.2.1 Live Probes
You can assign and unassign Live Probes to Channel A and Channel B. The following figure shows an
example of Live Probes assignment.

Figure 43 • Assigning Live Probes to Channels
UG0743 User Guide Revision 4.0 35

PolarFire FPGA Debugging
2.2.2.2 Active Probes
In demo mode, a temporary probe data file with details of current and previous values of probes is added
in the active probes. The write values of probes are updated to this file and the GUI is updated with
values from this file when you click Write Probes. The values are read when you click Read Probes. If
there is no existing data for a probe in the file, the read values are all 0s.

Figure 44 • Reading or Writing Live Probe Values

2.2.2.3 Memory Blocks
A temporary memory data file is created in the designer folder for each type of RAM selected. Different
data file is created based on the memory type, for example, separate files are created in the SRAM,
LSRAM, and other RAM types in the designer folder. All memory data of all instances of SRAM,
LSRAM, and other RAM types are written to their respective data files. The default value of all memory
locations is shown as 0s, and is updated based on your changes. The demo mode supports physical
view as well as logical view of RAM blocks (LSRAM and µRAM).
UG0743 User Guide Revision 4.0 36

PolarFire FPGA Debugging
The following figure shows an example of memory blocks in demo mode.

Figure 45 • Memory Blocks in Demo Mode

2.2.3 Debug TRANSCEIVER
Transceiver demo mode does not create any temporary data file and is provided to give the user a feel of
all the GUI features of Debug Transceiver.
UG0743 User Guide Revision 4.0 37

PolarFire FPGA Debugging
2.2.3.1 Configuration Report
The following figure shows the configuration report of the debug transceiver.

Figure 46 • Debug TRANSCEIVER—Configuration Report

2.2.3.2 SmartBERT
The following figure shows the SmartBERT options of the debug transceiver.

Figure 47 • Debug TRANSCEIVER—SmartBERT
UG0743 User Guide Revision 4.0 38

PolarFire FPGA Debugging
2.2.3.3 Loopback Modes
The following figure shows the loopback modes of the debug transceiver.

Figure 48 • Debug TRANSCEIVER—Loopback Modes

2.2.3.4 Static Pattern Transmit
The following figure shows the Static Pattern Transmit of the debug transceiver.

Figure 49 • Debug TRANSCEIVER—Static Pattern Transmit
UG0743 User Guide Revision 4.0 39

PolarFire FPGA Debugging
2.2.3.5 Eye Monitor
The following figure shows the Eye Monitor of the debug transceiver.

Figure 50 • Debug TRANSCEIVER—Eye Monitor

2.3 DDR Debug
DDR Debug enables reading the key DDR registers to assess the configuration and status of the DDR
controller.

Note: This feature is currently not supported and will be provided in future releases.

2.4 Identify
Identify embeds a logic analyzer. This logic analyzer functionality is embedded in the design using the
FPGA fabric and embedded memory blocks. This is triggered when:

• The hardware state machine enters a certain stage
• The critical RTL signals are set to invalid values
• The input pin goes high or low

When triggered, Identify selects and captures complex signal interactions. The trace data of the RTL
signal before, after, or around the trigger event is stored in the on-chip, or fabric memory. The trigger
event normally reflects a hardware error condition and may be calculated as a combinatorial function of
several signals in the RTL.

To simplify interface requirements, the logic analyzer is accessed through the standard JTAG port for
control and data transfer. The captured data can be displayed on a PC using common viewing software,
and typically mirrors a logic simulator waveform output.

Identify adds and configures a logic analyzer to monitor RTL signals within the FPGA design. This tool
lets you debug the hardware at the HDL level in the target environment. It is a dual-component system
and part of the HDL design flow process. It can be integrated easily with your existing Libero SoC
PolarFire design flow. Minor modifications are required for this integration.
UG0743 User Guide Revision 4.0 40

PolarFire FPGA Debugging
The following figure shows the interface between the host PC running the identify Debugger and logic
analyzer created in the FPGA fabric.

Figure 51 • Host PC-Identify Interface

Using Identify, the following activities can be performed in the HDL code:

• Activate breakpoints
• Set watch-points
• View captured data related to the original source code or as waveforms
• Set trigger conditions that determine when to capture signal data

A trigger condition is a set of on-chip signal values or events. When a trigger condition occurs, data
is transferred from the hardware device to Identify RTL through the JTAG communication cable.

Identify has the following advantages:

• Additional FPGA I/O pins are not required, only standard JTAG signals are used.
• Identify is integrated with the Libero SoC PolarFire design flow.

2.4.1 System Components
The Identify system consists of the following components:

• IICE, page 41
• Identify Instrumentor, page 41
• Identify Debugger, page 42

2.4.1.1 IICE
The Intelligent In-Circuit Emulator (IICE) is a custom block inserted into the design. It is connected to
signals in the design by the Identify Instrumentor according to the interface specifications. The IICE block
samples internal signals and feeds this information back to the Identify Debugger, where the data is
transformed for interpretation at the HDL level.

The IICE block comprises of the Probe block and the Controller block. The probe block samples internal
signal data and communicates with the controller block. It contains the sample buffer where signal value
data is stored. The probe block also contains the trigger logic that determines when signal data is stored
in the sample buffer.

The controller block receives sample data from the probe block and sends to Identify Debugger through
the JTAG port.

2.4.1.2 Identify Instrumentor
Identify Instrumentor reads and analyzes the pre-synthesis HDL design and provides detailed
information about the signals that can be observed. Based on this analysis, Identify Instrumentor enables
you to specify how to control signal observation.

Identify Instrumentor uses HDL design files and user-selection information to create a custom logic
analyzer block. It connects the logic analyzer to the appropriate signals in the design.

Identify Instrumentor enables the following:

• Selecting the required design signals at the HDL level
• Creating an on-chip logic analyzer to give access to the Identify Debugger
UG0743 User Guide Revision 4.0 41

PolarFire FPGA Debugging
2.4.1.3 Identify Debugger
Identify Debugger lets you interact with the debug-enabled hardware at the HDL level.

Using Identify Debugger, trigger conditions are set that determine when to capture the signal data. A
trigger condition is a set of on-chip signal values or events. When triggered, data is transferred from the
hardware device to the Identify Debugger through the JTAG communication cable.

Identify Debugger enables the following:

• Interacting with the on-chip logic analyzer
• Getting information about the required signals in the design

With these components, Identify debugs your design faster, easier, and more efficiently.
UG0743 User Guide Revision 4.0 42

PolarFire FPGA Debugging
2.4.2 Libero Design Flow With Identify
This section describes the Libero SoC PolarFire design flow with Identify.The following figure shows the
Libero SoC PolarFire design flow with the Identify system components.

Figure 52 • Libero Design Flow With Identify

The Libero SoC PolarFire design flow with Identify comprises the following steps:

1. Create the HDL design.
2. Synthesize the design to the target device.
3. Use Identify Instrumentor to create a debug-enabled HDL design.
4. Place and route the debug-enabled design on the target device.
5. Implement the debug-enabled design on the device by programming it.
6. Use Identify Debugger to debug the design while it is running on the target device.
UG0743 User Guide Revision 4.0 43

PolarFire FPGA Debugging
2.5 ModelSim
ModelSim enables debugging of the FPGA design. In ModelSim design simulation, all design
components are modeled mathematically as software processes that are executed sequentially to
represent the functional, logical, or timing information of the design. A wide-range of stimuli are applied to
the design and the expected output is checked against the design requirements. A typical ModelSim
window is shown in the following figure.

Figure 53 • ModelSim Window

Simulation tools (like ModelSim) have the following advantages:

• Simulation is performed using software and testbench stimuli to represent the design requirements.
Design hardware is not required.

• Simulators with testbenches catch many design errors including:
• Incorrect specifications
• Incorrect Interface requirements
• Function errors
• Other gross errors detected by stimulus vectors

Simulation is particularly effective when extensive stimulus combinations are used, and when the results
are well known. In these cases, simulation can do an exhaustive test of a design.

Simulation tools have the following disadvantages:

• Most designs do not have easy access to extensive test suites and creating them can be time
consuming and often impossible for large FPGA designs.

• Execution is slow, when many iterations are involved, and rendering them is time-consuming and
expensive during the development process.
UG0743 User Guide Revision 4.0 44

Debugging Examples

UG0743 User Guide Revision 4.0 45

3 Debugging Examples

This section explains the uses of different tools for debugging the following peripherals:

• Fabric
• LSRAM/µSRAM
• Transceiver
• DDR Memories
• Coretex-M1 based embedded system

Note: More information will be provided in future releases.

Board Design Recommendations For Probes

UG0743 User Guide Revision 4.0 46

4 Board Design Recommendations For Probes

This section describes the board design recommendations for board level debugging and the guidelines
for hardware debugging.

Note: More information will be provided in future releases.

	Contents
	Figures
	1 Revision History
	1.1 Revision 4.0
	1.2 Revision 3.0
	1.3 Revision 2.0
	1.4 Revision 1.0

	2 PolarFire FPGA Debugging
	2.1 SmartDebug

	2.1.1 Standalone Mode
	2.1.2 Integrated Mode from the Libero SoC PolarFire Design Flow
	2.1.3 View Device Status
	2.1.4 Debug FPGA Array
	2.1.5 Debug µPROM
	2.1.6 Debug TRANSCEIVER
	2.1.7 Signal Integrity
	2.1.8 sNVM Debug
	2.2 Demo Mode

	2.2.1 View Device Status
	2.2.2 Debug FPGA Array
	2.2.3 Debug TRANSCEIVER
	2.3 DDR Debug
	2.4 Identify

	2.4.1 System Components
	2.4.2 Libero Design Flow With Identify
	2.5 ModelSim

	3 Debugging Examples
	4 Board Design Recommendations For Probes

