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1.3 Revision 5.0
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• Libero SoC PolarFire Compile Report is moved to appendix. See, Libero SoC Compile Report, 

page 103.
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1.5 Revision 3.0
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1.6 Revision 2.0
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see RTL Inference during Synthesis, page 28.
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see RTL Inference, page 73. 

1.7 Revision 1.0
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Overview
2 Overview

PolarFire® FPGAs are the fifth-generation family of 28nm non-volatile SoC FPGA devices from 
Microchip.

The PolarFire FPGA fabric consists of the following resources:

• Logic element—these are basic building blocks in the PolarFire FPGA.
• Embedded memory blocks—these include large SRAM (LSRAM), microSRAM (µSRAM), 

microPROM (µPROM), and secure non-volatile memory (sNVM)1.
• Math blocks (MACC)—these have a built-in multiplier, pre-adder, and adder.
Microchip’s Libero® SoC Design Suite provides LSRAM, µSRAM, µPROM, and Math IP blocks. Figure 1 
shows the top-level block diagram of the PolarFire FPGA.

Figure 1 • PolarFire FPGA Block Diagram

The fabric layout is shown in Figure 2. The FPGA logic resources are displayed as Logic Clusters (LC) 
and Interface Logic (IL). Each LC and IL consists of 12 Logic Elements (LE). The embedded memory 
blocks and math blocks are arranged in rows.

1. sNVM is part of PolarFire system controller.
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Figure 2 • Fabric Layout
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Overview
The following table lists the available fabric resources in the PolarFire family devices. 

Note: 1 Kb = 1024 bits, 1 Mb = 1024 Kb.

Table 1 • Fabric Resources for PolarFire FPGA Devices

Resources MPF100 MPF200 MPF300 MPF500
Logic elements 71,736 127,896 198,744 319,992

Interface logic 36,864 64,512 100,800 161,280

Total logic 108,600 192,408 299,544 481,272

LSRAM blocks (20 Kb each) 352 616 952 1,520

Total LSRAM bits (Mb) 6.87 12.03 18.59 29.69

µSRAM blocks (768 bits each) 1,008 1,764 2,772 4,440

Total µSRAM bits (Mb) 0.74 1.29 2.03 3.25

Total RAM (Mb) 7.6 13.32 20.62 32.94

Math blocks (18 × 18 MACC) 336 588 924 1,480

µPROM (Kb) 297 297 459 513
Microsemi Proprietary UG0680 Revision 7.0 9



Logic Element and Routing
3 Logic Element and Routing

The PolarFire  fabric includes an array of logic elements grouped in clusters connected by hierarchical 
routing structures. These clusters are arranged in rows and are used to implement sequential and 
combinational logic (Figure 9). Table 2 lists the available logic elements in PolarFire devices.

Note: The part number lists the approximate number of logic elements that are in the part. For example, 300 in 
the MPF300 part number notates that there are approximately 300,000 logic elements in the MPF300 
device.

3.1 Logic Element
The logic element consists of a 4-input Lookup Table (LUT) with a carry chain and D-type flip-flop, as 
shown in Figure 3. The logic element is fracturable, which means the LUT can be independently used 
without flip-flop, or flip-flop can be used without LUT.

Figure 3 • Functional Block Diagram of Logic Element

The 4-input LUT with carry chain can be configured to implement any 4-input combinational logical 
function or arithmetic function. The 4-input LUT generates the output (Y) depending on the four 
inputs—A, B, C, and D. The carry chain is implemented using a 3-bit carry-look-ahead circuit. This circuit 
is connected between various logic elements by carry chain input (Cin) signal and carry chain output 
(Cout) signal. When the LUT is used to implement arithmetic functions, the carry chain input (Cin) is used 
with LUT output to generate the sum (S) output. However, for non-arithmetic functions, the sum (S) 
output can still be used as an output along with the other output (Y).

The D-type flip-flop can be used as a register or latch. The data input (D) of the D-type flip-flop can be 
sourced from one of three inputs: the direct input (D1), the combinational output (Y) of the LUT, or the 

Table 2 • Number of Logic Elements (PolarFire)

Resources MPF100 MPF200 MPF300 MPF500
Logic elements 71,736 127,896 198,744 319,992

Interface logic 36,864 64,512 100,800 161,280

Total logic 108,600 192,408 299,544 481,272
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sum output (S) of the LUT (Figure 3). The ALn and SLn are asynchronous load and synchronous load 
active low signals that can be configured as reset signal. The flip-flop output (Q) can be an output of the 
logic element or one of the data inputs to the 4-input LUT (inside the same logic element).

3.2 Interface Logic
The embedded hard IP blocks (LSRAM, µSRAM, and Math blocks) are connected to the fabric through 
Interface Logic (ILs).

Table 3 lists the total number of ILs associated with each memory block in PolarFire devices.

These ILs are structurally similar to LEs with a 4-input LUT and D-type flip-flop, but without a dedicated 
carry chain, as shown in Figure 4.

Figure 4 • Functional Block Diagram of Interface Logic

Table 3 • ILs for Embedded Hard IP Blocks (PolarFire)

Resources

MPF100 MPF200 MPF300 MPF500
Number 
of Blocks

Number 
of ILs

Number 
of Blocks

Number 
of ILs

Number 
of Blocks

Number 
of ILs

Number 
of Blocks

Number 
of ILs

LSRAM 352 12,672 616 22,176 952 34,272 1,520 54,720

µSRAM 1008 12,096 1,764 21,168 2,772 33,264 4,440 53,280

Math block 336 12,096 588 21,168 924 33,264 1,480 53,280

Total interface logic 36,864 64,512 100,800 161,280

Flip-Flop4-LUT

Interface Logic

D1

ALn

data
D

EN

CLK SLn

Q

CBA EN CLK SLn ALn

A B C D

Y
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Logic Element and Routing
Each LSRAM and Math block is associated with 36 ILs, and each µSRAM is associated with 12 ILs. For 
more information, see Figure 5, Figure 6, and Figure 7. 

If an embedded hard IP block is used in a design, the associated ILs connect the ports of the embedded 
hard IP blocks to the fabric routing. Any IL that is not utilized by an embedded hard IP block is 
automatically available for user logic.

Figure 5 • LSRAM Interfacing with ILs in a Row

Figure 6 • Math Block Interfacing with ILs in a Row

Figure 7 • µSRAMs Interfacing with ILs in a Row

3.3 Logic Cluster
The logic elements in the FPGA fabric are organized in clusters. A logic cluster is a group of 12 LEs. 
Each logic cluster is connected by a routing interface that connects to its associated LEs and the 
adjacent routing interfaces.

Figure 8 shows the logic cluster with its routing interface. 

Figure 8 • Logic Cluster
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Logic Element and Routing
3.4 Routing Architecture
The PolarFire  devices support two types of routings—intra-cluster routing and inter-cluster routing. The 
intra-cluster routing connects the LEs within a cluster, and inter-cluster routing connects LEs between 
multiple clusters. The intra-cluster routing has lower propagation delay compared to inter-cluster routing. 
When connecting the adjacent clusters, inter-cluster routing also has additional short routing connections 
for faster routing.

3.5 Fabric X-Y Coordinates
Each 4-input LUT, D-type flip-flop, carry chain, LSRAM, µSRAM, and math block has individual X-Y 
coordinates. For manual placement of these blocks, it is possible to set region constraints using these 
coordinates. The coordinates are measured from the lower left (0, 0) to the top right corner (X, Y); where 
X, Y values vary for each device. For more information about using coordinates for region/placement 
constraints, see the SmartTime User Guide, I/O Editor User Guide, and the ChipPlanner User Guide.

Figure 9 shows the available X-Y coordinates of LSRAM, µSRAM, and math block for placement 
constraints.

Figure 9 • MPF300 Fabric X-Y Coordinates
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Embedded Memory Blocks
4 Embedded Memory Blocks

The PolarFire FPGA device has the following memory blocks:

• LSRAM—The embedded large SRAM blocks are 20Kbits each with 20-bit width and a depth of 1024 
locations. The LSRAMs can be configured as either dual port or two port memories. The number of 
LSRAMs available in a device varies as shown in Table 1. The LSRAMs support ECC when 
configured in 33-bit data width in two-port mode. The LSRAMs can be configured in various modes 
as shown in Table 4. LSRAMs can be initialized with user data during power-up. For more 
information about initialization, see UG0725: PolarFire FPGA Device Power-Up and Resets User 
Guide.

• µSRAM—The embedded 768-bit SRAM blocks (RAM64x12) are arranged in multiple rows within 
the fabric and can be accessed through the fabric routing architecture. The number of available 
µSRAM blocks depends on the specific PolarFire device, as shown in Table 1. µSRAMs can be 
initialized during power-up. For more information about initialization, see UG0725: PolarFire FPGA 
Device Power-Up and Resets User Guide.

• µPROM—The embedded non-volatile PROM is arranged in a single row at the bottom of the fabric 
and is read only through the fabric interface. µPROM is programmed with the FPGA bitstream during 
fabric programming and it cannot be programmed independently. µPROM is used to store the 
initialization data for LSRAM and µSRAM and other user data.

• sNVM—Each PolarFire FPGA has 56 KBytes of Secure Non volatile memory (sNVM). The sNVM 
can be used to initialize LSRAM and µSRAMs with secure data. sNVM can be accessed through the 
system services. For more information, see UG0753: PolarFire FPGA Security User Guide.

The following table lists the LSRAM, µSRAM, and µPROM features. 

Table 4 • PolarFire LSRAM, µSRAM, µPROM, and sNVM Features

Feature LSRAM µSRAM µPROM sNVM
Memory size 20,480 bits/block. 768-bit/block. 297 Kbits (MPF100).

297 Kbits (MPF200).
459 Kbits (MPF300).
513 Kbits (MPF500).

56 KBytes

Memory 
Configuration 
Options

16K × 1, 8K × 1, 4K × 5, 
2K × 10, 1K × 20, 512 × 
401, and 512 × 331 (with 
ECC).

1. ×40 and ×33 are only available in two-port mode.

64 × 12. Up to 64K × 9. Not Applicable.

Number of ports 2 read ports, 2 write ports. 1 read port, 1 write port. 1 read port. Not Applicable.

Memory modes True dual-port and two-
port.

Two-port. Single-port. Not Applicable.

Read operation Synchronous. Synchronous/Asynchro
nous.

Asynchronous. Through system 
service calls.

Write operation Simple write, feed-through 
write, and read-before-
write.

Simple write. Only during device 
programming.

During device 
programming and 
System Service 
calls.

ECC Available for two-port 
mode (512 × 33) only.

Not available. Not Applicable. Not Applicable.
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Embedded Memory Blocks
4.1 LSRAM
Each LSRAM has two independent ports—Port A and Port B, as shown in Figure 10. Both these ports 
support write and read operations, and can be configured in dual-port mode or two-port mode.

Figure 10 • LSRAM Input/Output 

Note: When ECC is enabled, if a single-bit error occurs in a word, the data is corrected. If multiple-bit errors 
occur in a word, the data from the LSRAM is not corrected or modified.
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Embedded Memory Blocks
Table 5 lists the ports of LSRAM. 

Table 5 • LSRAM Port List

Port Name Direction Type1 Polarity Description 
Port A 
A_ADDR[13:0] Input Dynamic Port A address

A_BLK_EN[2:0] Input Dynamic Active high Port A block selects

A_CLK Input Dynamic Rising edge Port A clock

A_DIN[19:0] Input Dynamic Port A write-data

A_DOUT[19:0] Output Dynamic Port A read-data

A_WEN[1:0] Input Dynamic Active high Port A byte write-enables

A_REN Input Dynamic Active high Port A read-enable

A_WIDTH[2:0] Input Static Port A width/depth mode select

A_WMODE[1:0] Input Static Active high Port A read-before-write and feed-
through write selects

A_BYPASS Input Static Active low Port A pipeline register select

A_DOUT_EN Input Dynamic Active high Port A pipeline register enable

A_DOUT_SRST_N Input Dynamic Active low Port A pipeline register synchronous-
reset

A_DOUT_ARST_N Input Dynamic Active low Port A pipeline register 
asynchronous-reset

Port B
B_ADDR[13:0] Input Dynamic Port B address

B_BLK_EN[2:0] Input Dynamic Active high Port B block selects

B_CLK Input Dynamic Rising edge Port B clock

B_DIN[19:0] Input Dynamic Port B write-data

B_DOUT[19:0] Output Dynamic Port B read-data

B_WEN[1:0] Input Dynamic Active high Port B write-enables (per byte)

B_REN Input Dynamic Active high Port B read-enable

B_WIDTH[2:0] Input Static Mode select Port B width/depth

B_WMODE[1:0] Input Static Active high Port B read-before-write and feed-
through write selects

B_BYPASS Input Static Active low Port B pipeline register select

B_DOUT_EN Input Dynamic Active high Port B pipeline register enable

B_DOUT_SRST_N Input Dynamic Active low Port B pipeline register synchronous-
reset

B_DOUT_ARST_N Input Dynamic Active low Port B pipeline register 
asynchronous-reset

Common Signals
ECC_EN Input Static Active high Enable ECC

ECC_BYPASS Input Static Active low ECC pipeline register select

SB_CORRECT Output Dynamic Active high Single-bit correct flag
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Embedded Memory Blocks
4.1.1 Dual-Port Mode
The LSRAM block can be configured as a true dual-port SRAM with independent write and read ports, as 
shown in Figure 11. Write and read operations can be performed from both ports (A and B) 
independently at any location as long as there is no write collision. Each port has a unique address, data 
in, data out, clock, block select, write enable, pipeline registers, and feed-through MUXes. Figure 11 
shows the simplified block diagram of LSRAM in dual-port mode.

Figure 11 • Simplified Functional Block Diagram of LSRAM in Dual-Port Mode

DB_DETECT Output Dynamic Active high Dual-bit error detect flag

BUSY_FB Input Static Active high Lock access to SmartDebug

ACCESS_BUSY Output Dynamic Active high Busy signal from SmartDebug

1. Static inputs are tied to 0 or 1 during design implementation.

Table 5 • LSRAM Port List (continued)

Port Name Direction Type1 Polarity Description 

A_DOUT[19:0]

A_DIN[19:0]

B_DIN[19:0]

A_ADDR[13:0]

A_WEN[1:0]
A_BLK_EN[2:0]

A_CLK

Port A Row Decode
Write Control

Port B Row Decode
Write Control

Column 
Decode

Column 
Decode

B_DOUT[19:0]

Memory Array

B_REN

B_DOUT_EN

A_REN

B_DOUT_ARST_N

B_DOUT_SRST_N  

A_DOUT_EN
A_DOUT_SRST_N  
A_DOUT_ARST_N

B_CLK

A_CLK

20

20

20

20

Pipeline
Register A

Pipeline
Register B

A_WIDTH[2:0]

A_WMODE[1:0]

B_ADDR[13:0]

B_WEN[1:0]
B_BLK_EN[2:0]

B_CLK

B_WIDTH[2:0]

B_WMODE[1:0]

A_BYPASS

B_BYPASS
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Embedded Memory Blocks
4.1.1.1 Dual-Port Data Width Configuration
In dual-port mode, both ports A and B have maximum data width of x20. Each port can be configured in 
multiple data widths. The configuration of one port has a corresponding configuration for the other port, 
as shown in Table 6.

4.1.1.2 Block Select Operation
In dual-port mode, to perform two independent write and read operations (on Port A, Port B, or both) the 
block select signal is required. Table 7 lists the block select operation for Port A and Port B. 

When the pipeline registers are enabled, the effect of the block select at the outputs is delayed by one 
clock cycle, as shown in Figure 12.

Figure 12 • Block Select Inputs for Dual-Port Mode

Table 6 • Port A and Port B Data Width Configurations for LSRAM

Port A Data Width Port B Data Width
x1 x1, x2, x4, x8, x16

x2 x1, x2, x4, x8, x16

x4 x1, x2, x4, x8, x16

x5 x5, x10, x20

x8 x1, x2, x4, x8, x16

x10 x5, x10, x20

x16 x1, x2, x4, x8, x16

x20 x5, x10, x20

Table 7 • Block Select Operation

A_BLK_EN[2:0] B_BLK_EN[2:0] Operation
Any one bit = 0 Any one bit = 0 No operation on Port A or B. The data output 

A_DOUT[19:0] and B_DOUT[19:0] will be forced zero.

Any one bit = 0 111 Read or write operation on Port B

111 Any one bit = 0 Read or write operation on Port A

111 111 Read or write operation on both Ports A and B

A_CLK
B_CLK

A_BLK_EN
B_BLK_EN

Non-Pipeline Mode

B_DOUT[19:0]  
A_DOUT[19:0]  

B_DOUT[19:0]  
A_DOUT[19:0]  

Pipeline Mode

Clock Cycle #1 Clock Cycle #2 Clock Cycle #3

20'b0

20'b0
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Embedded Memory Blocks
4.1.1.3 Byte Write Enables
The byte write enables (A_WEN[1:0], B_WEN[1:0]) enable writing individual bytes of data for x20 and 
x16 widths. The byte write enables for Port A (A_WEN[1:0]) enables A_DIN[19:10] and A_DIN[9:0] 
respectively. The byte write enables for Port B (B_WEN[1:0]) enable B_DIN[19:10] and B_DIN[9:0] 
respectively.

The byte write enables are also used in x1, x2, x4, x5, x8, x10, x16, and x20 widths to select the 
operational mode (read/write) for a Port A or Port B. If all byte write enables are low, then Port A or Port 
B is considered to be in read mode and any read operations are controlled by the read enables 
(A_REN/B_REN). 

Table 8 lists the byte write enable settings for Port A and Port B.

4.1.1.4 Read Enable
The read enable signals, A_REN and B_REN, perform the read operation on ports A and B. When read 
enable is low, the data outputs retain their previous state and no dynamic read power is consumed on 
that port. When read enable is high, LSRAM performs read operations and consumes read power.

4.1.1.5 Synchronous Pipeline Register Reset
Each pipeline register has one synchronous reset. In dual-port mode, A_DOUT_SRST_N and 
B_DOUT_SRST_N drive the synchronous reset of the data output pipeline registers—A_DOUT and 
B_DOUT. If the synchronous pipeline reset is low, the pipeline data output registers are reset to zero on 
the next valid clock edge, as shown in Figure 13.

Figure 13 • Synchronous Pipeline Register Reset in Dual-Port Mode

Table 8 • Byte Write Enables Settings for Dual-Port Mode

Depth x Width A_WEN / B_WEN Result 
16K x 1, 8K x 2, 4K x 4, 4K x 5, 2K x 8, 2K x 10 00 or 10 Perform a read operation 

01 or 11 Perform a write operation 

1K x 16 00 Perform a read operation 

01 Write [7:0]

10 Write [17:10]

11 Write [17:10], [7:0]

1K x 20 00 Perform a read operation 

01 Write [9:0] 

10 Write [19:10] 

11 Write [19:0] 

A_CLK
B_CLK

A_DOUT_SRST_N 
B_DOUT_SRST_N  

A_DOUT[19:0]
B_DOUT[19:0]

A_DOUT[19:0]
B_DOUT[19:0]

Non-Pipeline Mode

Pipeline Mode

Clock Cycle #1 Clock Cycle #2

No Change

20'b0
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Embedded Memory Blocks
4.1.1.6 Asynchronous Pipeline Register Reset
Each pipeline register has one asynchronous reset. In dual-port mode, A_DOUT_ARST_N and 
B_DOUT_ARST_N drive the asynchronous reset of the data output pipeline registers—A_DOUT and 
B_DOUT. If the asynchronous pipeline reset is driven low, the pipeline data output registers are 
immediately reset to zero, as shown in Figure 14.

Figure 14 • Asynchronous Pipeline Register Reset in Dual-Port Mode

4.1.1.7 Read Operation
In dual-port mode, LSRAM supports both pipelined and non-pipelined read operations. In a pipelined 
read operation, the output data is registered at the pipeline registers; as a result the data is available on 
the corresponding data output on the next clock cycle.

In a non-pipelined read operation, the pipeline registers are bypassed and read data is available on the 
output port in the same clock cycle. 

Note: For high-performance designs, It is recommended to use the LSRAM with pipeline mode to meet the 
design timing constraints.

Note: When multiple depth-cascaded blocks are used, A_REN and B_REN ports of Dual-Port SRAM are 
disabled by the configurator GUI.

Figure 15 shows the timing for both pipelined and non-pipelined read operations in 
dual-port mode:

Figure 15 • Read Operation in Dual-Port Mode

A_CLK
B_CLK

A_DOUT[19:0] 
B_DOUT[19:0]  

A_DOUT[19:0] 
B_DOUT[19:0]  

Non-Pipeline Mode

Pipeline Mode

A_DOUT_ARST_N
    B_DOUT_ARST_N

Clock Cycle #1 Clock Cycle #2

No Change

20'b0

A_REN
B_REN

A_CLK
B_CLK

A_WEN[1:0]
B_WEN[1:0]

A_ADDR[13:0]
B_ADDR[13:0]

A_DOUT_EN
B_DOUT_EN

A_DOUT[19:0] 
B_DOUT[19:0]

A_DOUT[19:0] 
B_DOUT[19:0]

Pipeline Mode

Non-Pipeline Mode

Clock Cycle #1 Clock Cycle #2

Data in address A0

D(A0) D(A1) D(A2)

D(A0) D(A1)

A0 A1 A2
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Embedded Memory Blocks
4.1.1.8 Write Operation
In dual-port mode, LSRAM supports the following write operations:

• Simple Write
• Feed-Through Write
• Read-Before-Write
The type of write operation is specified while creating or configuring LSRAM in Libero SoC. For more 
information on LSRAM configuration, see LSRAM Configurator

Note: In dual-port mode, simultaneous write operations from both ports to the same address location are not 
prevented. Since simultaneous write operations can result in data uncertainty, it is recommended to use 
external logic in the fabric to avoid collisions.

4.1.1.8.1 Simple Write
In a simple-write operation, data input A_DIN and B_DIN are written to the corresponding address 
locations A_ADDR and B_ADDR. The data written to the memory is available at the output only after 
performing a read operation. 

4.1.1.8.2 Feed-Through Write
In a feed-through write operation for pipelined operations, the read data is available on the data output 
bus on the next clock cycle. For non-pipelined operations, data written to the memory is available in the 
same clock cycle on the corresponding data output bus. For more information, see Figure 16 on page 22.

In dual-port mode during feed-through write, the data output of each port can change in one of the 
following ways:

• During read port reset, the data output becomes zero.
• If the block select input (A_BLK_EN) of Port A or B is driven low, then the corresponding port's data 

output becomes zero.
• During valid write operations when read enable (A_REN and B_REN) is high, then write data is 

available at the data output.
• If there is a valid read operation, then the read data is available at the data output. A valid read 

happens when read enable (A_REN and B_REN) inputs are high, and byte write enable 
(A_WEN[1:0] and B_WEN[1:0]) inputs are zero.

4.1.1.8.3 Read-Before-Write
In a read-before-write operation for pipeline mode, read data is available on the data output bus on the 
next clock cycle. For non-pipeline mode, the previous memory data from the current write address is 
available on the data output before the new data is written to the address location. For more information, 
see Figure 16.

In dual-port mode during read-before-write operations, the data output of each port can change in one of 
the following ways:

• During read port reset, the data output becomes zero.
• If the block select input (A_BLK_EN) of Port A or B is driven low, then the corresponding port's data 

output becomes zero.
• During valid write operations when read enables (A_REN and B_REN) are driven high, the previous 

memory data from the current address is available on the data output before the new data is written 
to the address location.

• If there is a valid read operation, then the read data is available on the data output. A valid read 
happens when read enable (A_REN and B_REN) inputs are driven high, and byte write enable 
(A_WEN[1:0] and B_WEN[1:0]) inputs are driven low.
Microsemi Proprietary UG0680 Revision 7.0 21



Embedded Memory Blocks
Figure 16 shows the timing for feed-through-write and read-before-write operations for dual-port mode.

Figure 16 • Write Operations in Dual-Port Mode
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4.1.2 Two-Port Mode
The LSRAM block can be configured as a two-port SRAM where Port A is dedicated to read operations 
and Port B is dedicated to write operations for data widths up to x20. For data widths greater than x20, 
the read port borrows the unused Port B data output signals, similarly write port borrows the unused Port 
A data input signals. Figure 17 shows the LSRAM in two-port mode with independent write and read 
ports, pipeline registers, ECC logic, and feed-through MUXes to enable immediate access to the write 
data.The ECC is supported only when the LSRAM is configured for 33-bit data width.

Figure 17 • Simplified Functional Block Diagram for LSRAM in Two-Port Mode
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4.1.2.1 Two-Port Data Width Configuration
In two-port mode, the maximum data width is x40. Each port can be configured in different data widths. 
The configuration of read port has a corresponding configuration for the write port, as shown in Table 9.

4.1.2.2 Byte Write Enables
The byte write enables (A_WEN, B_WEN) enable writing individual bytes of data for x32, x33 and x40 
data widths. For x40 width, the byte write enable for the corresponding data is used to enable each of the 
four bytes; that is, byte write enable for Port A enables A_DIN[19:10] and A_DIN[9:0] and byte write 
enable for Port B enables B_DIN[19:10] and B_DIN[9:0].

Table 10 lists the byte write enable settings for Port A and Port B.

Note: For 512x32 configuration, bits 4, 9, 14 and 19 of data input ports are not used.

Table 9 • LSRAM Data Width Configurations (Two-Port Mode)

Read Port Write Port
x40 x5, x10, x20, x40

x20 x40

x10 x40

x5 x40

x2 x32

x1 x32

x33 x33

x32 x1, x2, x32

Table 10 • Byte Write Enable Settings for Two-Port Mode

Depth x Width A_WEN/B_WEN Result 
512 x 32 B_WEN[0] = 1 Write B_DIN[8:5], B_DIN[3:0] 

B_WEN[1] = 1 Write B_DIN[18:15], B_DIN[13:10] 

A_WEN[0] = 1 Write A_DIN[8:5], A_DIN[3:0] 

A_WEN[1] = 1 Write A_DIN[18:15], A_DIN[13:10] 

512 x 40 B_WEN[0] = 1 Write B_DIN[9:0]

B_WEN[1] = 1 Write B_DIN[19:10] 

A_WEN[0] = 1 Write A_DIN[9:0] 

A_WEN[1] = 1 Write A_DIN[19:10] 

512 x 33 (with ECC Enabled) B_WEN[1:0] = 11
A_WEN[1:0] = 11

Write B_DIN[16:0]
Write A_DIN[15:0]
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4.1.2.3 Read Enables
The read enable signals, A_REN and B_REN, perform the read operation on ports A and B. When read 
enable is low, the data outputs retain their previous state and no dynamic read power is consumed on 
that port. When read enable is high, LSRAM performs read operation and consumes read power.

Note: In two-port mode, LSRAM Port B read enable (B_REN) is tied to Port A read enable (A_REN).

4.1.2.4 Pipeline Registers
The outputs of the LSRAM have pipeline registers which can be enabled by the user for timing closure. 
These pipeline registers can be reset synchronously or asynchronously as explained in the following 
section.

4.1.2.4.1 Synchronous Pipeline Register Reset
Each data output port has its own synchronous reset. In two-port mode, A_DOUT_SRST_N and 
B_DOUT_SRST_N drive the synchronous reset of the read data output pipeline registers (A_DOUT and 
B_DOUT). If the synchronous pipeline reset is low, the pipeline data output registers are reset to zero on 
the next valid clock edge, as shown in Figure 18.

Note: In x33 two-port mode, if ECC is in pipeline mode, then this reset will also reset the ECC flag pipeline 
registers.

Figure 18 • Synchronous Pipeline Reset in Two-Port Mode
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4.1.2.5 ECC Mode (For x33 Two-Port Mode Only)
In two-port mode when the port width is set to x33, ECC (single-bit error correction and dual-bit error 
detection) is available. The ECC encoder provides 40 bits (33 data bits and 7 encoded data bits) of data 
in the x33 mode (the seven encoded bits are not accessible to the user). Single-bit and dual-bit errors are 
counted for a full 33-bit read data word.

Note: ECC is supported only in Two-port LSRAM configurations and not supported for RTL inferred RAM 
blocks. For information about ECC configuration settings, see Figure 28.

The ECC decoder contains an optional pipeline register that adds a clock cycle of latency to the read 
operation (including the flags). Since the output data can also be pipelined, there are four possible 
scenarios:

• Pipeline mode with non-pipelined ECC
• Pipeline mode with pipelined ECC
• Non-pipeline mode with non-pipelined ECC
• Non-pipeline mode with pipelined ECC
The ECC logic generates two flags:

• SB_CORRECT—asserted when a single-bit error is detected. If SB_CORRECT is asserted, the 
correction on the read data output happens only when there is no dual-bit error.

• DB_DETECT—asserted when a dual-bit error is detected, but not corrected. Multi-bit errors (more 
than two bits) produce unknown results on the flags and data outputs.

Note: Scrubbing must be performed by user logic.

In pipeline mode, these flags are valid only in the read data output clock cycle. In non-pipeline mode, the 
ECC flags are valid only in the same clock cycle as the corresponding read data output, as the flags are 
reset in the next clock cycle. Table 11 lists the ECC error flags.

In SmartDebug, the ECC bits are included in the 40 bits data divided between adjacent locations. 16 bits 
of data in one location and 17 bits of data in the next location, the remaining 5 bits are ECC bits. The 
ECC bits are pre-calculated by Libero SoC and loaded in the background with the SRAM initialization 
data. For information about loading the initializing client for the SRAM memory IP in Libero SoC, see 
UG0725: PolarFire FPGA Device Power-Up and Resets User Guide .

4.1.2.6 Read Operation
In two-port mode, LSRAM supports both pipelined and non-pipelined read operations. In a pipelined read 
operation, the output data is registered at the pipeline registers making the data available on the 
corresponding data output on the next clock cycle. If the ECC pipeline mode is enabled, an additional 
clock cycle is required for read data output. ECC flags are valid in the same clock cycle as the output 
data. For more information, see ECC Mode (For x33 Two-Port Mode Only).

In non-pipelined read operations, the pipeline registers are bypassed and read data is available on the 
output port in the same clock cycle. During this operation, LSRAM can generate glitches on the data 
output buses. Therefore, it is recommended to use LSRAM with pipeline registers to avoid glitches.

Figure 19 shows the timing for both pipelined and non-pipelined read operations in two-port mode.

Table 11 • Error Flags

ECC Errors SB_CORRECT DB_DETECT Correction
No error 0 0 NA

Single-bit error 1 0 Correction

Double-bit error 1 1 No correction
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Figure 19 • Read Operation in Two-Port Mode
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4.1.2.7 Asynchronous Pipeline Register Reset
Each data output port has its own asynchronous reset. In two-port mode, A_DOUT_ARST_N and 
B_DOUT_SRST_N drive the asynchronous reset of the read data output pipeline registers (A_DOUT 
and B_DOUT) and ECC pipeline registers. If the asynchronous pipeline reset is driven low, the pipeline 
data output registers are immediately reset to zero, as shown in Figure 20.

Note: In x33 two-port mode, if ECC is in pipeline mode, then this reset will also reset the ECC flag pipeline 
registers. 

Figure 20 • Asynchronous Pipeline Register Reset in Two-Port Mode
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For more information about LSRAM inference by Synplify Pro, see Inferring Microsemi RAM Blocks 
Application Note.

4.1.3.2 LSRAM Configurator
The Libero SoC software catalog has the following LSRAM configuration tools:

• Dual-Port Large SRAM Configurator
• Two-Port LSRAM Configurator
Using these configurators, the LSRAM can be configured as per design requirements. The generated 
LSRAM component can be instantiated in the SmartDesign. The configurators generate the HDL 
wrapper files for LSRAM with the appropriate values assigned to the static signals. The generated HDL 
wrapper files can be used in the design hierarchy by connecting the ports to the rest of the design.

4.1.3.2.1 Dual-Port Large SRAM Configurator
The PF_DPSRAM configurator is available in the Libero SoC IP catalog -> Memory & Controllers.

The PF_DPSRAM configurator automatically cascades LSRAM blocks to create wider and deeper 
memories by selecting the most efficient aspect ratio. It also handles the grounding of unused bits. The 
configurator supports the generation of memories that have different aspect ratios on each port. The 
configurator uses one or more memory blocks to generate a RAM to match the configuration. The 
configurator also creates the external logic required for the cascading.

The configurator cascades RAM blocks in three different methods:

• Cascaded deep. For example, two blocks of 16384 x 1 are combined to create a 32768 x 1.
• Cascaded wide. For example, two blocks of 16384 x 1 are combined to create a 16384 x 2.
• Cascaded wide and deep. For example, four blocks of 16384 x 1 are combined to create a 32768 x 

2, in a two-block width by two-block depth configuration.
For more information on Dual Port Mode, see Dual-Port Mode

Figure 21 • Dual-Port Large SRAM Configurator: Generated Component
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The dual-port LSRAM configurator has three tabs:

• Parameter settings
• Port settings
• Memory initialization

Table 12 • Dual-Port LSRAM Configurator Signals

Port Direction Polarity Description
CLK Input Rising edge Single-clock signal that drives both ports with the same clock. 

Exposed only when single clock is selected.

A_DIN[19:0] Input Port A write data

A_ADDR[9:0] Input Port A read address

A_BLK_EN Input Active high Port A block select

A_CLK Input Rising edge Port A clock. Applicable only when independent clocks are 
selected.

A_WEN Input Port A signal to switch between write and read modes: 
Low—Read
High—Write

A_REN Input Port A read data enable

A_WBYTE_EN[1:0] Input Port A write byte enable

A_DOUT[19:0] Output Port A read data

A_DOUT_EN Input Active high Port A read data register enable

A_DOUT_SRST_N Input Active low Port A read data register synchronous reset

A_DOUT_ARST_N Input Active low Port A read data register asynchronous reset

B_DIN[19:0] Input Port B write data

B_ADDR[9:0] Input Port B address

B_BLK_EN Input Active high Port B enable

B_CLK Input Rising edge Port B clock. Applicable only when independent clocks are 
selected

B_WEN Input Port signal to switch between write and read modes: 
Low—Read
High—Write

B_REN Input Port B read data enable

B_WBYTE_EN[1:0] Input Port B write byte enable

B_DOUT[19:0] Output Port B read data

B_DOUT_EN Input Active high Port B read data register enable

B_DOUT_SRST_N Input Active low Port B read data register synchronous reset

B_DOUT_ARST_N Input Active low Port B read data register asynchronous reset

ACCESS_BUSY Output Active high Busy signal when being initialized or accessed using SmartDebug
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Parameter Settings
The parameter settings include the optimization of LSRAM for High Speed or Low Power, clock signal 
settings, and optional port settings. Figure 22 shows the Dual Port Large LSRAM block configurator. 

Figure 22 • Dual-Port Large SRAM Configurator: Parameter Settings

Optimization for High Speed or Low Power

The user can optimize the LSRAM with one of the following options:

• High Speed—optimizes the LSRAM for speed and area by using width cascading.
• Low Power—optimizes the LSRAM for low power by using depth cascading, it uses additional logic 

at the input and output. 
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Single Clock (CLK) or Independent Clocks (A_CLK and B_CLK)

The user can set the clock signals and the signal polarity:

• Single clock—drives both A and B ports with the same clock. This is the default configuration for 
dual-port LSRAM. 

• Independent clocks—selects independent clock for each A_CLK for Port A and B_CLK for Port B).
• Rising edge or Falling edge—changes the signal polarity.
Optional Ports

The user can select one of the following optional ports:

• Lock access to SmartDebug—when enabled, SmartDebug access to the RAM is disabled. 
• Expose ACCESS_BUSY output—when enabled, SmartDebug ACCESS_BUSY signal is available 

as top-level port.
Port Settings
In the Port settings tab, the user can set the RAM size, select ports, and set data output on write settings 
for both Ports A and B. Figure 23 shows the PF_DPSRAM block port settings.

Figure 23 • Dual-Port Large SRAM Configurator: Port Settings
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Byte Enable Settings

Write Byte Enables—enables writing to individual bytes of data (A_WBYTE_EN and B_WBYTE_EN).

When the Write Byte Enables option is checked, the RAM Configurator cascades the RAM blocks and 
the tool distributes the RAM width equally such that the word width is a multiple of 8. Each Byte Write 
Enable bit controls the writing of 8-bits. For example, generating a 32-bit word width LSRAM, with Write 
Byte Enables, will cascade the RAMs width-wise such that there are a total of 4 Write Byte Enable bits (2 
per RAM block) and each Write Byte Enable bit controls the writing of 8-bits (a byte) of data.

Other Examples are as follows:

• Width of 17, is divided as 9+8.
• Width of 35, is first divided as 18+17, and then, divided as 9+9+9+8.
RAM Size

The user can set the RAM size.

• Depth—sets the depth range. The depth range for each port is between 1 and 524288. The 
maximum value depends on the die.

• Width—sets the width range. The width range for each port is between 1 and 19040. 
Note: The two ports can be configured independently for any depth and width. However, Port A depth x Port A 

width must be equal to Port B depth x Port B width. The width range varies between devices.

Ports Selection: Block Select (A_BLK_EN and B_BLK_EN) 

• The default configuration for A_BLK_EN and B_BLK_EN is unchecked, which ties the signal to the 
active state and removes it from the generated component. 

Select Active high or Active low tab to change the signal polarity.

Ports will be populated on the component by checking the respective check-boxes.

Read Enable (A_REN and B_REN)

• The default configuration for A_REN or B_REN is unchecked, which ties the signal to the active 
state and removes it from the generated macro.

• Select Active high or Active low to change the signal polarity.
Ports will be populated on the component by checking the respective check-boxes.

Enable Pipeline

Check the Enable Pipeline checkbox to enable pipelining of read data (A_DOUT or B_DOUT). If the 
Enable Pipeline checkbox is not checked, the user cannot configure the A_DOUT_EN/B_DOUT_EN, 
A_DOUT_SRST_N/B_DOUT_SRST_N, or A_DOUT_ARST_N/B_DOUT_ARST_N signals.

• Register Enable (A_DOUT_EN and B_DOUT_EN)—the pipeline registers for ports A and B have 
active high, enable inputs. By default, the checkbox is disabled. Selecting this checkbox adds the 
signal to the top-level port.

• Synchronous Reset (A_DOUT_SRST_N and B_DOUT_SRST_N)—the pipeline registers for ports 
A and B have active low, synchronous reset inputs. By default, the checkbox is disabled. Selecting 
this checkbox adds the signal to the top-level port.

• Asynchronous Reset (A_DOUT_ARST_N and B_DOUT_ARST_N)—the pipeline registers for 
ports A and B have active low, asynchronous reset inputs. By default, the checkbox is disabled. 
Selecting this checkbox adds the signal to the top-level port. 

• Select Active high or Active low to change the signal polarity.
Ports will be populated on the component by checking their respective check-boxes.

Data Output on Write 

Select the required option from the following:

• Previous DOUT—the default data on the Read data output (A_DOUT or B_DOUT) during a 
write cycle is the DOUT data from the previous cycle (Previous DOUT).

• DIN—to enable feed-through write mode on Read data output.
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• Read before Write—to perform a read operation before a write operation overwriting the 
previous data.

Memory Initialization at Power-Up

In the Memory Initialization tab, the user can initialize RAM at power-up. LSRAM can be initialized 
during device power-up and functional simulation. Figure 24 shows the PF Dual Port Large SRAM IP 
memory initialization. 

Figure 24 • Dual-Port Large SRAM Configurator: Memory Initialization

Initialize RAM at Power Up

The user can initialize RAM during power up of the device by setting the following:

• Initialize RAM at Power Up—loads the RAM content during device operation at power-up and 
functional simulation.

• RAM Configuration - Both write and read depths and widths are displayed as specified in the Port 
setting tab.

• Initialize RAM Contents From File—the RAM’s Content can be initialized by importing the memory 
file. This avoids the simulation cycles required for initializing the memory and reduces the simulation 
runtime. The configurator partitions the memory file appropriately so that the right content goes to 
the right block RAM when multiple blocks are cascaded.

• Import File—selects and imports a memory content file (Intel-Hex) from the Import Memory 
Content dialog box. File extensions are set to *.hex for Intel-Hex files during import. For more 
information, see Appendix: Supported Memory File Formats for LSRAM and µSRAM. The imported 
memory content is displayed in the RAM Content Editor.

• Reset All Values—resets all the data values.
Microsemi Proprietary UG0680 Revision 7.0 34



Embedded Memory Blocks
RAM Content Editor

The RAM Content Editor enables the user to specify the contents of RAM memory manually for both Port 
A and Port B. It also allows the user to modify imported data.

Port A View/Port B View

• Go To Address—enables the user to go to a specific address in the editor. The user can select the 
number display format (HEX, BIN, DEC) from the Address drop-down menu.

• Default Data Value—the user can set this with new data in order to change the default. When the 
data value is changed, all default values in the manager are updated to match the new value. Users 
can select the number display format (HEX, BIN, DEC) from the Data drop-down menu.

• Address—the Address column lists the address of a memory location. The drop-down menu 
specifies the number format of the address list (hexadecimal, binary, or decimal).

• Data—controls the data format and data values in the manager. 
Note: The dialogs show all data with the MSB down to LSB. For example, if the row showed 0xAABB for a 16-

bit word size, the AA is MSB and BB is LSB.

• Click OK to close the manager and save all changes made to the memory and its contents.
• Click Cancel to close the manager and cancel all the changes.

4.1.3.2.2 Two-Port LSRAM Configurator
The two-port SRAM (TPSRAM) IP configurator is available in the Libero SoC software under Memory & 
Controllers. Figure 25 shows the TPSRAM IP block available in the Libero SoC software. The TPSRAM 
configurator enables write access on one port and read access on the other port. The RAM configurator 
automatically cascades LSRAM blocks to create wider and deeper memories by selecting the most 
efficient aspect ratio. It also handles the grounding of unused bits. The core configurator supports the 
generation of memories that have different write and read aspect ratios. The configurator uses one or 
more memory blocks to generate a RAM matching the configuration. In addition, it also creates the 
surrounding cascading logic.

The configurator cascades RAM blocks in three different methods:

• Cascaded deep. For example, two blocks of 16384 x 1 combined to create a 32768 x 1.
• Cascaded wide. For example, two blocks of 16384 x 1 combined to create a 16384 x 2.
• Cascaded wide and deep. For example, four blocks of 16384 x 1 combined to create a 32768 x 2, in 

two blocks width-wise by two blocks depth-wise configuration.
Figure 25 • Two-Port Large SRAM Configurator with ECC Enabled
Microsemi Proprietary UG0680 Revision 7.0 35



Embedded Memory Blocks
The two-port LSRAM configurator has three tabs:

• Parameter settings
• Port settings
• Memory initialization settings

Table 13 • Two-Port Large SRAM Configurator Signals

Port Direction Polarity Description
CLK Input Rising edge Single clock to drive both W_CLK and R_CLK. Applicable 

only when single read/write clock is selected.

W_DATA[19:0] Input Write data

W_ADDR[9:0] Input Write address

W_EN Input Active high Write port enable

W_CLK Input Rising edge Write clock. Applicable only when independent clocks are 
selected.

R_CLK Input Rising edge Read clock. Applicable only when independent clocks are 
selected.

R_EN Input Active high Read data enable.

WBYTE_EN[] Input Write enable for byte write.

R_ADDR[9:0] Input Read address

R_DATA[19:0] Output Read data

R_DATA_EN Input Active high Read data register enable

R_DATA_SRST_N Input Active low Read data register synchronous reset

R_DATA_ARST_N Input Active low Read data register asynchronous reset

SB_CORRECT Output Active high Single-bit correct flag. Applicable only when ECC is 

DB_DETECT Output Active high Double-bit detect flag. Applicable only when ECC is 

ACCESS_BUSY Output Active high Busy signal from SmartDebug. Exposed only when Expose 
ACCESS_BUSY output is checked.
Microsemi Proprietary UG0680 Revision 7.0 36



Embedded Memory Blocks
Parameter Settings
The parameter settings include the Optimization for High Speed or Low Power, clock signals settings, 
and optional port settings. Figure 26 shows the TPSRAM block configurator. 

Figure 26 • Two-Port Large SRAM Configurator: Parameter Settings

Optimization for High Speed or Low Power

The user can optimize the LSRAM macro with one of the following options:

• High Speed—optimizes the LSRAM macro for speed and area by using width cascading.
• Low Power—optimizes the LSRAM macro for low power, but it uses additional logic at the input and 

output by using depth cascading.
Single Read/Write Clock (CLK) or Independent Read/Write Clocks

The user can set the clock signals and the signal polarity:

• Single clock—drives write and read with the same clock. This is the default configuration for two-
port LSRAM. 

• Independent clocks—selects independent clock for Read (R_CLK) and Write (W_CLK)—R_CLK 
and W_CLK.

• Rising edge or Falling edge—sets the signal polarity.
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Optional Ports

The user can select one of the following optional ports:

• Lock access to SmartDebug —when enabled, SmartDebug access to the RAM is disabled.
• Expose ACCESS_BUSY output—when enabled, SmartDebug ACCESS_BUSY signal is available 

as top-level port.
Port Settings

In the Port settings tab, the user can set RAM size, select ports, and set data output on write settings for 
both ports. Figure 27 shows the TPSRAM block port settings.

Figure 27 • Two-Port Large SRAM Configurator: Port Settings

ECC

The following three Error Correction Code (ECC) options are available:

• Disabled
• Pipelined
• Non-pipelined

Note: When ECC is enabled (pipelined or non-pipelined), both ports have data widths equal to 33 bits. The 
SB_CORRECT and DB_DETECT output ports are exposed when ECC is enabled.
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Write Byte Enable Settings

Write Byte Enables—enables the writing of individual bytes of data (WBYTE_EN). This port is disabled 
while the ECC is enabled.

When the Write Byte Enables option is checked, the RAM Configurator cascades the RAM blocks and 
the tool distributes the RAM width equally such that the word width is a multiple of 8. Each Byte Write 
Enable bit controls the writing of 8-bits. For example, generating a 32-bit word width LSRAM, with Write 
Byte Enables, will cascade the RAMs width-wise such that there are a total of 4 Write Byte Enable bits (2 
per RAM block) and each Write Byte Enable bit controls the writing of 8-bits (a byte) of data.

Other Examples are as follows:

• Width of 17, is divided as 9+8.
• Width of 35, is first divided as 18+17, and then, divided as 9+9+9+8.
RAM Size

The user can set the RAM size.

• Depth—sets the depth range. The depth range for each port is between 1 and 524288. The 
maximum value depends on the die.

• Width—sets the width range. The width range for each port is between 1 and 38080. 
Note: The two ports can be configured independently for any depth and width. The write port depth x write port 

width must be equal to read port depth x read port width. The width range varies for different devices. 
The performance of the RAM will be affected if width and depth are too large.

Write Enable (W_EN)

The following list describes the result of asserting and de-asserting the W_EN signal:

• The default configuration for W_EN is checked (enabled). Unchecking the W_EN option ties the 
signal to the active state and removes it from the generated macro.

• Use Active high or Active low to change the signal polarity.
Read Enable (R_EN)

The following list describes the result of asserting and de-asserting R_EN signal:

• The default configuration for R_EN is unchecked (disabled), which ties the signal to the active state 
and removes it from the generated macro. Selecting the checkbox enables R_EN and the 
associated functionality.

• Use Active high or Active low to change the signal polarity.
Note: The user can insert the signal on the generated macro by checking its respective check-boxes.

Enable Pipeline

Check the Enable Pipeline checkbox to enable pipelining of Read data (R_DATA). This is a static 
selection and cannot be changed dynamically by driving it with a signal. If the Enable Pipeline checkbox 
is not checked, the user cannot configure R_DATA_EN, R_DATA_SRST_N, or R_DATA_ARST_N 
signals.

• Read Pipeline Register Enable (R_DATA_EN)—the pipeline registers for R_DATA have an active 
high, enable input. By default, the checkbox is disabled. Selecting this checkbox adds the signal to 
the top-level port.

• Read Pipeline Synchronous Reset (R_DATA_SRST_N)—the pipeline registers for R_DATA have 
an active low, synchronous reset input. By default, the checkbox is disabled. Selecting this checkbox 
adds the signal to the top-level port. 

• Read Pipeline Asynchronous Reset (R_DATA_ARST_N)—the pipeline registers for R_DATA 
have an active low, asynchronous reset input. By default, the checkbox is disabled. Selecting this 
checkbox adds the signal to the top-level port.

• Active high or Active low—sets the signal polarity.
Note: The user can insert the signal on the generated macro by checking the respective check-boxes.
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Memory Initialization at Power-Up

In the Memory Initialization tab, the user can initialize RAM at power-up. LSRAM can be initialized 
during device power-up and functional simulation. Figure 28 shows the TPSRAM IP memory 
initialization. For more information about LSRAM memory initialization, see Memory Initialization at 
Power-Up.

Figure 28 • Two-Port Large SRAM Configurator: Memory Initialization

4.1.3.3 LSRAM Memory Macro
An LSRAM primitive is available as a component that can be used directly in the HDL file or instantiated 
in SmartDesign. For more information about configuring LSRAM, see LSRAM Macro.
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4.2 µSRAM
Each µSRAM has one read port and one write port for two-port memory requirements. Figure 29 shows 
the µSRAM I/O diagram.

Figure 29 • µSRAM Input/Output

Table 14 lists the ports available in µSRAM.

Table 14 • Port List for µSRAM

Pin Name Direction Type1 Polarity Description
W_EN Input Dynamic Active high Write enable

W_CLK Input Dynamic Rising edge Write clock

W_ADDR[5:0] Input Dynamic Write address

W_DATA[11:0] Input Dynamic Write-data

BLK_EN Input Dynamic Active high Read port enable

R_CLK Input Dynamic Rising edge Read clock

R_ADDR[5:0] Input Dynamic Read-address

R_ADDR_BYPASS Input Static Active low Read-address and BLK_EN register select

R_ADDR_EN Input Dynamic Active high Read-address register Enable

R_ADDR_SL_N Input Dynamic Active low Read-address register synchronous load

R_ADDR_SD Input Static Active high Read-address register synchronous load data

R_ADDR_AL_N Input Dynamic Active low Read-address register asynchronous load

R_ADDR_AD_N Input Static Active low Read-address register asynchronous load data

R_DATA[11:0] Output Dynamic Read-data

Common Signals

Write Port Read Port

W_ADDR[5:0]

W_CLK

W_DATA[11:0]

W_EN

R_ADDR[5:0]

R_ADDR_AD_N

R_ADDR_AL_N

R_ADDR_BYPASS

R_ADDR_EN

R_ADDR_SD

R_ADDR_SL_N

R_CLK

R_DATA[11:0]

R_DATA_AD_N

R_DATA_AL_N

R_DATA_BYPASS

R_DATA_EN

R_DATA_SD

R_DATA_SL_N

ACCESS_BUSY

BLK_EN

BUSY_FB
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Figure 30 shows the µSRAM with independent write and read ports and read data pipeline registers.

Figure 30 • Simplified Functional Block Diagram of µSRAM

R_DATA_BYPASS Input Static Active low Read-data pipeline register select

R_DATA_EN Input Dynamic Active high Read-data pipeline register enable

R_DATA_SL_N Input Dynamic Active low Read-data pipeline register synchronous load

R_DATA_SD Input Static Active high Read-data pipeline register synchronous load data

R_DATA_AL_N Input Dynamic Active low Read-data pipeline register asynchronous load

R_DATA_AD_N Input Static Active low Read-data pipeline register asynchronous load data

BUSY_FB Input Static Active high Lock access to SmartDebug

ACCESS_BUSY Output Dynamic Active high Busy signal when the RAM is being initialized or 
accessed using SmartDebug

1. Static inputs are tied to 0 or 1 during design implementation.

Table 14 • Port List for µSRAM (continued)

Pin Name Direction Type1 Polarity Description

Write
Control

Memory Array
64x12

Read 
Decode

R_DATA[11:0]

R_DATA_EN

W_CLK

Read Data
Pipeline
Register  

R_DATA_AL_N

R_DATA_AD_N

R_CLK

W_ADDR[5:0]

W_DATA[11:0]

W_EN

R_ADDR_EN
Read 

Address
Pipeline
Register  

R_ADDR_AL_N

R_ADDR_AD_N

R_CLK

R_ADDR[5:0]

R_DATA_BYPASS

R_ADDR_BYPASS
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4.2.1 Read Operation
Read operations are independent of write operations and are performed asynchronously. Synchronous 
read operations can be performed by using fabric flip-flops as pipeline registers. These flip-flops are 
located in the associated interface cluster at the read address input and read data output.

When the input address (R_ADDR[]) is provided, the output data is available on the output data bus. 
When BLK_EN is high, the read operations are enabled. R_DATA contains the contents of the memory 
location selected by R_ADDR. When BLK_EN is low, the R_DATA is driven to zero.

Figure 31 shows the timing of read operation.

Figure 31 • Read Operation in µSRAM

4.2.2 Write Operation
µSRAM supports synchronous write operation. The write port inputs are registered on the rising edge of 
the write port clock, W_CLK. 

When write enable (W_EN) is high, the data (W_DATA) is written to the RAM at the address (W_ADDR) 
after write delay. When the write enable (W_EN) is low, no write operation is performed.

Figure 32 • Write Operation in µSRAM

4.2.3 Collision
Collision occurs when write and read-write operations requested for the same address at the same time. 
Simultaneous write and read operations at the same location are not supported. In µSRAM, collision is 
not supported and write operations supersede read operations. Therefore, during collision the read 
operation generates invalid data at the output until the write operation is completed. 
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4.2.4 Implementation
An µSRAM block can be implemented in a design by the following methods:

• RTL Inference during Synthesis
• µSRAM Configurator
• µSRAM Memory Macro

4.2.4.1 RTL Inference during Synthesis
Synplify Pro ME can infer a µSRAM from RTL automatically based on memory logic used in the design. 
In this case, synthesis handles all the signal connections of the µSRAM block to the rest of the design 
and sets the correct values for the static signals needed to configure the appropriate operational mode. 
The tool ties unused dynamic input signals to ground and provides default values to unused static 
signals. If a design requires more memory blocks than the blocks available in the device, the Synthesis 
tool will infer fabric registers for the extra memory blocks. For more information about µSRAM inference 
by Synplify Pro, see Inferring Microsemi RAM Blocks Application Note.

4.2.4.2 µSRAM Configurator
The µSRAM configurator is available in the Libero SoC software under Memory & Controllers. 
Figure 33 shows µSRAM available in the Libero SoC software. The RAM configurator automatically 
cascades µSRAM blocks to create wider and deeper memories by selecting the most efficient aspect 
ratio. It also handles the grounding of unused bits. The core configurator supports the generation of 
memories that have same write/read depth and width. The configurator uses one or more memory blocks 
to generate a RAM matching the configuration. In addition, it also creates the surrounding cascading 
logic.

The configurator cascades RAM blocks in three different methods:

• Cascaded deep. For example, two blocks of 64 x 12 combined to create a 128 x 12.
• Cascaded wide. For example, two blocks of 64 x 12 combined to create a 64 x 24.
• Cascaded wide and deep. For example, four blocks of 64 x 12 combined to create a 128 x 24, in two 

blocks width-wise by two blocks depth-wise configuration.
Write operations are synchronous for setting up the address, and writing the data. The memory write 
operations will be triggered at the rising edge of the clock.

Read operations for setting up the address and reading the data can be either asynchronous or 
synchronous. An optional pipeline register is available for the read-address to improve the setup. An 
optional pipeline register is available at the read data to improve the clock-to-output delay. Disabling both 
the address and read data registers creates the asynchronous mode for read operations. For 
synchronous read operations, the memory read operations will be triggered at the rising edge of the 
clock.
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Figure 33 • µSRAM Configurator - Generated Component

 

This section also describes the µSRAM configuration and defines how the signals are connected. 

The µSRAM configurator window has three tabs for settings:

• Parameter settings
• Port settings
• Memory Initialization settings

Table 15 • µSRAM Configurator Signals

Port Direction Polarity Description
CLK Input Rising edge Single clock signal that drives both ports with the same clock. 

Applicable only when Single clock is selected.

BLK_EN Input Active high Read port enable

R_ADDR[5:0] Input Read address

R_ADDR_EN Input Active high Read address register enable

R_ADDR_SRST_N Input Active low Read address register synchronous reset

R_ADDR_ARST_N Input Active low Read address register asynchronous reset

R_CLK Input Rising edge Read clock. Applicable only when independent clocks are selected.

R_DATA[11:0] Output Read data

R_DATA_EN Input Active high Read data register enable

R_DATA_SRST_N Input Active low Read data register synchronous reset

R_DATA_ARST_N Input Active low Read data register asynchronous reset

W_ADDR[5:0] Input Write address

W_CLK Input Rising edge Write clock. Applicable only when independent clocks are selected.

W_EN Input Active low Write enable

W_DATA[11:0] Input Write data

ACCESS_BUSY Output Active high Busy signal from SmartDebug
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4.2.4.2.1 Parameter Settings
The parameter settings include the optimization of µSRAM for High Speed or Low Power, clock signal 
settings, and optional port settings. 

Figure 34 shows the µSRAM configurator.

Figure 34 • MicroSRAM Configurator: Parameter Settings

Optimization for High Speed or Low Power

The user can optimize the µSRAM macro with one of the following options:

• High Speed—to optimizes the µSRAM macro for speed and area by using width cascading.
• Low Power—to optimizes the µSRAM macro for low power, but it also uses additional logic at the 

input and output by using depth cascading.
Single Clock (CLK) or Independent Clocks (R_CLK and W_CLK)

The user can set the clock signals and the signal polarity:

• Single clock—drives both write and read ports with the same clock. This is the default configuration 
for µSRAM. 

• Independent clocks—selects the independent clock for each port (R_CLK for read port and 
W_CLK for write port).

• Rising edge or Falling edge—changes the signal polarity.
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Optional Ports

The user can select one of the following optional ports:

• Lock access to SmartDebug—when enabled, SmartDebug access to the RAM is disabled.
• Expose ACCESS_BUSY output —when enabled, SmartDebug ACCESS_BUSY signal is available 

as top-level port.

4.2.4.2.2 Port Settings
In the Port settings tab, the user can set RAM size, select ports, and set data output on write settings for 
both write and read ports. Figure 35 shows the µSRAM IP block port settings.

Figure 35 • MicroSRAM Configurator: Port Settings

RAM Size

The user can set the RAM size.

• Depth—sets the depth range. The depth range for each port is 1 to 2048. The maximum value 
depends on the die.

• Width—sets the width range. The width range for each port is 1 to 53280. 
Note: The two ports can be configured independently for any depth and width. Write depth x write width must 

be equal to read depth x read width. The width and depth range varies for different devices. The 
performance of the RAM will be affected if width and depth are too large.
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Port Selection: Block Select for Read Port (BLK_EN)

The default configuration for BLK_EN is unchecked, which ties the signal to the active state and removes 
it from the generated macro. For more information, see Read Operation.

Select Active high or Active low to change the signal polarity.

Note: Ports will be populated on the component by checking its respective check-boxes.

Write Enable (W_EN)

The default configuration for W_EN is unchecked (disabled), which ties the signal to the active state and 
removes it from the generated macro. For more information, see Write Operation, for more information.

Select Active high or Active low to change the signal polarity.

Note: The user can insert the signal on the generated macro by checking the respective check-boxes.

Enable Address Pipeline

Check the Enable Address Pipeline checkbox to enable pipelining of Read data (R_ADDR_EN). This is 
a static selection and cannot be changed dynamically by driving it with a signal. If the Enable Address 
Pipeline checkbox is not checked, the user cannot configure R_ADDR_EN,R_ ADDR_SRST_N, or 
R_ADDR_ARST_N signals.

• Register Enable (R_ADDR_EN and R_DATA_EN): the pipeline registers for read ports have active 
high enable inputs. By default, the checkbox is disabled. Selecting this checkbox adds the signal to 
the top-level port.

• Synchronous Reset (R_ADDR_SRST_N and R_DATA_SRST_N): the pipeline registers for read 
ports have active low, synchronous reset inputs. By default, the checkbox is disabled. Selecting this 
checkbox adds the signal to the top-level port. 

• Asynchronous Reset (R_ADDR_ARST_N and R_DATA_ARST_N): the pipeline registers for read 
ports have active low, asynchronous reset inputs. By default, the checkbox is disabled. Selecting this 
checkbox adds the signal to the top-level port. 

• Active high or Active low: changes the signal polarity.
Note: Ports will be populated on the component by checking the respective check-boxes.

Read Data Pipeline

• The default configuration for µSRAM is to enable the pipeline of read data (R_DATA).
• Click the Pipeline checkbox to enable pipelining of Read data (R_DATA). This is a static selection 

and cannot be changed dynamically by driving it with a signal.
• Turning off pipelining of Read data also disables the configuration options of the respective 

R_DATA_EN, R_DATA_SRST_N, and R_DATA_ARST_N signals.
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4.2.4.2.3 Memory Initialization at Power-Up
In the Memory Initialization tab, the user can initialize RAM at power-up. µSRAM can be initialized 
during device power-up and functional simulation. Figure 36 shows the µSRAM IP memory initialization. 
For more information about the usage of memory initialization, see LSRAM Memory Initialization at 
Power-Up.

Figure 36 • MicroSRAM Configurator: Memory Initialization

4.2.4.3 µSRAM Memory Macro
A µSRAM primitive is available as a component that can be used directly in the HDL file or instantiated in 
SmartDesign. For more information about configuring µSRAM, see µSRAM Macro.
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4.3 µPROM
PolarFire  devices include a single User Programmable Read-Only Memory (µPROM) row located at the 
bottom of the fabric, providing up to 513 Kb of non-volatile, read-only memory. The address bus is 16 bits 
wide, and the read data bus is 9-bit wide. Fabric logic has write access to the entire µPROM data. 
Figure 37 shows the high-level block diagram of µPROM.

Figure 37 • Simplified Functional Block Diagram of µPROM

Table 16 lists the ports of µPROM.

Table 16 • µPROM Port List

Port Name Direction Polarity Description
ADDR[15:0] Input Address input 

BLK Input Active high Block select

DATAR[8:0] Output Read data output

µPROMFabric
Logic

ADDR[15:0]

BLK

DATAR[8:0]
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4.3.1 µPROM Architecture and Address Space
Architecturally, the µPROM is structured into different memory arrays with 8-bit addressing. Each array is 
256 x 9 bit words. The total number of memory array per device is die-dependent and can vary from 194 
for the smallest die (MPFS025) to 553 for the largest die (MPFS460). The address bus (ADDR) is 16 bits 
wide. The lower 8 bits, ADDR [7:0], are used to address the individual 9-bit words while the upper 8 bits, 
ADDR[15:8], are used to address the individual memory array blocks inside the device.

Figure 38 shows a simplified block diagram of the µPROM memory.

Figure 38 • µPROM Memory Blocks

4.3.2 µPROM Operation
In µPROM, the write operation (program/erase) is performed during FPGA Programming. To configure 
the µPROM, the Libero SoC µPROM configurator writes the memory file (*.mem) to the configuration bit-
stream. The memory file is a plain text file. The device programmer (FlashPro 5 or later) writes this 
memory file to µPROM during FPGA programming. Read operations are performed only through the 
fabric interface. All µPROM read operations are asynchronous. To perform a synchronous read 
operation, the µPROM output needs to be pipelined using fabric registers.

Figure 39 shows the read timing diagram for the µPROM.

Figure 39 • Read Operation in µPROM
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4.3.3 Implementation
The µPROM can be implemented using the Configurator available in the Catalog tab. To invoke the 
configurator:

1. Expand Memory & Controllers in the catalog.
2. Do one of the following to invoke the µPROM Configurator:

• Double-click or right-click PF µPROM and select Instantiate in <design_name> to instantiate 
the µPROM in the SmartDesign canvas.

• Double-click or right-click PF µPROM and choose Configure Core. Enter a component name 
for the µPROM when prompted.

Figure 40 • µPROM Core in Catalog
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3. In the µPROM Configurator, click Add Clients to System to add a client to the µPROM. Figure 41 
shows the µPROM Configurator. Only the client will be programmed and not all the content is erased 
during programming.

Figure 41 • µPROM Configurator

4.3.3.1 Usage Statistics
Usage statistics display the total memory size of the µPROM, the size of used memory, and available 
free memory. All memory sizes are expressed in terms of the number of 9-bit words.

4.3.3.1.1 Available Memory
The µPROM can hold upto 58,368 9-bit words (total 525312 bits), depends on the die. For more 
information, see Table 1.

4.3.3.1.2 Used Memory
When memory clients are added, the used memory displays the total amount of memory (number of 9-bit 
words) used by all clients. This is displayed in blue in the pie chart.

4.3.3.1.3 Free Memory
Free memory (number of 9-bit words) is displayed in magenta in the pie chart.

4.3.3.2 Add Clients to System
1. Click Add Clients to System to open the Add Data Storage Client dialog box (Figure 42).
2. Specify the start address, client size, the content of the client, and whether or not to use the memory 

content for simulation.
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Figure 42 • Add Data Storage Client Dialog Box

4.3.3.2.1 Client Name
Enter a name for your memory client.

4.3.3.2.2 Content from File
Import the memory client from a memory file with this option. Click Browse to navigate to the location of 
the memory file and import. Select the Memory File and click Open.

Note: The memory file must have the *.mem file extension.

Figure 43 • Import Memory File Dialog Box
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Use Absolute Path

When this is selected, the absolute path of the memory file appears in the Content from File field.

Figure 44 • Absolute Path of Memory File

Use Relative Path from Project Directory

When this is selected, the Relative Path of the Memory File (relative to the Project location) is displayed 
in the Content from File field.

Figure 45 • Relative Path of Memory File
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Copy Memory File to Project Path

Select this option and click Browse to navigate to the location of the memory file to copy from. The 
memory file is copied to the project location.

Figure 46 • Location of Memory File to Copy From

Note: On the Windows systems, if the memory file and the Project location are on different drives, the Absolute 
Path is used even if Relative Path is selected.

The memory file cannot be copied to and stored in the project's subfolders: component, smartgen, 
synthesis, designer, simulation, stimulus, tool data, and constraint. To prevent users from inadvertently 
copying the memory file into these sub-folders, these project subfolders are hidden from view when you 
select the project folder. Copy the memory file to the same project folder as the *.prjx file. 

Note: The copied Memory File path is internally stored as relative path. Once this is copied to the project, user 
must update the content of the Memory File to make it current.

µPROM supports only the Microsemi Binary format (*.mem) for the memory content. The *.mem file 
must meet the following requirements:

• Each row is one 9-bit binary word (only 0s and 1s).
• The number of rows in the file (word count) must be less than or equal to the memory space of the 

µPROM (up to 58,368 words).
• The memory file must have the *.mem file extension. Figure 47 shows an example memory file.

Figure 47 • Microsemi Binary File (*.mem) Example
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4.3.3.2.3 Content filled with 0s
Fill the content of the memory client with 0s as a place holder and update the memory client after Place 
and Route and before Programming. There is no need to rerun Place and Route after updating the 
µPROM Memory Content. For more information, see Update µPROM Memory Content.

4.3.3.2.4 Start Address
Enter the Start address (16-bit) of the client in HEX.

4.3.3.2.5 Number of 9-bit Words
Enter the size of the client (displayed as the number of 9-bit words) in decimal.

Note: When multiple clients are added, ensure that the address range of each client does not overlap with the 
other clients. Overlapping of address range is not allowed and is flagged as an error when it occurs.

4.3.3.2.6 Use Content for Simulation
Select to include the memory content for simulation. When this checked, a UPROM.mem file is 
automatically created in the <prj_location>/simulation folder when simulation is invoked in the Design 
Flow window. The UPROM.mem file is read by the µPROM simulation model to initialize the µPROM 
content when the simulation starts. Only clients with the “Use Client for Simulation” check box checked 
have the contents added to the UPROM.mem file for simulation.

Figure 48 shows the added clients under User clients in µPROM.

Figure 48 • User Clients
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4.3.3.3 DRC Rules and Error Messages
To prevent out-of-bound memory addressing and overlapping of address space, DRC rules are enforced 
and error messages are given when:

• An invalid start address (outside of the µPROM memory space) is entered. 
DRC Error: The specified start address is invalid; legal addresses range from 0x0 to 
<max_possible_address_for_the_die>.

• The start address and the number of words entered put the user client beyond the memory space of 
the µPROM.
DRC Error: For the specified start address, the number of words cannot exceed the total number of 
words of <max_possible_words_for_die>.

• The number of 9-bit words entered is less than the number of words in the memory file used to fill 
the content of the client. 
DRC Error: The number of words cannot be less than the number of words <mem_file_word_count> 
specified in the memory file <mem_file_name>.

• There is more than one user client and the address range of one client overlaps with that of another. 
DRC Error: This client overlaps with: <client name >.

• The memory file (*.mem) size exceeds the total µPROM memory space. 
DRC Error: The memory file <memoryFileName> size exceeds the total µPROM space.

4.3.3.4 Editing a Client
1. To edit a client, click Edit or right-click the client name and select Edit to open the Edit Data 

Storage Client dialog box.
Figure 49 • Editing User Clients
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2. Make changes in the Edit Data Storage Client dialog box and click OK to save edits.
Figure 50 • Edit Data Storage Client Dialog Box

4.3.3.5 Deleting a Client
Right-click the client and select Delete.

Figure 51 • Deleting a Client
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4.3.3.6 Update µPROM Memory Content
The µPROM Memory Content can be updated after Place and Route using Device Configuration and 
Memory Initialization under Program and Debug Design in the Design Flow tab. For more information 
about updating µPROM memory content, see UG0725: PolarFire FPGA Device Power-Up and Resets 
User Guide .

Figure 52 • Update µPROM Memory Content

4.4 sNVM
PolarFire  devices include 56 KBytes of sNVM. The sNVM is organized into 221 pages of 236 bytes or 
252 bytes depending on whether the data is stored as plain text or encrypted/authenticated data. Pages 
within the sNVM can be marked as ROM during bitstream programming. Data written to the sNVM can 
be protected by the PUF. The sNVM is readable and writable by the designer’s application during 
runtime and is an ideal storage location for locating the boot code for soft processors and user keys.
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4.4.1 Implementation
The sNVM is not accessible to the fabric logic. This can be accessed through CoreSysService IP using 
system service calls. The sNVM content can be used for device initialization for LSRAM, µSRAM, PCIe, 
and transceiver data. Few pages of available 56 Kb are used for storing the device and peripheral 
configuration data and remaining pages are available for the user data. For more information about 
device initialization using sNVM, see UG0725: PolarFire FPGA Device Power-Up and Resets User 
Guide. 
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5 Math Blocks

PolarFire fabric includes embedded math blocks optimized for Digital Signal Processing (DSP) 
applications such as Finite Impulse Response (FIR) filters, Infinite Impulse Response (IIR) filters, Fast 
Fourier Transform (FFT) functions, and encoders that require high data throughput.

The math block has a built-in multiplier, a pre-adder, and an adder. These built-in features minimize the 
external logic required to implement multiplication, multiply-add, and multiply-accumulate (MACC) 
functions. For more information about math block inference by Synplify Pro ME, see Inferring Microsemi 
MACC Blocks Application Note. Implementation of these arithmetic functions using mathblocks results in 
efficient resource usage and improved performance for DSP applications. Math blocks can also be used 
in conjunction with fabric logic and embedded memories (LSRAM, µSRAM, and µPROM) to implement 
complex DSP algorithms.

5.1 Features
Key features of the Math block are as follows:

• High-performance and power optimized multiplication operations.
• Full-precision 48-bit output width.
• Supports 18 x 19 signed multiplication.
• Supports 17 x 18 unsigned multiplications.
• Supports input and output pipeline registers.
• Supports dot-product (DOTP) mode.
• Supports Single-Instruction Multiple-Data (SIMD) mode (dual-independent mode).
• Internal pre-adder block enables the efficient implementation of symmetric filters.
• Supports input cascade chain to form the tap-delay line for filtering applications. 
• Built-in addition, subtraction, and accumulation units to combine multiplication results efficiently.
• Independent 48-bit registered third input.
• Supports signed and unsigned operations.
• Internal cascade signals (48-bit CDIN and CDOUT) enable cascading of the math blocks.

5.2 Math Block Resources
Table 1 lists the number of Math blocks available in PolarFire devices.
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5.3 Functional Description
Math blocks are arranged in rows in the FPGA fabric and can be cascaded in a chain, starting from the 
left-most block to the right-most block within a row. For more information, see Figure 9.

Each math block consists of:

• Pre-Adder
• Multiplier
• Adder/Subtractor 
• Math Block Ports
• 16 x 18 Coefficient ROM and B2 Register
Figure 53 shows the simplified block diagram of the math block.

Figure 53 • Simplified Functional Block Diagram of Math Block
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Table 17 shows the port list for math block.

Note: For information about asynchronous reset, synchronous reset, bypass, and enable signal details for each 
input/output register, see Table 37.

Table 17 • Port List for Math Block

Port Name Direction Type Polarity Description
A[17:0] Input Dynamic Active high Input data for operand A when USE_ROM = 0

ARSHFT17 Input Dynamic Active high Arithmetic right-shift for operand E. 
When asserted, a 17-bit arithmetic right-shift is 
performed on operand E

B[17:0] Input Dynamic Active high Input data B to pre-adder with data D

B2[17:0] Output Dynamic Active high Pipelined output of input data B. Result P must be 
floating when B2 is used. 

BCOUT[17:0] Output Cascade Active high Cascade output of B2. Value of BCOUT is the 
same as B2. The entire bus must either be 
dangling or drive an entire B input of another 
MACC_PA or MACC_PA_BC_ROM block. 

C[47:0] Input Dynamic Active high Input data C
When DOTP = 1, connect C[8:0] to CARRYIN. 
When SIMD = 1, connect C[8:0] to 0. 

CLK Input Dynamic Rising edge Clock for A, B, C, CARRYIN, D, P, 
OVFL_CARRYOUT, ARSHFT17, 
CDIN_FDBK_SEL, PASUB, and SUB registers

CARRYIN Input Dynamic Active high CARRYIN for input data C

CDIN[47:0] Input Cascade Active high Cascaded input for operand E
The entire bus must be driven by an entire CDOUT 
of another math block. In Dot-product mode, the 
driving CDOUT must also be generated by a math 
block in Dot-product mode.

CDIN_FDBK_SEL[1:0] Input Dynamic Active high Select CDIN, P, or 0 for operand E 

CDOUT[47:0] Output Cascade Active high Cascade output of result P
Value of CDOUT is the same as P. The entire bus 
must either be dangling or drive an entire CDIN of 
another math block in cascaded mode. 

D[17:0] Input Dynamic Active high Input data D to pre-adder with data B
When SIMD = 1, connect D[8:0] to 0. 

OVFL_CARRYOUT Output Active high OVERFLOW or CARRYOUT

P[47:0] Output Active high Result data

PASUB Input Dynamic Active high Subtract operation for pre-adder of B and D

ROM_ADDR[3:0] Input Dynamic Active high Address of ROM data for operand A when 
USE_ROM = 1

SUB Input Dynamic Active high Subtract operation
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5.3.1 Pre-Adder
Pre-adder performs the upstream addition/subtraction operation prior to multiplication. It can be 
configured for the following operations on the inputs B[17:0] and D[17:0]: 

• 18-bit addition/subtraction, producing the result B[17:0] ± D[17:0]. For more information, see 
Figure 58.

• Two 9-bit additions/subtractions, producing the results B[8:0] ± D[8:0], B[17:9] ± D[17:9]. For more 
information, see Figure 59. In the two 9-bit adder/subtractor modes, the type of operation 
(addition/subtraction) performed on the lower pre-adder of bits B[8:0] and D[8:0], and the type of 
operation performed on the upper pre-adder of bits B[17:9], D[17:9] must be the same.

• Single 9-bit addition/subtraction, producing the result B[17:9] ± D[17:9]. For more information, see 
Figure 60.

5.3.2 Multiplier
Inputs to multiplier are Port A data and pre-adder output data. The math block multiplier can be 
configured to perform any of the following:

• 19 x 18-bit multiplication.
• Two 10 x 9-bit multiplications (dot-product).
• Two independent multiplications, one 9 x 9-bit and one 10 x 9-bit SIMD/(dual-independent mode).

5.3.3 Adder/Subtractor
The adder/subtractor performs the final addition/subtraction and accumulation operation. This operation 
produces the final math block output with 48-bit precision. 

The adder/subtractor can be configured to compute any of the following:

• (B ± D) x A + C + CARRYIN or (B ± D) x A + E.
• (B ± D) x A + C + CARRYIN + E.
If this block is configured as a subtractor, the output is (C + E) - (B ± D) x A.

5.3.4 Math Block Ports
Math blocks have built-in, by-passable registers on the data inputs (A, B, C, and D), data output (P), and 
control signals. 

5.3.4.1 C Input and CARRYIN
The C input port allows the formation of several 3-input mathematical functions, such as 3-input addition 
or 2-input multiplication with addition. The CARRYIN signal is the carry input of the adder or accumulator. 
The C input can also be used as a dynamic input to achieve the following functionalities:

• Wrapping-around the cascade chain of math blocks from one row to the next row through the fabric.
• Rounding the multiplication outputs.
• Trimming the lower-order bits of the final sum, partial sum, or the product.

5.3.4.2 CDIN, CDOUT, and CDIN_FDBK_SEL
Higher-level DSP functions are supported by cascading individual math blocks in a row. The two data 
signals, CDIN[47:0] and CDOUT[47:0], provide the cascading capability with an input select 
(CDIN_FDBK_SEL). Table 19 lists the possible settings of CDIN_FDBK_SEL for propagating CDIN to 
the E input of the adder. 

To cascade math blocks, the CDOUT of one block must feed the CDIN of an adjacent block. The 
CDOUT-to-CDIN connection is hardwired between the blocks within a row. Two different rows can be 
cascaded using fabric routing between two rows. Extra pipeline registers might be required to 
compensate for the extra delays added due to the fabric routing, which increases the latency of the 
chain.

The ability to cascade math blocks is useful in filter designs. For example, an FIR filter can be 
constructed by cascading inputs to arrange a series of input data samples and cascading outputs to 
arrange a series of partial output results. Since the general routing in the fabric is not used, the cascading 
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ability provides a high-performance and low-power implementation of DSP filter functions. For more 
information, see Cascading Math Blocks.

5.3.4.3 BCOUT
BCOUT signal forms a chain in a row of math blocks for the B input. This signal can be used to form the 
input delay chain used in filter applications. The BCOUT signal is not hardwired and is routed using fabric 
routing. 

5.3.4.4 OVFL_CARRYOUT
Each math block has an overflow signal, OVFL_CARRYOUT. This signal indicates any overflow from the 
addition operation performed by the adder. This signal is also used to extend the adder data widths from 
the existing 48 bits using fabric resources. It is also used to implement saturation capabilities. Saturation 
refers to catching an overflow condition and replacing the output with either the maximum (most positive) 
or minimum (most negative) value that can be represented.

5.3.4.5 ARSHFT17
For multi-precision arithmetic, math blocks provide a right shift by 17 that is controlled by the shift input, 
ARSHFT17. Hence, a partial product from one math block can be shifted to the right and added to the 
next partial product computed in an adjacent math block. Using this technique, math blocks can be used 
to build wide multipliers.

5.3.4.6 CDIN_FDBK_SEL
For accumulation operations, the math block output must be fed back to the E input of the adder block. 
Selection of this input is controlled by combinations of the CDIN_FDBK_SEL and ARSHFT17 inputs. 
Following is the truth table for operand E.

Table 18 • Truth Table for Computation of OVFL_CARRYOUT

OVFL_CARRYOUT_SEL OVFL_CARRYOUT Description 
0 (SUM[49] XOR SUM[48]) OR 

(SUM[48] XOR SUM[47]) 
True, if overflow or underflow occurred

1 C[47] XOR E[47] XOR SUM[48] A signal that can be used to extend 
the final adder in the fabric. 

Table 19 • Truth Table for Propagating Operand E of the Adder or Accumulator

CDIN_FDBK_SEL ARSHFT17 Operand E
00 0 0

00 1 0

01 0 P[47:0]

01 1 {17{P[47]}, P[47:18]}

11 0 CDIN[47:0]

11 1 {17{CDIN[47]}, CDIN[47:18]}
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5.3.4.7 PASUB and SUB Inputs
The PASUB signal controls the mode of pre-adder (subtraction or addition). The SUB signal controls 
whether the multiplier product is to be subtracted or added.

5.3.5 16 x 18 Coefficient ROM and B2 Register
Each math block has a 16 x 18 coefficient ROM for storing filter coefficients, and a B2 register for delay 
chains. By changing the address of the coefficient ROM, a set of coefficients can be cycled through for 
folded, interpolation or decimation filters, and/or switch between two more sets of filter coefficients. Three 
IL clusters are associated with each math block providing 36 LUTs and 36 flip-flops for connecting to the 
fabric and building complex structures. These ILs can be used to implement the following:

• 18 IL LUTs are used to implement a 16 x 18-bit coefficient ROM. This coefficient ROM feeds the data 
input of the IL registers associated with the A input of the math block and provides storage for 16 
fixed coefficient values. These coefficients are loaded during device programming. The coefficient 
ROM content is accessed through ADDR[3:0] for multiplication. 

• 18 ILs LUTs are used to implement a 2:1 mux for selecting the BCIN. 
• 18 interface logic flip-flops are used to implement the B2 register, as shown in Figure 53. This 

register is used in input delay chains for filtering applications.
Note: The coefficient ROM is part of the interface logic associated with the math block. It is different from 

µPROM.

Table 20 • Truth Table for Computation of Result P and CDOUT

SIMD DOTP SUB PASUB Result P and CDOUT 
0 0 0 0 CARRYIN + C[47:0] + E[47:0] + { (B[17:0] + D[17:0]) x A[17:0] } 

0 0 0 1 CARRYIN + C[47:0] + E[47:0] + { (B[17:0] - D[17:0]) x A[17:0] } 

0 0 1 0 CARRYIN + C[47:0] + E[47:0] - { (B[17:0] + D[17:0]) x A[17:0] } 

0 0 1 1 CARRYIN + C[47:0] + E[47:0] - { (B[17:0] - D[17:0]) x A[17:0] } 

0 1 0 0 CARRYIN + C[47:0] + E[47:0] + 
{ (B[8:0] + D[8:0]) x A[17:9] + (B[17:9] + D[17:9]) x A[8:0] } x 29 

0 1 0 1 CARRYIN + C[47:0] + E[47:0] + 
{ (B[8:0] - D[8:0]) x A[17:9] + (B[17:9] - D[17:9]) x A[8:0] } x 29 

0 1 1 0 CARRYIN + C[47:0] + E[47:0] + 
{ (B[8:0] + D[8:0]) x A[17:9] - (B[17:9] + D[17:9]) x A[8:0] } x 29 

0 1 1 1 CARRYIN + C[47:0] + E[47:0] + 
{ (B[8:0] - D[8:0]) x A[17:9] - (B[17:9] - D[17:9]) x A[8:0] } x 29 

1 0 0 0 P[17:0] = CARRYIN + { B[8:0] x A[8:0] } 
P[47:18] = C[47:18] + E[47:18] + { (B[17:9] + D[17:9]) x A[17:9] } 

1 0 0 1 P[17:0] = CARRYIN + { B[8:0] x A[8:0] } 
P[47:18] = C[47:18] + E[47:18] + { (B[17:9] - D[17:9]) x A[17:9] } 

1 0 1 0 P[17:0] = CARRYIN + { B[8:0] x A[8:0] } 
P[47:18] = C[47:18] + E[47:18] - { (B[17:9] + D[17:9]) x A[17:9] } 

1 0 1 1 P[17:0] = CARRYIN + { B[8:0] x A[8:0] } 
P[47:18] = C[47:18] + E[47:18] - { (B[17:9] - D[17:9]) x A[17:9] } 
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5.4 Cascading Math Blocks
The math blocks in each row cascade in a chain from left to right and terminate at the end of each row. 
Fabric routing is required to extend the cascading chain from one row to another. The following are the 
two options to connect cascading chains across multiple rows:

• Wrap-Around to the Start of the Cascade Chain
• Wrap-Around to the Inside of the Cascade Chain

5.4.1 Wrap-Around to the Start of the Cascade Chain
The cascade chain output of one row is connected to the cascade chain input of another row through 
fabric routing, with one or more pipeline registers added in the fabric to improve performance. If latency is 
required at the output, additional compensating registers can be added on the input side. Figure 54 
shows an example implementation of a transpose FIR filter with the cascade chain of one row being 
extended to the chain of another row through pipeline registers.

Figure 54 • Wrap-Around of Cascade Chain Using Pipeline Registers in Fabric

5.4.2 Wrap-Around to the Inside of the Cascade Chain
The cascade chain output of one row is connected to any adder input of another row. This type of 
connection is useful when designing systolic or folded FIR filters. With this approach, there is no need to 
insert compensating pipeline registers on the input side or create additional latency on the output side. 

Figure 55 shows an example implementation of a wrap-around to the inside of a cascade chain.

Figure 55 • Wrap-Around to Inside of Cascade Chain
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5.4.2.1 Merging Multiple Cascade Chains
Multiple cascade chains can be merged using either the C input of math block or adders constructed in 
the fabric. Extra pipelined register must be added to adjust the latency. 

Figure 56 shows multiple cascaded chains merged using a math block C input.

Figure 56 • Merging Cascade Chains Using C Input

Figure 57 shows multiple cascaded chains merged with fabric adders.

Figure 57 • Merging Cascade Chains Using Fabric Adders
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5.5 Operational Modes
The math block supports the following operational modes:

• Normal Mode
• DOTP Mode
• SIMD Mode

5.5.1 Normal Mode
Normal mode performs a 18-bit addition (pre-adder) and a 19 x 18 multiplication operation as per the 
following output equation: 

P[47:0] = ((B[17:0] ± D[17:0]) x A[17:0]) + C[47:0] + E[47:0] + CARRYIN

Figure 58 shows the functional block diagram of the math block in normal mode.

Figure 58 • Functional Block Diagram of the Math Block in Normal Mode
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5.5.2 DOTP Mode
DOTP mode computes the sum of two 10 x 9-bit multiplications. In this mode, the pre-adder is split into 
two 9-bit adders. The two 9-bit pre-adders must be in the same mode, either addition or subtraction.

In DOTP mode, the math block implements the following output equation:

P[47:0] = ((B[8:0] ± D[8:0]) x A[17:9] ± (B[17:9] ± D[17:9]) x A[8:0]) x 29 + C[47:0] + E[47:0] + CARRYIN

Figure 59 shows the functional block diagram of the math block in DOTP mode.

Figure 59 • Functional Block Diagram of the Math Block in DOTP Mode
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5.5.3 SIMD Mode
In SIMD mode, the 18 x 19 multiplier operates as two independent 9 x 9 multipliers. It doubles the 
number of multiplications for smaller widths (say 9 bits). It computes two independent 9 x 9-bit 
multiplications using the 9-bit upper pre-adder. The lower pre-adder is not used (D[8:0] input must be 
zero). The lower portion of the final adder is not used, that is, E[17:0] is ignored and C[17:0] must be 
zero. The ARSHFT17 input is also ignored in SIMD mode. 

SIMD mode implements the following output equations:

P[17:0] = (B[8:0] x A[8:0]) + CARRYIN

P[47:18] = ((B[17:9] ± D[17:9]) x A[17:9]) + C[47:18] + E[47:18]

Figure 60 shows the functional block diagram of the math block in SIMD mode.

Figure 60 • Functional Block Diagram of the Math Block in SIMD Mode
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5.6 Implementation
A math block is implemented through one of the following methods:

• RTL Inference
• Math Block Macro
• Use Models

5.6.1 RTL Inference
Synplify Pro ME infers math blocks and configures the appropriate modes automatically if the RTL 
contains any specific multiply, multiply-accumulate, multiply-add, or multiply-subtract, pre-adder multiply 
functions. Synthesis handles all the signal connections of the math block to the rest of the design and 
sets the correct values for the static signals needed to configure the appropriate operational mode. 
Synplify Pro ME ties unused dynamic input signals to ground and provides default values to unused 
static signals.

Synplify Pro ME automatically maps any multiplication functions with input widths of three or more to 
math blocks. For input widths less than three, mathblocks can be inferred by using synthesis attribute 
(Syn_multstyle= “dsp”), the mapping of multiplication functions with input widths less than three, (which 
are implemented in fabric logic by default), can be controlled by the synthesis attribute (Syn_multstyle = 
“dsp”) if using math blocks is preferred. The tool is also capable of cascading multiple math blocks if the 
function crosses the limits of a single math block. For example, if the RTL contains a 35 x 35 
multiplication, synthesis implements this block using four math blocks cascaded in a chain. 

Synplify Pro ME also has the capability to utilize the input and output registers inside the math block 
boundary, provided they are in the same clock domain. If the registers are in different clock domains, the 
clock that drives the output register has priority, and all registers driven by that clock are placed in the 
math block. If the outputs are unregistered and the inputs are registered but not all on the same clock 
domain, the input registers with the larger input have priority and are placed in the math block. The 
synthesis tool supports inferencing of math block components across hierarchical boundaries. In this 
case even if the multipliers, input registers, output registers, and adders/subtractors are present at 
different levels of a design's hierarchy, they can be placed into the same math block. For more 
information about math block inference by Synplify Pro ME, see Inferring Microsemi MACC Blocks 
Application Note.

5.6.2 Math Block Macro
The math block macro is available in the Libero SoC -> IP Catalog as a component that can be used 
directly in an HDL file or instantiated in SmartDesign. Math block has the following two macros.

• MACC_PA (MACC with Pre-Adder) 
• MACC_PA_BC_ROM (MACC with Pre-Adder, BCOUT Register, and Coefficient ROM)
For more information about configuring math block macro, see Math Block Macro.

5.6.3 Use Models
Math blocks can be used in a wide variety of DSP applications and this section describes the following 
use models:

• Symmetric FIR Filter
• 9 x 9 Systolic FIR Filter
• 9 x 9 Symmetric FIR Filter
• 9 x 9 Complex Multiplier
• Non-Pipelined 35 x 35 Multiplier Using Cascade Chain
• Pipelined 35 x 35 Multiplier Using Cascade Chain
• Non-Pipelined 35 x 35 Multiplier Using Fabric Adders
• Extension Adder
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Math Blocks
5.6.3.1 Symmetric FIR Filter
In symmetrical FIR filters, the coefficients are symmetrical. Because of the symmetry, an M-tap FIR filter 
can be implemented using M/2 math blocks. The math block pre-adder is used to add the input signal 
feeding the symmetric filter coefficients, as shown in Figure 61.

Figure 61 • Symmetric FIR Filter Implementation

Anti-symmetric FIR filters can also be implemented in the same way, but with the pre-adder configured to 
subtract the input signals feeding the anti-symmetric filter coefficients, as shown in Figure 62.
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5.6.3.2 9 x 9 Systolic FIR Filter
A 9 x 9 systolic FIR filter can be implemented using the 9 x 9 DOTP mode of the math block, see 
Figure 62. In DOTP mode, two multipliers share the same output register. As a result, the latencies have 
to be adjusted properly on the input side to achieve correct filter operation.

Figure 62 • 9 x 9 Systolic FIR Filter

5.6.3.3 9 x 9 Symmetric FIR Filter
A 9 x 9 symmetric FIR filter can be implemented by using the 9 x 9 DOTP mode with the math block 
pre-adder configured as two 9-bit pre-adders. Figure 63 shows an example of a 9 x 9 symmetric FIR filter 
for M number (divisible by 4) of taps.

Figure 63 • 9 x 9 Symmetric FIR Filter
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5.6.3.4 9 x 9 Complex Multiplier
To implement a 9 x 9 complex multiplier, 2 math blocks and an additional 2's complement logic (in the 
fabric) are required. The 2's complement logic in the fabric is needed for negating the Q input, as shown 
in Figure 64, and this logic consumes minimal fabric resources.

For two complex numbers, X + jY and P + jQ, the complex multiplication is:

Multiplication result = real part + imaginary part = (PX – QY) + j (PY + QX).

The real part (PX - QY) requires -Q for the multiplication result. In 2's complement arithmetic this value 
can be computed using the 1's complement of Q and adding the Y using the C input (-Q = ~Q + 1).

Real part = P x X + (~Q) x Y + Y.

Figure 64 • 9-Bit Complex Multiplication Using DOTP Mode
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5.6.3.5 Non-Pipelined 35 x 35 Multiplier Using Cascade Chain
A 35 x 35 multiplier is useful for applications requiring more than 18-bit precision. A non-pipelined 
implementation is typically used for low-speed applications. A non-pipelined 35 x 35 multiplier can be 
implemented using the cascaded math blocks in a single row. Figure 65 shows an example of such an 
implementation. 

The inputs are assumed to be A[34:0] and B[34:0] with a product of P[69:0].

Figure 65 • Non-Pipelined Implementation Using Cascade Chain
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5.6.3.6 Pipelined 35 x 35 Multiplier Using Cascade Chain
Math blocks have IL registers accessible to all input and output ports. To implement pipelined multipliers, 
these IL registers are added to the input or output side of the non-pipelined implementation. These 
registers are needed for balancing the pipeline latency.

Figure 66 shows a typical 35 x 35 multiplier implementation with fabric pipeline registers.

Figure 66 • Pipelined Implementation Using Cascade Chain

5.6.3.7 Non-Pipelined 35 x 35 Multiplier Using Fabric Adders
A non-pipelined 35 x 35 multiplier can be implemented using fabric adders. This reduces the output 
latency compared to the non-pipelined cascade-chain implementation.

Figure 67 shows the block diagram of the 35 x 35 multiply using fabric adders.

Figure 67 • 35 x 35 Multiply Using Fabric Adders
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5.6.3.8 Extension Adder
A math block's adder/accumulator width can be extended using fabric logic. Figure 68 and Figure 69 
show example implementations of 2-input and 3-input extension adders in fabric. In this extension adder, 
the MSB bits, P[47], C[47], and E[47], are not treated as sign bits. Instead, P[n-1] represents the sign bit. 
The static input EXT_SEL is set to 1 causing the appropriate signal to appear on each math block's 
OVFL_CARRYOUT output. 

Figure 68 shows a case where input C = 0, and input E is used for the cascade chain.

Figure 68 • Extension of 2-Input Adder in Fabric

OVFL

P[48]+

+

+

...

P[49]+

0

P[47:0]

Math Block

P[47:0]

OVFL_EXT P[47]

P[n-2]

P[n-1]

OVFL

+

+

+

...

+

0

P[48]

P[49]

P[n-2]

P[n-1]

Math Block

E[47:0]

A[17:0]

B[17:0]

P[47:0]

OVFL_EXT P[47]

Fabric

E[47:0]

A[17:0]

B[17:0] Fabric
Microsemi Proprietary UG0680 Revision 7.0 79



Math Blocks
Figure 68 shows a case where both inputs C and E are used. 

Figure 69 • Extension of 3-Input Adder in Fabric
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6 Appendix: Supported Memory File Formats 
for LSRAM and µSRAM

Microchip supports Intel-Hex and Motorola-S file formats. Implementation of these formats interprets data 
sets in bytes. If the memory width is 7 bits then every 8th bit in the data set is ignored. If the data width is 
9 bits, two bytes are assigned to each memory address, and the upper 7 bits of each 2-byte pair are 
ignored.

The following examples illustrate how the data is interpreted for various word sizes:

FF 11 EE 22 DD 33 CC 44 BB 55 (where 55 is the MSB and FF is the LSB) for 32-bit word size:

0x22EE11FF (address 0)
0x44CC33DD (address 1)
0x000055BB (address 2)
For 16-bit word size:

0x11FF (address 0)
0x22EE (address 1)
0x33DD (address 2)
0x44CC (address 3)
0x55BB (address 4)
For 8-bit word size:

0xFF (address 0)
0x11 (address 1)
0xEE (address 2)
0x22 (address 3)
0xDD (address 4)
0x33 (address 5)
0xCC (address 6)
0x44 (address 7)
0xBB (address 8)
0x55 (address 9)
For 9-bit word size:

0x11FF -> 0x01FF (address 0)
0x22EE -> 0x00EE (address 1)
0x33DD -> 0x01DD (address 2)
0x44CC -> 0x00CC (address 3)
0x55BB -> 0x01BB (address 4)

Note: For 9-bit, the upper 7-bits of the 2-bytes are ignored.
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INTEL-HEX

Intel Hex is an industry standard file format created by Intel. File extensions for these files are.hex 
and.ihx.

Memory contents are stored in ASCII files using hexadecimal characters. Each file contains a series of 
records (lines of text) delimited by new line, '\n', characters and each record starts with a ':' character. For 
more information about this format, see the Intel-Hex Record Format Specification.

The Intel Hex record is composed of five fields and is arranged as:

:llaaaatt[dd...]cc
Where:

• :—start code of every Intel Hex record.
• ll—byte count of the data field.
• aaaa—16-bit address of the beginning of the memory position for the data. Address is big endian.
• tt—record type, defines the data field:

• 00—data record.
• 01—end of file record.
• 02—extended segment address record.
• 03—start segment address record (ignored by Microsemi SoC tools).
• 04—extended linear address record.
• 05—start linear address record (ignored by Microsemi SoC tools).

• [dd...]—sequence of n bytes of the data. n is equivalent to what was specified in the ll field.
• cc—checksum of count, address, and data.
Example Intel Hex record:

:0300300002337A1E
MOTOROLA S-Record

Motorola S-Record is an industry standard file format created by Motorola. The file extension for these 
files is.s.

This format uses ASCII files, hex characters, and records to specify memory content similar to the Intel-
Hex format. See the Motorola S-record description document for more information about this format. The 
RAM Content Manager uses only the S1 through S3 record types. The other record types are ignored.

The major difference between Intel-Hex and Motorola S is the record formats and extra error checking 
features that are incorporated into the Motorola S-record.

In both formats, memory content is specified by providing a starting address and a data set. The upper 
bits of the data set are loaded into the starting address and leftovers overflow into the adjacent 
addresses until the entire data set has been used.

The Motorola S-record is composed of six fields and arranged as follows:

Stllaaaa[dd...]cc
Where:

• S—start code of every Motorola S-record.
• t—record type, defines the data field.
• ll—byte count of the data field.
• aaaa—16-bit address at the beginning of the memory position for the data. Address is big endian.
• [dd...]—sequence of n bytes of the data; n is equivalent to what was specified in the ll field.
• cc—checksum of count, address, and data.
Example Motorola S-record: 

S10a0000112233445566778899FFFA
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7 Appendix: Macro Configuration

7.1 LSRAM Macro
The LSRAM macro (RAM1K20) in the Libero SoC IP macro library can be used directly to instantiate the 
LSRAM block in the design. The LSRAM block must be configured with appropriate values of the static 
signals. Instantiating LSRAM primitives in a design is not recommended. For the recommended methods 
of instantiating memory in a user design, see LSRAM Memory Macro, page 40. Figure 70 shows the 
LSRAM macro (RAM1K20).

Figure 70 • RAM1K20 Macro
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Table 21 lists the ports of RAM1K20.

Table 21 • Port List of RAM1K20

Pin Name Direction Type1

1. Static inputs are defined at design time and need to be tied to 0 or 1

Polarity Description
A_ADDR[13:0] Input Dynamic Port A address

BLK_EN[2:0] Input Dynamic Active high Port A block selects

A_CLK Input Dynamic Rising edge Port A clock

A_DIN[19:0] Input Dynamic Port A write data

A_DOUT[19:0] Output Dynamic Port A read data

A_WEN[1:0] Input Dynamic Active high Port A write-enables (per byte)

A_REN Input Dynamic Active high Port A read-enable

A_WIDTH[2:0] Input Static Port A width/depth mode select

A_WMODE[1:0] Input Static Active high Port A read-before-write and feed-through write selects

A_BYPASS Input Static Active low Port A pipeline register select

A_DOUT_EN Input Dynamic Active high Port A pipeline register enable

A_DOUT_SRST_N Input Dynamic Active low Port A pipeline register synchronous reset

A_DOUT_ARST_N Input Dynamic Active low Port A pipeline register asynchronous reset

B_ADDR[13:0] Input Dynamic Port B address

B_BLK_EN[2:0] Input Dynamic Active high Port B block selects

B_CLK Input Dynamic Rising edge Port B clock

B_DIN[19:0] Input Dynamic Port B write data

B_DOUT[19:0] Output Dynamic Port B read data

B_WEN[1:0] Input Dynamic Active high Port B write-enables (per byte)

B_REN Input Dynamic Active high Port B read-enable

B_WIDTH[2:0] Input Static Mode select Port B width/depth mode select

B_WMODE[1:0] Input Static Active high Port B read-before-write and feed-through write selects

B_BYPASS Input Static Active low Port B pipeline register select

B_DOUT_EN Input Dynamic Active high Port B pipeline register enable

B_DOUT_SRST_N Input Dynamic Active low Port B pipeline register synchronous-reset

B_DOUT_ARST_N Input Dynamic Active low Port B pipeline register asynchronous-reset

ECC_EN Input Static Active high Enable ECC

ECC_BYPASS Input Static Active low ECC pipeline register select

SB_CORRECT Output Dynamic Active high Single-bit correct flag

DB_DETECT Output Dynamic Active high Double-bit detect flag

BUSY_FB Input Static Active high Lock access to SmartDebug

ACCESS_BUSY Output Dynamic Active high Busy signal when being initialized or accessed using 
SmartDebug
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7.1.1 A_WIDTH and B_WIDTH
Table 22 lists the width/depth mode selections for each port. Two-port mode is in effect when the width of 
at least one port is greater than 20 bits, and A_WIDTH indicates the read width while B_WIDTH indicates 
the write width.

7.1.2 A_WEN and B_WEN
Table 23 lists the write/read control signals for each port. Two-port mode is in effect when the width of at 
least one port is greater than 20 bits, and read operation is always enabled. 

Table 22 • Width/Depth Mode Selection

Depth x Width A_WIDTH/B_WIDTH 
16K x 1 000 

8K x 2 001 

4K x 4, 4K x 5 010 

2K x 8, 2K x 10 011 

1K x 16, 1K x 20 100 

512 x 32 (two-port)
512 x 40 (two-port) 
512 x 33 (two-port ECC) 

101 

Table 23 • Write/Read Operation Select

Depth x Width A_WEN/B_WEN Result
16K x 1, 8K x 2, 4K x 5, 2K x 10 x0 Perform a read operation 

16K x 1, 8K x 2, 4K x 5, 2K x 10 x1 Perform a write operation

1K x 16 00 Perform a read operation 

01 Write [8:5], [3:0] 

10 Write [18:15], [13:10] 

11 Write [18:15], [13:10], [8:5], [3:0] 

1K x 20 00 Perform a read operation 

01 Write [9:0] 

10 Write [19:10] 

11 Write [19:0] 

512 x 32 (two-port write) B_WEN[0] = 1 Write B_DIN[8:5], B_DIN[3:0] 

B_WEN[1] = 1 Write B_DIN[18:15], B_DIN[13:10] 

A_WEN[0] = 1 Write A_DIN[8:5], A_DIN[3:0] 

A_WEN[1] = 1 Write A_DIN[18:15], A_DIN[13:10] 

512 x 40 (two-port write) B_WEN[0] = 1 Write B_DIN[9:0] 

B_WEN[1] = 1 Write B_DIN[19:10] 

A_WEN[0] = 1 Write A_DIN[9:0] 

A_WEN[1] = 1 Write A_DIN[19:10] 

512 x 33 (two-port ECC) B_WEN[1:0] = 11
A_WEN[1:0] = 11 

Write B_DIN[16:0]
Write A_DIN[15:0] 
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7.1.3 A_ADDR and B_ADDR
Table 24 lists the address buses for the two ports. 14 bits are required to address the 16K independent 
locations in x1 mode. In wider modes, fewer address bits are used. The required bits are MSB justified 
and unused LSB bits must be tied to 0. A_ADDR is synchronized by A_CLK, while B_ADDR is 
synchronized to B_CLK. Two-port mode is in effect when the width of at least one port is greater than 20, 
and A_ADDR provides the read-address while B_ADDR provides the write-address.

7.1.4 A_DIN and B_DIN
Table 25 lists the data input buses for the two ports. The required bits are LSB justified and unused MSB 
bits must be tied to 0. Two-port mode is in effect when the width of at least one port is greater than 20 
bits, and A_DIN provides the MSB of the write-data while B_DIN provides the LSB of the write-data.

Table 24 • Write/Read Operation Select

Depth x Width 

A_ADDR/B_ADDR

Used Bits
Unused Bits 
(Must be Tied to 0) 

16K x 1 [13:0] None 

8K x 2 [13:1] [0] 

4K x 4, 4K x 5 [13:2] [1:0] 

2K x 8, 2K x 10 [13:3] [2:0] 

1K x 16, 1K x 20 [13:4] [3:0] 

512 x 32 (two-port) 
512 x 40 (two-port) 
512 x 33 (two-port ECC) 

[13:5] [4:0] 

Table 25 • Data Input Buses Used and Unused Bits

Depth x Width 

A_DIN/B_DIN

Used Bits
Unused Bits 
(must be tied to 0) 

16K x 1 [0] [19:1] 

8K x 2 [1:0] [19:2] 

4K x 4 [3:0] [19:4] 

4K x 5 [4:0] [19:5] 

2K x 8 [8:5] => [7:4], 
[3:0] => [3:0] 

[19:9], 
[4] 

2K x 10 [9:0] [19:10] 

1K x 16 [18:15] => [15:12] 
[13:10] => [11:8] 
[8:5] => [7:4] 
[3:0] => [3:0] 

[19] 
[14] 
[9] 
[4] 

1K x 20 [19:0] None 
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7.1.5 A_DOUT and B_DOUT
Table 26 lists the data output buses for the two ports. The required bits are LSB-justified. Two-port mode 
is in effect when the width of at least one port is greater than 20, and A_DOUT provides the MSB of the 
read-data while B_DOUT provides the LSB of the read-data. 

512 x 32 (two-port write) A_DIN[18:15] => [31:28]
A_DIN[13:10] => [27:24]
A_DIN[8:5] => [23:20] 
A_DIN[3:0] => [19:16] 
B_DIN[18:15] => [15:12] 
B_DIN[13:10] =>[11:8]
B_DIN[8:5] => [7:4]
B_DIN[3:0] => [3:0] 

A_DIN[19] 
A_DIN[14] 
A_DIN[9] 
A_DIN[4] 
B_DIN[19] 
B_DIN[14] 
B_DIN[9] 
B_DIN[4] 

512 x 40 (two-port write) A_DIN[19:0] => [39:20] 
B_DIN[19:0] => [19:0] 

None 

512 x 33 (two-port ECC) A_DIN[15:0] => [32:17]
B_DIN[16:0] => [16:0] 

A_DIN[19:16]
B_DIN[19:17] 

Table 26 • Data Output Buses Used and Unused Bits

Depth x Width 

A_ADDR/B_ADDR

Used Bits
Unused Bits 
(must be tied to 0) 

16K x 1 [0] [19:1] 

8K x 2 [1:0] [19:2] 

4K x 4 [3:0] [19:4] 

4K x 5 [4:0] [19:5] 

2K x 8 [8:5] => [7:4] 
[3:0] => [3:0] 

[19:9] 
[4] 

2K x 10 [9:0] [19:10] 

1K x 16 [18:15] => [15:12] 
[13:10] => [11:8]
[8:5] => [7:4]
[3:0] => [3:0] 

[19] 
[14] 
[9]
[4] 

1K x 20 [19:0] None 

512 x 32 (two-port write) A_DIN[18:15] => [31:28]
A_DIN[13:10] => [27:24]
A_DIN[8:5] => [23:20]
A_DIN[3:0] => [19:16]
B_DIN[18:15] => [15:12]
B_DIN[13:10] => [11:8]
B_DIN[8:5] => [7:4]
B_DIN[3:0] => [3:0]

A_DIN[19]
A_DIN[14]
A_DIN[9]
A_DIN[4]
B_DIN[19]
B_DIN[14]
B_DIN[9]
B_DIN[4]

512 x 40 (two-port write) A_DOUT[19:0] => [39:20] 
B_DOUT[19:0] => [19:0] 

None 

Table 25 • Data Input Buses Used and Unused Bits (continued)

Depth x Width 

A_DIN/B_DIN

Used Bits
Unused Bits 
(must be tied to 0) 
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7.1.6 A_BLK_EN and B_BLK_EN
Table 27 lists the block-port select control signals for the two ports. A_BLK_EN is synchronized to 
A_CLK, while B_BLK_EN is synchronized to B_CLK. When two-port mode is in effect, the width of at 
least one port is greater than 20 bits, A_BLK_EN controls the read operation, and B_BLK_EN controls 
the write operation. 

7.1.7 A_WMODE and B_WMODE
In dual-port write mode, each port has a feed-through write or read-before-write option. When 
A_WMODE/B_WMODE is equal to:

• Logic 00 = Simple Write. Read-data port holds the previous value. 
• Logic 01 = Feed-through. Write-data appears on the corresponding read-data port. This setting is 

invalid when the width of at least one port is greater than 20 bits and the two-port mode is in effect. 
• Logic 10 = Read-before-write. The previous content of the memory appears on the corresponding 

read-data port before it is overwritten. This setting is invalid when the width of at least one port is 
greater than 20 bits and the two-port mode is in effect. 

7.1.8 A_CLK and B_CLK
All signals in ports A and B are synchronous to the corresponding port clock. All addresses, data, block-
port select, write-enable, and read-enable inputs must be set up before the rising edge of the clock. The 
read or write operation begins with the rising edge. Two-port mode is in effect when the width of at least 
one port is greater than 20 bits, and A_CLK provides the read clock while B_CLK provides the write 
clock.

7.1.9 A_REN and B_REN
Enables read operation from the memory on the corresponding port. Two-port read mode is in effect 
when the width of Port A is greater than 20 bits, and A_REN controls the read operation. 

7.1.9.1 Read-Data Pipeline Register Control Signals
• A_BYPASS and B_BYPASS 
• A_DOUT_EN and B_DOUT_EN 

512 x 33 (two-port ECC) A_DOUT[15:0] => [32:17] 
B_DOUT[16:0] => [16:0] 

A_DOUT[19:16]
B_DOUT[19:17] 

Table 27 • Block-Port Select

Block-Port 
Select Signal Value Result 
A_BLK_EN[2:0] 111 Perform read or write operation on Port A. If the width is greater than 20 bits, a 

read is performed from both ports A and B. 

A_BLK_EN[2:0] Any one bit is 0 No operation in memory from Port A. Port A read-data will be forced to 0. If the 
width is greater than 20 bits, the read-data from both ports A and B will be 
forced to 0. 

B_BLK_EN[2:0] 111 Perform read or write operation on Port B, unless the width is greater than 20 
bits and a write is performed to both ports A and B. 

B_BLK_EN[2:0] Any one bit is 0 No operation in memory from Port B. Port B read-data will be forced to 0, 
unless the width is greater than 20 bits and write operation to both ports A and 
B is gated. 

Table 26 • Data Output Buses Used and Unused Bits (continued)

Depth x Width 

A_ADDR/B_ADDR

Used Bits
Unused Bits 
(must be tied to 0) 
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• A_DOUT_SRST_N and B_DOUT_SRST_N 
• A_DOUT_ARST_N and B_DOUT_ARST_N 
Two-port mode is in effect when the width of at least one port is greater than 20 bits, and the A_DOUT 
register signals control the MSB of the read-data, while the B_DOUT register signals control the LSB of 
the read-data.

Table 28 lists the functionality of the control signals on the A_DOUT and B_DOUT pipeline registers. 

7.1.10 ECC_EN and ECC_BYPASS
The ECC operation is only allowed in two-port mode when the width of both ports is greater than 20 bits. 

• ECC_EN = 0—disable ECC. 
• ECC_EN = 1, ECC_BYPASS= 0—enable ECC Pipelined. 

• ECC Pipelined mode inserts an additional clock cycle to read-data. In addition, write-feed-
through, and read-before-write modes add another clock cycle to read-data. 

• ECC_EN = 1, ECC_BYPASS= 1—enable ECC Non-pipelined. 

7.1.11 SB_CORRECT and DB_DETECT
ECC flags become available when the ECC operation is enabled in two-port mode and the width of both 
ports is greater than 20. Table 29 lists the functionality of the error detection and correction flags.

7.1.12 BUSY_FB
When the control signal is set to 1, the entire RAM1K20 memory is locked off from being accessed by the 
SmartDebug. 

7.1.13 ACCESS_BUSY
This output indicates that the RAM1K20 memory is being accessed by SmartDebug.

Table 28 • Truth Table for A_DOUT and B_DOUT Registers

ARST_N 
A_BYPASS/
B_BYPASS A_CLK/B_CLK A_EN/B_EN 

A_SRST_N/
B_SRST_N D Qn+1 

0 X X X X X 0 

1 0 Not rising X X X Qn 

1 0 ↑ 0 X X Qn 

1 0 ↑ 1 0 X 0 

1 0 ↑ 1 1 D D 

1 1 X X X D D 

Table 29 • Error Detection and Correction Flags

DB_DETECT SB_CORRECT Flag 
0 0 No errors detected

0 1 A single bit error is detected and corrected in the data output. 

1 1 Multiple bit errors are detected, but are not corrected. 
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7.2 µSRAM Macro
The µSRAM macro (RAM64x12) in Libero SoC can be used directly to instantiate µSRAM in the design. 
µSRAM must be configured correctly with appropriate values provided to the static signals before 
instantiating in the design. Instantiating µSRAM primitives in a design is not recommended. For the 
recommended methods of instantiating memory into a user design, see µSRAM Memory Macro, 
page 49. Figure 71 shows the µSRAM macro (RAM64x12) available in the Libero SoC macro library.

Figure 71 • RAM64x12 Macro

Table 30 lists the ports of RAM64x12.

Table 30 • Port List for RAM64x12

Pin Name Direction Type1 Polarity Description
W_EN Input Dynamic Active high Write port enable

W_CLK Input Dynamic Rising edge Write clock. All write-address, write-data, and write-
enable inputs must be set up before the rising edge of 
the clock. The write operation begins with the rising 
edge. 

W_ADDR[5:0] Input Dynamic Write address

W_DATA[11:0] Input Dynamic Write-data

BLK_EN Input Dynamic Active high Read port block select. When High, a read operation is 
performed. When Low, read-data will be forced to zero. 
BLK_EN signal is registered through R_CLK when 
R_ADDR_BYPASS is Low. 

R_CLK Input Dynamic Rising edge Read registers clock. All read-address, block-port 
select, and read-enable inputs must be set up before 
the rising edge of the clock. The read operation begins 
with the rising edge. 

R_ADDR[] Input Dynamic Read-address
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7.2.1 Read-Address and Read-Data Pipeline Register Control Signals
Table 31 lists the functionality of the control signals on the R_ADDR and R_DATA registers. 

7.3 Math Block Macro
Two math block macros, MACC_PA and MACC_PA_BC_ROM, are available in Libero SoC IP catalog 
macro library. These macros can be used in designs created with SmartDesign or by directly instantiating 
the macro wrapper in an HDL file as a component. Instantiating math block primitives in a design is not 
recommended. For the recommended methods of instantiating math blocks into a user design, see 
Implementation, page 73. When using the macros, the inputs and outputs must be connected manually 
to the design signals. Proper values for the static signals must also be provided to ensure that the math 
block is configured in the correct operational mode. For example, to configure the math block in DOTP 
mode, the DOTP signal must be tied to logic 1.

R_ADDR_BYPASS Input Static Active low Read-address and BLK_EN register select

R_ADDR_EN Input Dynamic Active high Read-address register enable

R_ADDR_SL_N Input Dynamic Active low Read-address register synchronous load

R_ADDR_SD Input Static Active high Read-address register synchronous load data 

R_ADDR_AL_N Input Dynamic Active low Read-address register asynchronous load

R_ADDR_AD_N Input Static Active low Read-address register asynchronous load data

R_DATA[] Output Dynamic Read-data

R_DATA_BYPASS Input Static Active low Read-data pipeline register select

R_DATA_EN Input Dynamic Active high Read-data pipeline register enable

R_DATA_SL_N Input Dynamic Active low Read-data pipeline register synchronous load

R_DATA_SD Input Static Active high Read-data pipeline register synchronous load data

R_DATA_AL_N Input Dynamic Active low Read-data pipeline register asynchronous load

R_DATA_AD_N Input Static Active low Read-data pipeline register asynchronous load data

BUSY_FB Input Static Active high Lock access to SmartDebug

ACCESS_BUSY Output Dynamic Active high Busy signal from SmartDebug

1. Static inputs are defined at design time and need to be tied to 0 or 1.

Table 31 • Truth Table for A_DOUT and B_DOUT Registers

A_AL_N/
B_AL_N 

A_AD_N/
B_AD_N 

A_BYPASS/
B_BYPASS 

A_CLK/
B_CLK 

A_EN/
B_EN 

A_SL_N/
B_SL_N 

A_SD/
B_SD D Qn+1 

0 ADn X X X X X X !ADn 

1 X 0 Not rising X X X X Qn 

1 X 0 ↑ 0 X X X Qn 

1 X 0 ↑ 1 0 SD X SD 

1 X 0 ↑ 1 1 X D D 

1 X 1 X X X X D D 

Table 30 • Port List for RAM64x12 (continued)

Pin Name Direction Type1 Polarity Description
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7.3.1 MACC_PA (MACC with Pre-Adder)
The MACC_PA is the multiply and accumulator with pre-adder macro block. The MACC_PA macro 
implements multiplication, multiply-add, and multiply-accumulate functions. The MACC_PA block can 
accumulate the current multiplication product with a previous result, a constant, a dynamic value, or a 
result from another MACC_PA block. Each MACC_PA block can also be configured to perform a DOTP 
operation. All the signals of the MACC_PA block have optional registers. 

Figure 72 shows the MACC_PA available in the macro library.

Figure 72 • MACC_PA Macro
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7.3.1.1 Port List  

Table 32 • MACC_PA Pin Descriptions

Port Name Direction Type1 Polarity Description 
DOTP Input Static Active high DOTP mode

When DOTP = 1, MACC_PA block performs DOTP 
of two pairs of 9-bit operands. 
• SIMD must not be 1
• C[8:0] must be connected to CARRYIN. 

SIMD Input Static Active high SIMD mode
When SIMD = 1, MACC_PA block performs dual-
independent multiplication of two pairs of 9-bit 
operands. 
DOTP must not be 1
ARSHFT17 must be 0
D[8:0] must be 0
C[17:0] must be 0
E[17:0] must be 0. For more information about how 
operand E is obtained from P, CDIN, or 0, see 
Table 19. 

OVFL_CARRYOUT_SEL Input Static Active high Generate OVERFLOW or CARRYOUT with result P. 
OVERFLOW when OVFL_CARRYOUT_SEL = 0 
CARRYOUT when OVFL_CARRYOUT_SEL = 1 

CLK Input Dynamic Rising edge Clock for A, B, C, CARRYIN, D, P, 
OVFL_CARRYOUT, ARSHFT17, 
CDIN_FDBK_SEL, PASUB, and SUB registers. 

AL_N Input Dynamic Active low Asynchronous load for A, B, P, OVFL_CARRYOUT, 
ARSHFT17, CDIN_FDBK_SEL, PASUB, and SUB 
registers. Connect to 1 if not registered. 
When asserted, A, B, P, and OVFL_CARRYOUT 
registers are loaded with zero, while the 
ARSHFT17, CDIN_FDBK_SEL, PASUB, and SUB 
registers are loaded with the complementary value 
of the respective _AD_N. 

A[17:0] Input Dynamic Active high Input data A

A_BYPASS Input Static Active high Bypass data A registers. Connect to 1 if not 
registered. For more information, see Table 34.

A_SRST_N Input Dynamic Active low Synchronous reset for data A registers. Connect to 
1 if not registered. For more information, see 
Table 34.

A_EN Input Dynamic Active high Enable for data A registers. Connect to 1 if not 
registered. For more information, see Table 34.

B[17:0] Input Dynamic Active high Input data B to pre-adder with data D. 

B_BYPASS Input Static Active high Bypass data B registers. Connect to 1 if not 
registered. For more information, see Table 34.

B_SRST_N Input Dynamic Active low Synchronous reset for data B registers. Connect to 
1 if not registered. For more information, see 
Table 34.

B_EN Input Dynamic Active high Enable for data B registers. Connect to 1 if not 
registered. For more information, see Table 34.
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D[17:0] Input Dynamic Active high Input data D to pre-adder with data B. 
When SIMD = 1, connect D[8:0] to 0. 

D_BYPASS Input Static Active high Bypass data D registers. Connect to 1 if not 
registered. For more information, see Table 35. 

D_ARST_N Input Dynamic Active low Asynchronous reset for data D registers. Connect to 
1 if not registered. For more information, see 
Table 35. 

D_SRST_N Input Dynamic Active low Synchronous reset for data D registers. Connect to 
1 if not registered. For more information, see 
Table 35. 

D_EN Input Dynamic Active high Enable for data D registers. Connect to 1 if not 
registered. For more information, see Table 35. 

CARRYIN Input Dynamic Active high CARRYIN for input data C. 

C[47:0] Input Dynamic Active high Input data C. 
When DOTP = 1, connect C[8:0] to CARRYIN. 
When SIMD = 1, connect C[8:0] to 0. 

C_BYPASS Input Static Active high Bypass CARRYIN and C registers. Connect to 1 if 
not registered. For more information, see Table 35.

C_ARST_N Input Dynamic Active low Asynchronous reset for CARRYIN and C registers. 
Connect to 1 if not registered. For more information, 
see Table 35. 

C_SRST_N Input Dynamic Active low Synchronous reset for CARRYIN and C registers. 
Connect to 1 if not registered. For more information, 
see Table 35. 

C_EN Input Dynamic Active high Enable for CARRYIN and C registers. Connect to 1 
if not registered. For more information, see 
Table 35.

CDIN[47:0] Input Cascade Active high Cascaded input for operand E. 
The entire bus must be driven by an entire 
CDOUT of another MACC_PA or 
MACC_PA_BC_ROM block. In DOTP mode, the 
driving CDOUT must also be generated by a 
MACC_PA or MACC_PA_BC_ROM block in DOTP 
mode. For more information about how CDIN is 
propagated to operand E, see Table 19. 

P[47:0] Output Active high Result data. For more information, see Table 20.

OVFL_CARRYOUT Output Active high OVERFLOW or CARRYOUT. For more information, 
see Table 20.

P_BYPASS Input Static Active high Bypass P and OVFL_CARRYOUT registers. 
Connect to 1 if not registered. For more information, 
see Table 34.

P_SRST_N Input Dynamic Active low Synchronous reset for P and OVFL_CARRYOUT 
registers. Connect to 1 if not registered. For more 
information, see Table 34.

P_EN Input Dynamic Active high Enable for P and OVFL_CARRYOUT registers. 
Connect to 1 if not registered. For more information, 
see Table 34.

Table 32 • MACC_PA Pin Descriptions (continued)

Port Name Direction Type1 Polarity Description 
Microsemi Proprietary UG0680 Revision 7.0 94



Appendix: Macro Configuration
CDOUT[47:0] Output Cascade Active high Cascade output of result P. For more information, 
see Table 20.
Value of CDOUT is the same as P. The entire bus 
must either be dangling or drive an entire CDIN of 
another MACC_PA or MACC_PA_BC_ROM block 
in cascaded mode. 

PASUB Input Dynamic Active high Subtract operation for pre-adder of B and D. 

PASUB_BYPASS Input Static Active high Bypass PASUB register. Connect to 1 if not 
registered. For more information, see Table 33.

PASUB_AD_N Input Static Active low Asynchronous load data for PASUB register. For 
more information, see Table 33.

PASUB_SL_N Input Dynamic Active low Synchronous load for PASUB register. Connect to 1 
if not registered. For more information, see 
Table 33.

PASUB_SD_N Input Static Active low Synchronous load data for PASUB register. For 
more information, see Table 33.

PASUB_EN Input Dynamic Active high Enable for PASUB register. Connect to 1 if not 
registered. For more information, see Table 33.

CDIN_FDBK_SEL[1:0] Input Dynamic Active high Select CDIN, P or 0 for operand E. For more 
information, see Table 19.

CDIN_FDBK_SEL_BYPA
SS 

Input Static Active high Bypass CDIN_FDBK_SEL register. Connect to 1 if 
not registered. For more information, see Table 33.

CDIN_FDBK_SEL_AD_N 
[1:0] 

Input Static Active low Asynchronous load data for CDIN_FDBK_SEL 
register. For more information, see Table 33.

CDIN_FDBK_SEL_SL_N Input Dynamic Active low Synchronous load for CDIN_FDBK_SEL register. 
Connect to 1 if not registered. For more information, 
see Table 33.

CDIN_FDBK_SEL_SD_N 
[1:0] 

Input Static Active low Synchronous load data for CDIN_FDBK_SEL 
register. For more information, see Table 33.

CDIN_FDBK_SEL_EN Input Dynamic Active high Enable for CDIN_FDBK_SEL register. Connect to 1 
if not registered. For more information, see 
Table 33.

ARSHFT17 Input Dynamic Active high Arithmetic right-shift for operand E. 
When asserted, a 17-bit arithmetic right-shift is 
performed on operand E. For information on how 
operand E is obtained from P, CDIN or 0, see 
Table 19. 
When SIMD = 1, ARSHFT17 must be 0. 

ARSHFT17_BYPASS Input Static Active high Bypass ARSHFT17 register. Connect to 1 if not 
registered. For more information, see Table 33.

ARSHFT17_AD_N Input Static Active low Asynchronous load data for ARSHFT17 register. 
For more information, see Table 33.

ARSHFT17_SL_N Input Dynamic Active low Synchronous load for ARSHFT17 register. Connect 
to 1 if not registered. For more information, see 
Table 33.

ARSHFT17_SD_N Input Static Active low Synchronous load data for ARSHFT17 register. For 
more information, see Table 33.

Table 32 • MACC_PA Pin Descriptions (continued)

Port Name Direction Type1 Polarity Description 
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Note: SUM[49:0] is defined similarly to P[47:0] as listed in Table 20, except that SUM is a 50-bit quantity so that 
overflow does not occur. SUM[48] is the carry out bit of a 48-bit final adder that produces P[47:0].  

ARSHFT17_EN Input Dynamic Active high Enable for ARSHFT17 register. Connect to 1 if not 
registered. For more information, see Table 33.

SUB Input Dynamic Active high Subtract operation. 

SUB_BYPASS Input Static Active high Bypass SUB register. Connect to 1 if not registered. 
For more information, see Table 33.

SUB_AD_N Input Static Active low Asynchronous load data for SUB register. For more 
information, see Table 33.

SUB_SL_N Input Dynamic Active low Synchronous load for SUB register. Connect to 1 if 
not registered. For more information, see Table 33.

SUB_SD_N Input Static Active low Synchronous load data for SUB register. For more 
information, see Table 33.

SUB_EN Input Dynamic Active high Enable for SUB register. Connect to 1 if not 
registered. For more information, see Table 33.

1. Static inputs are defined at design time and need to be tied to 0 or 1.

Table 32 • MACC_PA Pin Descriptions (continued)

Port Name Direction Type1 Polarity Description 
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Table 33 • Truth Table for Control Registers ARSHFT17, CDIN_FDBK_SEL, PASUB, and SUB

AL_N _AD_N _BYPASS CLK _EN _SL_N _SD_N D Qn+1 
0 AD_N 0 X X X X X !AD_N 

1 X 0 Not rising X X X X Qn 

1 X 0 ↑ 0 X X X Qn 

1 X 0 ↑ 1 0 SD_N X !SD_N 

1 X 0 ↑ 1 1 X D D 

X X 1 X 0 X X X Qn 

X X 1 X 1 0 SD_N X !SD_N 

X X 1 X 1 1 X D D 

Table 34 • Truth Table for Data Registers A, B, P, and OVFL_CARRYOUT

AL_N _BYPASS CLK _EN _SRST_N D Qn+1 

0 0 X X X X 0 

1 0 Not rising X X X Qn 

1 0 ↑ 0 X X Qn 

1 0 ↑ 1 0 X 0 

1 0 ↑ 1 1 D D 

X 1 X 0 X X Qn 

X 1 X 1 0 X 0 

X 1 X 1 1 D D 

Table 35 • Truth Table for Data Registers C, CARRYIN, and D

_ARST_N _BYPASS CLK _EN _SRST_N D Qn+1 
0 0 X X X X 0 

1 0 Not rising X X X Qn 

1 0 ↑ 0 X X Qn 

1 0 ↑ 1 0 X 0 

1 0 ↑ 1 1 D D 

X 1 X 0 X X Qn 

X 1 X 1 0 X 0 

X 1 X 1 1 D D 
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7.3.2 MACC_PA_BC_ROM (MACC with Pre-Adder, BCOUT Register, 
and Coefficient ROM)
The MACC_PA_ROM is the multiply accumulator with pre-adder, B register cascading, and built-in ROM 
macro block. The MACC_PA_BC_ROM macro extends the functionality of the MACC_PA macro to 
provide a 16 x 18 ROM at the A input along with a pipelined output of B for cascading.

Figure 73 • MACC_PA_BC_ROM Macro
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7.3.2.1 Parameters
Coefficients are loaded using INIT parameter. It holds the 16 x 18 ROM content as a linear array. The first 
18 bits are word 0, the next 18 bits are word 1, and so on. Table 36 lists the INIT declaration for loading 
coefficients.

7.3.2.2 Port List

Table 36 • MACC_PA_BC_ROM Parameter Descriptions

Parameter Dimensions Description 
INIT parameter [287:0] INIT = { 

18'h0, 18'h0, 18'h0, 18'h0, 18'h0, 18'h0, 18'h0, 18'h0, 
18'h0, 18'h0, 18'h0, 18'h0, 18'h0, 18'h0, 18'h0, 18'h0 
}; 

16 x 18 ROM content specified in 
Verilog. 

INIT generic map(INIT => ( 
B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000"& 
B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000"& 
B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000"& 
B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000"& 
B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000"& 
B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000"& 
B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000"& 
B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000") 
) 

16 x 18 ROM content specified in 
VHDL. 

Table 37 • MACC_PA_BC_ROM Pin Descriptions

Port Name Direction Type1 Polarity Description
DOTP Input Static Active high DOTP mode. 

When DOTP = 1, MACC_PA_BC_ROM block 
performs DOTP of two pairs of 9-bit operands. 
SIMD must not be 1. 
C[8:0] must be connected to CARRYIN. 

SIMD Input Static Active high SIMD mode
When SIMD = 1, MACC_PA_BC_ROM block performs 
dual independent multiplication of two pairs of 9-bit 
operands. 
DOTP must not be 1
ARSHFT17 must be 0
D[8:0] must be 0
C[17:0] must be 0
E[17:0] must be 0. For information on how operand E 
is obtained from P, CDIN or 0, see Table 19. 

OVFL_CARRYOUT_SEL Input Static Active high Generate OVERFLOW or CARRYOUT with result P. 
OVERFLOW when OVFL_CARRYOUT_SEL = 0 
CARRYOUT when OVFL_CARRYOUT_SEL = 1 

CLK Input Dynamic Rising 
edge 

Clock for A, B, C, CARRYIN, D, P, OVFL_CARRYOUT, 
ARSHFT17, CDIN_FDBK_SEL, PASUB, and SUB 
registers. 
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AL_N Input Dynamic Active low Asynchronous load for A, B, P, OVFL_CARRYOUT, 
ARSHFT17, CDIN_FDBK_SEL, PASUB, and SUB 
registers. Connect to 1, if none are registered. 
When asserted, A, B, P, and OVFL_CARRYOUT 
registers are loaded with zero, while the ARSHFT17, 
CDIN_FDBK_SEL, PASUB, and SUB registers are 
loaded with the complementary value of the respective 
_AD_N. 

USE_ROM Input Static 
(virtual) 

Active high Selection for operand A. 
When USE_ROM = 0, select input data A. 
When USE_ROM = 1, select ROM data at 
ROM_ADDR. 

ROM_ADDR[3:0] Input Dynamic Active high Address of ROM data for operand A when USE_ROM 
= 1

A[17:0] Input Dynamic Active high Input data for operand A when USE_ROM = 0

A_BYPASS Input Static Active high Bypass data A registers. Connect to 1 if not registered. 
For more information, see Table 34.

A_SRST_N Input Dynamic Active low Synchronous reset for data A registers. Connect to 1 if 
not registered. For more information, see Table 34.

A_EN Input Dynamic Active high Enable for data A registers. Connect to 1 if not 
registered. For more information, see Table 34. 

B[17:0] Input Dynamic Active high Input data B to pre-adder with data D

B_BYPASS Input Static Active high Bypass data B registers. Connect to 1 if not registered. 
For more information, see Table 34. 

B_SRST_N Input Dynamic Active low Synchronous reset for data B registers. Connect to 1 if 
not registered. For more information, see Table 34.

B_EN Input Dynamic Active high Enable for data B registers. Connect to 1 if not 
registered. For more information, see Table 34. 

B2[17:0] Output Dynamic Active high Pipelined output of input data B. Result P must be 
floating when B2 is used. 

B2_BYPASS Input Static Active high Bypass data B2 registers. Connect to 1 if not 
registered. For more information, see Table 34. 

B2_SRST_N Input Dynamic Active low Synchronous reset for data B2 registers. Connect to 1 
if not registered. For more information, see Table 34. 

B2_EN Input Dynamic Active high Enable for data B2 registers. Connect to 1 if not 
registered. For more information, see Table 34. 

Table 37 • MACC_PA_BC_ROM Pin Descriptions (continued)

Port Name Direction Type1 Polarity Description
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BCOUT[17:0] Output Cascade Active high Cascade output of B2. Value of BCOUT is the same as 
B2. The entire bus must either be dangling or drive an 
entire B input of another MACC_PA or 
MACC_PA_BC_ROM block. 

D[17:0] Input Dynamic Active high Input data D to pre-adder with data B. 
When SIMD = 1, connect D[8:0] to 0. 

D_BYPASS Input Static Active high Bypass data D registers. Connect to 1 if not registered. 
For more information, see Table 35. 

D_ARST_N Input Dynamic Active low Asynchronous reset for data D registers. Connect to 1 
if not registered. For more information, see Table 35. 

D_SRST_N Input Dynamic Active low Synchronous reset for data D registers. Connect to 1 if 
not registered. For more information, see Table 35. 

D_EN Input Dynamic Active high Enable for data D registers. Connect to 1 if not 
registered. For more information, see Table 35.

CARRYIN Input Dynamic Active high CARRYIN for input data C

C[47:0] Input Dynamic Active high Input data C. 
When DOTP = 1, connect C[8:0] to CARRYIN. 
When SIMD = 1, connect C[8:0] to 0. 

C_BYPASS Input Static Active high Bypass CARRYIN and C registers. Connect to 1 if not 
registered. For more information, see Table 35. 

C_ARST_N Input Dynamic Active low Asynchronous reset for CARRYIN and C registers. 
Connect to 1 if not registered. For more information, 
see Table 35.

C_SRST_N Input Dynamic Active low Synchronous reset for CARRYIN and C registers. 
Connect to 1 if not registered. For more information, 
see Table 35.

C_EN Input Dynamic Active high Enable for CARRYIN and C registers. Connect to 1 if 
not registered. For more information, see Table 35.

CDIN[47:0] Input Cascade Active high Cascaded input for operand E. 
The entire bus must be driven by an entire 
CDOUT of another MACC_PA or MAC_PA_BC_ROM 
block. In Dot-product mode, the driving CDOUT must 
also be generated by a MACC_PA or 
MAC_PA_BC_ROM block in Dot-product mode. For 
more information about how CDIN is propagated to 
operand E, see Table 19. 

P[47:0] Output Active high Result data. For more information, see Table 19. B2 
output must be floating when P is used. 

OVFL_CARRYOUT Output Active high OVERFLOW or CARRYOUT. For more information, 
see Table 18. 

P_BYPASS Input Static Active high Bypass P and OVFL_CARRYOUT registers. Connect 
to 1 if not registered. For more information, see 
Table 34. 
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P_SRST_N Input Dynamic Active low Synchronous reset for P and OVFL_CARRYOUT 
registers. Connect to 1 if not registered. For more 
information, see Table 34.

P_EN Input Dynamic Active high Enable for P and OVFL_CARRYOUT registers. 
Connect to 1 if not registered. For more information, 
see Table 34. 

CDOUT[47:0] Output Cascade Active high Cascade output of result P. For more information, see 
Table 20.
Value of CDOUT is the same as P. The entire bus must 
either be dangling or drive an entire CDIN of another 
MACC_PA or MAC_PA_BC_ROM block in cascaded 
mode. 

PASUB Input Dynamic Active high Subtract operation for pre-adder of B and D

PASUB_BYPASS Input Static Active high Bypass PASUB register. Connect to 1 if not registered. 
For more information, see Table 33. 

PASUB_AD_N Input Static Active low Asynchronous load data for PASUB register. For more 
information, see Table 33. 

PASUB_SL_N Input Dynamic Active low Synchronous load for PASUB register. Connect to 1 if 
not registered. For more information, see Table 33. 

PASUB_SD_N Input Static Active low Synchronous load data for PASUB register. For more 
information, see Table 33. 

PASUB_EN Input Dynamic Active high Enable for PASUB register. Connect to 1 if not 
registered. For more information, see Table 33. 

CDIN_FDBK_SEL[1:0] Input Dynamic Active high Select CDIN, P or 0 for operand E. For more 
information, see Table 19. 

CDIN_FDBK_SEL_BYPA
SS 

Input Static Active high Bypass CDIN_FDBK_SEL register. Connect to 1 if not 
registered. For more information, see Table 33. 

CDIN_FDBK_SEL_AD_N 
[1:0] 

Input Static Active low Asynchronous load data for CDIN_FDBK_SEL 
register. For more information, see Table 33. 

CDIN_FDBK_SEL_SL_N Input Dynamic Active low Synchronous load for CDIN_FDBK_SEL register. 
Connect to 1 if not registered. For more information, 
see Table 33. 

CDIN_FDBK_SEL_SD_N 
[1:0] 

Input Static Active low Synchronous load data for CDIN_FDBK_SEL register. 
For more information, see Table 33. 

CDIN_FDBK_SEL_EN Input Dynamic Active high Enable for CDIN_FDBK_SEL register. Connect to 1 if 
not registered. For more information, see Table 33. 

ARSHFT17 Input Dynamic Active high Arithmetic right-shift for operand E. 
When asserted, a 17-bit arithmetic right-shift is 
performed on operand E. For more information about 
how operand E is obtained from P, CDIN or 0, see 
Table 19. 
When SIMD = 1, ARSHFT17 must be 0. 

ARSHFT17_BYPASS Input Static Active high Bypass ARSHFT17 register. Connect to 1, if not 
registered. For more information, see Table 33. 

ARSHFT17_AD_N Input Static Active low Asynchronous load data for ARSHFT17 register. For 
more information, see Table 33. 
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7.4 Libero SoC Compile Report
Libero SoC Design Suite offers high productivity with its comprehensive, easy-to-learn, easy-to-adopt 
development tools for designing with the PolarFire family. The compile report contains fabric resource 
utilization and the total number of resources available. This report provides the number of 4LUTs, DFFs, 
µSRAMs, LSRAMs, math blocks, I/O, DLLs, PLLs, transceivers, and globals used in a design. It also 
contains the additional 4LUTs and DFFs required for RAMs and MACC interface logic.

For a sample compile report on MPF300, see Figure 74.

ARSHFT17_SL_N Input Dynamic Active low Synchronous load for ARSHFT17 register. Connect to 
1 if not registered. For more information, see Table 33. 

ARSHFT17_SD_N Input Static Active low Synchronous load data for ARSHFT17 register. For 
more information, see Table 33. 

ARSHFT17_EN Input Dynamic Active high Enable for ARSHFT17 register. Connect to 1 if not 
registered. For more information, see Table 33. 

SUB Input Dynamic Active high Subtract operation. 

SUB_BYPASS Input Static Active high Bypass SUB register. Connect to 1 if not registered. 
For more information, see Table 33. 

SUB_AD_N Input Static Active low Asynchronous load data for SUB register. For more 
information, see Table 33. 

SUB_SL_N Input Dynamic Active low Synchronous load for SUB register. Connect to 1 if not 
registered. For more information, see Table 33. 

SUB_SD_N Input Static Active low Synchronous load data for SUB register. For more 
information, see Table 33. 

SUB_EN Input Dynamic Active high Enable for SUB register. Connect to 1 if not registered. 
For more information, see Table 33. 

1. Static inputs are defined at design time and need to be tied to 0 or 1.
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Figure 74 • Sample Compile Report for MPF300
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