MMA043AA Datasheet

0.5 GHz–12 GHz GaAs pHEMT MMIC Wideband
Low-Noise Amplifier
0.5 GHz–12 GHz GaAs pHEMT MMIC Wideband Low-Noise Amplifier

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.
1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.0

Revision 1.0 was the first publication of this document.
List of Figures

Figure 1 Functional Block Diagram .. 7
Figure 2 Gain vs. Frequency .. 10
Figure 3 Input Return Loss vs. Frequency .. 10
Figure 4 Output Return Loss vs. Frequency .. 11
Figure 5 Isolation vs. Frequency .. 11
Figure 6 Noise Figure vs. Frequency .. 12
Figure 7 P1dB vs. Frequency .. 12
Figure 8 OIP3 vs. Frequency ... 13
Figure 9 Gain vs. Temperature and Frequency .. 13
Figure 10 Input Return Loss vs. Temperature and Frequency .. 14
Figure 11 Output Return Loss vs. Temperature and Frequency .. 14
Figure 12 P1dB vs. Temperature and Frequency ... 15
Figure 13 OIP3 vs. Temperature and Frequency ... 15
Figure 14 Chip Outline ... 16
Figure 15 Assembly Diagram .. 18
List of Tables

Table 1 Absolute Maximum Ratings ..9
Table 2 Typical Electrical Performance ..9
Table 3 Die Packaging Information ..16
Table 4 Bond Pad Information ..17
Table 5 Ordering Information ..20
Product Overview

The MMA043AA is a gallium arsenide (GaAs) pseudomorphic high-electron mobility transistor (pHEMT) low-noise wideband amplifier die that operates between 0.5 GHz and 12 GHz. The MMA043AA die provides 16.5 dB of gain, 1.4 dB noise figure, and 29 dBm output IP3. The amplifier draws only 55 mA of current from a 5 V supply. The RF ports are internally matched to 50 Ω, which allows for easy integration into multi-chip modules (MCMs).

The following illustration shows the primary functional diagram of the MMA043AA device.

Figure 1 Functional Block Diagram

2.1 Applications

The MMA043AA device is designed for the following applications:

- Test instrumentation
- Wideband communications
- Military and space systems
- Cellular infrastructure
- Microwave radio and VSAT
2.2 Key Features

The following are key features of the MMA043AA device.

- GaAs pHEMT LNA monolithic microwave integrated circuit (MMIC)
- Low-noise figure: 1.4 dB
- High gain: 16.5 dB
- Broadband Performance: 0.5 GHz – 12 GHz
- Excellent P1dB output power (17 dBm)
- High OIP3: 29 dBm
- Compact die size: 2.2 mm × 1.35 mm × 0.1 mm
3 Electrical Specifications

3.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the MMA043AA device.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>–65 °C to 150 °C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>–55 °C to 85 °C</td>
</tr>
<tr>
<td>Drain bias voltage (V_{DD})</td>
<td>5.5 V</td>
</tr>
<tr>
<td>Gate bias voltage (V_{G1})</td>
<td>–1.5 V to 0 V</td>
</tr>
<tr>
<td>Gate bias voltage (V_{G2})</td>
<td>0 V to 2.5 V</td>
</tr>
<tr>
<td>RF input power</td>
<td>12 dBm</td>
</tr>
<tr>
<td>Channel temperature</td>
<td>150 °C</td>
</tr>
<tr>
<td>ESD sensitivity (HBM)</td>
<td></td>
</tr>
<tr>
<td>Thermal impedance</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Typical Electrical Performance

The following table shows the typical electrical performance of the MMA043AA device at 25 °C, where V_{DD} is 5 V. Unless otherwise indicated, all measurements are derived from the RF probed die according to the assembly diagram shown in Assembly Diagram.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational frequency range</td>
<td>0.5</td>
<td>12</td>
<td>GHZ</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>15.4</td>
<td>16.5</td>
<td>17.2</td>
<td>dB</td>
</tr>
<tr>
<td>Gain variation over temperature</td>
<td>0.01</td>
<td></td>
<td></td>
<td>dB/°C</td>
</tr>
<tr>
<td>Noise figure</td>
<td>1.2</td>
<td>1.4</td>
<td>2.1</td>
<td>dB</td>
</tr>
<tr>
<td>Input return loss</td>
<td>7.5</td>
<td>10</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output return loss</td>
<td>12</td>
<td>13</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output power for 1 dB compression, P1dB</td>
<td>16.5</td>
<td>17</td>
<td>18.5</td>
<td>dBm</td>
</tr>
<tr>
<td>Output third order intercept, OIP3</td>
<td>27.5</td>
<td>29</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>5</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply current (I_{DD}); $V_{DD} = 5$ V</td>
<td>55</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$V_{G2} = 1.7$ V typ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{G1} = –0.4$ V, set for nominal current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 Typical Performance Curves

The following graphs show the typical performance curves of the MMA043AA device.

Figure 2 Gain vs. Frequency

![Gain vs. Frequency Graph]

Figure 3 Input Return Loss vs. Frequency

![Input Return Loss vs. Frequency Graph]
Figure 4 Output Return Loss vs. Frequency

Figure 5 Isolation vs. Frequency
Figure 6 Noise Figure vs. Frequency

![Plot of Noise Figure vs. Frequency at Vdd=5 V, Id=55 mA](image)

Figure 7 P1dB vs. Frequency

![Plot of P1dB vs. Frequency at 5V, 55mA @ +25°C](image)
0.5 GHz–12 GHz GaAs pHEMT MMIC Wideband Low-Noise Amplifier

Figure 8 OIP3 vs. Frequency

Figure 9 Gain vs. Temperature and Frequency
Figure 10 Input Return Loss vs. Temperature and Frequency

Figure 11 Output Return Loss vs. Temperature and Frequency
0.5 GHz–12 GHz GaAs pHEMT MMIC Wideband Low-Noise Amplifier

Figure 12 P1dB vs. Temperature and Frequency

Figure 13 OIP3 vs. Temperature and Frequency
4 Chip Outline Drawing, Die Packaging, Bond Pad, and Assembly Information

4.1 Chip Outline Drawing

The following illustration shows the chip outline of the MMA043AA device. Dimensions are shown in inches and millimeters. The minimum bond pad size is 100 μm × 100 μm. Both the bond pad surface and the backside metal are 3 μm gold. The die thickness is 100 μm. The backside is the DC/RF ground. The airbridge keepout region is in crosshatch, and the unlabeled pads should not be bonded.

Figure 14 Chip Outline

4.2 Die Packaging Information

The following table shows the chip outline of the MMA043AA device. For additional packaging information, contact your Microsemi sales representative.

Table 3 Die Packaging Information

<table>
<thead>
<tr>
<th>Standard Format</th>
<th>Optional Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waffle pack</td>
<td>Gel pack</td>
</tr>
<tr>
<td>50–100 pieces per pack</td>
<td>50 pieces per pack</td>
</tr>
</tbody>
</table>
4.3 Bond Pad Information

The following table shows the bond pad information for the MMA043AA device.

<table>
<thead>
<tr>
<th>Bond Pad Number</th>
<th>Bond Pad Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RFIN</td>
<td>This bond pad is DC-coupled and matched to 50 Ω. External >300 pF DC blocking capacitor is required.</td>
</tr>
<tr>
<td>2</td>
<td>VG2</td>
<td>Gate 2 supply voltage for the amplifier. See Assembly Diagram for required external components.</td>
</tr>
<tr>
<td>3</td>
<td>VG1</td>
<td>Gate 1 supply voltage for the amplifier. See Assembly Diagram for required external components.</td>
</tr>
<tr>
<td>4</td>
<td>VDD</td>
<td>Drain supply voltage for the amplifier. See Assembly Diagram for required external components.</td>
</tr>
<tr>
<td>5</td>
<td>RFOUT</td>
<td>This bond pad is AC-coupled and matched to 50 Ω.</td>
</tr>
<tr>
<td>Backside paddle</td>
<td>RF/DC GND</td>
<td>RF/DC ground.</td>
</tr>
</tbody>
</table>
4.4 Assembly Diagram

The following illustration shows the assembly diagram of the MMA043AA device. The carrier plate is gold plated. It is necessary to attach components using conductive epoxy. The bypass chip caps are ceramic and must be assembled within 10 mils of the die. Use 1 mil Au bond wires. An input blocking capacitor greater than 300 pF is required external to the MMIC.

Figure 15 Assembly Diagram

![Assembly Diagram](image)

BOM: C1, C2, C3: Presidio VB series dual caps (100 pF + 0.1 μF)
P/N: MVB4040X104MEK5C1B; 40 mils × 40 mils × 17 mils

4.5 Bias Sequence Procedure

The following lists show the bias sequence procedures for the MMA043AA device.

Turn on:
1. Set V_{G1} (-ve) to -1 V
2. Set V_{DD} to 5 V
3. Set V_{G2} to 1.7 V
4. Increase V_{G1} to achieve I_{dq} of 55 mA
5. Apply RF input

Turn off:
1. Turn off RF input
2. Reduce V_{G1} to -1 V to achieve I_{dq} of 0 mA
3. Decrease V_{G2} to 0 V
4. Decrease V_{DD} to 0 V
5 Handling and Die Attach Recommendations

Gallium arsenide integrated circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. It is recommended to follow all procedures and guidelines outlined in Microsemi application note AN01 GaAs MMIC Handling and Die Attach Recommendations.
6 Ordering Information

The following table shows the ordering information for the MMA043AA device.

Table 5 Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMA043AA</td>
<td>Die</td>
</tr>
</tbody>
</table>