
Libero SoC for Classic Constraint Flow
v11.7 SP2
User’s Guide

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this
PDF file may point to external files and generate an error when clicked. View the online help
included with software to enable all linked content.

Libero SoC User's Guide

Libero SoC User's Guide 3

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Table of Contents

General Questions .. 22
Instantiating into your SmartDesign .. 23
Working with Processor-Based Designs in SmartDesign .. 24
VHDL Construct Support in SmartDesign ... 25
Making your Design Look Nice ... 26
Generating your Design ... 27

Getting Started with SmartDesign ...32

Canvas View ...37

Creating a SmartDesign ..47

Connecting Instances ...49

Bus Interfaces ...54

Incremental Design ..62

Reference ..66

Designing with Designer Block Components ...85

Creating a Designer Block Component in Libero SoC...88

Place and Route ..112

Device Programming ...119

Generating Programming Files ..163

Solutions to Common Issues Using SmartDebug ..208

Frequently Asked Questions ...210

Embedded Flash Memory (NVM) Frequently Asked Questions212

Debugging ...247

SmartDebug Tcl Commands ...254

Designer in Libero SoC ...266

Preferences..286

Table of Contents

4

Product Support ...304

Libero SoC User's Guide 5

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Welcome to Microsemi's Libero® SoC v11.7 SP2
Libero® System-on-Chip (SoC) is comprehensive and powerful FPGA design and development software
available from Microsemi, providing start-to-finish design flow guidance and support for novice and
experienced users alike. Libero SoC combines Microsemi SoC Products Group tools with such EDA
powerhouses as Synplify Pro® and ModelSim®.

What's New in Libero SoC v11.7 SP2
Libero SoC v11.7 Service Pack 2 (SP2), with RTG4 production timing and power release, enables
customers to go to production with RTG4 devices, and also includes the following:

• Relicensing from platinum to gold
• M2S90TS-1FG484 (to support SmartFusion2 Security Evaluation Kit)
• M2S150TS-1FC1152 (to support SmartFusion2 Advanced Development Kit)

• Enhanced error messaging for eNVM page locking
• Expanded package support for SSN

• 025-FG484
• 060-FG676
• 090-FG676
• IGLOO2 packages to match SmartFusion2 package information

• Two new SmartFusion2 parts/temperature grades

Part Number Pin/Package Speed Grade Core Voltage Temperature Grade

M2S010S 144 TQ -1 1.2 V TGrade2

M2S005S 144 TQ -1 1.2 V TGrade2

More Information
• Libero – Learn more about Libero SoC including 11.7 SP2 Release Notes, a complete list of

devices/packages, and timing and power versions supported in this release.
• Programming – Learn more about Programming Solutions
• Power Calculators – Find XLS-based estimators for device families
• Development Kits – Learn more about development kits to accelerate your design
• Licensing – Learn more about Libero licensing

Design Flow - Libero SoC
See the Libero SoC SmartFusion2 Design Flow topic for more information on designing for that device.

The Libero SoC Build button enables you to proceed from synthesis to programming in one click.
Once you create your design (configure your MSS; create SmartDesign; Create HDL) and click the Build
button the software automatically executes the following operations with default settings (if it encounters no
errors):
• Synthesis
• Compile
• Place and Route
• Verify Timing

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
http://www.microsemi.com/products/fpga-soc/design-resources/programming-debug
http://www.microsemi.com/products/fpga-soc/design-resources/power-calculator
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits-boards
http://www.microsemi.com/products/fpga-soc/design-resources/licensing

6 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Generate Programming Data

You can also import constraint files, organize and associate them for use during synthesis and compile.
In the event of an error the operation is halted and an explanatory error message appears in the Log
window.
To change the default settings for any of the operations, right-click and choose Open Interactively to open
the tool associated with the operation.
For example, to change the Compile settings, expand Implement Design, right-click Compile and choose
Open Interactively. This displays the Compile options for your design.

Libero SoC Design Flow (Classic Constraint Flow)
The Libero SoC Build button enables you to proceed from synthesis to Place and Route in one click
(using default settings).
The basic design flow is shown in the figure below.

Figure 1 · Libero SoC Classic Constraint Design Flow

Libero SoC Design Flow (Classic Constraint Flow)

Libero SoC User's Guide 7

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Create Design
Once you create your design (using System Builder; using the MSS builder - the flow for which is similar to
the MSS flow for SmartFusion; create SmartDesign; Create HDL; SmartDesign Testbench) and click the
Build button the software automatically executes the operations below with default settings (if it encounters
no errors).

Create Constraints - Pre-Compile
 I/O constraint PDC files are separate from Floorplan constraint PDC files; if you have a PDC file that
contains both I/O and Floorplan constraints then Libero SoC errors out with an invalid constraint error.

• I/O Constraints - To add an I/O constraint, in the Design Flow window expand Create Constraints,
right-click I/O Constraints and choose Import Files.

• Timing Constraints - Enables you to import SDC files pre-Compile.
• Floorplan Constraints - Created with the Floorplanner or a text editor; to add a Floorplan constraint, in

the Design Flow window expand Create Constraints, right-click Floorplan Constraints and choose
Import Files.

Synthesis
Double-click Synthesize to run synthesis on your design automatically; automatic synthesis uses the default
settings in your synthesis tool.

Compile
To compile your design with custom settings, right-click Compile in the Design Flow window and choose
Configure Options.

Place and Route
Place and Route runs automatically with default settings as part of the push-button design flow in Libero
SoC.

Edit Constraints - Post-Compile
• I/O Constraints - The Post-Compile I/O Editor displays all assigned and unassigned I/O macros and

their attributes in a spreadsheet format; use this editor to view, sort, select, edit, lock and unlock
assigned attributes.

The post compile editor ensures that the Compile/Place and Route state is maintained (you do not
have to rerun Compile or Place and Route), if you make changes to the attributes that do not require it.

However, if you modify the I/O PDC file directly, it is equivalent to modifying the source file of the
design, which means the tools starting from Compile will become out of date because one of the
source files was modified.

• Timing Constraints - Run SmartTime to perform Min/Max analysis and manage timing constraints.
• Floorplan Constraints - Use to create and edit regions on your chip and assign logic to these regions.

Generate Fabric Programming Data
Generates programming data for your design.

IGLOO, ProASIC3, and Fusion Programming
SmartFusion, IGLOO, ProASIC3, and Fusion devices use the FlashPoint program file generator to create a
programming file. For SmartFusion, IGLOO, and ProASIC3, the FlashPoint interface also enables the
advanced security features.
To open FlashPoint, expand Implement Design, right-click Generate Programming Data, and choose Open
Interactively. FlashPoint allows you to generate the following programming files:

• IEEE 1532 files (*.bsd, *.isc)

8 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• DirectC files (*.dat)
• Programming Data File (*.pdb)
• STAPL file (*.stp)
• Serial Vector Files (*.svf)

You must have completed your design to generate your programming (*.stp or STAPL) file.

SmartFusion2, IGLOO2, and RTG4 Programming
You do not have to open FlashPro or FlashPoint to program your SmartFusion2 device. All programming
functionality is available from within the Design Flow window, including:
Programming Connectivity and Interface - Organizes your programmer(s) and devices.
Programmer Settings - Opens your programmer settings; use if you wish to program using settings other
than default.
Device I/O States During Programming - Sets your device I/O states during programming; use if your design
requires that you change the default I/O states.
Security Policy Manager - Enables you to set your Secured Programming Use Model, User Key Entry and
Security Policies for your design.

Design Flow Window Updates for SmartFusion2, IGLOO2, and
RTG4

The Design Flow window for the SmartFusion2 and IGLOO2 families has been changed in v11.0. Some
functions, such as running SmartTime and the I/O Editor, no longer require that you open Designer.
When you move through the steps in the Design Flow window, only the steps in bold are required to
complete and program your design. The bold steps are completed automatically if you use the Build button.
The table below summarizes the new or updated functions in the Design Flow window for the SmartFusion2
and IGLOO2 families.

Value Function

Create Design >
System Builder

System Builder creates your design based on high level design
specifications by walking you through a set of high-level
questions that will define your intended system.

Create Constraints Timing Constraints- Import or edit Timing Constraint SDC files

Floorplan Constraints - Import or edit Floorplan Constraint
PDC files

Note that I/O Constraint and Floorplan Constraint PDC files are
handled separately in v11.0; if you have a PDC file that contains
both I/O Constraints and FloorPlan Constraints then it will error
out.

Configure
Flash*Feeze

Enables you to configure your Flash*Freeze hardware settings

Edit Constraints I/O Constraints - Opens the Post-Compile I/O Editor, enables
you to modify the post-Compile database.

Timing Constraints - Opens SmartTime for SmartFusion2;
enables you to create/edit your timing constraints (SDC files)

Floorplan Constraints - Opens ChipPlanner for SmartFusion2;
enables you to edit your Floorplan PDC files.

Design Flow Window Updates for SmartFusion2, IGLOO2, and RTG4

Libero SoC User's Guide 9

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Function

Generate Back
Annotated Files

Similar to Export Back Annotated Files for other families,
enables you to generate your Back Annotated files and/or set
your options without opening Designer.

Edit Design
Hardware
Configuration

Configures your Programing Connectivity, Programmer Settings
and Device I/O States During Programming. These functions
were previously available in FlashPro but are now managed
from within Libero SoC.

Configure Security
and Programming
Options

Security Policy Manager - Sets the options for your Secured
Programming Use Model, User Key Entry and Security Policies
(Update Policy, Protocol Policy and Operational Integrity Policy)

Configure Bitstream - Enables you to select which features you
wish to program.

Update eNVM Memory Content - Enables you to change your
eNVM content for programming without having to rerun Compile
and Place and Route.

Generate
Programming Data

Generates programming data for your design; this operation is
completed automatically as the last step if you use the Build
button. (SmartFusion, IGLOO, ProAsic3 and Fusion Only)

Generate Bitstream Generates Bitstream for use with Run PROGRAM Action.

The figure below shows a SmartFusion Design Flow window on the left and a SmartFusion2 Design Flow
window on the right.

10 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 2 · SmartFusion (left) and SmartFusion2 (right) Design Flow Windows

File Types in Libero SoC
When you create a new project in Libero SoC it automatically creates new directories and project files. Your
project directory contains all of your local project files. When you import files from outside your current
project, the files are copied into your local project folder.
The Project Manager enables you to manage your files as you import them. If you want to store and
maintain your design source files and design constraint files in a central location outside the Project location,
Libero gives you the option to link them to your Libero project folders when you first create your project.
These linked files are not copied but rather linked to your project folder.
Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.
The top level directory (<project_name>) contains your *.prjx file; only one *.prjx file is enabled for each
Libero SoC project. If you associate Libero SoC as the default program with the *.prjx file (Project >
Preferences > Startup > Check the default file association (.prjx) at startup, you can double-click the *.prjx
file to open the project with Libero SoC.
component directory - Stores your SmartDesign components (SDB and CXF files) and the *_manifest.txt
file for each design components in your Libero SoC project. Refer to the *_manifest.txt file if you want to run
synthesis, simulation, and firmware development with your own point tools outside the Libero SoC

File Types in Libero SoC

Libero SoC User's Guide 11

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

environment. For each design component, Libero SoC generates a <component_name>_manifest.txt file
which stores the file name and location of:
• HDL source files to be used for synthesis and simulations
• Stimulus files and configuration files for simulation
• Firmware files for software IDE tools
• Configuration files for programming
• Configuration files for power analysis.

Refer to the SmartFusion2/IGLOO2 Custom Flow User Guide for details about how to run synthesis,
simulation, firmware development, programming, and power analysis outside the Libero SoC environment.
constraint directory - All your constraint files (SDC timing constraint files, floorplanning PDC files, I/O PDC
files, Netlist Attributes NDC files)
designer directory - ADB files (Microsemi Designer project files), -_ba.sdf, _ba.v(hd), STP, PRB (for Silicon
Explorer), TCL (used to run designer), impl.prj_des (local project file relative to revision), designer.log
(logfile)
Note: The Microsemi ADB file memory requirement is equivalent to 2x the size of the ADB file. If

your computer does not have 2x the size of your ADB file's memory available, please make
memory available on your hard drive.

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog
simulation directory - meminit.dat, modelsim.ini files, *.bfm files and *.vec file, run.do file for simulation.
smartgen directory - GEN files and LOG files from generated cores
stimulus directory - BTIM, Verilog, and VHDL stimulus files
synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify logfile),
precision.log (Precision logfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero SoC)
viewdraw directory - viewdraw.ini files

Internal Files
Libero SoC generates the following internal files. They may or may not be encrypted. They are for Libero
SoC housekeeping and are not for users.

File File Extension Remarks

Routing Segmentation File *.seg

Combiner Info *.cob

Hierarchical Netlist *.adl

Flattened Netlist *.afl

Location file *.loc

map file *.map Fabric Programming File

tieoffs.txt *.txt RTG4 devices only

12 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Software Tools - Libero SoC
The Libero SoC integrates design tools, streamlines your design flow, manages design and log files, and
passes design data between tools.
For more information on Libero SoC tools, visit:
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

Function Tool Company

Project Manager, HDL Editor, Core Generation Libero SoC Microsemi
SoC

Synthesis Synplify® Pro
ME

Synopsys

Simulation ModelSim®
ME

Mentor
Graphics

Timing/Constraints, Power Analysis, NetlistViewer,
Floorplanning, Package Editing, Place-and-Route,
Debugging

Libero SoC Microsemi
SoC

Programming Software FlashPro Microsemi
SoC

Programming Software FlashPro
Express

Microsemi
SoC

Project Manager, HDL Editor targets the creation of HDL code. HDL Editor supports VHDL and Verilog
with color, highlighting keywords for both HDL languages.
Synplify Pro ME from Synopsys is integrated as part of the design package, enabling designers to target
HDL code to specific devices.
Microsemi SoC software package includes:

• ChipPlanner displays I/O and logic macros in your design for floorplanning
• NetlistViewer design schematic viewer
• SmartPower power analysis tool
• SmartTime static timing analysis and constraints editor

ModelSim ME from Mentor Graphics enables source level verification so designers can verify HDL code line
by line. Designers can perform simulation at all levels: behavioral (or pre-synthesis), structural (or post-
synthesis), and back-annotated (post-layout), dynamic simulation. (ModelSim is supported in Libero Gold
and Platinum only.)

Frequently Asked Questions - Libero SoC
The collection of Frequently Asked Questions is useful for anyone that is new to Libero SoC. All the
information listed below is explained in detail in other sections of the help, but the information is summarized
here for easy reference. Click any question to go to the corresponding explanation.

Libero SoC Frequently Asked Questions
1. How do I set my Multi-Pass place and route options?

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

Frequently Asked Questions - Libero SoC

Libero SoC User's Guide 13

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

2. How do I set FlashPro security options?
3. How do I instantiate my HDL in SmartDesign?
4. How do I add a bus interface to my HDL code and then add it to SmartDesign?
5. I don't see any DirectCore IP's in the Catalog but I have both Libero IDE 9.1 and Libero SoC 10.0

installed. Where are the DirectCore IP's?
6. How do I assign I/O/s in Libero SoC?
7. How do I make sure that my design is using the latest driver(s)?
8. How do I improve the timing of my design?
9. How do I manage clocks?

10. How do I write a testbench?

Firmware Cores Frequently Asked Questions
1. Where are the firmware files generated?
2. Why are some firmware in italics?
3. Why am I getting the following error on generation? "Error: 'Missing Core Definition': Core

'Actel:Firmware:MSS_SPI_Driver:2.0.101 ' is missing from the vault."?
4. Why is my firmware view empty?
5. Why are there multiple firmware instances of the same type?

Libero SoC Frequently Asked Questions
How do I set my Multi-Pass place and route options?

The steps to run Multi-Pass place and route vary depending on the device family.
For SmartFusion, IGLOO, ProAsic and Fusion: In the Design Flow window, expand Implement Design,
right-click Place and Route and choose Open Interactively. Designer opens. Click Layout to open the
Layout Options dialog box and choose Use Multiple Pass. Click the Configure button to open the Multi-
Pass Configurator. Set your Multi-Pass Options. Once Layout is complete, save your ADB to retain your
custom place and route options.
For SmartFusion2, IGLOO2, RTG4: In the Design Flow window, expand Implement Design, right-click
Place and Route and choose Configure Options. When the Layout Options dialog box appears, check the
Use Multiple Passes option and click Configure. When the Multi-Pass configuration dialog box appears,
set your Multi-Pass options.

How do I set FlashPro security options?

In the Libero SoC Design Flow window, expand Program Design, right-click Program Device and choose
Open Interactively. FlashPro opens and enables you to set/change your security options. See the FlashPro
help for more information.

How do I instantiate my HDL in SmartDesign?

Import your HDL file into the Libero SoC (File > Import Files). After you do this, your HDL module appears in
the Project Manager Hierarchy. Then, drag-and-drop it from the Hierarchy onto your SmartDesign Canvas.

How do I add a bus interface to my HDL code and then add it to SmartDesign?

If you want to add a bus interface to your HDL code and then add it to SmartDesign, see the Adding or
Modifying Bus Interfaces in SmartDesign topic.

I don't see any DirectCore IP's in the Catalog but I have both Libero IDE 9.1 and Libero SoC 10.0 installed. Where are
the DirectCore IP's?

Make sure the vault location is correct. Click the Catalog Options button to open the Catalog Options dialog
box. Then check and, if necessary, update your vault location.

14 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

How do I assign I/O's in Libero SoC?

In the Design Flow window, expand Implement Design, then expand Constrain Place and Route. Right-
click Edit I/O Attributes and choose Open Interactively to open the I/O Attribute Editor.

How do I make sure that my design is using the latest driver(s)?

 In the Design Flow tab, expand Create Design and double-click View/Configure Firmware Cores to view
the DESIGN_FIRMWARE tab. The Firmware table lists the compatible firmware and drivers based on the
hardware peripherals that you have used in your design. Use the Version drop down menus to check for the
latest firmware and firmware drivers.

How do I improve the timing of my design?

 The SmartTime tool enables you to set clock constraints, analyze timing, identify critical paths, and find the
minimum cycle time that does not result in a timing violation.
To improve the timing of your design:

1. Run timing analysis to identify timing violations.
2. View the paths with timing violations.
3. Modify timing constraints on the critical path(s) in order to meet your timing requirements.
4. Run Timing-Driven Place and Route.

For more information on improving timing, see the Analysis and Optimization application notes. The
Designing for Performance on Flash-Based FPGAs application note is a good starting point.

How do I manage clocks?

Specify clock constraints in your design. See the sections on explicit clocks, potential clocks and clock
networks for more information on clocks in Libero SoC.

How do I write a testbench?

You can write or edit a testbench manually using the HDL editor, or you can create a new HDL testbench
and automatically populate it with all your design information with Create New HDL Testbench in Libero
SoC. Create New HDL Testbench is in the Design Flow window under Create Design.
Testbench file are generated automatically when you generate a SmartDesign. You can find them in your
Files window in Libero SoC (View > Window > Files).

Firmware Cores Frequently Asked Questions
Where are the firmware files generated?

The firmware files are generated to the firmware working directory <project>\firmware. Your software IDE
workspace is generated to <project>\<software IDE tool chain>.

Why are some firmware in italics?

This indicates the firmware is in the IP repository but not in your local IP vault. You must download it to your
local IP vault so that the Libero SoC will generate the firmware files.

Why am I getting the following error on generation? "Error: 'Missing Core Definition': Core
'Actel:Firmware:MSS_SPI_Driver:2.0.101 ' is missing from the vault."?

This happens when a firmware that is in your design but the VLNV definition could not be found in your IP
vault. This can happen if you:

• Changed your vault settings to point to another vault
• Opened a project that was created on another machine

Why is my firmware view empty?

Check that you are pointing to the proper firmware repository:
www.actel-ip.com/repositories/Firmware

http://www.actel.com/techdocs/appnotes/analysis_optimization.aspx
http://www.actel.com/documents/Design_Performance_AN.pdf

Software IDE Integration

Libero SoC User's Guide 15

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Check with your network administrator to make sure you can communicate with Microsemi's IP repository
URL.

Why are there multiple firmware instances of the same type?

Some firmware cores have configurable options, and in certain cases you will have two peripherals of the
same firmware VLNV. In this situation, you may want to configure each peripheral driver separately.

Software IDE Integration
Libero SoC simplifies the task of transitioning between designing your FPGA to developing your embedded
firmware.
Libero SoC manages the firmware for your FPGA hardware design, including:
• Firmware hardware abstraction layers required for your processor
• Firmware drivers for the processor peripherals that you use in your FPGA design.
• Sample application projects are available for drivers that illustrate the proper usage of the APIs

You can see which firmware drivers Libero SoC has found to be compatible with your design by opening the
Firmware View. From this view, you can change the configuration of your firmware, change to a different
version, read driver documentation, and generate any sample projects for each driver.
Libero SoC manages the integration of your firmware with your preferred Software Development
Environment, including SoftConsole, Keil, and IAR Embedded Workbench. The projects and workspaces for
your selected development environment are automatically generated with the proper settings and flags so
that you can immediately begin writing your application.

See Also

Exporting Firmware and the Software IDE Workspace
Libero SoC Frequently Asked Questions
Running Libero SoC from your Software Tool Chain
View/Configure Firmware Cores

System Builder
System Builder is a graphical design wizard that enables you to enter high-level design specifications for
SmartFusion2 or IGLOO2.
System Builder takes you through the following steps:

• Asks basic questions about your system architecture and peripherals
• Builds a correct-by-design complete system

System Builder automatically configures the silicon features you select. To complete the design, add your
custom logic or IP and connect them to your System Builder-generated design.
See the SmartFusion2 System Builder documentation or the IGLOO2 System Builder documentation for a
complete family-specific explanation of the tool.

Instantiate a SmartFusion MSS in your Design
You can configure peripherals within the SmartFusion MSS, such as the ARM® Cortex™-M3, embedded
nonvolatile memory (eNVM), Ethernet MAC, timer, UART, and SPI to suit your needs. The MSS operates
standalone without any dependencies on other logic within the device; however, designs that require
functionality beyond a standalone MSS are handled by using SmartDesign to add user logic in the
SmartFusion FPGA fabric.
You can instantiate a Microcontroller Subsystem into your design from the New Project Creation Wizard
when you start a new SmartFusion project, or from the Design Flow window after you have created a new
project.

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_2.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf

16 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To instantiate a SmartFusion MSS from the New Project Creation Wizard you must enable Use Design
Tool (under Design Templates and Creators) and click to select SmartFusion Microcontroller
Subsystem (MSS) from the list.
If you opted not to use a Design Tool when you created your project, in the Design Flow window expand
Create Design and double-click Configure MSS. This opens the Add Microcontroller Subsystem dialog
box. Enter your Design Name and click OK to continue. A SmartDesign Canvas appears with the MSS
added to your project; double-click the MSS to view and configure MSS components.

Configure the SmartFusion MSS
Documents for specific SmartFusion MSS peripherals are available on the Peripheral Documents web page.
The SmartFusion Microcontroller Subsystem (MSS) Configurator (as shown in the figure below) contains the
elements listed below. Double-click any element in the MSS to configure it; click the checkbox (if available)
to enable or disable it in your design.

MSS ARM® Cortex™-M3

Peripherals

• ACE Configuration
• ACE Simulation
• AHB Bus Matrix Configuration
• Clock Configuration
• Configurator Overview
• Embedded FlashROM (eFROM) Configuration
• Embedded Nonvolatile Memory (eNVM) Configuration
• Ethernet MAC Configuration
• External Memory Controller (EMC) Configuration
• Firmware
• GPIO Configuration
• I2C Configuration
• Interrupt Management
• I/O Configuration
• I/O Editor
• Peripheral DMA Configuration
• Real Time Counter (RTC) Configuration
• Reset Management Configuration
• SPI Configuration
• Timer Configuration
• UART Configuration
• Watchdog Configuration

Fabric

• Dedicated Fabric Clock Conditioning Circuit with PLL Integration

Interfaces

• How to Create a MSS and Fabric AMBA AHBLite Design (MSS Master Mode)
• How to Create a MSS and Fabric AMBA APB3 Design (MSS Master Mode)
• How to Create a MSS and Fabric AMBA AHBLite/APB3 Design (MSS Master Mode)

SmartFusion SmartDesign Documents

• SmartDesign MSS Canvas

http://coredocs.s3.amazonaws.com/Actel/IndexPage/mss_doc_index_sf.html

Generate SmartFusion MSS Files

Libero SoC User's Guide 17

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• SmartDesign MSS Simulation
• SmartDesign MSS Running the MSS Configurator in your Software Tool Chain

Figure 3 · SmartFusion MSS

Generate SmartFusion MSS Files
See the MSS Configurator help for more information on generating SmartFusion MSS files.

Click the Generate Component button to create your SmartFusion MSS files.
The MSS Configurator generates the following files:

• HDL files for the MSS design and its sub-components: MSS CCC, etc. HDL files are automatically
managed by the Libero SoC and passed to the Synthesis and Simulation point tools.

• EFC File. MSS hardware configuration that is loaded into eNVM. FlashPro automatically detects this
file and includes it in your final programming file.

• UFC file. Contains your Embedded FlashROM configuration and data. FlashPro automatically detects
this file and includes it in your final programming file.

• Firmware drivers and memory maps are exported into the <project>\firmware\ directory - Libero SoC
automatically generates a Software IDE project that includes your Firmware drivers. If you are not
using a software project automatically created by Libero, you can import this directory into your
Software IDE project.

• Testbench HDL and BFM script for the MSS design: These files are managed by Libero SoC and
automatically passed to the Simulation point tool.

• PDC files for the MSS and the top-level design: These files are managed by Libero SoC and
automatically integrated during Compile and Layout.

18 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Instantiate a SmartFusion2 MSS in your Design
You can configure peripherals within the SmartFusion2 MSS, such as the ARM® Cortex™-M3, embedded
nonvolatile memory (eNVM), Ethernet MAC, timer, UART, and SPI to suit your needs. The MSS operates
standalone without any dependencies on other logic within the device; however, designs that require
functionality beyond a standalone MSS are handled by using SmartDesign to add user logic in the
SmartFusion2 FPGA fabric.
You can instantiate a Microcontroller Subsystem into your design from the New Project Creation Wizard
when you start a new SmartFusion2 project, or from the Design Flow window after you have created a new
project.
To instantiate a SmartFusion2 MSS from the New Project Creation Wizard you must enable Use Design
Tool (under Design Templates and Creators) and click to select SmartFusion2 Microcontroller
Subsystem (MSS) from the list.
If you opted not to use a Design Tool when you created your project, in the Design Flow window expand
Create Design and double-click Configure MSS. This opens the Add Microcontroller Subsystem dialog
box. Enter your Design Name and click OK to continue. A SmartDesign Canvas appears with the MSS
added to your project; double-click the MSS to view and configure MSS components.

Configure the SmartFusion2 MSS
Documents for specific SmartFusion2 MSS peripherals are available on the Peripheral Documents web
page.
The SmartFusion2 Microcontroller Subsystem (MSS) Configurator (as shown in the figure below) contains
the elements listed below. Double-click any element in the MSS to configure it; click the checkbox (if
available) to enable or disable it in your design.

MSS ARM® Cortex™-M3

Peripherals

• MSS CAN
• MSS Peripheral DMA (PDMA)
• MSS GPIO
• MSS I2C
• MSS Ethernet MAC
• MSS DDR Controller (MDDR)
• MSS MMUART
• MSS Real Time Counter (RTC)
• MSS Embedded Nonvolatile Memory (eNVM)
• MSS SPI
• MSS USB
• MSS Watchdog Timer

 Fabric Interfaces

• MSS Fabric Interface Controllers (FICs)

Additional Information

• MSS Cache Controller
• MSS DDR Bridge Controller
• MSS AHB Bus Matrix
• MSS Clocks Configurator (MSS CCC)
• MSS Interrupts Controller
• MSS Reset Controller

http://coredocs.s3.amazonaws.com/Actel/IndexPage/mss_doc_index.html
http://coredocs.s3.amazonaws.com/Actel/IndexPage/mss_doc_index.html

Generate SmartFusion2 MSS Files

Libero SoC User's Guide 19

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• MSS SECDED Configurator
• MSS Security Configurator

The MSS generates a component that is instantiated into your top-level design.

Figure 4 · Microcontroller Subsystem Configurator

Generate SmartFusion2 MSS Files
See the MSS Configurator help for more information on generating SmartFusion2 MSS files.

Click the Generate Component button to create your SmartFusion2 MSS files.
The MSS Configurator generates the following files:

• HDL files for the MSS components, including timing shells for synthesis - HDL files are automatically
managed by the Libero SoC and passed to the Synthesis and Simulation tools.

• EFC File: Contains your eNVM client data - The EFC content is included in your final programming file.
• Firmware drivers and memory maps are exported into the <project>\firmware\ directory - Libero SoC

automatically generates a Software IDE project that includes your Firmware drivers. If you are not
using a software project automatically created by Libero, you can import this directory into your
Software IDE project.

• Testbench HDL and BFM script for the MSS design: These files are managed by Libero SoC and
automatically passed to the Simulation tool.

• PDC files for the MSS and the top-level design: These files are managed by Libero SoC and
automatically integrated during Compile and Layout.

Create ViewDraw Schematic
You must enable ViewDraw in your Project Settings to create a schematic source file in Libero SoC.

To create a schematic source file:
1. In the Design Flow window, double-click Create ViewDraw Schematic.

20 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

2. Type a name for your schematic file in the Name field. Click OK. ViewDraw AE starts.
3. Using ViewDraw AE, create your schematic.
4. When you are done, click Save+Check in ViewDraw. The Save+Check command creates your WIR

file. When Save and Check is complete, the message Check complete, 0 errors and 0 warnings in
project <name> appears in the status bar.

You must select Save & Check. Selecting Save will not generate the needed WIR file for that block.

5. (Optional) Right-click the schematic file in the Files tab and choose Check Schematic. The
connectivity checker checks the connectivity of the WIR file. Errors and warnings appear in the log
window.

6. From the File menu, choose Exit. The schematic is saved to your project in Libero SoC and appears
in both the File Manager and the Design Hierarchy tabs.

About SmartDesign
SmartDesign is a visual block-based design creation tool for instantiation, configuration and connection of
Microsemi IP, user-generated IP, custom/glue-logic HDL modules. The final result is a design-rule-checked
and automatically abstracted synthesis-ready HDL file. A generated SmartDesign can be the entire FPGA
design or a component subsystem of a larger design.
Instantiate IP cores, macros and HDL modules by dragging them from the Catalog onto the Canvas, where
they are viewed as blocks in a functional block diagram. From the Canvas you can:

• Configure your blocks
• Make connections between your blocks
• Generate your SmartDesign

• This step generates the HDL and testbench files required to proceed with Synthesis
and Simulation.

• View a Memory Map - The memory map shows the different subsystems of your
design, where a subsystem is any independent bus structure with a Master and Slave
peripheral attached.

SmartDesign supports all Microsemi SoC product families.

SmartDesign Design Flow
SmartDesign enables you to stitch together design blocks of different types (HDL, IP, etc.) and generate a
top-level design. The Files tab lists your SmartDesign files in alphabetical order.
You can build your design using SmartDesign with the following steps:
Step One – Instantiating components: In this step you add one or more building blocks, HDL modules,
components, and schematic modules from the project manager to your design. The components can be
blocks, cores generated from the core Catalog, and IP cores.
Step Two – Connecting bus interfaces: In this step, you can add connectivity via standard bus interfaces
to your design. This step is optional and can be skipped if you prefer manual connections. Components
generated from the Catalog may include pre-defined interfaces that allow for automatic connectivity and
design rule checking when used in a design.
Step Three – Connecting instances: The Canvas enables you to create manual connections between
ports of the instances in your design. Unused ports can be tied off to GND or VCC (disabled); input buses
can be tied to a constant, and you can leave an output open by marking it as unused.
Step Four – Generating the SmartDesign component: In this step, you generate a top-level (Top)
component and its corresponding HDL file. This component can be used by downstream processes, such as
synthesis and simulation, or you can add your SmartDesign HDL into another SmartDesign.

Using Existing Projects with SmartDesign

Libero SoC User's Guide 21

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

When you generate your SmartDesign the Design Rules Check verifies the connectivity of your design; this
feature adds information to your report; design errors and warnings are organized by type and message and
displayed in your Datasheet / Report.
You can save your SmartDesign at any time.

Using Existing Projects with SmartDesign
You can use existing Libero SoC projects with available building blocks in the project to assemble a new
SmartDesign design component. You do not have to migrate existing top-level designs to SmartDesign and
there is no automatic conversion of the existing design blocks to the SmartDesign format.

SmartDesign Frequently Asked Questions
The collection of SmartDesign Frequently Asked Questions are useful for anyone that is new to
SmartDesign. All the information listed below is explained in detail in other sections of the help, but the
information is summarized here for easy reference. Click any question to go to the corresponding
explanation.

22 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

General Questions
1. What is SmartDesign?
2. How do I create my first SmartDesign?

Working in SmartDesign

Libero SoC User's Guide 23

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Instantiating into your SmartDesign
1. Where is the list of cores that I can instantiate into my SmartDesign?
2. How do I instantiate cores into my SmartDesign?
3. I have a block that I wrote in VHDL (or Verilog), can I use that in my SmartDesign?
4. My HDL module has Verilog parameters or VHDL generics declared; how can I configure those in

SmartDesign?

Working in SmartDesign
1. How do I make connections?
2. Auto Connect didn’t connect everything for me; how do I make manual connections?
3. How do I connect a pin to the top level?
4. Oops, I just made a connection mistake. How do I disconnect two pins?
5. I need to apply some simple ‘glue’ logic between my cores. How do I do that?
6. My logic is a bit more complex than inversion and tie offs - what else can I do?
7. How do I create a new top level port for my design?
8. How do I rename one of my instances?
9. How do I rename my top level port?

10. How do I rename my group pins?
11. I need to reconfigure one of my Cores, can I just double click the instance?
12. I want more Canvas space to work with!

24 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Working with Processor-Based Designs in SmartDesign
1. How do I connect my peripherals to the bus?
2. How do I view the Memory Map of my design?
3. How do I simulate my processor design?
4. I have my own HDL block that I want to connect as a peripheral on the AMBA bus. How can I do that?
5. How do I generate the firmware drivers for my design?
6. How do I start writing my application code for my design?

Working in SmartDesign

Libero SoC User's Guide 25

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

VHDL Construct Support in SmartDesign
1. What are VHDL Special Types in Libero?
2. How can I import files with VHDL Special Types into SmartDesign?
3. What is the purpose of the mapping file?
4. Where is the mapping file meta.out be generated?
5. What VHDL constructs are not generated automatically?
6. What do I do about the constructs that are not generated automatically?
7. What is the meta.out file format?

26 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Making your Design Look Nice
1. Can the tool automatically place my instances on the Canvas to make it look nice?
2. My design has a lot of connections, and the nets are making my design hard to read. What do I do?
3. My instance has too many pins on it, how can I minimize that?
4. Oops, I missed one pin that needs to be part of that group? How do I add a pin after I already have the

group?
5. I have a pin that I don’t want inside the group, how do I remove it?
6. How can I better see my design on the Canvas?

General Questions

Libero SoC User's Guide 27

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generating your Design
1. Ok, I’m done connecting my design, how do I ‘finish’ it so that I can proceed to synthesis?
2. I get a message saying it’s unable to generate my SmartDesign due to errors, what do I do? What is

the Design Rules Check?
3. How do I generate my firmware?

General Questions
What is SmartDesign?

SmartDesign is a design entry tool. It’s the first tool in the industry that can be used for designing System on
a Chip designs, custom FPGA designs or a mixture of both types in the same design. A SmartDesign can be
the entire FPGA design, part of a larger SmartDesign, or a user created IP that can be stored and reused
multiple times. It’s a simple, intuitive tool with powerful features that enables you to work at the abstraction
level at which you are most comfortable.
It can connect blocks together from a variety of sources, verify your design for errors, manage your memory
map, and generate all the necessary files to allow you to simulate, synthesize, and compile your design.

How do I create my first SmartDesign?

In the Libero SoC Project Manager Design Flow window, under Create Design, double-click Create
SmartDesign.

Instantiating Into Your SmartDesign
Where is the list of Cores that I can instantiate into my SmartDesign?

The list of available cores is displayed in the Project Manager Catalog. This catalog contains all DirectCore
IP, Design Block cores, and macros.

How do I instantiate cores into my SmartDesign?

Drag and drop the core from the Catalog onto your SmartDesign Canvas. An instance of your Core appears
on the Canvas; double-click to configure it.

I have a block that I wrote in VHDL (or Verilog), can I use that in my SmartDesign?

Yes! Import your HDL file into the Project Manager (File > Import Files). After you do this, your HDL module
will appear in the Project Manager Hierarchy. Then, drag-and-drop it from the Hierarchy onto your
SmartDesign Canvas.

My HDL module has Verilog parameters or VHDL generics declared, how can I configure those in SmartDesign?

If your HDL module contains configurable parameters, you must create a ‘core’ from your HDL before using
it in SmartDesign. Once your HDL module is in the Project Manager Design Hierarchy, right-click it and
choose Create Core from HDL. You will then be allowed to add bus interfaces to your module if necessary.
Once this is complete, you can drag your new HDL+ into the SmartDesign Canvas and configure your
parameters by double-clicking it.

Working in SmartDesign
How do I make connections?

Let SmartDesign do it for you. Right-click the Canvas and choose Auto Connect.
Auto Connect didn’t connect everything for me, how do I make manual connections?

28 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Enter Connection Mode and click and drag from one pin to another. Click the Connection Mode button in
the Canvas to enter Connection Mode.
Alternatively:

1. Select the pins you want connected by using the mouse and the CTRL key.
2. Right-click one of the selected pins and choose Connect.

How do I connect a pin to the top level?

Right-click the pin and choose Promote to Top Level. You can even do this for multiple pins at a time, just
select all the pins you want to promote, right-click one of the pins and choose Promote to Top Level. All
your selected pins will be promoted to the top level.

Oops, I just made a connection mistake. How do I disconnect two pins?

Use CTRL+Z to undo your last action. If you want to undo your ‘undo’, hit redo (CTRL+Y).
To disconnect pins you can:
• Right-click the pin you want to disconnect and choose Disconnect
• Select the net and hit the delete key

I need to apply some simple ‘glue’ logic between my cores. How do I do that?

For basic inversion of pins, you can right-click a pin and choose Invert. An inverter will be placed at this pin
when the design is generated. You can also right-click a pin and choose Tie Low or Tie High if you want to
connect the pin to either GND or VCC.
To tie an input bus to a constant, right-click the bus and choose Tie to Constant. To mark an output pin as
unused, right-click the pin and choose Mark as Unused.
To clear these, just right-click on the pin again and choose Clear Attribute.

My logic is a bit more complex than inversion and tie offs - what else can I do?

You have full access to the library macros, including AND, OR, and XOR logic functions. These are located
in the Project Manager Catalog, listed under Macro Library. Drag the logic function you want onto your
SmartDesign Canvas.

How do I create a new top level port for my design?

Click the Add Port button in the Canvas toolbar
How do I rename one of my instances?

Double-click the instance name on the Canvas and it will become editable. The instance name is located
directly above the instance on the Canvas.

How do I rename my top level port?

Right-click the port you want to rename and choose Modify Port.
How do I rename my group pins?

Right-click the group pin you want to rename and choose Rename Group.
I need to reconfigure one of my Cores, can I just double-click the instance?

Yes.
I want more Canvas space to work with!

Maximize your workspace (CTRL-W), and your Canvas will maximize within the Project Manager. Hit CTRL-
W again if you need to see your Hierarchy or Catalog.

Working with Processor-Based Designs in SmartDesign
How do I connect my peripherals to the bus?

VHDL Construct Support in SmartDesign

Libero SoC User's Guide 29

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Click Auto Connect and it will help you build your bus structure based on the processor and peripherals that
you have instantiated.

But I need my peripheral at a specific address or slot.

Right-click the Canvas and choose Modify Memory Map to invoke the Modify Memory Map dialog that
enables you to set a peripheral to a specific address on the bus.
The bus core will show the slot numbers on the bus interface pins. These slot numbers correspond to a
memory address on the bus.
Verify that your peripheral is mapped to the right bus address by viewing your design’s Memory Map.

How do I view the Memory Map of my design?

Generate your project and open datasheet in the Report View.
The memory map section will also show the memory details of each peripheral, including any memory
mapped registers.

How do I simulate my processor design?

SmartDesign automatically generates the necessary Bus Functional Model (BFM) scripts required to
simulate your processor based design. A top level testbench for your SmartDesign is generated
automatically as well.
Create your processor design, generate it, and you will be able to simulate it in ModelSim.

I have my own HDL block that I want to connect as a peripheral on the AMBA bus. How can I do that?

SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
If your block has all the necessary signals to interface with the AMBA bus protocol (ex: address, data,
control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection. See the DirectCore Advanced Microcontroller Bus Architecture - Bus
Functional Model User's Guide for more information on CoreAMBA BFM commands.

How do I generate the firmware drivers for my design?

SmartDesign automatically finds all the compatible firmware drivers based on your peripherals and
processor. You can view the list of firmware drivers that the design found by going to the design flow and
choosing View/Configure Firmware Cores.

How do I start writing my application code for my design?

Libero SoC simplifies the embedded development process by automatically creating the workspace and
project files for the Software IDE that you specify in the Tools profile.
Once you have generated your design, the firmware and workspace files will automatically be created. Click
Write Application Code in the Design Flow tab and the Software IDE tool will open your design’s
workspace files.

VHDL Construct Support in SmartDesign
What VHDL constructs do you support?

VHDL types Record, Array, Array of Arrays, Integer and Unsigned are supported on entity ports of imported
VHDL files - these are treated as special types in Libero.

How can I import files with VHDL Special Types into SmartDesign?

 To work with a VHDL file with Special Types you must:

http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf
http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf

30 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

1. Drag and drop the entity into SmartDesign and connect it just as you would with any other
SmartDesign instance.

2. Generate the Mapping File (meta.out):
Navigate to the Design Hierarchy view, under the current SmartDesign.
Right-click every VHDL file or every top hierarchical file and choose Create Mapping File (VHDL).

3. Generate the SmartDesign
4. Continue with the Libero SoC Design Flow steps (Synthesis, Simulation, etc.)

If you do not generate the Mapping File, and try to Generate your SmartDesign, you will see the following
error in the log window:
Error: Select the HDL file in the Design Hierarchy and right-click the HDL file and
choose Create Mapping File(VHDL) because at least one entity port is of type Array or
Record.

The above is reported only if the entity port is of type Record, Array, Array of Array, or Unsigned.
What is the purpose of the mapping file?

The mapping file contains the mapping information between the SmartDesign ports and original user-
specified data types of ports in design files, and is used for type casting of signals during design generation.

Where will the mapping file meta.out be generated?

The file is generated in your $project_dir/hdl folder. This file will be used to during SmartDesign generation.
What are the VHDL special types that are not generated automatically?

The following types are not automatically generated from the right-click menu option Create Mapping
File(VHDL):
• Array of array is not supported
• Array of record is not supported
• Enum in range of array is not supported.
• Constants are not supported.
• Buffer output ports are not supported

What do I do if I am using VHDL types that are not generated automatically?

You must manually write the mapping information in the meta.out file for unsupported types (types which are
not generated automatically) in the prescribed format. Click the link to see an example.
• Integer
• Unsigned
• Array and Array of Arrays
• Record

What is the meta.out file format?

See the meta.out file format topic for more information.

Making your Design Look Nice
Can the tool automatically place my instances on the Canvas to make it look nice?

Yes. Right-click the Canvas white space and choose Auto Arrange Instances.
My design has a lot of connections, and the nets are making my design hard to read. What do I do?

You can disable the display of the nets in the menu bar (RMC > Hide Nets). This automatically hides all the
nets in your design.
You can still see how pins are connected by selecting a connected pin, the net will automatically be visible
again.

Generating your Design

Libero SoC User's Guide 31

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

You can also selectively show certain nets, so that they are always displayed, just right click on a connected
pin and choose Show Net.

My instance has too many pins on it; how can I minimize that?

Try grouping functional or unused pins together. For example, on the CoreInterrupt there are 8 FIQSource*
and 32 IRQSource* pins, group these together since they are similar in functionality.
To group pins: Select all the pins you want to group, then right-click one of the pins and choose Add pins to
group.
If a pin is in a group, you are still able to use it and form connections with it. Expand the group to gain
access to the pin.

Oops, I missed one pin that needs to be part of that group? How do I add a pin after I already have the group?

Select the pin you want to add and the group pin, right-click and choose Add pins to <name> group.
I have a pin that I don’t want inside the group, how do I remove it?

Right-click the pin and choose Ungroup selected pins.
How can I better see my design on the Canvas?

 There are zoom icons in the Canvas toolbar. Use them to Zoom in, Zoom out, Zoom to fit, and Zoom
selection. You can also maximize your workspace with CTRL-W.

Generating your Design
Ok, I’m done connecting my design, how do I ‘finish’ it so that I can proceed to synthesis?

In the Canvas toolbar, click the Generate Project icon .
I get a message saying it’s unable to generate my SmartDesign due to errors, what do I do? What is the Design Rules
Check?

The Design Rules Check is included in your Report View. It lists all the errors and warnings in your design,
including unconnected input pins, required pin connections, configuration incompatibilities between cores,
etc.
Errors are shown with a small red stop sign and must be corrected before you can generate; warnings may
be ignored.

What does this error mean? How do I fix it?

Review the Design Rules Check topic for an explanation of errors in the Design Rules Check and steps to
resolve them.

How do I generate my firmware?

In the Design Flow window, expand Handoff Design for Firmware Development and double-click
Configure Firmware Coresand Export Firmware.

32 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Getting Started with SmartDesign

Creating a New SmartDesign Component
1. From the File menu, choose New > SmartDesign or in the Design Flow window double-click Create

SmartDesign. The Create New SmartDesign dialog box opens (see figure below).

Figure 5 · Create New SmartDesign Dialog Box

2. Enter a component name and click OK. The component appears in the Hierarchy tab of the Design
Explorer. Also, the main window displays the design Canvas.

Note: The component name must be unique in your project.

Opening an Existing SmartDesign Component
To open an existing component do one of the following:
Click the Design Hierarchy tab and double-click the component you want to open.
The main window displays the SmartDesign Canvas for the SmartDesign component.

Saving/Closing a SmartDesign Component
To save the current SmartDesign design component, from the File menu, choose Save
<component_name>. Saving a SmartDesign component only saves the current state of the design; to
generate the HDL for the design refer to Generating a SmartDesign component.
To close the current SmartDesign component without saving, from the File menu, choose Close. Select NO
when prompted to save.
To save the active SmartDesign component with a different name use Save As. From the File menu choose
Save SD_<filename> As. Enter a new name for your component and click OK.

Generating a SmartDesign Component
Before your SmartDesign component can be used by downstream processes, such as synthesis and
simulation, you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.
Note: The generated HDL file will be deleted when your SmartDesign design is modified and

saved to ensure synchronization between your SmartDesign component and its generated
HDL file.

Importing a SmartDesign Component

Libero SoC User's Guide 33

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected
before you generate your SmartDesign design.

Generating a Datasheet (SmartFusion, IGLOOe, ProASIC3L, ProASIC3E, Fusion)
If your SmartDesign is the root design in your project, then a Memory Map / Datasheet that contains your
design information is produced.

Generating Firmware and Software IDE Workspace (SmartFusion, IGLOOe, ProASIC3L,
ProASIC3E, Fusion)

If your SmartDesign is the root design in your project, then any compatible firmware drivers for your
peripherals are generated to <project>/firmware.
The datasheet provides all the specifics of the generated firmware drivers.

Importing a SmartDesign Component
From the File menu, choose Import and select the CXF file type.
Importing an existing SmartDesign component into a SmartDesign project will not automatically import the
sub-components of that imported SmartDesign component.
You must import each sub-component separately.
After importing the sub-components, you must open the SmartDesign component and replace each sub-
component so that it references the correct component in your project. .

Deleting a SmartDesign Component from the Libero SoC Project
To delete a SmartDesign component from the project:

1. In the Design Hierarchy tab, select the SmartDesign component that you want to delete.
2. Right-click the component name and select Delete from Project or Delete from Disk and Project, or

click the Delete key to delete from project.

Generating a Memory Map
Generate Memory Map generates a Memory Address Map for subsystems which can be accessed by the
Cortex-M3 Processor or Fabric Masters in your design. It also contains Register Adddress Mapping of the
SYSTEM REGISTER (SYSREG). The Memory Map Information is in XML format and put in the
<design_name>_DataSheet.xml file in the Reports panel under the Generate Memory Map node.

34 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 6 · Example Memory Map

The design’s memory map is determined by the connections made to the bus component. A bus component
is divided into multiple slots for slave peripherals or instances to plug into. Each slot represents a different
address location and range to the Master of the bus component.
Refer to this memory map for address locations if you want to access the subsystems/components from the
MSS or from Fabric Masters.

Generating a Memory Map

Libero SoC User's Guide 35

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

If your design contains standard Bus Instances such as the DirectCore AMBA bus cores, CoreAPB or
CoreAHB, you can view the Memory Map Configuration of your design in the Report View. To do so,
generate your top level design and click the Reports button in the toolbar.
The design’s memory map is determined by the connections made to the bus component. A bus component
is divided into multiple slots for slave peripherals or instances to plug into. Each slot represents a different
address location and range to the Master of the bus component.
The datasheet reports the memory map of the different subsystems of your design, where a subsystem is
any independent bus structure with a Master and Slave peripheral attached.
Connecting peripherals to busses can be accomplished using the normal SmartDesign connectivity options:
• Auto-Connect - the system creates a bus structure based on the peripherals that you have

instantiated and finds compatible bus interfaces and connects them together
• The Modify Memory Map dialog box
• Canvas - Make connections between your blocks.

Your application and design requirements dictate which address location (or slots) is most suitable for your
bus peripherals. For example, the memory controller should be connected to Slot0 of the CoreAHB bus
because on Reset, the processor will begin code execution from the bottom of the memory map.
An example of the datasheet is shown in the figure below.

36 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 7 · Example Memory Map

Modify Memory Map Dialog Box
The Modify Memory Map dialog box (shown in the figure below) enables you to connect peripherals to buses
via a drop-down menu. To open the dialog box, right-click the bus instance and choose Modify Memory
Map.
This dialog box simplifies connecting peripherals to specific base addresses on the bus. The dialog box
shows all the busses in the design; select a bus in the left pane to assign or view the peripherals on a bus.
Busses that are bridged to other busses are shown beneath the bus in the hierarchy.

Figure 8 · Modify Memory Map Dialog Box

Click the Peripheral drop-down menu to select the peripheral you wish to assign to each address. To
remove (unassign) a peripheral from an address, click the drop-down and select the empty element.
Click OK to create the connections between the busses and peripherals in the design.

Canvas Overview

Libero SoC User's Guide 37

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Canvas View

Canvas Overview
The SmartDesign Canvas is like a whiteboard where functional blocks from various sources can be
assembled and connected; interconnections between the blocks represent nets and busses in your design.
You can use the Canvas to manage connections, set attributes, add or remove components, etc. The
Canvas displays all the pins for each instance (as shown in the figure below).
The Canvas enables you to drag a component from the Design Hierarchy or a core from the Catalog and
add an instance of that component or core in the design. Some blocks (such as Basic Blocks) must be
configured and generated before they are added to your Canvas. When you add/generate a new component
it is automatically added to your Design Hierarchy.
To connect two pins on the Canvas, click the Connection Mode button to enable it and click and drag
between the two pins you want to connect. The Connection Mode button is disabled if you attempt to illegally
connect two pins.
Click the Maximize Work Area button to hide the other windows and show more of the Canvas. Click the
button again to return the work area to the original size.
The Canvas displays bus pins with a + sign (click to expand the list) or - (click to hide list). If you add a slice
on a bus the Canvas adds a + to the bus pin.
Components can be reconfigured any time by double-clicking the instance on the Canvas. You can also add
bus interfaces to instances using this view. In the Canvas view, you can add graphic objects and text to your
design.
Inputs and bi-directional pins are shown on the left of components, and output pins are shown on the right.

38 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 9 · SmartDesign Canvas

See Also
Canvas Icons

Displaying Connections on the Canvas
The Canvas shows the instances and pins in your design (as shown in the figure below). Right-click the
Canvas and choose Show Net Names to display nets.

Displaying Connections on the Canvas

Libero SoC User's Guide 39

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 10 · Components in SmartDesign

Pin and Attribute Icons
Unconnected pins that do not require a connection are gray.
Unconnected pins that require a connection are red.
Unconnected pins that have a default tie-off are pale green.

Connected pins are green.
Right-click a pin to assign an attribute.
Pins assigned attributes are shown with an icon, as shown in the table below.

Table 1 · Pin Attribute Icons

Attribute Icon

Tie Low

Tie High

40 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Attribute Icon

Invert

Mark as Unused

Tie to Constant

See the Canvas Icons reference page for definitions for each element on the Canvas.
Each connection made using a bus interface is shown in a separate connection known as a bus-interface
net.
Move the mouse over a bus interface to display its details (as shown below).

Hover over a bus interface net to see details (as shown below).

Making Connections Using the Canvas
Use the Canvas or Connectivity dialog box to make connections between instances.
You can use Connection Mode on the Canvas to quickly connect pins. Click the Connection Mode button to
start, then click and drag between any two pins to connect them. Illegal connections are disabled. Click the
Connection Mode button again to exit Connection Mode.
To connect two pins on the Canvas, select any two (Ctrl + click to select a pin), right-click one of the pins
you selected and choose Connect. Illegal connections are disabled; the Connect menu option is
unavailable.

Simplifying the Display of Pins on an Instance using Pin Groups

Libero SoC User's Guide 41

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Promoting Ports to Top Level
To automatically promote a port to top level, select the port, right-click, and choose Promote To Top Level.
This automatically creates top-level ports of that name and connects the selected ports to them. If a port
name already exists, a choice is given to either connect to the existing ports or to create a new port with a
name <port name>_<i> where i = 1…n.
Double-click a top-level port to rename it.
Bus slices cannot be automatically promoted to top level. You must create a top level port of the bus slice
width and then manually connect the bus slice to the newly created top level port.

Tying Off Input Pins
To tie off ports, select the port, right-click and choose Tie High or Tie Low.

Tying to Constant
To tie off bus ports to a constant value, select the port, right-click and choose Tie to a Constant. A dialog
appears (as shown in the figure below) and enables you to specify a hex value for the bus.
To remove the constant, right-click the pin and choose Clear Attribute or Disconnect.

Figure 11 · Tie to Constant Dialog Box

Making Driver and Bus Interface Pins Unused
Driver or bus interface pins can be marked unused (floating/dangling) if you do not intend to use them as a
driver in the design. If you mark a pin as unused the Design Rules Check does not return Floating Driver or
Unconnected Bus Interface messages on the pin.
Once a pin is explicitly marked as unused it cannot be used to drive any inputs. The unused attribute must
be explicitly removed from the pin in order to connect it later. To mark a driver or bus interface pin as
unused, right-click the driver or bus interface pin and choose Mark as Unused.

See Also
Show/Hide Bus Interface Pins

Simplifying the Display of Pins on an Instance using Pin Groups
The Canvas enables you to group and ungroup pins on a single instance to simplify the display. This feature
is useful when you have many pins in an instance, or if you want to group pins at the top level. Pin groups
are cosmetic and affect only the Canvas view; other SmartDesign views and the underlying design are not
affected by the pin groups.
Grouping pins enables you to:
• Hide pins that you have already connected
• Hide pins that you intend to work on later
• Group pins with similar functionality
• Group unused pins
• Promote several pins to Top Level at once

42 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To group pins:
1. Ctrl + click to select the pins you wish to group. If you try to click-and-drag inside the instance you will

move the instance on the Canvas instead of selecting pins.
2. Right-click and choose Add pins to group to create a group. Click + to expand a group. The icon

associated with the group indicates if the pins are connected, partially connected, or unconnected (as
shown in the figure below).

Figure 12 · Groups in an Instance on the Canvas

To add a pin to a group, Ctrl + click to select both the pin and the group, right-click and choose Add pin to
group.

To name a group:
To name a group, right-click the port name and choose Rename Group.

To ungroup pins:
1. Click + to expand the group.
2. Right-click the pin you wish to remove from the group and choose Ungroup selected pins. Ctrl + click

to select and remove more than one pin in a group.
A group remains in your instance after you remove all the pins. It has no effect on the instance; you can
leave it if you wish to add pins to the group later, or you can right-click the group and choose Delete Group
to remove it from your instance.
If you delete a group from your instance any pins still in the group are unaffected.

To promote a group to Top level:
1. Create a group of pins.
2. Right-click the group and choose Promote to Top Level.

Bus Instances
Bus Components in the Core Catalog, such as CoreAHB or CoreAPB, implement an on-chip bus fabric.
When these components are instantiated into your canvas they are displayed as horizontal or vertical lines.
Double-click the bus interfaces of your component to edit the connections.

Adding Graphic Objects

Libero SoC User's Guide 43

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 13 · Bus Instance in SmartDesign

Adding Graphic Objects
You can document your design by adding comments and notations directly on the Canvas.
The Canvas toolbar enables you to add and modify decorative graphic objects, such as shapes, labels and
lines on the Canvas.

Adding and Deleting Lines and Shapes
To add a line or a shape:

1. Select the line or shape button.
2. Click, drag and release on the Canvas. The table below provides a description of each button.

Button Description

Line

Rectangle

Note: Hold the Shift key to constrain line and arrow to 45 degree increments or constrain the

proportions of the rectangle (square).

To change the line and fill properties:
1. Select the element(s), right-click it, and choose Properties.

• Select Line to modify the color, style and width of the line.
• Select Fill to modify the crosshatch and the foreground and background colors.

2. Click OK.

To delete a line or shape, select the object and press Delete.

Adding Text
To add text, select the text tool and click the Canvas to create a text box. To modify the text, double-click the
text box and then type.

To modify the text box properties:
1. Select the text box, right-click it, and choose Properties.

• Select Text to modify the text alignment.
• Select Line to modify the color, style and width of the line.
• Select Fill to modify the crosshatch and the foreground and background colors.
• Select Font to modify the font properties.

2. Click OK.

44 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Editing Properties for Graphic Objects on the Canvas
Right-click any graphic object to update properties, such as Fill, and Line properties for shapes and lines, or
Font options for text properties.

Auto-Arranging Instances
 Right-click the Canvas and choose Auto Arrange Instances from the right-click menu to auto-arrange the
instances on the Canvas.

Locking Instance and Top Level Port Positions
You can lock the placement of instances on the Canvas. Right-click the instance or Top-level port and
choose Lock to lock the placement. When you lock placement you can click and drag to move the instance
manually but the Auto Arrange Instances menu option has no effect on the instance.
To unlock an instance, right-click the instance and choose Unlock.
Right-click a top level port and choose Unlock Position to return it to its default position.

See Also
Bus Instances
Simplifying the Display of Pins on an Instance using Pin Groups

Replace Component for Instance
You can use the Replace Component for Instance dialog box (shown in the figure below) to restore or
update version instances on your Canvas without creating a new instance and losing your connections.

Figure 14 · Replace Component for Instance Dialog Box

To change the version of an instance:
1. From the right-click menu choose Replace Component for Instance. The Replace Component for

Instance dialog box appears.
2. Select a component and choose a new version from the list. Click OK.

Replace Instance Version
The Replace Instance Version dialog box enables you to replace an IP instance with another version. You
can restore or replace your IP instance without creating a new instance or losing your connections.

Slicing

Libero SoC User's Guide 45

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 15 · Replace Instance Version Dialog Box

To replace an instance version:
1. Right click any IP instance and choose Replace Instance Version. The dialog box appears.
2. Choose the version you wish to use from the Change to Version dropdown menu (as shown in the

figure above) and click OK to continue.

Slicing
Bus ports can be sliced or split using Slicing. Once a slice is created, other bus ports or slices of compatible
size can be connected to it.
The Edit Slices dialog box enables you to automatically create bus slices of a specified width.

To create a slice:
1. Select a bus port, right-click, and choose Edit Slice. This brings up the Edit Slices dialog box (see

figure below).

Figure 16 · Edit Slices Dialog Box

2. Enter the parameters for the slice and click Add Slices. You can also create individual slices and
specify their bus dimensions manually.

3. Click OK to continue.

Note: Overlapping slices cannot be created for IN and INOUT ports on instances or top-level OUT
ports.

To remove a slice, select the slice, right-click, and choose Delete Slice.

46 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Rename Net
To rename a net:

1. Right-click the net on the Canvas and choose Rename Net. This opens the Rename Net dialog box.
2. Type in a new name for the net.

Note: The system automatically assigns net names to nets if they are not explicitly specified.
Once you have specified a name for a net, that name will not be over-written by the system.

Automatic Names of Nets
Nets are automatically assigned names by the tool according to the following rules:
In order of priority

1. If user named then name = user name
2. If net is connected to top-level port then name = port name; if connected to multiple ports then pick first

port
3. If the net has no driver, then name = net_[i]
4. If the net has a driver, name = instanceName_driverpinName

Slices
For slices, name = instanceName_driverpinName_sliceRange; for example
u0_out1_4to6.
GND and VCC Nets
The default name for GND/VCC nets is net_GND and net_VCC.
Expanded Nets for Bus Interface Connections
Expanded nets for bus interface connections are named busInterfaceNetName_<i>_driverPinName.

Organizing Your Design on the Canvas
You may find it easier to create and navigate your SmartDesign if you organize and label the instances and
busses on the Canvas.
You can show and hide nets, lock instances, rotate busses, group and ungroup pins, rename instances /
groups / pins, and auto-arrange instances.

To organize your design:
1. Right-click the Canvas and choose Auto Arrange Instances from to automatically arrange instances.

SmartDesign's auto-arrange feature optimizes instance location according to connections and instance
size.

2. Right-click any instance and choose Lock Location to fix the placement. Auto-Arrange will not move
any instances that are locked.

3. Click Auto-Arrange again to further organize any unlocked instances. Continue arranging and locking
your instances until you are satisfied with the layout on the Canvas.

If your design becomes cluttered, group your pins. It may help to group pins that are functionally similar, or
to group pins that are already connected or will be unused in your design.

To further customize your design's appearance:
Double-click the names of instances to add custom names. For example, it may be useful to rename an
instance based on a value you have set in the instance: the purpose of an instance named
'array_adder_bus_width_5' is easier to remember than 'array_adder_0'.

Adding Components and Modules (Instantiating)

Libero SoC User's Guide 47

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Creating a SmartDesign

Adding Components and Modules (Instantiating)
SmartDesign components, Design Block cores, IP cores, and HDL modules are displayed in the Design
Hierarchy and Files tabs.

To add a component, do either of the following:
• Select the component in the Design Hierarchy tab or Catalog and drag it to the Canvas.
• Right-click a component in the Design Hierarchy tab or Catalog and choose Instantiate in

<SmartDesign name>.
The component is instantiated in the design.
SmartDesign creates a default instance name. To rename the instance, double-click the instance name in
the Canvas.

Adding a SmartDesign Component
SmartDesign components can be instantiated into another SmartDesign component.
Once a SmartDesign is generated, the exported netlist can be instantiated into HDL like any other HDL
module.
Note: HDL modules with syntax errors cannot be instantiated in SmartDesign. However, since

SmartDesign requires only the port definitions, the logic causing syntax errors can be
temporarily commented out to allow instantiation of the component.

Adding or Modifying Top Level Ports
You can add ports to, and/or rename ports in your SmartDesign.

Add Prefixes to Bus Interface / Group Names on Top-level Ports:
Bus Interfaces and Groups are composed of other ports. On the top level, you can add prefixes to the group
or bus interface port name to the sub-port names. To do so, right-click the group or bus interface port and
choose Prefix <name> to Port Names.

Adding/Renaming Ports
To add ports:

1. From the SmartDesign menu, choose Add port. The Add Port dialog box appears (as shown below).

48 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 17 · Add New Port Dialog Box

2. Specify the name of the port you wish to add. You can specify a bus port by indicating the bus width
directly into the name using brackets [], such as mybus[3:0].

3. Select the direction of the port.
To remove a port from the top level, right-click the port and choose Delete Top Level Port.

Modify Port
To rename a top-level port, right-click the top-level port and choose Modify Top Level Port. You can
rename the port, change the bus width (if the port is a bus), and change the port direction.
Right-click a top-level port and choose Modify Port to change the name and/or direction (if available).

See Also
Top Level Connections

Automatic Connections

Libero SoC User's Guide 49

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Connecting Instances

Automatic Connections
Using automatic connections (as shown in the figure below) enables the software to connect your design
efficiently, reducing time required for manual connections and the possibility of introducing errors.
Auto Connect also constructs your bus structure if you have a processor with peripherals instantiated. Based
on the type of processor and peripherals, the proper busses and bridges are added to your design.
To auto connect the bus interfaces in your design, right-click the design Canvas and select Auto Connect,
or from the SmartDesign menu, choose Auto Connect.
SmartDesign searches your design and connects all compatible bus interfacescompatible bus interfaces.
SmartDesign will also form known connections for any SoC systems such as the processor CLK and RESET
signals.
If there are multiple potential interfaces for a particular bus interface, Auto Connect will not attempt to make
a connection; you must connect manually. You can use the Canvas to make the manual connections.

50 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 18 · Auto-Connected Cores

QuickConnect
The QuickConnect dialog box enables you to make connections in your design without using the Canvas. It
is useful if you have a large design and know the names of the pins you wish to connect. Connections are
reflected in the Canvas as you make them in the dialog box; error messages appear in the Log window
immediately. It may be useful to resize the QuickConnect dialog box so that you can view the Log window or
Canvas while you make connections.

QuickConnect

Libero SoC User's Guide 51

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To connect pins using QuickConnect:
1. Find the Instance Pin you want to connect and click to select it.
2. In Pins to Connect, find the pin you wish to connect, right-click and choose Connect. If necessary,

use the Search field to narrow down the list of pins displayed in Pins to Connect.

Note that if the connection is invalid then Connect is grayed out.

If you wish to invert or tie a pin high, low or Mark Unused:
1. Find the Instance Pin you want to invert or tie high/low
2. Right-click Connection and choose Invert, Tie High, Tie Low or Mark Unused.

If you wish to promote a pin to the top level of your design:

1. Find the Instance Pin you want to promote.
2. Right-click the pin and choose Promote to Top.

You can perform all connectivity actions that are available in the Canvas, including: slicing bus pins, tying
bus pins to a constant value, exposing pins from a bus interface pins and disconnecting pins. All actions are
accessible from the right-click context menu on the pin.
Instance Pins lists all the available instance pins in your design and their connection (if any). Use the drop-
down list to view only unconnected pins, or to view the pins and connections for specific elements in your
design.
Pins to Connect lists the instances and pins in your design. Use the Search field to find a specific instance
or pin. The default wildcard search is '*.*'. Wildcard searches for CLK pins (*.*C*L*K) and RESET pins
(*.*R*S*T) are also included.
Here are some of the sample searches that you may find useful:

• *UART*.*: show all pins of any instances that contain UART in the name
• MyUART_0.*: only show the pins of the “MyUART_0” instance
• *.p: show all pins in the design that contain the letter ‘p’

Double-click an instance in Pins to Connect to expand or collapse it.
The pin letters and icons in the QuickConnect dialog box are the same as the Canvas icons and
communicate information about the pin. Inputs, Outputs and I/Os are indicted by I, O, and I/O, respectively.
Additional information is communicated by the color:

• Red - Mandatory connection, unconnected
• Green - Connected
• Grey - Optional, unconnected pin
• Brown - Pad
• Light Green - Connected to a default connection on generation
• Blue - Driver pin

52 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 19 · QuickConnect Dialog Box

Manual Connections
You can use Connection Mode to click and drag and connect pins. Click the Connection Mode button to
toggle it, and click and drag between any two pins to connect them. Illegal connections will not be allowed.
To make manual connections between to pins on the Canvas, select both pins (use CTRL + click), right-click
either pin and choose Connect. If the pins cannot be legally connected the connection will fail.

Deleting Connections
To delete a net connection on the Canvas, click to select the net and press the Delete key, or right-click and
choose Delete.
To remove all connections from one or more instances on the Canvas, select the instances on the Canvas,
right-click and choose Clear all Connections. This disconnects all connections that can be disconnected
legally.
Certain connections to ports with PAD properties cannot be disconnected. PAD ports must be connected to
a design’s top level port. PAD ports will eventually be assigned to a package pin. In SmartDesign, these
ports are automatically promoted to the top level and cannot be modified or disconnected.

Top-Level Connections

Libero SoC User's Guide 53

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Top-Level Connections
Connections between instances of your design normally require an OUTPUT (Driver Pin) on one instance to
one or more INPUT(s) on other instances. This is the basic connection rule that is applied when connecting.
However, directions of ports at the top level are specified from an external viewpoint of that module. For
example, an INPUT on the top level is actually sending (‘driving’) signals to instances of components in your
design. An OUTPUT on the top level is receiving (‘sinking’) data from a Driver Pin on an internal component
instance in your SmartDesign design.
The implied direction is essentially reversed at the top-level. Making connections from an OUTPUT of a
component instance to an OUTPUT of top-level is legal.
This same concept applies for bus interfaces; with normal instance to instance connections, a MASTER
drives a SLAVE interface. However, they go through a similar reversal on the top-level.

54 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Bus Interfaces

About Bus Interfaces
A bus interface is a standard mechanism for specifying the interconnect rules between components or
instances in a design. A bus definition consists of the roles, signals, and rules that define that bus type. A
bus interface is the instantiation of that bus definition onto a component or instance.
The available roles of a bus definition are master, slave, and system.
A master is the bus interface that initiates a transaction (such as read or write) on a bus.
A slave is the bus interface that terminates/consumes a transaction initiated by a master interface.
A system is the bus interface that does not have a simple input/output relationship on both master/slave.
This could include signals that only drive the master interface, or only drive the slave interface, or drive both
the master and slave interfaces. A bus definition can have zero or more system roles. Each system role is
further defined by a group name. For example, you may have a system role for your arbitration logic, and
another for your clock and reset signals.
Mirror roles are for bus interfaces that are on a bus core, such as CoreAHB or CoreAPB. They are
equivalent in signal definition to their respective non-mirror version except that the signal directions are
reversed.
The diagram below is a conceptual view of a bus definition.

Using Bus Interfaces in SmartDesign

Libero SoC User's Guide 55

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 20 · Bus Definition

See Also:
Using bus interfaces in SmartDesign

Using Bus Interfaces in SmartDesign
Adding bus interfaces to your design enables SmartDesign to do the following:
• Auto connect compatible interfaces
• Enforce DRC rules between instances in your design
• Search for compatible components in the project

The Catalog in the Project Manager contains a list of Microsemi SoC-specific and industry standard bus
definitions, such as AMBA.
You can add bus interfaces to your design by dragging the bus definitions from the Bus Interfaces tab in the
Catalog onto your instances inside SmartDesign.
SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
If your block has all the necessary signals to interface with the AMBA bus protocol (ex: address, data,
control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

56 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection.
Some cores have bus interfaces that are instantiated during generation.
Certain bus definitions cannot be instantiated by a user. Typically these are the bus definitions that define a
hardwired connection and are specifically tied to a core/macro. They are still available in the catalog for you
to view their properties, but you will not be able to add them onto your own instances or components. These
bus definitions are grayed out in the Catalog.
A hardwired connection is a required silicon interconnect that must be present and specifically tied to a
core/macro. For example, when using the Real Time Counter in a Fusion design you must also connect it to
a Crystal Oscillator core.
Maximum masters allowed - Indicates how many masters are allowed on the bus.
Maximum slaves allowed - Indicates how many slaves are allowed on the bus.
Default value - indicates the value that the input signal will be tied to if unused. See Default tie-offs with bus
interfaces.
Required connection - Indicates if this bus interface must be connected for a legal design.

Adding or Modifying Bus Interfaces in SmartDesign
SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
You can add a bus interface from your HDL module or you can add it from the Catalog.

To add a bus interface using your custom HDL block:
If your block has all the necessary signals to interface with the AMBA bus protocol (such as address, data,
and control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection.

To add (or modify) a bus interface to your Component:
1. Right-click your Component and choose Edit Core Definition. The Edit Core Definition dialog box

opens, as shown in the figure below.

Adding or Modifying Bus Interfaces in SmartDesign

Libero SoC User's Guide 57

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 21 · Edit Core Definition Dialog Box

2. Click Add Bus Interface. Select the bus interface you wish to add and click OK.
3. If necessary, edit the bus interface details.
4. Click Map by Name to map the signals automatically. Map By Name attempts to map any similar

signal names between the bus definition and pin names on the instance. During mapping, bus
definition signal names are prefixed with text entered in the Map by Name Prefix field.

5. Click OK to continue.

Bus Interface Details
Bus Interface Details

Bus Interface: Name of bus interface. Edit as necessary.
Bus Definition: Specifies the name of the bus interface.
Role: Identifies the bus role (master or slave).
Vendor: Identifies the vendor for the bus interface.
Version: Identifies the version for the bus interface.

Configuration Parameters
Configuration Parameters

Certain bus definitions contain user configurable parameters.
Parameter: Specifies the parameter name.
Value: Specifies the value you define for the parameter.

58 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Consistent: Specifies whether a compatible bus interface must have the same value for this bus parameter.
If the bus interface has a different value for any parameters that are marked with consistent set to yes, this
bus interface will not be connectable.

Signal Map Definition
Signal Map Definition

The signal map of the bus interface specifies the pins on the instance that correspond to the bus definition
signals. The bus definition signals are shown on the left, under the Bus Interface Definition. This
information includes the name, direction and required properties of the signal.
The pins for your instance are shown in the columns under the Component Instance. The signal element is a
drop-down list of the pins that can be mapped for that definition signal. .
If the Req field of the signal definition is Yes, you must map it to a pin on your instance for this bus interface
to be considered legal. If it is No, you can leave it unmapped.

Bus Interfaces
When you add a bus interface the Edit Core Definition dialog box provides the following Microsemi SoC-
specific bus interfaces:

ExtSeqCtrl
This bus interface defines the set of signals required to interface to the Analog System External Sequence
Control. If the Analog System is configured with more than a single procedure, it will export this bus
interface. Your own logic would need to connect to this bus interface to properly communicate and control
the sequencer.

RTCXTL
This bus interface represents the hardwired connection needed between the Real Time Counter and the
Crystal Oscillator.

RTCVR
This bus interface represents the hardwired connection needed between the Real Time Counter and the
Voltage Regulator Power Supply Monitor.

InitCfg
This is the initialization and configuration interface that is generated as part of the Flash Memory Builder.
Any clients can be initialized from the Flash Memory as long as it can connect to this bus interface. This is
for pure initialization clients that do not require save-back to the Flash Memory.

InitCfgSave
This is the initialization and configuration interface that is generated as part of the Flash Memory Builder.
Any client can be initialized or saved-back to the Flash Memory as long as it can connect to this bus
interface. This is for clients that require initialization and save-back capabilities to the Flash Memory.

InitCfgCtrl
This interface is used to initiate the save-back procedure of the Flash Memory.

InitCfgAnalog
This interface is required between the Flash Memory System and the Analog System core.

DirectCore Bus Interfaces

Libero SoC User's Guide 59

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

FlashDirect
This bus interface defines the set of signals that are required to interface directly to the Flash Memory. From
the Flash Memory, if you add a data storage client, this interface will be exported. Interfacing to this interface
enables direct access to the Flash Memory.

XTLOscClk
This interface represents the Crystal Oscillator clock.

RCOscClk
This interface represents the RC Oscillator clock.

DirectCore Bus Interfaces
When you add a bus interface the Edit Core Definition dialog box provides the following DirectCore bus
interfaces.

AHB
The AMBA AHB defines the set of signals for a component to connect to an AMBA AHB or AHBLite bus.
The bus interface that is defined in the system is a superset of the signals in the AHB and AHBLite protocol.
You can use the AHB bus interface in the bus definition catalog to connect your module to an AHB or
AHBLite bus.

APB
The AMBA APB defines the set of signals for a component to connect to an AMBA APB or APB3 bus. The
bus interface that is defined in the system is a superset of the signals in the APB and APB3 protocol. You
can use the APB bus interface in the bus definition catalog to connect your module to an APB or APB3 bus.

SysInterface
The SysInterface is the interface used between the CoreMP7 and CoreMP7Bridge cores.

DBGInterface
This is the set of debug ports on the CoreMP7 core.

CPInterface
This is the co-processor interface on the CoreMP7 core.

Show/Hide Bus Interface Pins
Pins that are contained as part of a bus interface will automatically be filtered out of the display. These ports
are considered to be connected and used as part of a bus interface.
However, there are situations where you may wish to use the ports that are part of the bus interface as an
individual port, in this situation you can choose to expose the pin from the bus interface.

To Show/Hide pins in a Bus Interface:
1. Select a bus interface port, right-click, and choose Show/Hide BIF Pins. The Show/Hide Pins to

Expose dialog box appears (as shown below).

60 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 22 · Expose Driver Pin Dialog Box

2. Click the checkbox associated with the driver pin you want to show. Once the port is shown it appears
on the Canvas and is available for individual connection.

Note: If you have already connected the bus interface pin, then you will not be able to expose the non-
driver pins. They will be shown grayed out in the dialog. This is to prevent the pin from being
driven by two different sources.

To un-expose a driver pin, right-click the exposed port and choose Show/Hide BIF Pins and de-select the
pin.

Default Tie-offs with Bus Interfaces
Bus definitions can contain default values for each of the defined signals. These default values specify what
the signal should be tied to if it is mapped to an unconnected input pin on the instance.
Bus definitions are specified as required connection vs optional connection that defines the behavior of tie-
offs during SmartDesign generation.
Required bus interfaces - The signals that are not required to be mapped will be tied off if they are mapped
to an unconnected input pin.
Optional bus interfaces - All signals will be tied off if they are mapped to an unconnected input pin.

Tying Off (Disabling) Unused Bus Interfaces
Tying off (disabling) a bus interface sets all the input signals of the bus interface to the default value.
To tie off a bus interface, right-click the bus interface and select Tie Off.
This is useful if your core includes a bus interface you plan to use at a later time. You can tie off the bus
interface and it will be disabled in your design until you manually set one of the inputs.
Some bus interfaces are required; you cannot tie off a bus interface that is required. For example, the
Crystal Oscillator to RTC (RTCXTL) bus interface is a silicon interface and must be connected.
To enable your pin, right-click the pin and choose Clear Attribute.

Required vs. Optional Bus Interfaces
A required bus interface means that it must be connected for the design to be considered legal. These are
typically used to designate the silicon interconnects that must be present between certain cores. For

Promoting Bus Interfaces to Top-level

Libero SoC User's Guide 61

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

example, when using the Real Time Counter in a Fusion design you must also connect it up to a Crystal
Oscillator core.
An optional bus interface means that your design is still considered legal if it is left unconnected. However, it
may not functionally behave correctly.

Figure 23 · Required Unconnected, Optional Unconnected, and Connected Bus Interfaces

See Also
Canvas icons

Promoting Bus Interfaces to Top-level
To automatically connect a bus interface to a top-level port, select the bus interface, right-click, and choose
Promote To Top Level.
This automatically creates a top-level bus interface port of that name and connects the selected port to it. If
a bus interface port name already exists, a choice is given to either connect to the existing bus interface port
or to create a new bus interface port with a name <port name>_<i> where i = 1...n.
The signals that comprise the bus interface are also promoted.
Promoting a bus interface is a shortcut for creating a top-level port and connecting it to an instance pin.

62 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Incremental Design

Reconfiguring a Component
To reconfigure a component used in a SmartDesign:
• In the Canvas, select the instance and double-click the instance to bring up the appropriate

configurator, or the HDL editor; or select the instance, right-click it, and choose Configure
Component.

• Select the component in the Design Hierarchy tab and from the right-click menu select Open
Component.

When the configurator is launched from the canvas, you cannot change the name of the component.

See Also
Design state management
Replacing components

Fixing an Out-of-Date Instance
Any changes made to the component will be reflected in the instance with an exclamation mark when you
update the definition for the instance. An instance may be out-of-date with respect to its component for the
following reasons:
• If the component interface (ports) is different – after reconfiguration - from that of the instance
• If the component has been removed from the project
• If the component has been moved to a different VHDL library
• If the SmartDesign has just been imported

You can fix an out-of-date instance by:

• Replacing the component with a new component (as shown in the figure below)
• Updating with the latest component

Figure 24 · Right-Click Menu - Replace Component for this Instance

See Also
Design state management

Replacing Component Version

Libero SoC User's Guide 63

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Reconfiguring components
Replacing components

Replacing Component Version
Components of an instance on the Canvas can be replaced with another component and maintain
connections to all ports with the same name.

To replace a component in your design:
1. Select the component in the Design Hierarchy, right-click, and choose Replace Component Version.

The Replace Component for Instance dialog box appears (see figure below).

Figure 25 · Replace Component Version Dialog Box

2. Select the version you want to replace it with and click OK.

Design State Management
When any component with instances in a SmartDesign design is changed, all instances of that component
detect the change.
If the change only affects the memory content, then your changes do not affect the component's behavior or
port interface and your SmartDesign design does not need to be updated.
If the change affects the behavior of the instantiated component, but the change does not affect the
component's port interface, then your design must be resynthesized, but the SmartDesign design does not
need to be updated.
If the port interface of the instantiated component is changed, then you must reconcile the new definition for
all instances of the component and resolve any mismatches. If a port is deleted, SmartDesign will remove
that port and clear all the connections to that port when you reconcile all instances. If a new port is added to
the component, instances of that component will contain the new port when you reconcile all instances.
The affected instances are identified in your SmartDesign design in the Grid and the Canvas with an
exclamation point. Right-click the instance and choose Update With Latest Component.
Note: For HDL modules that are instantiated into a SmartDesign design, if the modification

causes syntax errors, SmartDesign does not detect the port changes. The changes will be
recognized when the syntax errors are resolved.

Changing memory content
For certain cores such as Analog System Builder, Flash Memory, or FlexRAM it is possible to change the
configuration such that only the memory content used for programming is altered. In this case Project
Manager (SoC) will only invalidate your programming file, but your synthesis, compile, and place-and-route
results will remain valid.
When you modify the memory content of a core such as Analog System Builder or RAM with Initialization
that is used by a Flash Memory core, the Flash Memory core indicates that one of its dependent
components has changed and that it needs to be regenerated. This indication will be shown in the Hierarchy

or Files Tab .
RAM with Initialization core - You can modify the memory content without invalidating synthesis.
Analog System Builder core - You can modify the following without invalidating synthesis:

• Existing flag settings: threshold levels, assertion/de-assertion counts, OVER/UNDER type

64 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Modifying sequence order or adding sequence operations
• Changing acquisition times
• Resistor Value for the Current Monitor
• RTC time settings
• Gate Driver source current

Flash Memory System Builder core - You can modify the following without invalidating synthesis:

• Modifying memory file or memory content for clients
• JTAG protection for Init Clients

Design Rules Check
The Design Rules Check runs automatically when you generate your SmartDesign; the results appear in the
Reports tab. To view the results, from the Design menu, choose Reports.

• Status displays an icon to indicate if the message is an error or a warning (as shown in the figure
below). Error messages are shown with a small red sign and warning messages with a yellow
exclamation point.

• Message identifies the specific error/warning (see list below); click any message to see where it
appears on the Canvas

• Details provides information related to the Message

Figure 26 · Design Rules Check Results

Message Types:
Unused Instance - You must remove this instance or connect at least one output pin to the rest of the
design.
Out-of-date Instance - You must update the instance to reflect a change in the component referenced by
this instance; see Fixing an out-of-date instance.
Undriven Pin - To correct the error you must connect the pin to a driver or change the state, i.e. tie low
(GND) or tie high (VCC).
Floating Driver - You can mark the pin unused if it is not going to be used in the current design. Pins
marked unused are ignored by the Design Rules Check.

Generating a SmartDesign Component

Libero SoC User's Guide 65

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Unconnected Bus Interface - You must connect this bus interface to a compatible port because it is
required connection.
Required Bus Interface Connection – You must connect this bus interface before you can generate the
design. These are typically silicon connection rules.
Exceeded Allowable Instances for Core – Some IP cores can only be instantiated a certain number of
times for legal design. For example, there can only be one CortexM1 or CoreMP7 in a design because of
silicon rules. You must remove the extra instances.
Incompatible Family Configuration – The instance is not configured to work with this project’s Family
setting. Either it is not supported by this family or you need to re-instantiate the core.
Incompatible Die Configuration – The instance is not configured to work with this project’s Die setting.
Either it is not supported or you need to reconfigure the Die configuration.
Incompatible ‘Debug’ Configuration – You must ensure your CoreMP7 and CoreMP7Bridge have the
same ‘Debug’ configuration. Reconfigure your instances so they are the same.
No RTL License, No Obfuscated License, No Evaluation License – You do not have the proper license
to generate this core. Contact Microsemi SoC to obtain the necessary license.
No Top level Ports - There are no ports on the top level. To auto-connect top-level ports, right-click the
Canvas and choose Auto-connect

Generating a SmartDesign Component
Before your SmartDesign component can be used by downstream processes, such as synthesis and
simulation, you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.
Note: The generated HDL file will be deleted when your SmartDesign design is modified and

saved to ensure synchronization between your SmartDesign component and its generated
HDL file.

Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected
before you generate your SmartDesign design.

Generating a Datasheet (SmartFusion, IGLOOe, ProASIC3L, ProASIC3E, Fusion)
If your SmartDesign is the root design in your project, then a Memory Map / Datasheet that contains your
design information is produced.

Generating Firmware and Software IDE Workspace (SmartFusion, IGLOOe, ProASIC3L,
ProASIC3E, Fusion)

If your SmartDesign is the root design in your project, then any compatible firmware drivers for your
peripherals are generated to <project>/firmware.
The datasheet provides all the specifics of the generated firmware drivers.

http://www.actel.com/products/ip/order.aspx

66 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Reference

SmartDesign Menu

Command Icon Function

Generate Component

Generates the SmartDesign component

Auto Connect

Auto-connects instances

Connection Mode

Toggles connection mode on or off

Add Port

Opens the Add Port dialog box, adds a port to the
top SmartDesign component

QuickConnect

Opens the QuickConnect dialog box, enables you
to view, find and connect pins

Auto-Arrange Instances

Adds a port to the top of the SmartDesign
component

Route All Nets

Re-routes your nets; useful if you are unsatisfied
with the default display

Show/Hide Nets

Enables you to show or hide nets on the Canvas

Show/Hide Net Names

Enables you to show or hide net names on the
Canvas

Zoom In

Zooms in on the Canvas

Zoom Out

Zooms out on the Canvas

Zoom to Fit

Zooms in or out to include all the elements on the
Canvas in the view

Zoom Box

Zooms in on the selected area

Enable/Disable Back
Background Grid

Toggle switch to enable or disable the
background grid display in the Canvas

Add Note

Adds text to your Canvas

SmartDesign Glossary

Libero SoC User's Guide 67

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Icon Function

Add Line

Enables you to add a line to the Canvas

Add Rectangle

Enables you to add a rectangle to the Canvas

SmartDesign Glossary

Term Description

BIF Abbreviation for bus interface.

bus An array of scalar ports or pins, where all scalars have a common base
name and have unique indexes in the bus.

Bus
Definition

Defines the signals that comprise a bus interface. Includes which signals
are present on a master, slave, or system interface, signal direction,
width, default value, etc. A bus definition is not specific to a logic or
design component but is a type or protocol.

Bus Interface Logical grouping of ports or pins that represent a single functional
purpose. May contain both input and output, scalars or busses. A bus
interface is a specific mapping of a bus definition onto a component
instance.

Bus Interface
Net

A connection between 2 or more compatible bus interfaces.

Canvas Block diagram, connections represent data flow; enables you to connect
instances of components in your design.

Component Design element with a specific functionality that is used as a building
block to create a SmartDesign core.

A component can be an HDL module, non-IP core generated from the
Catalog, SmartDesign core, Designer Block, or IP core. When you add a
component to your design, SmartDesign creates a specific instance of
that component.

Component
Declaration

VHDL construct that refers to a specific component.

Component
Port

An individual port on a component definition.

Driver A driver is the origin of a signal on a net. The input and slave BIF ports
of the top-level or the output and Master BIF ports from instances are
drivers.

Instance A specific reference to a component/module that you have added to
your design.

68 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Term Description

You may have multiple instances of a single component in your design.
For each specific instance, you usually will have custom connections
that differ from other instances of the same component.

Master Bus
Interface

The bus interface that initiates a transaction (such as a read or write) on
a bus.

Net Connection between individual pins. Each net contains a single output
pin and one or more input pins, or one or more bi-directional pins. Pins
on the net must have the same width.

PAD The property of a port that must be connected to a design’s top level
port. PAD ports will eventually be assigned to a package pin. In
SmartDesign, these ports are automatically promoted to the top-level
and cannot be modified.

Pin An individual port on a specific instance of a component.

Port An individual connection point on a component or instance that allows
for an electrical signal to be received or sent. A port has a direction
(input, output, bi-directional) and may be referred to as a ‘scalar port’ to
indicate that only a single unit-level signal is involved. In contrast, a bus
interface on an instance may be considered as a non-scalar, composite
port.

A component port is defined on a component and an instance port (also
known as a ‘pin’) is part of a component instance.

Signal A net or the electrical message carried on a net.

Slave Bus
Interface

Bus interface that terminates a transaction initiated by a master
interface.

System Bus
Interface

Interface that is neither master nor slave; enables specialized
connections to a bus.

Top Level
Port

An external interface connection to a component/module. Scalar if a 1-
bit port, bus if a multiple-bit port.

Canvas Icons
Hover your pointer over any icon in the SmartDesign Canvas view to display details.

Canvas Icons

Libero SoC User's Guide 69

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

Representation of an
instance in your design. An
instance is a component that
has been added to your
SmartDesign component.
The name of the instance
appears at the top and the
name of the generic
component at the bottom.

The instance type is
indicated by an icon inside
the instance. There are
specific icons for instances
from SmartDesign, HDL, and
ViewDraw. The instance icon
at left indicates a Microsemi
SoC core.

Bus instance; you can click
and drag the end of a bus
instance to resize it; also, the
bus instance will resize
based on the number of
instances that you connect
to it.

Optional unconnected pin.
Required pins are red.

Connected pin

 Pin with default Tie Off

Pin tied low

Pin tied high

Pin inverted

Pin marked as unused

Pin tied to constant

70 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

Instance details. If there are
less than twenty ports, they
are listed in the details.

Bus Net details.

Master bus interface icon. A
master is a bus interface that
initiates a transaction on a
bus interface net.

An unconnected master BIF
with REQUIRED connection
is red (shown at left).

A master BIF with
unconnected OPTIONAL
connection is gray.

Canvas Icons

Libero SoC User's Guide 71

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

Master BIF details, showing
name, role, and state.

The Pin Map shows the
Formal name of the pin
assigned by the component
(in this example,
RCCLKOUT) and the Actual,
or representative name
assigned by the user
(CLKOUT).

Slave BIF (shown at left).

Unconnected slave icons
with REQUIRED connections
are red.

Unconnected slave icons
with OPTIONAL connections
are gray.

Slave BIF details, showing
name, role, and state.

The Pin Map shows the
Formal name of the pin
assigned by the component
(in this example,
RCCLKOUT) and the Actual,
or representative name
assigned by the user
(CLKA).

Master-slave bus interface
connection

72 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

Master-slave bus interface
connection details.

Groups of pins in an
instance.

Fully connected groups are
solid green.

Partially connected groups
are gray with a green outline.

Unconnected groups (no
connections) are gray with a
black outline.

A system BIF is the bus
interface that does not have
a simple input/output
relationship on both
master/slave.

This could include signals
that only drive the master
interface, or only drive the
slave interface, or drive both
the master and slave
interfaces.

System BIF details, showing
name, role, and state.

The Pin Map shows the
Formal name of the pin
assigned by the component
(in this example,
CLIENTAVAILx0), and the
Actual name assigned by the
user (in this example:
ramrd).

VHDL Special Types - Examples and meta.out File Format

Libero SoC User's Guide 73

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

Pad port icon; indicates a
hardwired chip-level pin

VHDL Special Types - Examples and meta.out File Format
The VHDL Special Types are:

• Integer
• Unsigned
• Array and Array of Arrays
• Record

The meta.out file format follows the examples.

Integer
-- Package Declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

package universal_pkg is

subtype integer1 is integer range 0 to 127;

subtype integer2 is integer range 0 to 127;

end package universal_pkg;

--Entity Declaration

entity adder is

port (

D1 , D2 : in integer1;

D3 , D4 : in integer2;

int_out1 : out integer range 0 to 255;

int_out2 : out integer range 0 to 255

);

end entity adder;

Meta.out file:

package universal_pkg

integer integer1 [0 : 127]

integer integer2 [0 : 127]

end

entity adder

D1 integer1

D2 integer1

D3 integer2

D4 integer2

int_out1 integer [0 : 255]

int_out2 integer [0 : 255]

end

74 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Unsigned
Entity declaration:

entity unsigned_2multiply_acc is

port(A : in unsigned(16 downto 0);

B : in unsigned(34 downto 0);

C : in unsigned(13 downto 0);

D : in unsigned(37 downto 0);

E : in unsigned(51 downto 0);

P : out unsigned(51 downto 0);

clk : in std_logic

);

end unsigned_2multiply_acc;

Meta.out file:

entity unsigned_2multiply_acc

A unsigned [16 : 0]

B unsigned [34 : 0]

C unsigned [13 : 0]

D unsigned [37 : 0]

E unsigned [51 : 0]

P unsigned [51 : 0]

End

Array and Array of Arrays
--Package Declaration

library IEEE;

use IEEE.std_logic_1164.all;

package array_package is

subtype ram_input is std_logic_vector(31 downto 0);

 type ram_in is array(1 downto 0) of ram_input;

 type ram_out is array(1 downto 0) of ram_input;

end package array_package;

-- Entity Declaration

entity ram_inference is

 port (

 ram_init : in ram_in;

 write_enable : in std_logic;

 read_enable : in std_logic;

 CLK : in std_logic;

 write_address : in integer range 63 downto 0;

 read_address : in integer range 63 downto 0;

 read_data : out ram_out

);

end entity ram_inference;

Meta.out file:

package array_package

array_of_array ram_in [1 : 0]

VHDL Special Types - Examples and meta.out File Format

Libero SoC User's Guide 75

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

end

array_of_array ram_out [1 : 0]

end

end

entity ram_inference

ram_init[1] ram_in

ram_init[0] ram_in

write_address integer [63 : 0]

read_address integer [63 : 0]

read_data[1] ram_out

read_data[0] ram_out

end

Record
- Package Declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

package record_pkg is

type array1 is array(3 downto 0) of std_logic;

type array2 is array(3 downto 0) of std_logic_vector(3 downto 0);

type test is record

test_std_logic : std_logic;

test_std_logic_vector : std_logic_vector(1 downto 0);

test_integer : integer range 0 to 127;

test_array : array1;

test_array_of_array : array2;

test_unsigned : unsigned(2 downto 0);

end record;

end package record_pkg;

-- Entity Declaration

entity MUX is

generic (N : integer := 1);

port (

mux_in1, mux_in2 : in test;

sel_lines : in std_logic_vector(N-1 downto 0);

mux_out : out test;

mux_array : out array1

);

end entity MUX;

Meta.out file:

package record_pkg

array array1

end

array_of_array array2 [3 : 0]

end

record test

test_integer integer [0 : 127]

76 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

test_array array1

test_array_of_array array2

test_unsigned unsigned [2 : 0]

end

end

entity MUX

mux_in1.test_std_logic test

mux_in1.test_std_logic_vector test

mux_in1.test_integer test

mux_in1.test_array test

mux_in1.test_array_of_array[0] test

mux_in1.test_array_of_array[1] test

mux_in1.test_array_of_array[2] test

mux_in1.test_array_of_array[3] test

mux_in1.test_unsigned test

mux_in2.test_std_logic test

mux_in2.test_std_logic_vector test

mux_in2.test_integer test

mux_in2.test_array test

mux_in2.test_array_of_array[0] test

mux_in2.test_array_of_array[1] test

mux_in2.test_array_of_array[2] test

mux_in2.test_array_of_array[3] test

mux_in2.test_unsigned test

mux_out.test_std_logic test

mux_out.test_std_logic_vector test

mux_out.test_integer test

mux_out.test_array test

mux_out.test_array_of_array[0] test

mux_out.test_array_of_array[1] test

mux_out.test_array_of_array[2] test

mux_out.test_array_of_array[3] test

mux_out.test_unsigned test

mux_array array1

end

meta.out File Format
MetaFile : MetaLibraryItem | MetaPackageList | MetaEntityList
MetaLibraryItem : library <lib_name>
MetaPackageList : MetaPackageItem MetaPackageList
MetaPackageItem : package <package_name> MetaItemDeclarationList end
MetaItemDeclarationList: MetaItem MetaItemDeclarationList
MetaItem : (MetaRecordItem | MetaArrayOfArrayItem | MetaIntegerType | MetaArrayItem)
MetaIntegerItem : (MetaIntegerType | MetaIntegerWithoutType)
MetaIntegerType : integer <integer_name> NumericRange
MetaIntegerWithoutType : integer NumericRange
MetaUnsignedItem : unsigned <name> NumericRange
MetaArrayOfArrayItem : array_of_array < MetaArrayOfArrayName> Range [MetaArrayItem] end
MetaRecordItem : record <record_name> RecordItemList end
RecordItemList : RecordItem RecordItemList

Create Core from HDL

Libero SoC User's Guide 77

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

RecordItem : <Inst_name> (MetaArrayOfArrayName | MetaIntegerItem | MetaUnsignedItem |
MetaSimpleArray)
MetaEnumuratedItem : enum <enum_name> (Item_name{,Item_name})
Range : [NumericRange | MetaEnumuratedItem]
NumericRange : lsd : msd
MetaArrayItem :array <array_name> [<record_name>] end
MetaEntityList : entity <entity_name> MetaEntityItemList end
MetaEntityItemList : MetaEntityItem MetaEntityItemList
MetaEntityItem : (RecordEntityItemList | IntegerEntityItemList | ArrayEntityItemList |
ArrayOfArrayEntityItemList | UnsignedEntityItemList | BufferPortItemList)
RecordEntityItemList : RecordEntityItem RecordEntityItemList
RecordEntityItem : (RecordNormalItem | RecordArrayOfArrayItemList)
RecordNormalItem : <user_port_name>. RecordItem <record_name>
RecordArrayOfArrayItemList : <record_port_name>[index]. RecordItem <record_name>
BufferPortItemList : BufferPortItem BufferPortItemList
BufferPortItem : buffer <buffer_name>
IntegerEntityItemList : IntegerEntityItem IntegerEntityItemList
IntegerEntityItem : <user_port_name> (MetaIntegerType | MetaIntegerWithoutType)
ArrayEntityItemList : ArrayEntityItem ArrayEntityItemList
ArrayEntityItem : <user_port_name> MetaArrayItem
ArrayOfArrayEntityItemList : ArrayOfArrayEntityItem ArrayOfArrayEntityItemList
ArrayOfArrayEntityItem : <port_name> < MetaArrayOfArrayName>
UnsignedEntityItemList : UnsignedEntityItem UnsignedEntityItemList
UnsignedEntityItem : <user_port_name> MetaUnsignedItem

Create Core from HDL
You can instantiate any HDL module and connect it to other blocks inside SmartDesign. However, there are
situations where you may want to extend your HDL module with more information before using it inside
SmartDesign.

• If you have an HDL module that contains configurable parameters or generics.
• If your HDL module is intended to connect to a processor subsystem and has implemented the

appropriate bus protocol, then you can add a bus interface to your HDL module so that it can easily
connect to the bus inside of SmartDesign.

To create a core from your HDL:
1. Import or create a new HDL source file; the HDL file appears in the Design Hierarchy.
2. Select the HDL file in the Design Hierarchy and click the HDL+ icon or right-click the HDL file and

choose Create Core from HDL.
The Edit Core Definition – Ports and Parameters dialog appears. It shows you which ports and
parameters were extracted from your HDL module.

3. Remove parameters that are not intended to be configurable by selecting them from the list and
clicking the X icon. Remove parameters that are used for internal variables, such as state machine
enumerations.
If you removed a parameter by accident, click Re-extract ports and parameters from HDL file to
reset the list so it matches your HDL module.

78 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 27 · Edit Core Definition - Ports and Parameters Dialog Box

4. (Optional) Click Add/Edit Bus Interfaces to add bus interfaces to your core.

After you have specified the information, your HDL turns into an HDL+ icon in the Design Hierarchy. Click
and drag your HDL+ module from the Design Hierarchy to the Canvas.
If you added bus interfaces to your HDL+ core, then it will show up in your SmartDesign with a bus interface
pin that can be used to easily connect to the appropriate bus IP core.
If your HDL+ has configurable parameters then double-clicking the object on the Canvas invokes a
configuration dialog that enables you to set these values. On generation, the specific configuration values
per instance are written out to the SmartDesign netlist.

Figure 28 · HDL+ Instance and Configuration Dialog Box

You can right-click the instance and choose Modify HDL to open the HDL file inside the text editor.

Edit Core Definition
You can edit your core definition after you created it by selecting your HDL+ module in the design hierarchy
and clicking the HDL+ icon.

Remove Core Definition
You may decide that you do not want or need the extended information on your HDL module. You can
convert it back to a regular HDL module. To do so, right-click the HDL+ in the Design Hierarchy and choose
Remove Core Definition. After removing your definition, your instances in your SmartDesign that were

Create HDL

Libero SoC User's Guide 79

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

referencing this core must be updated. Right-click the instance and choose Replace Component for
Instance.

Create HDL
Create HDL opens the HDL editor with a new VHDL or Verilog file. Your new HDL file is saved to your /hdl
directory; all modules created in the file appear in the Design Hierarchy.
You can use VHDL and Verilog to implement your design.

To create an HDL file:
1. In the Design Flow window, double-click Create HDL. The Create new HDL file dialog box opens.
2. Select your HDL Type. Choose whether or not to Initialize file with standard template to populate

your file with default headers and footers. The HDL Editor workspace opens.
3. Enter a Name. Do not enter a file extension; Libero SoC adds one for you. The filename must follow

Verilog or VHDL file naming conventions.
4. Click OK.

After creating your HDL file, click the Save button to save your file to the project .

Using the HDL Editor
The HDL Editor is a text editor designed for editing HDL source files. In addition to regular editing features,
the editor provides keyword highlighting, line numbering and a syntax checker.
You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between
files.
Editing
Right-click inside the HDL Editor to open the Edit menu items. Available editing functions include cut, copy,
paste, Go to line, Comment/Uncomment Selection and Check HDL File. These features are also available in
the toolbar.
Saving
You must save your file to add it to your Libero SoC project. Select Save in the File menu, or click the Save
icon in the toolbar.
Printing
Print is available from the File menu and the toolbar.
Note: To avoid conflicts between changes made in your HDL files, Microsemi recommends that

you use one editor for all of your HDL edits.

HDL Syntax Checker
To run the syntax checker:
In the Files list, double-click the HDL file to open it. Right-click in the body of the HDL editor and choose
Check HDL File.
The syntax checker parses the selected HDL file and looks for typographical mistakes and syntactical errors.
Warning and error messages for the HDL file appear in the Libero SoC Log Window.

Commenting Text
You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a
group of text and applying the Comment command.

To comment or uncomment out text:
1. Type your text.
2. Select the text.
3. Right-click inside the editor and choose Comment Selection or Uncomment Selection.

80 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Find
In the File menu, choose Find and the Find dialog box appears below the Log/Message window. You can
search for a whole word or part of a word, with or without matching the case.
You can search for:

• Match Case
• Match whole word
• Regular Expression

The Find to Replace function is also supported.

Column Editing
Column Editing is supported. Press ALT+click to select a column of text to edit.

Importing HDL Source Files
To import an HDL source file:

1. In the Design Flow window, right-click Create HDL and choose Import Files. The Import Files window
appears.

2. Navigate to the drive/folder that contains the HDL file.
3. Select the file to import and click Open.

Mixed-HDL Support in Libero SoC
You must have ModelSim PE or SE to use mixed HDL in the Libero SoC. You must also have Synplify Pro
to synthesize a mixed-HDL design.
When you create a project, you must select a preferred language. The HDL files generated in the flow (such
as the post-layout netlist for simulation) are created in the preferred language.
The language used for simulation is the same language as the last compiled testbench. (For example, if
tb_top is in Verilog, <fam>.v is compiled.)
If your preferred language is Verilog, the post-synthesis and post-layout netlists are in Verilog 2001.

SmartDesign Testbench
 SmartDesign Testbench is a GUI-based tool that enables you to design your testbench hierarchy. Use
SmartDesign Testbench to instantiate and connect stimulus cores or modules to drive your Root design.
You can create a SmartDesign Testbench by right-clicking a SmartDesign in the Design Hierarchy and
choosing Create Testbench > SmartDesign.
SmartDesign Testbench automatically instantiates the selected SmartDesign into the Canvas.
You can also double-click Create SmartDesign Testbench in the Design Flow window to add a new
SmartDesign testbench to your project.
New testbench files appear in the Stimulus Hierarchy.
SmartDesign Testbench automatically instantiates your root design into the Canvas.
You can instantiate your own stimulus HDL or simulation models into the SmartDesign Testbench Canvas
and connect them to your DUT (design under test). You can also instantiate Simulation Cores from the
Catalog. Simulation cores are basic cores that are useful for stimulus generation, such as driving clocks,
resets, and pulses.
Click the Simulation Mode checkbox in the Catalog to view available simulation cores.

HDL Testbench

Libero SoC User's Guide 81

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

HDL Testbench
You can create a HDL Testbench by right-clicking a SmartDesign in the Design Hierarchy and choosing
Create Testbench > HDL.
HDL Testbench automatically instantiates the selected SmartDesign into the Component.
You can also double-click Create HDL Testbench to open the Create New HDL Testbench dialog box. The
dialog box enables you to create a new testbench file and gives you the option to include standard testbench
content and your design data.

HDL Type
Set your HDL Type: Verilog or VHDL for the testbench.

Name
Specify a testbench file name. A *.v or a *.vhd file is created and opened in the HDL Editor.

Clock Period (ns)
Enter a clock period in nanoseconds (ns) for the clock to drive the simulation. The default value is 100 ns
(10 MHz). Libero creates in the testbench a SYSCLK signal with the specified frequency to drive the
simulation.
Set as Active Stimulus sets the HDL Testbench as the stimulus file to use for simulations. The active
stimulus file/testbench is included in the run.do file that Libero generates to drive the simulation. Setting one
testbench as the Active Stimulus is necessary when there are multiple testbenches in the stimulus hierarchy.

Figure 29 · Create New HDL Testbench File Dialog Box

82 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 30 · HDL Testbench Example - Standard Template and Root Design Enabled

View/Configure Firmware Cores
Use this dialog to select and configure firmware cores (drivers) for your Software IDE project. The Design
Firmware tab lists the compatible firmware for the hardware that you have instantiated in your design. In the
Design Flow tab, expand Create Design and double-click View/Configure Firmware Cores to view the
DESIGN_FIRMWARE tab.
The Firmware table lists the compatible firmware and drivers based on the hardware peripherals that you
have used in your design. Each row represents a firmware core that is compatible with a hardware
peripheral in your design. The columns in the Firmware table are:
• Generate - Allows you to choose whether you want the files for this firmware core to be generated on

disk and added to your Software IDE project. Click the checkbox to generate firmware for each
peripheral in your design.

View/Configure Firmware Cores

Libero SoC User's Guide 83

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Instance Name - This is the name of the firmware instance. This may be helpful in distinguishing
firmware cores when you have multiple firmware cores with the same Vendor:Library:Name:Version
(VLNV) in your design.

• Core Type - Firmware Core Type is the Name from the VLNV id of the core. This generally
corresponds to the name of the hardware peripheral with which the firmware core is compatible.

• Version - Firmware Core Version; you can upgrade or choose a different version via a dropdown
menu in this column.

• Compatible Hardware Instance - The hardware instance in your design that is compatible with this
firmware core.

Downloading Firmware
Libero attempts to find compatible firmware located in the IP Vault located on your disk, as well as firmware
in the IP Repository via the Internet.
If compatible firmware is found in the IP repository but not on your disk, the row will be italicized, indicating
that it needs to be downloaded. To download all firmware cores necessary for your project peripherals, click
the Download All Firmware icon in the vertical toolbar.

Configuring Firmware
Firmware cores that have configurable options will have a wrench icon in the row. Click the wrench icon to
configure the firmware core.
It is important that you check the configuration of your firmware cores if they have configurable options. They
may have options that target your software IDE (Keil, IAR or Softconsole), or your processor, that are vital
configuration options to getting your system to work properly.

Generating Firmware
Click the Generate icon to export the firmware drivers and software IDE project for your project. The
firmware drivers are generated into <project>\firmware and the software workspace is exported to
<project>\<toolchain>. <toolchain> could be SoftConsole, IAR or Keil, depending on your software IDE.
The firmware drivers are also copied into the <toolchain> folder.

Changing Firmware Core Versions
You can manually change to the latest version by selecting the drop down in the Version column.
There will often be multiple versions of a firmware cores available for a particular peripheral. The MSS
Configurator selects the latest compatible version for a new design.
However, once the firmware has been added to your design, Libero will not automatically change to the
latest version if one becomes available.
Note: If a core version is shown in italics it is available in the Web Repository but not in your

Vault; you must download the firmware core version to use it in your design.

Generating Sample Projects
Firmware cores are packaged with sample projects that demonstrate their usage. They are packaged for
specific tool chains, such as Keil, IAR and SoftConsole
To generate a sample project, right-click the firmware core and choose Generate Sample Project, then
select your IDE tool chain (such as Keil), and choose from the list of available samples.
 You will be prompted to select the destination folder for the sample project.
Once this project is generated you can use it as a starting point in your Software IDE tool or use the
example project as a reference on how to use the firmware driver.

84 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Fabric Peripherals
Libero SoC also attempts to find compatible firmware for soft (fabric) peripherals that you have added in
your top-level SmartDesign if that top-level is Set as Root.
To set your top-level design as a root, right-click your top-level design in the Design Hierarchy and choose
Set as Root. The root component appears in bold.
The figure below shows CoreGPIO, CorePWM and CoreUARTapb soft cores that have been added into
your top-level SmartDesign.

Figure 31 · Firmware Cores Tab (DESIGN_FIRMWARE)

See Also

Exporting Firmware and the Software IDE Workspace
Libero SoC Frequently Asked Questions
Running Libero SoC from your Software Tool Chain
Software IDE Integration

Designer Blocks and Synthesis

Libero SoC User's Guide 85

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Designing with Designer Block Components

Designer Blocks (also generically called "components") enable you to partition a design and optimize critical
sections. You can reuse them later in new applications, ensuring consistent performance. Designing with
blocks enables multiple designers to work independently on parts of a single design.

Designer Block Advantages
• You can focus on the timing of critical blocks and ensure the timing across the blocks meets

requirements before proceeding to the top-level flow.
• Changes in other blocks have no impact on your own block, you can re-use your block without re-

calculating the timing.
• The block can be re-used in multiple designs
• Shorter verification time. You need to re-verify only the portion of the design that has changed.

Designer Block Features
• You can create a Designer Block with or without I/Os.
• A Designer Block can be synthesized, simulated, and placed-and-routed the same way as a regular

design.
• You can lock the place-and-route of the Designer Block to ensure performance does not change.
• Performance and place-and-route can be fixed absolutely; however these rules can be relaxed

gradually, if necessary, to ensure that you can integrate the Designer Block into your <top> project.
• You can use all the features in Designer Blocks in SmartDesign.

Use Designer Blocks When
• The design is congested (uses 90% of the resources on a given die).
• You have difficulty meeting timing by doing the design in its entirety. Blocks enable you to

compartmentalize the design and optimize sections before you optimize the entire design.
• You want to re-use some elements of your design.
• You want to use the identical elements multiple times in a single design.

You cannot use Designer Blocks with all families, they are family and die specific; if your Designer Block has
I/Os it is also package specific.

Supported Families
SmartFusion, IGLOO, ProASIC3, Fusion

Designer Blocks and Synthesis
You must run the synthesis tool in No I/O mode when you create your component. The Designer Block is not
a full design; Libero SoC sets this option for Synplify if you Enable Designer Block creation.
When you Publish a Designer Block, the Project Manager creates a timing shell that enables the synthesis
tool to better synthesize the <top> project. The timing shell is named <blockname>_syn.v(.vhd) if you are
using Synplify or <blockname>_pre.v(.vhd) if you are using Precision.
When you are working in your <top> project, the synthesis tool does not know how many globals you have
in your Designer Block, or if there will be clock sharing. The synthesis tool promotes as many globals as it
can and if you have globals in the Designer Block you will exceed the total number of globals allowed in your
device.

86 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

In this case, you must limit the number of globals added by the synthesis tool so that the total number
(Designer Block plus <top> project) does not exceed the number available on your device.
To add an internal global, you can use either the Synplify constraints editor (SCOPE) or an SDC file.
For example, to add a CLKINT after a CLK port, the command is:
define_attribute {n:CLK} syn_insert_buffer {CLKINT}

See Also
Creating a component in Designer
Creating a component in Libero SoC

Managing I/Os in a Designer Block Component
If you use I/Os in your Designer Block, use the following rules:

• If the I/O is placed in the block, placement and VCCI of the I/O cannot be changed in the <top> design.
• The register combining option cannot be changed in the <top> design.
• Attributes and Vref pins can be changed if the values are legal (the I/O will not be unplaced).

Globals and Designer Block Components
You must manage your globals when creating a Designer Block to ensure that you have some available
after you import the Block into your <top> project.
There is no limit to the number of globals you can use in a Designer Block.

Global Sharing
You can share a global between the Designer Block and the <top> project. You must:

• Use an internal global in the Designer Block.
• Drive the global port in the <top> project with a global net.

Libero SoC removes the internal global and re-routes the entire net.
You can use other global macros in the Designer Block, but you cannot share them with the <top> project.
Global Sharing with SmartFusion, IGLOO, ProASIC3 and Fusion - Use CLKINT in the Designer Block to
share the global in the component with the <top> project.
See the list of Physical Design Constraint (PDC) files for more information on how to assign constraints.

Local Clock
You can use local clocks in your component to save on globals, but you may need to do some floorplanning
in your <top> project.

Limitations
When you create your block, you cannot assign a port-connected net to a local clock.
The routing for local clocks from the blocks cannot always be preserved.
For all other families, local clocks are rerouted only if they are used in more than one block. The local clock
constraint is preserved and the only difference in the routing is from the driver to the entry point of the clock
network (when it gets to the clock network you end up with the same routing since the macros are locked in
the same location).

Designer Block Compile Report
If you instantiate Designer Blocks in your design, the Compile report includes a description of the blocks you
used. The report appears in the Log window after Compile is complete.

Designer Block Component Limitations

Libero SoC User's Guide 87

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The report lists the name of the module, the name of the instance, the number of macros and nets used in
the blocks, and information on how conflicts between blocks were resolved by the Compile options or PDC
commands (if any). For example:
Block Information Report :

==========================

Conflict resolution from Compile options :

==

Placement : Resolve conflict/Keep and Lock non conflicting placement

 Routing : Resolve conflict/Keep and Lock non conflicting routing

 Block Name : core1

Instance Name : core1_inst

| Locked | Total

 Instances | 4 | 4 (100.00%)

 Nets | 3 | 3 (100.00%)

Block Name : core1

Instance Name : core11_inst

PDC Constraints :

 =================

 Move : move_block -inst_name {core11_inst} -left 10 -up 0 -non_logic UNPLACE

| Locked | Total

 Instances | 4 | 4 (100.00%)

Nets | 0 | 3 (0.00%)

Designer Block Component Limitations
If you instantiate the same Designer Block many times in the <top> design, only the first instance retains the
place-and-route information (if it has any); the others do not. Only the netlist is preserved.
To preserve the relative placement and routing of other blocks you must move the blocks using a PDC
command. This PDC file must be imported as a source file along with the netlist(s) and CDB files. If
possible, routing is preserved when you move the blocks with a PDC command.
See the move_block PDC command for more information.

88 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Creating a Designer Block Component in
Libero SoC

Creating a Designer Block Component in Libero SoC
You must create two Libero SoC projects in order to instantiate your Designer Block in Libero SoC: one to
create and publish your Designer Block, and another in which to instantiate your Designer Block. This
section describes how to create your Designer Block.
See Instantiating a Designer Block in Libero SoC for more information.
The general design flow for creating a Designer Block in Libero SoC is shown in the figure below.

Figure 32 · Create a Designer Block Flow in Libero SoC

To create a Designer Block in Libero SoC with a new design:
1. Start a new project. You must select a family that supports Block designs (SmartFusion2,

SmartFusion, IGLOO, ProASIC3, Fusion). After your project opens, from the Project menu, choose
Settings > Flow, and click the Enable Block Creation checkbox.

2. Create a design in Libero SoC (standard design flow - create RTL, synthesize, run place-and-route
and generate the block using Designer).

To create a Designer Block in the Libero SoC with an existing design, open your design and from the
Project menu, choose Setting > Flow, and click the Enable Block Creation checkbox. Note that your

Instantiating a Designer Block in Libero SoC

Libero SoC User's Guide 89

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

design must use a device family that supports Designer Blocks (SmartFusion2, SmartFusion, IGLOO,
ProASIC3, Fusion).

Instantiating a Designer Block in Libero SoC
You must have two projects in order to instantiate your Designer Block in Libero SoC: one to create and
publish your Designer Blocks, and another in which to instantiate your Designer Block. This topic and the
flow shown in the figure below describe how to instantiate your Designer Block in the Libero SoC.
See Creating a Designer Block in Libero SoC for information on how to create a Designer Block. You can
also import your Designer Blocks into SmartDesign.

Figure 33 · Libero SoC Designer Block Instantiation Flow

To instantiate (import) a Designer Block in Libero SoC, import your design netlist and CXF file(s). The CXF
file imports all the files you need for your Designer Block. After you import your files, the design flow is the
same as regular Libero SoC designs. There is no limit to the number of CXF files you can import, but you

90 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

cannot import the same Designer Block more than once, and the family and device for your imported block
must match your project.
After you import the CXF file, the Project Manager displays the imported files in the Design Hierarchy tab.
The Designer Block(s) you instantiate must have the same family and die (and package, if it contains I/Os)
as your current <top> project. If the family, die, and package do not match, Libero SoC asks if you want to
change the current setting to match the one from the Designer Block.
The Project Manager passes all the Designer Block files to Designer automatically.
Note:
• Disable Designer Block creation when you import a component into your <top> project. If you are using

a Designer Block component to create another Designer Block, leave it enabled.
• If you already have an HDL component with the same name as the one you imported, the new

Designer Block component is not be used by default. You must and right-click the Designer Block
component in the Project Manager and choose Use this file to make it use your Designer Block.

RTL Simulation
To perform pre-synthesis simulation, in the Stimulus Hierarchy right-click the testbench and choose
Simulate Pre-Synth Design > Run.
If you want to perform pre-layout simulation, in the Design Flow window, under Verify Pre-Synthesized
design, double-click Simulate.
The default tool for RTL simulation in Libero SoC is ModelSim ME.
ModelSim™ ME is a custom edition of ModelSim PE that is integrated into Libero SoC's design
environment. ModelSim for Microsemi is an OEM edition of Model Technology Incorporated’s (MTI) tools.
ModelSim for Microsemi supports VHDL or Verilog. It only works with Microsemi libraries and is supported
by Microsemi.
Other editions of ModelSim are supported by Libero SoC. To use other editions of ModelSim , simply do not
install ModelSim ME from the Libero SoC CD.
Note: ModelSim for Microsemi comes with its own online help and documentation. After starting

ModelSim, click the Help menu.
See the following topics for more information on simulation in Libero SoC:

• Simulation Options
• Selecting a Stimulus File for Simulation
• Selecting additional modules for simulation
• Performing Functional Simulation

Simulation Options
You can set a variety of simulation options for your project.

To set your simulation options:
1. From the Project menu, choose Project Settings.
2. Click the simulation option you wish to edit: DO file, Waveforms, or Vsim commands.
3. Click Close to save your settings.

DO File
• Use automatic Do file - Select to execute the wave.do or other specified Do file. Use the wave.do file

to customize the ModelSim Waveform window display settings.
• Simulation Run Time - Specify how long the simulation should run in nanoseconds. If the value is 0,

or if the field is empty, there will not be a run command included in the run.do file.
• Testbench module name - Specify the name of your testbench entity name. Default is “testbench,”

the value used by WaveFormer Pro.

Simulation Options

Libero SoC User's Guide 91

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Libero SoC
replaces <top> with the actual top level macro when you run ModelSim.

• Generate VCD file - Select this checkbox to have ModelSim automatically generate a VCD file based
on the current simulation. VCD files can be used in SmartPower. For best results, Microsemi
recommends that a postlayout simulation be used to generate the VCD.

• VCD filename - Specify the name of the VCD file that will be automatically generated by ModelSim
• User defined DO file - Available if you opt not to use the automatic DO file. Input the path or browse

to your user-defined DO file.
• DO Command parameters - Text in this field is added to the DO command.

Waveforms
• Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be

displayed in ModelSim.
• Display waveforms for - You can display signal waveforms for either the top-level testbench or for the

design under test. If you select top-level testbench then Libero SoC outputs the line 'add wave
/testbench/*' in the DO file run.do. If you select DUT then Libero SoC outputs the line 'add wave
/testbench/*' in the run.do file.

• Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands
• SDF timing delays - Select Minimum, Typical, or Maximum timing delays in the back-annotated SDF

file.
• Resolution: The default is family-specific, but you can customize it to fit your needs.

Some custom simulation resolutions may not work with your simulation library. For example,
simulation resolutions above 1 ps will cause errors if you are using ProASIC3 devices (the simulation
errors out because of an infinite zero-delay loop). Consult your simulation help for more information on
how to work with your simulation library and detect infinite zero-delay loops caused by high resolution
values.

Family Default Resolution

ProASIC3 1 ps

IGLOO 1 ps

SmartFusion and Fusion 1 ps

SmartFusion2 1 fs

IGLOO2 1 ps

RTG4 1 ps

• Additional options: Text entered in this field is added to the vsim command.

Simulation Libraries
• Verilog (or VHDL) library path - Enables you to choose the default library for your device, or to

specify your own library. Enter the full pathname of your own library to use it for simulation.
• Restore Defaults: Restores factory settings.

92 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Selecting a Stimulus File for Simulation
Before running simulation, you must associate a testbench. If you attempt to run simulation without an
associated testbench, the Libero SoC Project Manager asks you to associate a testbench or open ModelSim
without a testbench.

To associate a stimulus:
1. Run simulation or in the Design Flow window under Verify Pre-Synthesized Design right-click

Simulate and choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files
dialog box appears.

2. Associate your testbench(es):
• In the Organize Stimulus Files dialog box, all the stimulus files in the current project appear in the

Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.

• In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of
PCI cores, add multiple files to the Associated Source Files list.

• To add a testbench: Select the testbench you want to associate with the block in the Source Files
in the Project list box and click Add to add it to the Associated Source Files list.

• To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

• To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Source Files list, click OK.

Selecting Additional Modules for Simulation
Libero SoC passes all the source files related to the top-level module to simulation .
If you need additional modules in simulation, in the Design Flow window right-click Simulate and choose
Organize Input Files > Organize Source Files. The Organize Files for Simulation dialog box appears.
Select the HDL modules you wish to add from the Simulation Files in the Project list and click Add to add
them to the Associated Stimulus Files list

Performing Functional Simulation
To perform functional simulation:

1. Create your testbench.
2. Right-click Simulate (in the Design Flow window, Implement Design > Verify Post-Synthesis

Implementation > Simulate) and choose Organize Input Files > Organize Simulation Files from the
right-click menu.
• In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the

Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.

• In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of
PCI cores, add multiple files to the Associated Source Files list.

• To add a testbench: Select the testbench you want to associate with the block in the Source Files
in the Project list box and click Add to add it to the Associated Source Files list.

• To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open

Interactively.

Performing DirectCore Functional Simulation

Libero SoC User's Guide 93

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the
simulator runs for 1 µs and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom
buttons to zoom in and out as necessary.

6. From the File menu, select Quit.

Performing DirectCore Functional Simulation
Libero SoC overwrites all the existing files of the Core when you import a DirectCore project (including
testbenches). Save copies of your project stimulus files with new names if you wish to keep them.
You must import a DirectCore BFM file into the Libero SoC in order to complete functional simulation (the
BFM is a stimulus file that you can edit to extend the testbench). VEC files are generated automatically from
the BFM when you run ModelSim.
The SoC Project Manager overwrites your BFM file if you re-import your project. Edit and save your BFM
outside the Libero SoC project to prevent losing your changes. After you re-import your DirectCore project,
you can import your modified BFM again.

To perform functional simulation of a DirectCore project:
1. Right-click a stitched module of the DirectCore project and select Set as root.
2. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open

Interactively.
ModelSim starts and compiles the appropriate source files. When the compilation completes, the
simulator runs for 1 µs and the Wave window opens to display the simulation results.

3. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom
buttons to zoom in and out as necessary.

4. From the File menu, select Quit.

I/O Constraints - SmartFusion2, IGLOO2, and RTG4
SmartFusion2, IGLOO2, and RTG4 I/O constraints are PDC files. Note that for these devices I/O constraint
PDC files are separate from Floorplan constraint PDC files; if you try to import a PDC file that contains both
I/O and Floorplan constraints then Libero SoC errors out with an invalid constraint error.
Libero SoC generates an I/O PDC file automatically if you explicitly add/modify your I/O Constraints in the
post-Compile I/O Editor. Your new I/O PDC file is added to the project and marked as Used.
I/O Constraints enables you to:
Import Files - If you do not have a compiled project, right-click I/O Constraints and choose Import Files to
open the Import Files dialog box and import I/O constraint files (*.pdc files).
Create a New Constraint from Your Root Module - Right-click and choose Create a New Constraint
from your Root Module to create a new constraint if you already have a compiled project.
Link Files - Right-click I/O Constraints and choose Link Files to link PDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.
Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.
Once you import an I/O Constraint file you can double-click the file in the Design Flow window (Create
Constraints > I/O Constraints > <filename>) to open it in the Libero text editor, or right-click the file to:
Use for Compile - Includes the constraint file when you run Compile.
Open in Text Editor - Opens the file in the Text Editor so that you can update the code manually.
Save as - Opens the Save As dialog box, enables you to save the constraint with a different filename. This
is useful if you want to preserve the settings of a particular constraint.
Delete from Project - Removes the file from the project.

94 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Timing Constraints - SmartFusion2, IGLOO2, and RTG4
Timing Constraints enables you to:
Import Files - Double-click Timing Constraints to open the Import Files dialog box and import timing
constraint files (*.sdc files).
Link Files - Right-click Timing Constraints and choose Link Files to link SDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.
Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.
Once you import or generate a Timing Constraint file, you can double-click the file in the Design Flow
window (Create Constraints > Timing Constraints > <filename>) to open it in the Text Editor, right-click
the file to:
Use for Synthesis - Uses the file for synthesis.
Use for Compile - Includes the file during Compile.
Open in Text Editor - Opens the file in the Project Manager Text Editor.
Save as - Opens the Save As dialog box, enables you to save the constraint in a different location and/or
filename. This is useful if you want to preserve the settings of a particular constraint, or to save it outside
your project.
Delete from Project - Removes the file from the project.
Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Floorplan Constraints - SmartFusion2, IGLOO2, and RTG4
SmartFusion2, IGLOO2, and RTG4 Floorplan constraints are PDC files. Note that for SmartFusion2,
IGLOO2, and RTG4 devices Floorplan constraint PDC files are separate from I/O constraint PDC files; if you
try to import a PDC file that contains both I/O and Floorplan constraints then Libero SoC errors out with an
invalid constraint error.
Floorplan Constraints enables you to:
Import Files - Double-click Floorplan Constraints to open the Import Files dialog box and import Floorplan
constraint files (*.pdc files).
Link Files - Right-click FloorPlan Constraints and choose Link Files to link PDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.
Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.
Once you import Floorplan Constraint file you can double-click the file in the Design Flow window (Create
Constraints > Floorplan Constraints > <filename>) to open it in the Text Editor, or right-click the file to:
Use for Compile - Includes the constraint file when you run Compile.
Open in Text Editor - Opens the file in the Project Manager Text Editor.
Save as - Opens the Save As dialog box, enables you to save the constraint with a different filename. This
is useful if you want to preserve the settings of a particular constraint.
Delete from Project - Removes the file from the project.
Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Constraints Overview

Libero SoC User's Guide 95

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Constraints Overview

I/O Constraints (PDC Files)
The software enables you to specify the physical constraints to define the size, shape, utilization, and
pin/pad placement of a design. You can specify these constraints based on the utilization, aspect ratio, and
dimensions of the die. The pin/pad placement depends on the external physical environment of the design,
such as the placement of the device on the board.

Timing Constraints (SDC Files)
Timing constraints represent the performance goals for your designs. Software uses timing constraints to
guide the timing-driven optimization tools in order to meet these goals.
You can set timing constraints either globally or to a specific set of paths in your design.
You can apply timing constraints to:

• Specify the required minimum speed of a clock domain
• Set the input and output port timing information
• Define the maximum delay for a specific path
• Identify paths that are considered false and excluded from the analysis
• Identify paths that require more than one clock cycle to propagate the data
• Provide the external load at a specific port

To get the most effective results you need to set the timing constraints close to your design goals.
Sometimes slightly tightening the timing constraint helps the optimization process to meet the original
specifications.

Floorplanning Constraints (PDC files)
You can use a PDC file to control floorplanning. Import a Floorplanning PDC file to:

• Create Regions
• Assign logic to regions
• Assign nets to regions
• Floorplan a Designer Block

Note: For SmartFusion2, IGLOO2 and RTG4, do not mix I/O Constraints and Floorplanning
Constraints in the same PDC file. If you do, Libero SoC errors out with an invalid constraint
error.

Synthesize (Classic Constraint Flow)
Double-click Synthesize to run synthesis on your design with the default settings specified in the synthesis
tool.
If you want to run the synthesis tool interactively, right-click Synthesize and choose Open Interactively. If
you open your tool interactively, you must complete synthesis from within the synthesis tool.
The default synthesis tool included with Libero SoC is Synplify Pro ME. If you want to use a different
synthesis tool, you can change the settings in your Tool Profiles.
You can organize input synthesis source files via the Organize Source Files dialog box.

Synthesize Options
Some families enable you to set or change synthesis configuration options for your synthesis tool. To do so,
in the Design Flow window, expand Implement Design, right-click Synthesize, and choose Configure
Options. This opens the Synthesize Options dialog box.

96 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 34 · Synthesize Options Dialog Box

Global Nets (Promotions and Demotion)
Use the following options to specify to the Synthesis tool the threshold value beyond which the Synthesis
tool promotes the pins to globals:
• Minimum number of clock pins – specifies the threshold value for Clock pin promotion. The Default

value is 2.
• Minimum number of asynchronous pins – specifies the threshold value for Asynchronous pin

promotion. The default is 12 for all dies of SmartFusion2 and IGLOO2 families and the RT4G150 die of
the RTG4 family. This option is not available for the RT4G150_ES die.

• Minimum number of data pins – specifies the threshold value for data pin promotion to global
resources. It is the minimum fanout of data (non-clock) nets to be kept on globals (no demotion). The
default is 5000 (must be between 1000 and 200000).

Optimizations
Enable retiming – Check this box to enable Retiming during synthesis. Retiming is the process of
automatically moving registers (register balancing) across combinational gates to improve timing, while
ensuring identical logic behavior. The default is no retiming during synthesis.
Use this option to guide the Synthesis tool to optimize RAMs to achieve your design goal:

Synthesize (Classic Constraint Flow)

Libero SoC User's Guide 97

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• High speed – RAM Optimization is geared toward Speed. The resulting synthesized design achieves
better performance (higher speed) at the expense of more FPGA resources.

• Low power – RAM Optimization is geared toward Low Power. RAMS are inferred and configured to
ensure the lowest power consumption.

Additional options for Synplify Pro synthesis
Script file

Click the Browse button to navigate to a Synplify Tcl file that contains the Synplify Pro-specific options.
Libero passes the options in the Tcl file to Synplify Pro for processing.
Additional options
Use this field to enter additional Synplify options. Put each additional option on a separate line.
Note: Libero passes these additional options “as-is” to Synplify Pro for processing. Libero does not perform
any syntax checks for these options. All these options are set on the Active Implementation only.
The list of recommended Synthesis Tcl options below can be added or modified in the Tcl Script File or
Additional Options Editor.
Note: The options from the Additional Options Editor will always have priority over the Tcl Script file options
if they are same.
set_option -use_fsm_explorer 0/1

set_option -frequency 200.000000

set_option -write_verilog 0/1

set_option -write_vhdl 0/1

set_option -resolve_multiple_driver 1/0

set_option -rw_check_on_ram 0/1

set_option -auto_constrain_io 0/1

set_option -run_prop_extract 1/0

set_option -default_enum_encoding default/onehot/sequential/gray

set_option -maxfan 30000

set_option -report_path 5000

set_option -update_models_cp 0/1

set_option -preserve_registers 1/0

set_option -continue_on_error 1/0

set_option -symbolic_fsm_compiler 1/0

set_option -compiler_compatible 0/1

set_option -resource_sharing 1/0

set_option -write_apr_constraint 1/0

set_option -dup 1/0

set_option -enable64bit 1/0

set_option -fanout_limit 50

set_option -frequency auto

set_option -hdl_define SLE_INIT=2

set_option -hdl_param -set "width=8"

set_option -looplimit 3000

set_option -fanout_guide 50

set_option -maxfan_hard 1/0

set_option -num_critical_paths 10

set_option -safe_case 0/1

Any additional options can be entered through the Script File or Additional Options Editor. All of these
options can be added and modified outside of Libero through interactive SynplifyPro.
Refer to the Synplify Pro Reference Manual for detailed information about the options and supported
families.

98 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

 The following options are already set by Libero. Do not include them in the additional options field or Script
File:
add_file <*>

impl <*>

project_folder <*>

add_folder <*>

constraint_file <*>

project <*>

project_file <*>

open_file <*>

set_option –part

set_option -package

set_option -speed_grade

set_option -top_module

set_option -technology

set_option -opcond

set_option -vlog_std

set_option -vhdl2008

set_option -disable_io_insertion

set_option -async_globalthreshold

set_option -clock_globalthreshold

set_option -globalthreshold

set_option -low_power_ram_decomp

set_option -retiming

Synplify Pro ME
Synplify Pro ME is the default synthesis tool for Libero SoC.
To run synthesis using Synplify Pro ME and default settings, right-click Synthesize and choose Run.
If you wish to use custom settings you must run synthesis interactively.

To run synthesis using Synplify Pro ME with custom settings:
1. If you have set Synplify as your default synthesis tool, right-click Synthesize in the Libero SoC Design

Flow window and choose Open Interactively. Synplify starts and loads the appropriate design files,
with a few pre-set default values.

2. From Synplify’s Project menu, choose Implementation Options.
3. Set your specifications and click OK.
4. Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools

and is not intended for synthesis. Embed the defparam statement in between translate_on and
translate_off synthesis directives as follows :
/* synthesis translate_off */
defparam M0.MEMORYFILE = "meminit.dat"

/*synthesis translate_on */
// rest of the code for synthesis

5. Click the RUN button. Synplify compiles and synthesizes the design into an EDIF, *.edn, file. Your
EDIF netlist is then automatically translated by the software into an HDL netlist. The resulting *edn and
*.vhd files are visible in the Files list, under Synthesis Files.
Should any errors appear after you click the Run button, you can edit the file using the Synplify editor.
Double-click the file name in the Synplify window showing the loaded design files. Any changes you
make are saved to your original design file in your project.

6. From the File menu, choose Exit to close Synplify. A dialog box asks you if you would like to save any
settings that you have made while in Synplify. Click Yes.

Precision RTL

Libero SoC User's Guide 99

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: See the Microsemi Attribute and Directive Summary in the Synplify online help for a list of
attributes related to Microsemi devices.

Note: To add a clock constraint in Synplify you must add "n:<net_name>" in your SDC file. If you
put the net_name only, it does not work.

Precision RTL
Libero SoC Classic Constraint Flow supports Precision RTL from Mentor Graphics. Libero SoC Enhanced
Constraint Flow does not support Precision RTL.
To run synthesis with Precision RTL default settings, set Precision RTL as the synthesis tool for your project
(as outlined below), right-click Synthesize and choose Run.
To run synthesis with custom settings, right-click Synthesize and choose Open Interactively. Precision
RTL opens and enables you to change settings before you run synthesis.
If your design is not ready for synthesis then Open does not appear in your right-click menu.

To set Precision RTL as the synthesis tool for your project:
1. From the Project menu, choose Tool Profiles. The Tool Profiles dialog box appears.
2. Click Synthesis to choose the synthesis tool profile.
3. Click the Add button. The Add Profile dialog box appears.
4. Enter a name. This is the name that appears in the Tool Profile dialog box.
5. In the Tool integration dropdown menu choose Precision RTL.
6. Enter the location of Precision RTL and any additional parameters.
7. Click OK.
8. Select Precision RTL in the Tool Profile dialog box and click OK.
9. Double-click Synthesize in the Design Flow window to start Precision RTL and run synthesis.

Identify Debug Design
Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.
To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click
Instrument Design.
Identify features:
• Instrument and debug your FPGA directly from RTL source code .
• Internal design visibility at full speed.
• Incremental iteration - Design changes are made to the device from the Identify environment using

incremental compile. You iterate in a fraction of the time it takes route the entire device.
• Debug and display results - You gather only the data you need using unique and complex triggering

mechanisms.
You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow
outlined below.

To use the Identify Instrumentor and Debugger:
1. Create your source file (as usual) and run pre-synthesis simulation.
2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a

Programming File) without starting Identify.
3. Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
4. In Synplify, click Options > Configure Identify Launch to setup Identify.
5. In Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.

100 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

6. In the Implementations Options dialog, make sure the Implementation Results > Results Directory
points to a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your
resulting EDN file

7. From the Instumentor UI specify the sample clock, the breakpoints, and other signals to probe.
Synplify creates a new synthesis implementation. Synthesize the design.

8. In Libero SoC, select the edif netlist of the Identify implementation you want to use in the flow. Right-
click Compile and choose Organize Input Files > Organize Source Files and select the edif netlist
of your Identify implementation.

9. In Libero SoC, run Compile, Place and Route and Generate a Programming File with the edif netlist
you created with the Identify implementation.

10. In Libero SoC, run Synthesis, Place and Route and Generate a Programming File.
Note: Libero SoC works from the edif netlist of the current active implementation, which is the
implementation you created in Synplify for Identify debug.

11. Double-click Identify Debug Design in the Design Flow window to launch the Identify Debugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

Verify Post-Synthesis Implementation - Simulate
The steps for performing functional (post-synthesis) and timing (post-layout) simulation are nearly identical.
Functional simulation is performed before place-and-route and simulates only the functionality of the logic in
the design. Timing simulation is performed after the design has gone through place-and-route and uses
timing information based on the delays in the placed and routed designs.

To perform functional simulation:
1. If you have not done so, back-annotate your design and create your testbench.
2. Right-click Simulate (in the Design Flow window, Implement Design > Verify Post-Synthesis

Implementation > Simulate) and choose Organize Input Files > Organize Simulation Files from the
right-click menu.
• In the Organize Files for Source dialog box, all stimulus files in the current project appear in the

Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.

• In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of
PCI cores, add multiple files to the Associated Source Files list.

• To add a testbench: Select the testbench you want to associate with the block in the Source Files
in the Project list box and click Add to add it to the Associated Source Files list.

• To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

• To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open

Interactively. ModelSim starts and compiles the appropriate source files. When the compilation
completes, the simulator runs for 1 µs and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to
zoom in and out and measure timing delays.

6. When you are done, from the File menu, choose Quit.

Compile - SmartFusion, IGLOO, ProASIC3, Fusion
See the SmartFusion2/IGLOO2 Compile options if you are using those devices.
Compile contains a variety of functions that perform legality checking and basic netlist optimization. Compile
checks for netlist errors (bad connections and fan-out problems), removes unused logic (gobbling), and

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#downloads

Compile - SmartFusion2, IGLOO2, and RTG4

Libero SoC User's Guide 101

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

combines functions to reduce logic count and improve performance. Compile also verifies that your selected
device has sufficient resources to fit your design.
To compile your device with default settings, right-click Compile in the Design Flow window and choose
Run.
During compile, the Log window displays information about your design, including warnings and errors.
Libero SoC issues warnings when your design violates recommended Microsemi design rules. Microsemi
recommends that you address all warnings, if possible, by modifying your design before you continue.
If the design fails to Compile due to errors, you must modify the design to remove the errors and re-Compile.
To compile your design with custom settings, right-click Compile in the Design Flow window and choose
Configure Options.

Configure Options in Compile
The configuration dialog provides options that enable you to control merge behavior during Compile .

Merge SDC file(s) with Existing Timing Constraints
Select Merge SDC file(s) with existing timing constraints to preserve all existing timing constraints that
you have entered using either the constraints editor or in a previously imported SDC file.
If you import new SDC files and you have this checkbox selected, the software merges the existing
constraints and the constraints from the new SDC files. In case of a conflict, the new constraints have
priority over the existing constraints.
This option is On by default. When this option is Off, all the existing timing constraints are replaced by the
constraints in the newly imported SDC files.

Merge PDC file(s) with Existing Physical Constraints
Select Merge PDC file(s) with existing physical constraints to preserve all existing physical constraints
that you have entered using either one of the MVN tools or in a previously imported PDC file.
If you import new PDC files and you have this checkbox selected, the software merges the existing
constraints and the constraints from the new PDC files. In case of a conflict, the new constraints have
priority over the existing constraints.
This option is On by default. When this option is Off, all the existing physical constraints are replaced by the
constraints in the newly imported PDC files.

Compile - SmartFusion2, IGLOO2, and RTG4
See the Compile options for SmartFusion, IGLOO, ProASIC3, Fusion if you are designing for those families.
Compile contains a variety of functions that perform legality checking and basic netlist optimization. Compile
checks for netlist errors (bad connections and fan-out problems), removes unused logic (gobbling), and
combines functions to reduce logic count and improve performance. Compile also verifies that your selected
device has sufficient resources to fit your design.
To compile your device with default settings, right-click Compile in the Design Flow window and choose
Run.
During compile, the Log window displays information about your design, including warnings and errors.
Libero SoC issues warnings when your design violates recommended Microsemi design rules. Microsemi
recommends that you address all warnings, if possible, by modifying your design before you continue.
If the design fails to compile due to errors, you must modify the design to remove the errors and re-Compile.
To compile your design with custom settings, right-click Compile in the Design Flow window and choose
Configure Options.

102 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 35 · Compile Options Dialog Box

Configure Options
The Compile Options dialog box enables you to control SDC file merge behavior, PDC error reporting, and
limit the number of high fanout nets in the Compile Report.

Merge User SDC file(s) with Existing Timing Constraints
Select Merge User SDC file(s) with existing timing constraints to preserve all existing timing constraints
that you have entered using either the constraints editor or in a previously imported SDC file.
If you import new SDC files and you have this checkbox selected, the software merges the existing
constraints and the constraints from the new SDC files. In case of a conflict, the new constraints have
priority over the existing constraints.
This option is On by default. When this option is Off, all the existing timing constraints are replaced by the
constraints in the newly imported SDC files.

Abort Compile if errors are found in the physical design constraints
Controls the compile flow behavior if errors are encountered in the physical design constraints (PDC) file.
Select this option to stop the flow if any error is reported in reading your PDC file. If you deselect this option,
the tool skips errors when reading your PDC file and reports them as warnings. The default is ON.
This option is useful if you do not wish to debug your PDC commands before you run Compile.
Note: Compile fails even if this option is deselected if there is a PDC command syntax error (for

example, the command does not exist or the syntax of the command is incorrect)
Note: Every time you invoke this dialog box, this option is reset to its default value ON. This is to

ensure that your PDC file is correct.
Enable Single Event Transient mitigation (RTG4 only) - Controls the mitigation of Single Event Transient
(SET) in the FPGA fabric. When this box is checked, SET filters are turned on globally to help mitigate
radiation-induced transients. By default, this box is unchecked.

Compile - SmartFusion2, IGLOO2, and RTG4

Libero SoC User's Guide 103

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Enable Design Separation Methodology Checkbox – Check this box if your design is for security and
safety critical applications and you want to make your design’s individual subsystems (design blocks)
separate and independent (in terms of physical layout and programming) to meet your design separation
requirements. When checked, Libero generates a parameter file (MSVT.param) that details design blocks
present in the design and the number of signals entering and leaving a design block. Microsemi provides a
separate tool, known as Microsemi Separation Verification Tool (MSVT), which checks the final design place
and route result against the MSVT.param file and determines whether the design separation meets your
requirements.
 Limit the number of displayed high fanout nets in compile report to - The number of high fanout nets
to be displayed is controlled using the Limit the number of displayed high fanout nets; the default value
is 10. This means the top 10 nets with the highest fanout will appear in the Compile Report.

Global Promotion/Demotion Options
Number of global resources - The number of available global resources for the die is reported in this field.
It varies with the die size you have selected for the Libero project.
The following options allow you to set the maximum/minimum values for promotion and demotion of global
routing resources.
Maximum Number of global nets that could be demoted to row-globals – Specifies the maximum
number of global nets that could be demoted to row-globals. The default is 16.
Minimum fanout of global nets that could be demoted to row-globals – Specifies the minimum fanout of
global nets that could be demoted to row-global. The default is 300. If you run out of global routing resources
for your design, reduce this number (to allow more globals to be demoted) or select a bigger die for your
design.
Minimum fanout of non-clock nets to be kept on globals – Specifies the minimum fanout of non-clock
(data) nets to be kept on globals (no demotion). The default is 5000. If you run out of global routing resource
for your design, increase this number or select a bigger die for your design.

Block Instantiation Compile Options
If there are multiple blocks instantiated in your design, the software uses the Compile Options to resolve the
conflicts. These options appear only if you are using Blocks in your design.

Placement
Error if conflict - Compile errors out if any instance from a designer block is unplaced. This is the default
option.

Resolve conflict

• Keep non-conflicting placement - If some instances get unplaced for any reason, the non-conflicting
elements remaining are preserved but not locked (you can move them).

• Keep and lock non-conflicting placement - If some instances get unplaced for any reason, the
remaining non-conflicting elements are preserved and locked.

• Discard placement from all blocks – Placement information will be discarded from all blocks even if
there is no conflict.

Routing
Error if conflict - Compile errors out if any preserved net routing in a designer block is deleted.

Resolve conflict

• Keep non-conflicting routing- If a nets' routing is removed for any reason, the routing for the non-
conflicting nets is preserved but not locked (so that they can be rerouted). This is the default option.

• Keep and lock non-conflicting routing- If the routing is removed for any reason, the remaining non-
conflicting nets are preserved and locked; they cannot be rerouted. This is the default option.

• Discard routing from all blocks – Routing information will be discarded from all blocks even if there
is no conflict.

104 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Compile Options (SmartFusion, IGLOO, ProASIC3, and Fusion)

To set custom compile options:
1. Right-click Compile and choose Open Interactively. Designer opens.
2. Click the Compile button. The Compile Options dialog box opens. The Options available are family

specific.
3. Select your options, and click OK.

The Compile Options dialog box enables you to do the following:
• Set your Block Instantiation options (used for conflict resolution when you instantiate multiple blocks)
• Verify Physical Design Constraints
• Perform Globals Management
• Netlist Optimization
• Generate a Compile report in Display of Results
• Set Block Creation options (available only if you are creating a block)

Block Instantiation

Figure 36 · Compile Options – Block Instantiation

Designer uses the Block Instantiation options to resolve conflicts between multiple blocks in your design.
The default options is to return an error if there is overlapping placement between the blocks and resolve
any conflict for nets.
This ensures you are aware that the blocks overlap; you can go back and set the placement to resolve the
conflicts and it will Compile.
See Conflict resolution in Designer Blocks for more information.

Compile Options (SmartFusion, IGLOO, ProASIC3, and Fusion)

Libero SoC User's Guide 105

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Physical Design Constraints
This interface enables you to verify the Physical Design Constraints (PDC) file.

Figure 37 · Compile Options – Physical Design Constraints

Checking the Physical Design Constraint (PDC)
Abort Compile if errors are found in the physical design constraints: Changes the Abort on PDC error
behavior. Select this option to stop the flow if any error is reported in reading your PDC file. If you deselect
this option, the tool skips errors in reading your PDC file and just reports them as warnings. The default is
ON.
Note: The flow always stops even if this option is deselected in the following two cases:
• If there is a Tcl error (for example, the command does not exist or the syntax of the command is

incorrect)
• The assign_local_clock command for assigning nets to LocalClocks fails. This may happen if any floor

planning DRC check fails, such as, region resource check, fix macro check (one of the load on the net
is outside the local clock region). If such an error occurs, then the Compile command fails. Correct
your PDC file to proceed.

Note: Every time you invoke this dialog box, this option is reset to its default value ON. This is to
ensure that your PDC file is correct.

Display object names that are no longer found after netlist matching is performed on the design: Displays
netlist objects in the PDC that are not found in the imported netlist during the Compile ECO mode. Select
this option to report netlist objects not found in the current netlist when reading the internal ECO PDC
constraints. The default is OFF.
Limit the number of displayed messages to: Defines the maximum number of errors/warnings to be
displayed in the case of reading ECO constraints. The default is 10000 messages.

Globals Management
The interface provides a global control to the Compile component of the design flow.

106 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 38 · Compile Options – Globals Management

Automatic Demotion/Promotion
Demote global nets whose fanout is less than: Enables the global clock demotion of global nets to
regular nets.
By default, this option is OFF. The maximum fanout of a demoted net is 12.
Note: A global net is not automatically demoted (assuming the option is selected) if the resulting

fanout of the demoted net is greater than the max fanout value. Microsemi recommends
that the automatic global demotion only act on small fanout nets. Microsemi recommends
that you drive high fanout nets with a clock network in the design to improve timing and
routability.

Promote regular nets whose fanout is greater than: Enables global clock promotion of nets to global
clock network. By default, this option is OFF. The minimum fanout of a promoted net is 200.
But do not promote more than: Defines the maximum number of nets to be automatically promoted to
global. The default value is 0. This is not the total number as nets need to satisfy the minimum fanout
constraint to be promoted. The promote_globals_max_limit value does not include globals that may have
come from either the netlist or PDC file (quadrant clock assignment or global promotion).
Note: Demotion of globals through PDC or Compile is done before automatic global promotion is

done.
Note: You may exceed the number of globals present in the device if you have nets already

assigned to globals or quadrants from the netlist or by using a PDC file. The automatic
global promotion adds globals on what already exists in the design.

Local clocks
Limit the number of shared instances between any two non-overlapping local clock regions to:
Defines the maximum number of shared instances allowed to perform the legalization. It is also for quadrant
clocks.
The maximum number of instances allowed to be shared by 2 local clock nets assigned to disjoint regions to
perform the legalization (default is 12, range is 0-1000). If the number of shared instances is set to 0, no
legalization is performed.

Compile Options (SmartFusion, IGLOO, ProASIC3, and Fusion)

Libero SoC User's Guide 107

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

When inserting buffers to legalize shared instances between non-overlapping local clock regions,
limit the buffers' fanout to: Defines the maximum fanout value used during buffer insertion for clock
legalization. Set the value to 0 to disable this option and prevent legalization (default value is 12, range is 0-
1000). If the value is set to 0, no buffer insertion is performed. If the value is set to 1, there will be one buffer
inserted per pin.
Note: If you assign quadrant clock to nets using MultiView Navigator, no legalization is

performed.

Netlist Optimization
This interface allows you to perform netlist optimization.

Figure 39 · Compile Options – Netlist Optimization

Combining
Combine registers into I/O wherever possible: Combines registers at the I/O into I/O-Registers. Select this
option for optimization to take effect. By default, this option is OFF.

Buffer/Inverter Management
Delete buffers and inverter trees whose fanout is less than: Enables buffer tree deletion on the global signals
from the netlist. The buffer and inverter are deleted. By default, this option is OFF. The maximum fanout of a
net after buffer tree deletion is 12.
Note: A net does not automatically remove its buffer tree (assuming the option is on) if the

resulting fanout of the net (if the buffer tree was removed) is greater than the max fanout
value. Microsemi recomends that the automatic buffer tree deletion should only act on
small fanout nets. From a routability and timing point of view, it is not recommended to
have high fanout nets not driven by a clock network in the design.

Display of Results
This interface lets you generate a Compile report.

108 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 40 · Compile Options – Display of Results

Compile Report
Limit the number of displayed high fanout nets to: Enables flip-flop net sections in the compile report
and defines the number of nets to be displayed in the high fanout. The default value is 10.

Block Creation (Available only when creating Designer Blocks)

Figure 41 · Compile Options – Block Creation

Configure Flash*Freeze

Libero SoC User's Guide 109

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Delete I/Os whenever possible - Deletes I/Os in the block during compile (except TRIBUFF and BIBUFF,
because they cannot be removed). Useful if you have I/Os in your design but want to create a block anyway.
Add buffers on ports whose fanout is greater than <value> - Adds buffers on ports with a fanout greater
than a value you specify. This option enables more predictable block timing. For example, if you have a net
with a fanout of 100 the net will be unrouted. If you add a buffer, the output of the buffer is routed and the
routing is preserved.

See Also
compile

Configure Flash*Freeze
Opens the Flash*Freeze Hardware Settings dialog box. For more information on the Flash*Freeze mode for
SmartFusion2 see the SmartFusion2 Low Power User's Guide.
The fabric SRAMs can be put into a Suspend Mode or a Sleep Mode. This applies to both the Large SRAM
(LSRAM) instances of RAM1xK18 and the Micro SRAM (uSRAM) instances of RAM64x18. These SRAMs
are grouped in rows in Libero® System-on-Chip (SoC) devices

uRAM/LSRAM State
Sleep - Sets to Sleep; LSRAM and uSRAM contents are not retained.
Suspend - Sets to Suspend; LSRAM and uSRAM contents are retained.

MSS Clock Source
The lower the frequency the lower the power will be. But for some peripherals that can remain active (such
as SPI or MMUART), you may need a higher MSS clock frequency (such as to meet the baud rate for
MMUART).
Options are:

• On-Chip 1 MHz RC Oscillator
• On-Chip 50 MHz RC Oscillator

Place and Route - SmartFusion2, IGLOO2, RTG4
This topic describes Place and Route options for SmartFusion2, IGLOO2, RTG4 devices. See the topic for
SmartFusion, IGLOO (except IGLOO2), ProASIC3 and Fusion for information about Place and Route
options for those devices.

To change your Place and Route settings:
Expand Implement Design, right-click Place and Route and choose Configure Options.

Timing-Driven
Timing-Driven Place and Route is selected by default. The primary goal of timing-driven Place and Route is
to meet timing constraints, specified by you or generated automatically. Timing-driven Place and Route
typically delivers better performance than Standard Place and Route.
If you do not select Timing-driven Place and Route, timing constraints are not considered by the software,
although a delay report based on delay constraints entered in SmartTime can still be generated for the
design.
If you have set multiple timing constraint Scenarios in SmartTime, the Scenario selected for TDPR is used in
Timing-Driven layout.

Power-Driven
Select this option to run Power-Driven layout. The primary goal of power-driven layout is to reduce dynamic
power while still maintaining timing constraints.

http://www.actel.com/documents/SmartFusion2_LPower_UG.pdf

110 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

High Effort Layout
Enable this option to optimize performance; layout runtime will increase if you select this option.

Repair Minimum Delay Violations
This option is enabled by default for SmartFusion2, IGLOO2, RTG4 devices.
Enable this option to instruct the Router engine to repair Minimum Delay violations for Timing-Driven Place
and Route mode (Timing-Driven Place and Route option enabled). The Repair Minimum Delay Violations
option, when enabled, performs an additional route that attempts to repair paths that have minimum delay
and hold time violations. This is done by increasing the length of routing paths and inserting routing buffers
to add delay to the top 100 violating paths.
When this option is enabled, Libero adjusts the programmable delays through I/Os to meet hold time
requirements from input to registers. For register-to-register paths, Libero adds buffers.
Libero iteratively analyzes paths with negative minimum delay slacks (hold time violations) and chooses
suitable connections and locations to insert buffers. Not all paths can be repaired using this technique, but
many common cases will benefit.
Even when this option is enabled, Libero will not repair a connection or path which:
• Is a hardwired, preserved, or global net
• Has a sink pin which is a clock pin
• Is violating a maximum delay constraint (that is, the maximum delay slack for the pin is negative)
• May cause the maximum delay requirement for the sink pin to be violated (setup violations)
• Has the sink and driver pins located in the same cluster

Typically, this option is enabled in conjunction with the Incremental Layout option when a design’s maximum
delay requirements have been satisfied.
Every effort is made to avoid creating max-delay timing violations on worst case paths.
Min Delay Repair produces a report in the implementation directory which lists all of the paths that were
considered.
If your design continues to have internal hold time violations, you may wish to rerun repair Minimum Delay
Violations (in conjunction with Incremental Layout). This will analyze additional paths if you originally had
more than 100 violating paths.

Incremental Layout
Choose Incremental Layout to use previous placement data as the initial placement for the next run. If a high
number of nets fail, relax constraints, remove tight placement constraints, deactivate timing-driven mode, or
select a bigger device and rerun Place and Route.
You can preserve portions of your design by employing Compile Points, which are RTL partitions of the
design that you define before synthesis. The synthesis tool treats each Compile Point as a block which
enables you to preserve its structure and timing characteristics. By executing Layout in Incremental Mode,
locations of previously-placed cells and the routing of previously-routed nets is preserved. Compile Points
make it easy for you to mark portions of a design as black boxes, and let you divide the design effort
between designers or teams. See the Synopsys FPGA Synthesis Pro ME User Guide for more information.
Alternatively, you can employ block-based design methodologies. Small designs can be placed, routed,
tuned and then turned into blocks after timing constraints have been met. These blocks can then be
imported into larger designs while ensuring that timing characteristics of the individual blocks are preserved.
See SmartFusion2, IGLOO2, and RTG4 Block Flow for more information.

Use Multiple Pass
Check Multiple Pass to run multiple pass of Place and Route to get the best Layout result. Click Configure
to specify the criteria you want to use to determine the best layout result. For details, see Multiple Pass
Layout Configuration (SmartFusion2, IGLOO2, RTG4).

See Also
SmartTime Constraint Scenario - SmartFusion2, IGLOO2, and RTG4
SmartFusion2, IGLOO2, and RTG4 Block Flow

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

Place and Route - SmartFusion2, IGLOO2, RTG4

Libero SoC User's Guide 111

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Mutiple Pass Layout Configuration (SmartFusion2, IGLOO2, RTG4)
extended_run_lib - Libero SoC Only

112 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Place and Route

The following topic applies to SmartFusion, IGLOO (except IGLOO2), ProASIC3 and Fusion families. See
the SmartFusion2 and IGLOO2 Place and Route topic for information specific to those families.
Place and Route runs automatically using Timing-Driven Place and Route as the default during the push-
button design flow in Libero SoC.
Custom Layout options are saved when you save your ADB after place and route. You must invoke Layout
in interactive mode from Libero SoC and run Layout from Designer to view your custom Layout options.
When your options are saved you can run Layout from Libero, but you must set your additional Layout
Options in Designer. See below for more information on setting additional Layout Options when you open
Interactively.
The I/O Bank Assigner and Global Planner run automatically after you click OK in the Layout Options
dialog box. The I/O Bank Assigner automatically assigns technologies to all I/O banks that have not been
assigned a technology. The Global Planner automatically assigns global nets to clock conditioning circuit
(CCC) locations on the chip in the design.
Note: All I/O technologies assigned to I/O banks by the I/O Bank Assigner in Layout are

unlocked.

To change your Place and Route settings:
Expand Implement Design, right-click Place and Route and choose Configure Options.

Place and Route Options

Timing-Driven
Timing-Driven place and route is selected by default. The primary goal of timing-driven layout is to meet
timing constraints, specified by you or generated automatically. Timing-driven layout typically delivers better
performance than Standard layout.
If you do not select Timing-driven layout, Designer runs Standard layout. Standard layout targets efficient
usage of the chip resources. Chip performance is not optimized. Timing constraints are not considered by
the layout in standard mode, although a delay report based on delay constraints entered in SmartTime can
still be generated for the design. This is helpful to determine if Timing-Driven layout is required.
If you have set multiple timing constraint Scenarios in SmartTime, you can select a scenario from the pull-
down list to perform timing-driven layout. Timing constraints from the Scenario you select will be used in
Timing-Driven layout.

Place and Route Incrementally
Select this option to use previous placement data as the initial placement for next placement run.
Additionally, this will preserve previous placement data during the next incremental placement run.
Router will also be run incrementally. Select to fully route a design when some nets failed to route during a
previous run. Incremental routing should only be used if a low number of nets fail to route (less than 50 open
nets or shorted segments). A high number of failures usually indicates a less than optimal placement (if
using manual placement through macros, for example) or a design that is highly connected and does not fit
in the device. If a high number of nets fail, relax constraints, remove tight placement constraints, deactivate
timing-driven mode, or select a bigger device and rerun Layout. Also, see the Advanced Layout options for
your device.
You can also use it when the post-synthesis netlist has undergone a minor or incremental change.

Place and Route - SmartFusion2, IGLOO2, RTG4

Libero SoC User's Guide 113

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Additional Layout Options Available if you Open Interactively
You must invoke Layout in interactive mode from Libero SoC and run Layout from Designer to view your
custom Layout options. To open Additional Layout Options interactively, in the Design Flow window right-
click Layout and choose Open Interactively.

Lock Existing Placement (Fix)
Locks your existing placement. Use this option if you do not want any changes in your layout.

Power-Driven
Select this option to run Power-Driven Layout. The primary goal of power-driven layout is to reduce dynamic
power while still maintaining timing constraints. This option is available when you select Timing Driven
Layout.
To get the most out of Power-Driven Layout:

1. Enter maximum delay, minimum delay, setup, and hold constraints in SmartTime's constraint editor or
in SDC.

2. Set false paths on any paths that have a constraint, but do not need one (this will help layout meet the
constraints that are needed).

3. Perform Layout with Timing-Driven, Run Place, and Run Route options checked.
4. Resolve worst case setup and maximum delay violations.
5. Generate an SDF back-annotation file.
6. Perform a post layout back-annotated simulation using this SDF file, and export a VCD (Value Change

Dump) file that will capture real activities for each net.
7. Open smartPower and import the VCD file using Simulation > Import VCD File.
8. Perform Layout with Timing-Driven and Power-Driven checked. Run Place and Route.
9. Verify that your timing constraints are still met with SmartTime.

10. Analyze your power with SmartPower.

In case you do not have simulation vectors for your design, the following alternative flow is recommended:
1. Enter maximum delay, minimum delay, setup, and hold constraints in SmartTime's constraint editor or

in SDC.
2. Set false paths on any paths that have a constraint, but do not need one (this will help layout to meet

the constraints that are needed).
3. Perform Layout with Timing-Driven, Run Place, and Run Route options checked.
4. Resolve worst case setup and maximum delay violations.
5. Verify that your timing constraints are still met with SmartTime.
6. Open SmartPower and set clock frequencies and toggle rates for the different clocks. Clock

frequencies can be imported from your timing constraints. Refer to Initialize Frequencies for more
information.

7. Perform Layout with Timing-Driven, and Power-Driven options checked. Run Place and Route.
8. Verify that your timing constraints are still met with SmartTime.
9. Analyze your power with SmartPower

Run Place
Select this option to run the placer during Layout. By default, it reflects the current Layout state. If you have
not run Layout before, Run Place is selected by default. If your design has already been placed but not
routed, this box is cleared by default. You can also select the following incremental placement options.
• Incrementally: Select to use previous placement data as the initial placement for the next place run.
• Lock Existing Placement (fix): Select to preserve previous placement data during the next

incremental placement run.
Incremental options apply to the entire design. For more detailed control of the placer behavior (such as, to
fix placement of a portion of the design), use the MultiView Navigator tools or set fixed attributes on the
placed instances via PDC constraint files.

114 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Run Route
Select to run the router during Layout. By default, it reflects the current Layout state. If you have not run
Layout before, Run Route is checked. Run Route is also checked if your previous Layout run completed with
routing failures. If your design has been routed successfully, this check box is cleared.
• Incrementally: Select to fully route a design when some nets failed to route during a previous run. You

can also use it when the incoming netlist has undergone an ECO. (Engineering Change Order).
Incremental routing should only be used if a low number of nets fail to route (less than 50 open nets or
shorted segments). A high number of failures usually indicates a less than optimal placement (if using
manual placement through macros, for example) or a design that is highly connected and does not fit
in the device. If a high number of nets fail, relax constraints, remove tight placement constraints,
deactivate timing-driven mode, or select a bigger device and rerun Layout. Also, see the Advanced
Layout options for your device.

There is no "Fix" option for the router. In incremental mode the router tries to preserve the existing routing;
there is no guarantee that it will be preserved. Therefore the timing characteristics of the previously routed
portion of the design may change, even if the placement was fixed for that portion of the design. The chance
of this is quite small, and the router will print the list of nets that have fixed terminals (i.e. those nets whose
every pin's macro has the placement FIX attribute).

Use Multiple Passes
Select to run layout multiple times with different seeds. Multiple Pass Layout attempts to improve layout
quality by selecting from a greater number of layout results. Click Configure to set your Multiple Pass
Configuration.
Click the Advanced button to set Timing-Driven options.

SmartFusion, IGLOO, ProASIC3 and Fusion Place and Route
Advanced Options

To set these advanced options during Layout, click Advanced in the Layout dialog box. The Advanced
Layout options are only available in timing-driven Layout mode.

High Effort Layout Mode
This option turns on netlist optimizations to obtain better performance. Layout runtime will increase when
this option is selected. You can also combine this option with the Multi-Pass mode to achieve the best
possible performance.
In the regular flow the compile step in Designer would modify the netlist to make use of efficient resources
on the chip, such as global networks and special macros. When the High Effort Layout option is turned on,
the placer could further change the mapping of the logic components, preserving the original functionality of
the design. The changed netlist is then used in all post-layout Designer tools including back-annotation.
The names and types of the combinational core logic primitives may change. All other logic cells (such as
registers, memory, I/Os or clocks) or combinational logic primitives that are assigned a physical constraint
(locked at a location, assigned to a region, or part of a block component), referred in a timing constraint, or
have a preserve property, will remain unchanged.
When the Lock Existing Placement option is also turned on, the placer runs in regular effort mode.
Note: If you change the High Effort Setting you must rerun Place and Route to complete Layout.

Sequential Optimization
This option turns on optimization of sequential cells in the High Effort Layout mode. This typically enables
register retiming without disturbing timing latency. The names of registers may change unless they are
assigned a physical constraint (locked at a location, assigned to a region, or part of a block component),
referred in a timing constraint, or have a preserve property. Other restrictions may also apply.
The following cases are excluded from sequential optimization:

• Registers that have any timing constraint other than global FMAX, TSU (setup time) or TCO (clock to
out). Registers referred by multi-cycle or exception timing constraints are not moved.

SmartFusion, IGLOO, ProASIC3 and Fusion Place and Route Advanced Options

Libero SoC User's Guide 115

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Registers that feed asynchronous control signals on another register.
• Registers feeding the clock of another register.
• Registers feeding a register in another clock domain.
• Registers that are fed by a register in another clock domain.
• Registers connected to PLL.
• Registers that have PDC attribute “preserve”, assigned a physical constraint (locked at a location,

assigned to a region, or part of a block component).
• Both registers in a direct connection from input I/O-to-register-to-register if both registers have the

same clock and the first register does not fan out to anywhere else. These registers are considered
synchronization registers.

• Both registers in a direct connection from register-to-register if both registers have the same clock, the
first register does not fanout anywhere else, and the first register is fed by another register in a
different clock domain. These registers are considered synchronization registers.

Router

Repair Minimum Delay Violations
With this option selected, layout will perform an additional route that will attempt to repair paths that have
minimum delay and hold time violations. This is done by increasing the length of routing paths and inserting
routing buffers to add delay to paths. Since placement will remain unchanged and no additional tiles or
modules will be inserted, the amount of delay inserted is limited. As a result, this function is best suited to
repair paths with small (0 to 3 ns) hold and minimum delay violations. Paths with large violations will likely
improve, but for a complete repair of these paths, manual placement or source code modification may be
necessary. Every effort will be made to avoid creating max-delay timing violations on worst case paths.
To get the most out of repair minimum delay violations:

1. Enter max-delay, min-delay, setup and hold constraints in SmartTime's constraint editor or in SDC.
2. Set false paths on any paths that have a constraint, but do not need one (this will help layout to meet

the constraints that are needed).
3. Perform Layout with Timing Driven, Run Place, Run Route and optionally Run incrementally

enabled.
4. Resolve worst case setup and max-delay violations before running minimum delay violations repair.
5. After worst case max-delay timing is resolved, evaluate timing in SmartTime’s Timing Analyzer in

minimum delay analysis mode to check for hold time and minimum delay violations.
6. Run repair minimum delay violations with incremental route enabled.

The repair minimum delay violations tool will attempt to fix all hold time and minimum delay violations
by lengthening routing delay paths and inserting routing buffers. As delay is added to paths, worst
case max-delay timing is verified to avoid creating new max-delay timing violations. Designer will
report the worst minimum slack and the number of violating paths in the log window. In some cases,
additional improvement can occur by running repair minimum delay violations multiple times with Run
Incrementally enabled.

7. Perform both maximum and minimum delay timing analysis to check the timing. Manual placement or
source code modification may be necessary to repair all minimum delay violations.

8. After making placement or source code changes, run incremental route and repair minimum delay
violations, and then analyze timing again.

Additional Factors
Runtime may vary greatly with the number of paths that need repair, the number of nets in those paths, and
the resources available for the tool to insert delay. Over-constraining paths will increase runtime, but will not
likely improve results .
The tool will only work on paths that have min delay and hold time constraints. However, other paths that
share common nets to the constrained paths may be inadvertently affected.
It is recommended to run minimum delay violations repair with incremental route. This will ensure that paths
which do not have minimum delay violations are preserved.
Repair will be performed on:

116 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Register to register paths where both registers are on the same global or non-global clock
• Register to register paths where the registers are on different clock networks and a minimum delay

constraint exists
• Input to register, register to output, clock to out, input to output paths with minimum delay or hold

constraint.

You may select programmable input delays to increase delay on input to register paths for devices that
support the feature.

Restore Defaults
Click Restore Defaults to run the factory default settings for Advanced options.

Simulate - Opens ModelSim ME
The back-annotation functions are used to extract timing delays from your post layout data. These extracted
delays are put into a file to be used by your CAE package’s timing simulator. The default simulator for Libero
SoC is ModelSim ME. You can change your default simulator in your Tool Profile.
If you wish to perform pre-layout simulation: In the Design Flow Window, under Verify Pre-Synthesized
design, double-click Simulate.

To perform timing simulation:
1. If you have not done so, back-annotate your design and create your testbench.
2. Right-click Simulate (in Design Flow window, Implement Design > Verify Post-Synthesis

Implementation > Simulate) and choose Organize Input Files > Organize Simulation Files from the
right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source Files in the Project list
box. Files already associated with the block appear in the Associated Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of
multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled. The top level-entity
should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open

Interactively. ModelSim starts and compiles the appropriate source files. When the compilation
completes, the simulator runs for 1 µs and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to
zoom in and out and measure timing delays. If you did not create a testbench with WaveFormer Pro,
you may get error messages with the vsim command if the instance names of your testbench do not
follow the same conventions as WaveFormer Pro. Ignore the error message and type the correct vsim
command.

6. When you are done, from the File menu, choose Quit.

Generate Back Annotated Files - SmartFusion2, IGLOO2, and
RTG4

Generates Back Annotated files for your design.
Back Annotated files include:

Export Back Annotated Files

Libero SoC User's Guide 117

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• *ba.sdf - Standard Delay Format for back-annotation to the simulator.
• *ba.v/.vhd - Post-placement netlist used for back-annotated timing simulation.

To generate these files, in the Design Flow window click Implement Design and double-click Generate
Back Annotated Files.
Right-click Generate Back Annotated Files and choose Configure Options to open the Generate Back
Annotated Files Options dialog box.
Simulator Language Type - Set your simulator language type according to your design.
Timing: Export enhanced min delays for best case - Exports your enhanced min delays to include your
best-case timing results in your Back Annotated file.

Export Back Annotated Files
Libero SoC uses post-layout files for back-annotated timing simulation.
Post-layout files include:

• *ba.sdf - Standard Delay Format for back-annotation to the simulator.
• *ba.v/vhd - Post-layout flattened netlist used exclusively for back-annotated timing simulation. May

contain low level macros not immediately recognizable to you; these were added by the software to
improve your design performance.

To generate a post-layout file, in the Design Flow window click Implement Design and double-click Export
Back Annotated Files.
If you wish to export the Back Annotated files with options that are different than the default, right-click
Export Back Annotated Files and choose Open Interactively.

Generate Bitstream - SmartFusion2, IGLOO2, and RTG4
Generates the bitstream for use with the Run PROGRAM Action tool.
The tool incorporates the Fabric design, eNVM configuration (if configured) and security settings (if
configured) to generate the bitstream file. You need to configure the bitstream before you generate the
bitstream. Right-click Generate Bitstream and choose Configure Options to open the Configure Bitstream
dialog box to select which components you wish to program. Only features that have been added to your
design are available for programming. For example, you cannot select eNVM for programming if you do not
have an eNVM in your design.
Modifications to the Fabric design, eNVM configuration, or security settings will invalidate this tool and
require regeneration of the bitstream file.

118 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in
the Create Design, Create Constraints and Implement Design sections of the Design Flow window.
This operation is completed automatically as the last step if you use the Build button.
When the process is complete a green check appears next to the operation in the Design Flow window (as
shown in the figure below) and information messages appear in the Log window.

Figure 42 · Generate Bitstream (Complete)

See also
Configure Bitstream Dialog Box

Generate Bitstream - SmartFusion2, IGLOO2, and RTG4

Libero SoC User's Guide 119

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Device Programming

Default Programming Data File (*.pdb file) is generated automatically as part of the Libero SoC push-button
design flow.
SmartFusion, IGLOO, ProASIC3 and Fusion devices use the FlashPoint program file generator to create a
programming file. For SmartFusion, IGLOO, and ProASIC3, the FlashPoint interface also enables the
advanced security features.
To open FlashPoint, expand Implement Design, right-click Generate Programming Data and choose
Open Interactively, which will open Designer. Click Programming File within Designer to open FlashPoint.
You can generate the following programming files:

• IEEE 1532 files (*.bsd, *.isc)
• DirectC files (*.dat)
• Programming Data File (*.pdb)
• STAPL file (*.stp)
• Serial Vector Files (*.svf)

You must have completed your design to generate your programming (*.stp or STAPL) file.

See Also
Generate a DAT file
Note: The instructions in this section are for PC only, and are not supported for SmartFusion on

Linux.
Default Programming Data (*.fdb) is generated automatically as part of the Libero SoC push-button design
flow.
This step generates a FDB file that contains the FPGA array only. To add security to the design, you must
use the FlashPro application. Right-click Program Device or Export Programming File to open FlashPro.
When FlashPro opens, choose Modify PDB to add the security settings.
To generate other programming files for the Fusion devices, open FlashPro.

1. When FlashPro opens, click File > Export > Export Single Programming File to open the Export
Programming Files dialog box.

120 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 43 · Export Programming Files Dialog Box

2. Select the Programming File output format you want to generate:

• IEEE 1532 Files (*.bsd; *.isc)
• DirectC File (*.dat)
• STAPL File (*.stp)
• Serial Vector Files (*.svf)

3. Click Export to generate the programming files and then click Close.

Programming Connectivity and Interface - SmartFusion2, IGLOO2,
and RTG4 Only

In the Libero SoC Design Flow window, expand Edit Design Hardware Configuration and double-click
Programming Connectivity and Interface to open the Programming Connectivity and Interface window.
The Programming Connectivity and Interface window displays the physical chain from TDI to TDO or SPI
Slave configuration.
The Programming Connectivity and Interface view enables the following actions:
• Select Programming Mode – Select JTAG or SPI Slave mode. SPI Slave mode is only supported by

FlashPro5.
• Construct Chain Automatically - Automatically construct the physical chain
• Add Microsemi Device – Add a Microsemi Device to the chain
• Add Non-Microsemi Device – Add a non-Microsemi Device to the chain
• Add Microsemi Devices From Files – Add a Microsemi Device from a programming file
• Delete Selected Device – Delete selected devices in the grid

Programming Connectivity and Interface - SmartFusion2, IGLOO2, and RTG4 Only

Libero SoC User's Guide 121

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Scan and Check Chain – Scan the physical chain connected to the programmer and check if it
matches the chain constructed in the grid

• Zoom In – Zoom into the grid
• Zoom Out – Zoom out of the grid

Hover Information
The device tooltip displays the following information if you hover your pointer over a device in the grid:
• Name - Editable field for a user-specified device name. If you have two or more identical devices in

your chain you can use this field to give them unique names.
• Device - Device name.
• File - Path to programming file.
• Programming action – When a programming file is loaded, the user can select a programming action

for any device which is not the Libero design device.
• IR Length - Device instruction length.
• TCK - Maximum clock frequency in MHz to program a specific device; Libero uses this information to

ensure that the programmer operates at a frequency lower than the slowest device in the chain.

Figure 44 · Device Information

Device Chain Details
The device within the chain has the following details:
• Libero design device – Has a red circle within Microsemi logo. Libero design device cannot be

disabled.
• Left/right arrow – Move device to left or right according to the physical chain.
• Enable Device - Select to enable the device for programming; enabled devices are green, disabled

devices are gray.
• Name - Displays your specified device name.
• File - Path to programming file.

Right-Click Properties
• Set as Libero Design Device - The user needs to set Libero design device when there are multiple

identical Libero design devices in the chain.
• Enable Device - Select to enable the device for programming; enabled devices are green, disabled

devices are gray.

122 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• HIGH-Z - Sets disabled Microsemi SoC ProAsic3, IGLOO, Fusion, and SmartFusion devices in the
chain to HIGH-Z (tri-states all the I/Os) during chain programming of enabled Microsemi devices in the
daisy chain (Not supported for Libero SoC target design device)

• Configure Device – Ability to reconfigure the device (for a Libero SoC target device the dialog
appears but only the device name is editable)

• Load Programming File – Load programming file for selected device (Not supported for Libero SoC
target design device)

• Enable Serial - Select to enable serialization when you have loaded a serialization programming file
(not supported in software version 11.0)

• Serial Data - Opens the Serial Settings dialog box; enables you to set your serialization data.
• Select Program Procedure/Actions (Not supported for Libero SoC target design device):

• Actions - List of programming actions for your device.

• Procedures - Advanced option; enables you to customize the list of recommended and
optional procedures for the selected Action.

• Move Device Left/Right – Move device in the chain to left or right.

Figure 45 · Right-click Properties

Programmer Settings - SmartFusion2, IGLOO2, and RTG4 Only
In the Libero SoC Design Flow window, expand Edit Design Hardware Configuration and double-click
Programmer Settings to view the name, type, and port. The dialog box displays information about your
programmer if it is connected.

Figure 46 · Programmer Settings for Connected Programmer

Click Edit Programmer Settings to view the Programmer Settings dialog box. You can set specific voltage
and force TCK frequency values for your programmer in this dialog box.

Programmer Settings - SmartFusion2, IGLOO2, and RTG4 Only

Libero SoC User's Guide 123

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 47 · Programmer Settings Dialog Box

The Programmer Settings dialog box includes setting options for FlashPro5/4/3/3X, FlashPro Lite and
FlashPro.
Set the TCK setting in your PDB/STAPL file by selecting the TCK frequency in the Programmer Settings
dialog box. TCK frequency limits by programmer:
• FlashPro supports 1-4 MHz
• FlashPro Lite is limited to 1, 2, or 4 MHz only.
• FlashPro5/4/3/3X supports 1-4 MHz.

TCK frequency limits by target device:

• SmartFusion2, IGLOO2, and RTG4 - 20MHz

• IGLOO, ProASIC3, Fusion, SmartFusion and SmartFusion2 – 10MHz to 20MHz
• ProASICPLUS and ProASIC – 10 MHz.
During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file overrides the
TCK frequency setting selected by you in the Programmer Settings dialog box unless you also select the
Force TCK Frequency checkbox.

FlashPro Programmer Settings
Choose your programmer settings for FlashPro (see the above figure). If you choose to add the Force TCK
Frequency, select the appropriate MHz frequency. After you have made your selection(s), click OK.

Default Settings

• The Vpp, Vpn, Vdd(l), and Vddp options are checked (Vddp is set to 2.5V) to instruct the FlashPro
programmer(s) to supply Vpp, Vpn, Vdd(l) and Vddp.

• The Driver TRST option is unchecked to instruct the FlashPro programmer(s) NOT to drive the TRST
pin.

• The Force TCK Frequency option is unchecked to instruct FlashPro to use the TCK frequency
specified by the Frequency statement in the STAPL file(s).

FlashPro Lite Programmer Settings
If you choose to add the Force TCK Frequency, select the appropriate MHz frequency. After you have made
your selection(s), click OK.

Default Settings

• The Vpp and Vpn options are checked to instruct the FlashPro Lite programmer(s) to supply Vpp and
Vpn.

124 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• The Driver TRST option is unchecked to instruct the FlashPro Lite programmer(s) NOT to drive the
TRST pin.

• The Force TCK Frequency option is unchecked to instruct the FlashPro Lite to use the TCK frequency
specified by the Frequency statement in the STAPL file(s).

FlashPro5/4/3/3X Programmer Settings
 For FlashPro5/4/3/3X, you can choose the Set Vpump setting or the Force TCK Frequency. If you choose
the Force TCK Frequency, select the appropriate MHz frequency. For FlashPro4/3X settings, you can switch
the TCK mode between Free running clock and Discrete clocking. After you have made your selections(s),
click OK.

Default Settings

• The Vpump option is checked to instruct the FlashPro5/4/3/3X programmer(s) to supply Vpump to the
device.

• The Force TCK Frequency option is unchecked to instruct the FlashPro5/4/3/3X to use the TCK
frequency specified by the Frequency statement in the PDB/STAPL file(s).

• FlashPro5/4/3/3X default TCK mode setting is Free running clock.

Device I/O States During Programming
In the Libero SoC Design Flow window expand Edit Design Hardware Configuration and double-click
Device I/O states during programming to specify the I/O states prior to programming. In Libero SoC, this
feature is only available once Layout is completed.
The default state for all I/Os is Tri-state.

To specify I/O states during programming:
1. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.

Select the I/Os you wish to modify (as shown in the figure below).
2. Set the I/O Output state. You can set Basic I/O settings if you want to use the default I/O settings for

your pins, or use Custom I/O settings to customize the settings for each pin. See the Specifying I/O
States During Programming - I/O States and BSR Details help topic for more information on setting
your I/O state and the corresponding pin values. Basic I/O state settings are:
• 1 – I/O is set to drive out logic High
• 0 – I/O is set to drive out logic Low
• Last Known State: I/O is set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming
• Z - Tri-State: I/O is tristated

Configure User Programming Data

Libero SoC User's Guide 125

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 48 · I/O States During Programming Window

6. Click OK to save your settings.

Note: I/O States During programming will be used during programming or when exporting the
bitstream.

Configure User Programming Data
Sets your Design Version and Silicon Signature.
Design name is a read-only field that identifies your design.
Design Version (number between 0 and 65535) - Specifies the design version to be programmed to the
device. This field is also used for Back-level protection in Update Policy of the Security Policy Manager and
in Enable Auto Update in the Programming Recovery tool.
Silicon signature (max length is 8 HEX chars) - 32-bit user configurable silicon signature to be
programmed into the device. This field can be read from the device using the JTAG (IEEE 1149-1)
USERCODE instruction or by running the DEVICE_INFO programming action.

Figure 49 · Configure User Programming Data Dialog Box

126 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Notes:

Programming Recovery cannot be updated with _UEK1 or _UEK2 programming files. Only the master
programming file can be used.
SPI file programming for Auto Programming, Auto Update (IAP), Programming Recovery, and IAP/ISP
Services currently can only program security once with the master file. Update files cannot update the
security settings. In addition, Programming Recovery, Silicon Signature, Firewall, and Tamper Macro can
only be programmed with the master file and cannot be updated.

Configure Programming Recovery
The Programming Recovery dialog box enables you to set your Auto Update and Programming Recovery
options for programming.
Auto Update takes place during power-up and compares your Update SPI image Design Version against the
Design Version programmed in the device. It performs Auto Update programming on your SPI update Image
if:

• The device has been programmed AND
• The Update SPI image Design Version is greater than the Design Version on the device

Auto Recovery enables the device to automatically reprogram itself if there is a power failure during
programming.
Design version - The Design Version used for Auto Update Programming or for Backlevel protection within
the SPM update policy. This is a read-only field that must be configured within the tool Configure User
Programming Data.
Enable Auto Update - Click the checkbox to auto update the SPI update image at power up. Auto-update
occurs only when the SPI update image Design Version is greater than the Design Version already on the
device. When enabling Auto Update, Programming Recovery must also be enabled and this checkbox will
be disabled.
Enable Programming Recovery - Click the checkbox to enable programming recovery in the event of a
power failure during programming.
SPI clock frequency - Sets your SPI clock frequency. SPI is a full duplex, four-wire synchronous transfer
protocol that supports programmable clock polarity (SPO) and clock phase (SPH).The state of SPO and
SPH control bits decides the data transfer modes. See the SmartFusion2 Microcontroller Subsystem User's
Guide or the IGLOO2 High Performance Memory Subsystem User's Guide for more information.
SPI data transfer mode - Sets your SPI data transfer mode for SPO and SPH. The SPO control bit
determines the polarity of the clock and SPS defines the slave select behavior. SPS is hardcoded to b’1 and
cannot be changed. The SPH control bit determines the clock edge that captures the data. See the
SmartFusion2 Microcontroller Subsystem User's Guide or the IGLOO2 High Performance Memory
Subsystem User's Guide for more information.

Notes:

Programming Recovery cannot be updated with _UEK1 or _UEK2 programming files. Only the master
programming file can be used.
SPI file programming for Auto Programming, Auto Update (IAP), Programming Recovery, and IAP/ISP
Services currently can only program security once with the master file. Update files cannot update the
security settings. In addition, Programming Recovery, Silicon Signature, Firewall, and Tamper Macro can
only be programmed with the master file and cannot be updated.

http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/132009-igloo2-fpga-high-performance-memory-subsystem-user-s-guide
http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/132009-igloo2-fpga-high-performance-memory-subsystem-user-s-guide
http://www.microsemi.com/document-portal/doc_download/132009-igloo2-fpga-high-performance-memory-subsystem-user-s-guide

Configure Programming Recovery

Libero SoC User's Guide 127

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 50 · Configure Programming Recovery Dialog Box

SPM - If Update Policy is enabled and Fabric/eNVM update are protected by UPK1:
Fabric update is disabled for Auto Programming, IAP/ISP services, Programming Recovery and Auto
update. FlashLock/UPK1 unlocking is only available for JTAG and SPI slave programming.
eNVM update is disabled for Auto Programming, IAP/ISP Services, Programming Recovery and Auto
Update. FlashLock/UPK1 unlocking is only available for JTAG and SPI Slave programming.

128 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Features Frequently Asked Questions
The following Frequently Asked Questions address the most common queries related to managing and
programming SmartFusion2 and IGLOO2 Security Features.

I have configured the Security Policy Manager and enabled security in my design but I do not want to program my design
with the Security Policy Manager features enabled. What do I do?

Go to Configure Bitstream and un-check Security.
What is programmed when I click Program Device?

All features configured in your design and enabled in the Configure Bitstream tool. Any features you have
configured (such as eNVM or Security) are enabled for programming by default.

When I click Program Device is the programming file encrypted?

All programming files are encrypted. To generate programming files encrypted with UEK1 or UEK2 you must
generate them from Export Bitstream for field updates.
Note: Once security is programmed, you must erase the security before attempting to reprogram

the security.
How do I generate encrypted programming files with User Encryption Key 1/2?

• Configure the Security Policy Manager and specify a User Key Set 1 and User Key Set 2 (User Key
Set 2 is available if you select Field Update Broadcast mode). Ensure the Security programming
feature is enabled in Configure Bitstream; it is enabled by default once you configure the Security
Policy Manager.

• Export Bitstream from Handoff Design for Production - <filename>_uek1.(stp/svf/spi/dat) and
<filename>_uek2.(stp/svf/spi/dat) files are encrypted with UEK1 and UEK2 respectively. See Security
Programming File Descriptions below for more information on programming files.

What are Security Programming Files?

See the Security Programming Files topic for more information.

Security Programming Files
Export Bitstream (expand Handoff Design for Production in the Design Flow window) creates the following
files:
<filename>_master.(stp/svf/spi/dat) - Created when Enable custom security options is specified in the
Security Policy Manager. This is the master programming file; it includes all programming features enabled,
User Key Set 1, User Key Set 2 (optionally if specified), and your security policy settings.
<filename>_security_only_master.(stp/svf/spi/dat) – Created when Enable custom security options is
specified in the Security Policy Manager. Master security programming file; includes User Key Set 1, User
Key Set 2 (optionally if specified), and your security policy settings.
<filename>_uek1.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 1 used for field
updates; includes all your features for programming except security .
<filename>_uek2.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 2 used for field
updates; includes all your features for programming except security.

Security Policy Manager (SPM)
Expand Configure Security and Programming Options, double-click Configure Security to customize
the security settings in your design.
Use this dialog box to set your User Keys, Security Policies and Microsemi factory test mode access level.
Note: Microsemi enabled default bitstream encryption key modes are disabled after user security is
programmed.

Security Policy Manager (SPM)

Libero SoC User's Guide 129

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 51 · Security Policy Manager Dialog Box

Security Key Mode

Bitstream encryption with default key - Encrypt bitstream files with Microsemi default key (pre-placed key
in silicon). When this option is selected, user keys, security and Microsemi factory test mode access level
configurations are disabled.
Enable custom security options - Enables you to set User Keys, Security Policies and Microsemi factory
test mode access level (see below for a description).

User keys and Security policies protection

Write-protect using FlashLock/UPK1 - Protect UEK1 (User Encryption Key 1), DPK (Debug Pass Key)
and Security Policies using FlashLock/ UPK1.
Note: UEK2 (User Encryption Key2) is protected by UPK2 (User Pass Key 2).
Permanently write-protect - Permanently protect UEK1 (User Encryption Key 1), UPK2 (User Pass Key 2),
UEK2 (User Encryption Key 2), DPK (Debug Pass Key), Security Policies, and Microsemi factory test mode
access level. This setting, once programmed will not be modified in the device. Microsemi enabled default
bitstream encryption key modes are permanently disabled as well.
Note: When this option is selected, you cannot specify the FlashLock/UPK 1 and UPK2 (User Pass Key 2)
value, since the value cannot be used to unlock the corresponding protected features.

Microsemi Factory Test Mode Access Level

Protect factory test mode access using FlashLock/UPK1 - Protects access to Microsemi factory test
mode using Flashlock/ UPK1.
Permanently protect factory test mode access - Permanently locks access to Microsemi factory test
mode.
Note: When this option is selected, User Key Set 2 is permanently write-protected. Once programmed, User
Key Set 2 cannot be changed in the device. You can specify UEK2 (User Encryption Key 2). However, you
cannot specify UPK2 (User Pass Key 2), since the value cannot be used to unlock User Key Set 2.
Allow factory test mode access - Allows access to Microsemi factory test mode.

Security Policies

Update Policy - Sets your Fabric, eNVM and Back Level protections. See the Update Policy topic for more
information.
Note: If Update Policy is enabled and Fabric/eNVM update are protected by UPK1:

130 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Fabric update is disabled for Auto Programming, IAP/ISP services, Programming Recovery and Auto
update. FlashLock/UPK1 unloading is only available for JTAG and SPI slave programming.
eNVM update is disabled for Auto Programming, IAP/ISP Services, Programming Recovery and Auto
Update. FlashLock/UPK1 unlocking is only available for JTAG and SPI Slave programming.
See the following example.

Debug Policy - Enables and sets your Debug Pass Key and debug options. See the Debug Policy topic for
more information.
Key Mode Policy - Configures the key mode to enable or disable. See the Key Mode Policy topic for more
information.

Configuring User Keys

User Key Set 1 is required. User Key Set 1 includes FlashLock/UPK1 (User Pass Key 1) and UEK1 (User
Encryption Key 1).
User Key Set 2 is optional. User Key Set 2 includes UPK2 (User Pass Key 2) and UEK2 (User Encryption
Key 2).
Note that User Pass Key 2 (UPK2) protects only User Encryption Key 2 (UEK2).

Update Policy
This dialog box enables you to specify components that can be updated in the field, and their field-update
protection parameters.
 Choose your protection options from the drop-down menus; click the appropriate checkbox to set your
programming protection preferences.

Fabric update protection

• Use FlashLock/UPK1 to unlock Erase/Write/Verify operations- Select this option to require UPK1
to erase, write, or verify the Fabric.

Note: Fabric update is disabled for Auto Programming, IAP/ISP services, Programming Recovery and Auto
update. FlashLock/UPK1 unlocking is only available for JTAG and SPI slave.
• Updates allowed using UEK1 or UEK2; FlashLock/UPK1 is not required for updates - Encrypted

update is allowed with either UEK1 or UEK2 (if enabled).

Update Policy

Libero SoC User's Guide 131

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

eNVM update protection

• Use FlashLock/UPK1 to unlock Write/Verify/Read operations- Select this option to require UPK1 to
write, verify or read to the eNVM.

Note: eNVM update is disabled for Auto Programming, IAP/ISP Services, Programming Recovery and Auto
Update. FlashLock/UPK1 unlocking is only available for JTAG and SPI Slave programming.
• Updates allowed using UEK1 or UEK2; Flashlock/UPK1 is not required for updates - Encrypted

update is allowed with either UEK1 or UEK2 (if enabled).
Back Level protection - When enabled, a design being loaded must be of a version higher than the Back
Level version value in the programmed device.
• Back Level Protection- Limits the design versions that the device can update. Only programming

bitstreams with Designer Version greater than the Back Level version are allowed for programming.
• Design version - Displays the current Design version (set in the Configure User Programming Data

tool). Back level uses the Design version value to determine which bitstreams are allowed for
programming.

• Back Level Bypass - If selected, design is programmed irrespective of Back Level version.

Note: Back Level Bypass should be set if you allow programming recover with recovery image lower than
the Back Level version selected. Alternatively, you should update the design version of the recovery image
so that it is always greater than the Back Level version. (Refer to the Configure Programming Recovery
section for details.)

Disable access to the following programming interfaces:

These settings protect the following programming interfaces:

• Auto Programming
• IAP/ISP services
• JTAG (use FlashLock to/UPK1 to unlock)
• SPI Slave (use FlashLock/UPK1 to unlock)

For more technical information on the Protect Programming Interface with Pass Key option see the
SmartFusion2 Programming User's Guide.
Note that when the Permanently write-protect option is selected for User keys and Security policies
protection in SPM, the dialog box informs you of features that are no longer reprogrammable. In this case, if
Use FlashLock/UPK1 to unlock option is selected for Fabric/eNVM update protection then Fabric/eNVM will
be One Time Programmable.

http://www.microsemi.com/soc/documents/SmartFusion2_Programming_UG.pdf

132 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 52 · Update Policy Dialog Box

Debug Security Policy
Debug access to the embedded systems can be controlled via the customer Debug Policy.

Protect Embedded Debug with DPK (Debug Pass Key)

Restrict UJTAG access - Restricts access to UJTAG; DPK is required for access.
Restrict Cortex M3 debug (SmartFusion2 Only) - Restricts Cortex M3 debug/SoftConsole use; DPK is
required for debug.

SmartDebug access control

Access control available during debug mode.
Full Access (No restrictions to SmartDebug architecture; DPK is not required)- Enables full debug
access to eNVM, uSRAM, LSRAM, eSRAM0/1, DDRAM and Fabric probing.
No debug (Restrict read/write access to SmartDebug architecture; DPK is required for read/write
access) - Blocks all debug access to eNVM, uSRAM, LSRAM, eSRAM0/1, DDRAM and Fabric probing.

Key Mode Policy

Libero SoC User's Guide 133

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

DPK (Debug Pass Key) (length is 64 HEX characters)

Specify a Debug Pass Key to unlock features protected by DPK.
Restrict external Fabric/eNVM design digest check request via JTAG and SPI. Use FlashLock/UPK1
to allow digest check. - Protects design digest check request with FlashLock/UPK1.
Disable debug access through JTAG (1149.1). Use FlashLock/UPK1 to allow access. - Disables JTAG
(1149.1) test instructions.

Figure 53 · Debug Security Policy Dialog Box

Key Mode Policy
Protect user encryption key modes with FlashLock/UPK1. If a key mode is disabled, then FlashLock/UPK1 is
required to program with that key mode.
Two key modes can be disabled:
• UEK1 (User Encryption Key 1)
• UEK2 (User Encryption Key 2)

If both key modes are disabled then device update is impossible. A warning message is displayed in this
case.
Note: If a key mode is disabled then the corresponding bitstream file will be disabled.

134 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 54 · Programming Key Mode Policy Dialog Box

Update eNVM Memory Content (SmartFusion2 and IGLOO2)
Right-click Update eNVM Memory Content and choose Configure Options (eNVM Memory Content >
Configure Options) or double-click Update eNVM Memory Content to open the dialog box and modify
your eNVM content.
The Update eNVM Memory Content dialog box enables you to update your eNVM content for programming
without having to rerun Compile and Place and Route. It is useful if you have reserved space in the eNVM
configurator within the MSS for firmware development, for example. Use the Update eNVM Memory Content
dialog box when you have completed your firmware development and wish to incorporate your updated
firmware image file into the project.
Note: To disable a client for programming, you must modify the client and select “No Content (Client is a
placeholder and will not be programmed)”. The content from the memory file, serialization data file, or auto-
incremented serialization content will be preserved if you later decide to enable this client for programming.
Clients disabled for programming will not be included in the generated bitstream and will not be
programmed.

Modify Data Storage Client
Double-click the Storage Client to open the Modify Data Storage Client dialog box.
Note: You cannot add, delete or rename a data storage client in the Modify Data Storage Client dialog box.
To make these changes, go to the eNVM configurator inside the MSS/HPMS Configurator or navigate to the
System Builder’s Memory page (eNVM tab).

Update eNVM Memory Content (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 135

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 55 · Modify Data Storage Client Dialog Box

You have three options to specify the eNVM content:

• Import a Memory File
• Fill eNVM content with Zero’s
• Assign No Content (eNVM as a Placeholder). The client will not be included in the programming

bitstream and will not be programmed

If you have completed Place and Route and you import a memory file for the eNVM content, you do not
have to rerun Compile or Place and Route. You can program or export your programming file directly.
Programming will generate a new programming file that includes your updated eNVM content.
You can also specify the start address where the data for that client starts, the word size and the number of
words to reserve for the data storage client.

Modify Serialization Client
Double-click the Serialization Client to open the Modify Serialization Client dialog box.
Note: You cannot add, delete or rename a Serialization Client in the Modify Serialization Client dialog box.
Go to the eNVM configurator inside the MSS/HPMS Configurator or the System Builder Memory page
(eNVM tab) to make these changes.

136 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 56 · Modify Serialization Client Dialog Box

You have three options to specify the eNVM content:

• Import a Memory File
• Increment values automatically
• Assign No Content (eNVM as a Placeholder). The client will not be included in the programming

bitstream and will not be programmed
If you have completed Place and Route and you import a memory file for the eNVM content, you do not
have to rerun Compile or Place and Route. You can program or export your programming file directly.
Programming will generate a new programming file that includes your updated eNVM content.
You can also specify the start address where the data for the Serialization Client starts, the number of pages
and the maximum number of devices you want to program serialization data into.
Setting a maximum number of devices to program for Serialization clients will generate a programming
bitstream file that has serialization content for the number of devices specified. The maximum number of
devices to program must match for all serialization clients. If the user would like to program a subset of the
devices during production programming, this can be done within the FlashPro Express tool, which allows
you to select a range of indices desired for programming for that serialization programming job session.
Refer to the FlashPro Express User's Guide for more information.

Update uPROM Memory Content - RTG4 Only
Use the Update uPROM Memory Content tool if you have reserved space in the uPROM Configurator and,
after Place and Route, you want to make changes to the uPROM clients. After you have updated the
uPROM Memory Content, there is no need to rerun Place and Route.
To update the uPROM Memory Content from the Design Flow Window:

1. Right-click Update uPROM Memory Content in the Design Flow window and choose Configure
Options.

Update uPROM Memory Content - RTG4 Only

Libero SoC User's Guide 137

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 57 · Update uPROM Memory Content

2. When the uPROM Update Tool appears, right-click the Memory Client you want to update and choose
Edit.

Figure 58 · uPROM Update Tool

The Edit Data Storage Client dialog box appears.

138 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 59 · Edit Data Storage Client Dialog Box

You can make the following changes to the uPROM client:

• Rename a Client
• Change the memory content, memory size and start address of the client
• Reverse your decision on whether or not to use Content for Simulation

Note: You cannot use the Update uPROM tool to add or delete a client. To add or delete a client, you must
use the uPROM Configurator to reconfigure your Clients and regenerate your uPROM component and your
design.

Serialization Client Editor
Serialization enables you to have a client in the eNVM whose value is different for each device that is
programmed. You can program n number of devices with values that are configured as either Auto
Incremented (AUTO_INC) or Read from File (READ_FROM_FILE).
The Serialization Client Editor is available from within the Update eNVM Memory Core dialog box. Double-
click eNVM in your MSS (SmartFusion) or System Builder (IGLOO2) to view the eNVM Memory Core dialog
box.
The Serialization Client Editor enables you to specify your serialization type. You must use eNVM
Configuration to reserve a client for serialization - see the eNVM Configuration help and the tutorial topic for
more information.

Content Type
Content from file
The number of lines in the file is the number of devices desired for serialization programming. The first line is
the first serial index to be used for programming, the second line is the second serial index to be used for
programming and the last line is the last serial index to be used for programming. Blank lines and comments
(lines that begin with a # character) will be ignored.

http://coredocs.actel-ip.com/Actel/SmartFusion2MSS/MSS_ENVM/sf2_mss_envm_config_ug_1.pdf

Configure Bitstream Dialog Box - SmartFusion2, IGLOO2, and RTG4

Libero SoC User's Guide 139

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Two file formats:
• DEC: An unsigned 64-bit decimal value.
• HEX: Hexadecimal value to be programmed into the device. If one page is specified for the

serialization client, then a maximum of 256HEX characters can be placed on each line. The data
orientation is MSB -> LSB, where the least significant byte is all the way to the right. If the data does
not complete a page, then the page will be padded with 0's. If serialization client is larger than one
page then the data format is as follows:

<Page N><PageN-1>…..<Page1><Page0>
Where each Page X is a maximum of 256HEX characters

Content auto incremented

• Start Value (Hex) - The first 64-bit unsigned value to program to the device.
• Step Value (Hex) - The step value to use for each subsequent device to be programmed.
• Maximum Value (Hex) - The maximum value to be programmed on the last device.

Figure 60 · Serialization Client Editor Dialog Box

Configure Bitstream Dialog Box - SmartFusion2, IGLOO2, and
RTG4

Right-click Generate Bitstream in the Design Flow window and choose Configure Options to open the
Configure Bitstream dialog box.
The Configure Bitstream dialog box enables you to select which components you wish to program. Only
features that have been added to your design are available for programming. For example, you cannot
select eNVM for programming if you do not have an eNVM in your design.

140 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 61 · Configure Bitstream Dialog Box - SmartFusion2 and IGLOO2

Updated components only (not supported in this release) - Updates only the components that have
changed since your last programming.
Selected components - Updates the components you select, regardless of whether or not they have
changed since your last programming.
Note: The Custom security and eNVM components are not available for RTG4 devices.

Generate Bitstream - SmartFusion2, IGLOO2, and RTG4
Generates the bitstream for use with the Run PROGRAM Action tool.
The tool incorporates the Fabric design, eNVM configuration (if configured) and security settings (if
configured) to generate the bitstream file. You need to configure the bitstream before you generate the
bitstream. Right-click Generate Bitstream and choose Configure Options to open the Configure Bitstream
dialog box to select which components you wish to program. Only features that have been added to your
design are available for programming. For example, you cannot select eNVM for programming if you do not
have an eNVM in your design.
Modifications to the Fabric design, eNVM configuration, or security settings will invalidate this tool and
require regeneration of the bitstream file.
The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in
the Create Design, Create Constraints and Implement Design sections of the Design Flow window.
This operation is completed automatically as the last step if you use the Build button.
When the process is complete a green check appears next to the operation in the Design Flow window (as
shown in the figure below) and information messages appear in the Log window.

Run PROGRAM Action - SmartFusion2, IGLOO2, and RTG4 Only

Libero SoC User's Guide 141

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 62 · Generate Bitstream (Complete)

See also
Configure Bitstream Dialog Box

Run PROGRAM Action - SmartFusion2, IGLOO2, and RTG4 Only
If you have a device programmer connected, you can double-click Run PROGRAM Action to execute your
programming in batch mode with default settings.
If your programmer is not connected, or if your default settings are invalid, the Reports view lists the error(s).
Right-click Run PROGRAM Action and choose Configure Action/Procedures to open the Select Action
and Procedures dialog box.

Program Device - SmartFusion, IGLOO, ProASIC3, and Fusion
Double-click Program Device in the Design Flow window to create a programming file (if necessary) and
program your device with default settings. A programming file will be generated prior to programming, if it
has not already been generated.
To change the programming action, configure the JTAG chain, modify the programmer settings, or make
any other programming changes, you will need to configure these changes with the FlashPro tool.

1. Right-click Program Device and choose Open Interactively to open FlashPro to change the
programming action, configure the JTAG chain, modify the programmer settings, or make any other
programming changes.

2. Make your changes.
3. Save your changes and continue programming with Libero, or you can program directly from FlashPro.

For the SmartFusion device, Libero only exports the FDB file. Inside the FlashPro tool , you can add the
eNVM or FlashROM if it has not been added or modify the eNVM or FlashROM if it has been added. For
Security, you must add it in FlashPro. To open FlashPro interactively, right-click Program Device or Export
Programming File and choose Open Interactively.

SmartFusion2 and IGLOO2 Programming - Default Settings
To view your default settings, from the Project menu choose Project Settings.
To program your SmartFusion2 or IGLOO2 device with default settings:

1. Create a Libero Soc project using any SmartDesign component. For example, you can create a project
using a SmartDesign component, such as a simple fabric module and a MSS block with Flash Memory
module.

2. Click the Build button to complete Synthesis, Place and Route and program the device with default
settings. The default settings do not contain any security settings; use the Security Policy Manager
(SPM) to manage your settings prior to programming your device.

142 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

SmartFusion2 and IGLOO2 Programming - Custom Settings
Custom Programming Settings enable you to build the JTAG chain, define programmer settings, set I/O
states during programming and run scan chain.

1. To create a JTAG chain, in the Design Flow window expand Edit Design Hardware Configuration,
right-click Programming Connectivity and Interface and choose Open Interactively. It opens a
schematic view of the devices connected in a JTAG chain; all the devices are targeted by default.
The Programming and Connectivity Interface detects and constructs the JTAG chain automatically.
Use the interface to add devices manually.
When you add Microsemi devices you can either load the STP or PDB file or add the device from a
drop-down list. You must provide the IR length and Max TCK frequency OR load the BSDL file for non-
Microsemi devices.

2. Right-click Programmer Settings and choose Open Interactively to view your programmer settings.
If necessary, click Edit Programmer Settings to specify custom settings for your programmer.

3. Right-click Device I/O States During Programming and choose Open Interactively to open the
Specify I/O States During Programming dialog box and set your device I/O states. Click OK to save
your settings and continue.

4. Expand Configure Security, right-click Security Policy Manager and choose Open Interactively to
specify your Secured Programming Use Model, User Key Entry and Security Policies.

Exit Codes (SmartFusion2 and IGLOO2)
Error Code Exit

Code
Exit Message Possible

Cause
Possible
Solution

 0 Passed (no
error)

- -

0x8001 -24 Failure to read
DSN

Device is in
System
Controller
Suspend Mode
Check board
connections

TRSTB should
be driven High
or disable
"System
Controller
Suspend
Mode".

0x8002 5 Failure to
configure device
programming at
1.2/1.0 VCC
voltage

Unstable
voltage level
Signal integrity
issues on JTAG
pins

Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during

Exit Codes (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 143

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

programming;
measure JTAG
signals for
noise or
reflection.

0x8032 5 Device is busy Unstable VDDIx
voltage level

Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.

0x8003 5 Failed to enter
programming
mode

Unstable
voltage level
Signal integrity
issues on JTAG
pins
DEVRST_N is
tied to LOW

Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or
reflection.
Tie DEVRST_N
to HIGH prior to
programming
the device.

144 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

0x8004 6 Failed to verify
IDCODE

Incorrect
programming
file

Incorrect device
in chain

Signal integrity
issues on JTAG
pins

Choose the
correct
programming
file and select
the correct
device in the
chain.

Measure JTAG
pins and noise
for reflection. If
TRST is left
floating then
add pull-up to
pin.

Reduce the
length of
Ground
connection.

0x8005
0x8006

10 Failed to
program eNVM

Unstable
voltage level.
Signal integrity
issues on JTAG
pins.

Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or
reflection.

0x8007 11 Failed to verify
FPGAArray
Failed to verify
Fabric
Configuration
Failed to verify

Device is
programmed
with a different
design or the
component is
blank.
Unstable

Verify the
device is
programmed
with the correct
data/design.
 Monitor related
power supplies

Exit Codes (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 145

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

Security voltage level.
Signal integrity
issues on JTAG
pins.

that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or
reflection.

0x8008
0x8009

11 Failed to verify
eNVM

Device is
programmed
with a different
design.
Unstable
voltage level.
Signal integrity
issues on JTAG
pins.

Verify the
device is
programmed
with the correct
data/design.
Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or

146 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

reflection.

0x8010 -35 Failed to unlock
User Pass Key 1

Pass key in file
does not match
device

Provide a
programming
file with a pass
key that
matches pass
key
programmed
into the device.

0x8011 -35 Failed to unlock
User Pass Key 2

Pass key in file
does not match
device

Provide a
programming
file with a pass
key that
matches pass
key
programmed
into the device.

0x8012 -35 Failed to unlock
debug pass key

Pass key in file
does not match
device

Provide a
programming
file with a pass
key that
matches pass
key
programmed
into the device.

0x8013 -18 Digest request
from SPI/JTAG
is protected by
User Pass Key 1

Digest request
from SPI/JTAG
is protected by
user pass key
1. Lock bit has
been
configured in
the Debug
Policy within
SPM (Security
Policy
Manager)

Provide a
programming
file with a pass
key that
matches pass
key
programmed
into the device.

0x8014 -19 Failed to verify
digest

Unstable
voltage level
Signal integrity
issues on JTAG
pins

Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device

Exit Codes (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 147

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or
reflection.

0x8015 -20 FPGA Fabric
digest
verification: FAIL

Programming
bitstream
components do
not match
components
programmed
FPGA Fabric is
either erased or
the data has
been corrupted
or tampered
with

Use the same
programming
file that was
used to
program the
device.

0x8016 -20 eNVM_0 digest
verification: FAIL

Programming
bitstream
components do
not match
components
programmed
eNVM_0 data
has been
corrupted or
tampered with

 Use the same
programming
file that was
used to
program the
device.

0x8017 -20 eNVM_1 digest
verification: FAIL

Programming
bitstream
components do
not match
components
programmed
eNVM_1 data
has been
corrupted or
tampered with

Use the same
programming
file that was
used to
program the
device.

0x8018 -20 User security
policies segment
digest
verification: FAIL

Programming
bitstream
components do
not match

Use the same
programming
file that was
used to

148 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

components
programmed
User security
policy segment
data has been
corrupted or
tampered with

program the
device.

0x8019 -20 User key set 1
segment digest
verification: FAIL

Programming
bitstream
components do
not match
components
programmed
User key set 1
segment data
has been
corrupted or
tampered with

Use the same
programming
file that was
used to
program the
device.

0x801A -20 User key set 2
segment digest
verification: FAIL

Programming
bitstream
components do
not match
components
programmed
User key set 2
segment data
has been
corrupted or
tampered with

Use the same
programming
file that was
used to
program the
device.

0x801B -20 Factory row and
factory key
segment digest
verification: FAIL

Programming
bitstream
components do
not match
components
programmed
Factory row
and factory key
segment data
has been
corrupted or
tampered with

Use the same
programming
file that was
used to
program the
device.

0x801C -20 Fabric
configuration
segment digest
verification: FAIL

Programming
bitstream
components do
not match
components
programmed.
Fabric

Use the same
programming
file that was
used to
program the
device.

Exit Codes (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 149

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

configuration
segment data
has been
corrupted or
tampered with

0x801D
0x801E

-21 Device security
prevented
operation

The device is
protected with
user pass key 1
and the
bitstream file
does not
contain user
pass key 1.
User pass key
1 in the
bitstream file
does not match
the device.

Run
DEVICE_INFO
to view security
features that
are protected.
Provide a
bitstream file
with a user
pass key 1 that
matches the
user pass key 1
programmed
into the device.

0x801F
0x8020

-22 Authentication
Error
Bitstream or data
is corrupted or
noisy

eNVM has
been locked by
a master in
your design
Running
VERIFY action
on a blank
device.
Bitstream file
has been
corrupted
Bitstream was
incorrectly
generated

Release the
lock on the
eNVM after
your master
has completed
its access
operations.
Write 0x00 to
"REQACCESS"
register in
eNVM Control
Registers
(address
0x600801FC)
to release the
access.
Program the
device prior to
running
VERIFY action
Regenerate
bitstream file.

0x8021
0x8022

-23 Authentication
Error
Invalid/Corrupted
encryption key

File contains an
encrypted key
that does not
match the
device
Attempting to
erase a device
with no security
using master
security file

Provide a
programming
file with an
encryption key
that matches
that on the
device.
Run
DEVICE_INFO
action to verify

150 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

File contains
user encryption
key, but device
has not been
programmed
with the user
encryption key
Device has
user encryption
key 1/2
enforced and
you are
attempting to
reprogram
security
settings

that the device
has no security.
If the device
does not have
secuirty, you
cannot erase it.
First program
security with
master
programming
file, then
program with
user encryption
1/2 field update
programming
files.
You must first
ERASE security
with the master
security file,
then you can
reprogram new
security
settings.

0x8023
0x8024

-24 Authentication
Error
Back level not
satisfied

Design version
is not higher
than the back-
level
programmed
device

Generate a
programming
file with a
design version
higher than the
back level
version.

0x8025
0x8026

-25 Authentication
Error
DSN binding
mismatch

DSN specified
in programming
file does not
match the
device being
programmed

Use the correct
programming
file with a DSN
that matches
the DSN of the
target device
being
programmed.

0x8027
0x8028

-26 Authentication
Error
Insufficient
device
capabilities

Device does
not support the
capabilities
specified in
programming
file

Generate a
programming
file with the
correct
capabilities for
the target
device.

0x8029
0x802A

-27 Authentication
Error
Incorrect

Incorrect
programming
file
Incorrect device

Choose the
correct
programming
file and select

Exit Codes (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 151

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

DEVICEID in chain
Signal integrity
issues on JTAG
pins

the correct
device in chain.
Measure JTAG
pins and noise
or reflection. If
TRST is left
floating, then
add pull-up to
pin.
Reduce the
length of
ground
connection.

0x802B
0x802C

-28 Authentication
Error
Programming file
is out of date,
please
regenerate

Programming
file version is
out of date

Generate
programming
file with latest
version of
Libero SoC.

0x802F -30 JTAG interface
is protected by
UPK1

Invalid or no
UPK1 is
provided

User needs to
provide correct
UPK1 to unlock
device.

0x8030
0x8031

-31 Authentication
Error
Invalid or
inaccessible
Device
Certificate

M2S090 Rev. A
or M2S150
Rev. A: Either
certificate is
corrupted or the
user hasn't
provided the
application
code in the
eNVM or
provided invalid
application
code
FAB_RESET_N
is tied to ground

User can
program a valid
application
code. This can
be done with
SoftConsole.
FAB_RESET_N
should be tied
to HIGH.

0x8032
0x8033
0x8034
0x8035
0x8036
0x8037
0x8038
0x8039

-32 Instruction timed
out

Unstable
voltage level
Signal integrity
issues on JTAG
pins

Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your

152 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

device
datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or
reflection.

0x8040 -22 Authentication
Error
Bitstream or data
is corrupted or
noisy

eNVM has
been locked by
a master in
your design
Running
VERIFY action
on a blank
device.
Bitstream file
has been
corrupted
Bitstream was
incorrectly
generated

Release the
lock on the
eNVM after
your master
has completed
its access
operations.
Write 0x00 to
"REQACCESS"
register in
eNVM Control
Registers
(address
0x600801FC)
to release the
access.
Program the
device prior to
running
VERIFY action
Regenerate
bitstream file.

0x8041 -23 Authentication
Error
Invalid/Corrupted
encryption key

File contains an
encrypted key
that does not
match the
device
File contains
user encryption
key, but device
has not been
programmed
with the user
encryption key
Attempting to
erase a device
with no security

Provide a
programming
file with an
encryption key
that matches
that on the
device.
Run
DEVICE_INFO
action to verify
that the device
has no security.
If the device
does not have
secuirty, you

Exit Codes (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 153

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

using master
security file
Device has
user encryption
key 1/2
enforced and
you are
attempting to
reprogram
security
settings

cannot erase it.
First program
security with
master
programming
file, then
program with
user encryption
1/2 field update
programming
files.
You must first
ERASE security
with the master
security file,
then you can
reprogram new
security
settings.

0x8042 -24 Authentication
Error
Back level not
satisfied

Design version
is not higher
than the back-
level
programmed
device

Generate a
programming
file with a
design version
higher than the
back level
version.

0x8043 -25 Authentication
Error
DSN binding
mismatch

DSN specified
in programming
file does not
match the
device being
programmed

Use the correct
programming
file with a DSN
that matches
the DSN of the
target device
being
programmed.

0x8044 -26 Authentication
Error
Insufficient
device
capabilities

Device does
not support the
capabilities
specified in
programming
file

Generate a
programming
file with the
correct
capabilities for
the target
device.

0x8045 -27 Authentication
Error
Incorrect
DEVICEID

Incorrect
programming
file
Incorrect device
in chain
Signal integrity
issues on JTAG
pins

Choose the
correct
programming
file and select
the correct
device in chain.
Measure JTAG
pins and noise
or reflection. If

154 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

TRST is left
floating, then
add pull-up to
pin.
Reduce the
length of
ground
connection.

0x8046 -28 Authentication
Error
Unsupported
bitstream
protocol version

Old
programming
file

Generate
programming
file with latest
version of
Libero SoC.

0x8048 -31 Authentication
Error
Invalid or
inaccessible
Device
Certificate

M2S090 Rev. A
or M2S150
Rev. A: Either
certificate is
corrupted or the
user hasn't
provided the
application
code in the
eNVM or
provided invalid
application
code
FAB_RESET_N
is tied to ground

User can
program a valid
application
code. This can
be done with
SoftConsole.
FAB_RESET_N
should be tied
to HIGH.

0x8049 11 Failed to verify
eNVM

Device is
programmed
with a different
design.
Unstable
voltage level.
Signal integrity
issues on JTAG
pins.

Verify the
device is
programmed
with the correct
data/design.
Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.

Exit Codes (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 155

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or
reflection.

8x804A 10 Failed to
program eNVM

Unstable
voltage level.
Signal integrity
issues on JTAG
pins.

Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or
reflection.

0x804B -21 Device security
prevented
operation

The device is
protected with
user pass key 1
and the
bitstream file
does not
contain user
pass key 1.
User pass key
1 in the
bitstream file
does not match
the device.

Run
DEVICE_INFO
to view security
features that
are protected.
Provide a
bitstream file
with a user
pass key 1 that
matches the
user pass key 1
programmed
into the device.

0x804C 11 Failed to verify
FPGA Array
Failed to verify
Fabric

Device is
programmed
with a different
design or the

Verify the
device is
programmed
with the correct

156 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Error Code Exit
Code

Exit Message Possible
Cause

Possible
Solution

Configuration
Failed to verify
Security

component is
blank.
Unstable
voltage level.
Signal integrity
issues on JTAG
pins.

data/design.
Monitor related
power supplies
that cause the
issue during
programming;
check for
transients
outside of
Microsemi
specifications.
See your
device
datasheet for
more
information on
transient
specifications.
Monitor JTAG
supply pins
during
programming;
measure JTAG
signals for
noise or
reflection.

0x804D -36 <HSM related
error message
based on
scenario>

HSM
communication
error. HSM call
returns error.

Check if HSM
the
communication
path to HSM is
up. Make sure
project is
loaded properly
and that HSM
tickets have not
been cleaned.

Programming File Actions - SmartFusion2 and IGLOO2

Libero SoC User's Guide 157

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Programming File Actions - SmartFusion2 and IGLOO2
Libero SoC enables you to program security settings, FPGA Array, and eNVM features for SmartFusion2
and IGLOO2 device support.
You can program these features separately using different programming files or you can combine them into
one programming file.
In the Design Flow window, expand Program Design, click Run PROGRAM Action, and right-click
Configure Actions/Procedures.

Table 2 · Programming File Actions

Action Description

PROGRAM Programs all selected family features: FPGA Array,
targeted eNVM clients, and security settings.

ERASE Erases the selected family features: FPGA Array
and Security settings.

VERIFY_DIGEST Calculates the digests for the components (Custom
Security, Fabric, or eNVM) included in the bitstream
and compares them against the programmed values.

VERIFY Verifies all selected family features: FPGA Array,
targeted eNVM clients, and security settings.

158 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Action Description

ENC_DATA_AUTHENTICATION Encrypted bitstream authentication data.

READ_IDCODE Reads the device ID code from the device.

DEVICE_INFO Displays the IDCODE, the design name, the
checksum, and device security settings and
programming environment information programmed
into the device.

Options Available in Programming Actions
The table below shows the options available for specific programming actions.

Table 3 · Programming File Actions - Options

Action Option and Description

PROGRAM DO_VERIFY - Enables or disables programming verification

Bitstream Encryption with Default Key in Security Policy Manager -
SmartFusion2 and IGLOO2

See the Export Bitstream topic for more information on exporting your bitstream.

Figure 63 · Export Bitstream Dialog Box

Enable Custom Security Options in the Security Policy Manager - SmartFusion2 and IGLOO2

Libero SoC User's Guide 159

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Bitstream file name - Sets the name of your bitstream file. The prefix varies depending on the name of your
top-level design.
Existing bitstream files - Lists bitstream files you created already.

Bitstream File Formats:

Select the Bitstream File format you want to export:
• STAPL file
• Chain STAPL file (Enabled only when there are two or more devices in the chain)
• DAT file
• SPI file

Selected Security options (modify via Security Policy Manager) – Gives a brief description of current
security options.
Bitstream files to be exported – Lists all the bitstream files that will be exported.
File to program at trusted facility – Click to include Fabric and/or eNVM into the bitstream files to be
programmed at a trusted facility.
Note: Only features that have been added to your design are available for programming. For

example, you cannot select eNVM for programming if you do not have an eNVM in your
design.

Export SPI Directory for programming recovery – Allows you to export SPI directory containing Golden
and Update SPI image addresses and design versions, used in Auto-update and Programming Recovery
flow. Check this option and click Specify SPI Directory to set the required information (see figure below).

Figure 64 · SPI Directory Dialog Box

Enable Custom Security Options in the Security Policy Manager -
SmartFusion2 and IGLOO2

See the Export Bitstream topic for information on exporting your bitstream.

160 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 65 · Export Bitstream Dialog Box with Enable Custom Security Options in the Security Policy Manager

Bitstream file name - Sets the name of your bitstream file. The prefix varies depending on the name of your
top-level design.
Existing bitstream files - Lists bitstream files you created already.

Bitstream File Format:

Select the Bitstream File format you want to export:

• STAPL file
• Chain STAPL file (Enabled only when there are two or more devices in the chain)
• DAT file
• SPI file

Selected Security options (modify via Configure Security tool) – Gives a brief description of current
security options.
Bitstream files to be exported – Lists all the bitstream files that will be exported.
Note: If a component (for example, eNVM) is not present in design then it will be disabled in the

bitstream component selection.
Master file to program at trusted facility – Click to include Fabric and/or eNVM into the bitsream files to
be programmed at a trusted facility. Note that Security is always programmed in Master file.
File encrypted with UEK1 to program at untrusted facility or for Broadcast field update – Click to
include Fabric and/or eNVM into the bitsream files to be programmed. If the selected features is not
protected by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted with UEK1
that is preprogrammed into the device.
File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to
include Fabric and/or eNVM into the bitsream files to be programmed. If the selected features is not
protected by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted with UEK2
that is preprogrammed into the device.

Programming SmartFusion in the Libero SoC

Libero SoC User's Guide 161

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: If the eNVM/Fabric is protected with UPK1 and included in the bitstream, UPK1 will be
added to the STAPL and DAT file, and cannot be used at untrusted location.

Note: If eNVM/Fabric is One Time Programmable, it precluded from bitstream encrypted with
UEK1/2.

Export SPI Directory for programming recovery – Allows you to export SPI directory containing Golden
and Update SPI image addresses and design versions, used in Auto-update and Programming Recovery
flow. Check this option and click Specify SPI Directory to set the required information (see figure below).

Figure 66 · SPI Directory Dialog Box

Programming SmartFusion in the Libero SoC
Double-click Program Device to create a programming file (if necessary) and program your device with
default settings.
Right-click Program Device and choose Open Interactively to open FlashPro.
SmartFusion only exports the FDB file via Libero SoC. Inside the FlashPro tool, you can add the eNVM or
FlashROM if it has not been added or modify the eNVM or FlashROM if it has been added. For Security, you
must add it in FlashPro.
To open FlashPro interactively, right-click Program Device or Export Programming File and choose Open
Interactively.

1. When FlashPro opens, click File > Export > Export Single Programming File to open the Export
Programming Files dialog box.

162 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 67 · Export Programming Files Dialog Box

2. Select the Programming File output format you want to generate:

• IEEE 1532 Files (*.bsd; *.isc)
• DirectC File (*.dat)
• STAPL File (*.stp)
• Serial Vector Files (*.svf)

3. Click Export to generate the programming files and then click Close.

Generate a Programming File in FlashPoint

Libero SoC User's Guide 163

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generating Programming Files

Generate a Programming File in FlashPoint
FlashPoint enables you to program security settings, FPGA Array, and FlashROM features for SmartFusion,
IGLOO, ProASIC3, Fusion family devices. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI.
Note: You can generate a programming file with one, two, or all of the silicon features from the

Programming File Generator first page.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.

• Security settings
• FPGA Array
• FlashROM

Figure 68 · Programming File Generator – Step 1 of 1

Note: When FlashPoint is invoked for the first time, after netlist files are imported and the design is in
post-layout state, the software retrieves the FlashROM and EFM blocks configuration files from
the imported netlists and imports the configuration files. Otherwise, you need to import
configuration files.

2. Click the Programming previously secured device(s) check box if you are reprogramming a device
that has been secured.

Because the SmartFusion, IGLOO, ProASIC3, Fusion families enable you to program the Security
Settings separately from the FPGA Array and/or FlashROM, you must indicate if the Security Settings

164 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

were previously programmed into the target device. This requirement also applies when you generate
programming files for reprogramming.

3. Enter the silicon signature (0-8 HEX characters). See Silicon Signature for more information.
4. Click Save PDB.

Programming File Types
The table below summarizes the Microsemi SoC programming file types and programmers.
Unless otherwise noted, listing an individual device indicates the device family and all its derivatives. For
example, IGLOO indicates IGLOO, IGLOOe, IGLOO nano and IGLOO plus. See the Supported Families
topic for more information. See the list of programming file type descriptions below for more details.

Programming File
Type

Device Support Programmer

PDB (*.pdb) See device
specifications

FlashPro 4/3/3x

STAPL (*.stp) FlashPro 4/3/3x, FlashPro Lite, FlashPro,
Silicon Sculptor III/II

SVF (*.svf) Third party programmer

IEEE 1532 (*.isc or
*.bsd)

Third party programmer

The following programming-related files are required if you use the related functional block elements in your
enabled devices. See the appropriate sections of the FlashPro help for more information on creating these
files.

File Type Device Support Function

FDB (*.fdb) See device specifications Contains your FPGA array data

UFC (*.ufc) Contains your FlashROM data

EFC (*.efc) Contains your Embedded Flash Memory file

PDB Files

A proprietary Microsemi programming data file.
STAPL Files

The Standard Test And Programming Language (STAPL) is designed to support the programming of
programmable devices and testing of electronic systems, using the IEEE Standard 1149.1: “Standard Test
Access Port and Boundary Scan Architecture” (commonly referred to as JTAG) interface. As a STAPL file is
executed, signals are produced on the IEEE 1149.1 interface, as described in the STAPL file. STAPL
operates on a single IEEE 1149.1 chain. STAPL supports the programming of any IEEE 1149.1-compliant
programmable device.
STAPL has support for programming and test systems with user interface features. A single STAPL file may
perform several different functions, such as programming, verifying, and erasing a programmable device.

Bitstream Files

Proprietary Microsemi programming data file.
SVF Files

Generate a Programming File for SmartFusion

Libero SoC User's Guide 165

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Courtesy Serial Vector Format Specification from ASSET InterTech, 1999:
Serial Vector Format (SVF) is the media for exchanging descriptions of high-level IEEE 1149.1 bus
operations. In general, IEEE 1149.1 bus operations consist of scan operations and movements between
different stable states on the IEEE 1149.1 state diagram. SVF does not explicitly describe the state of the
IEEE 1149.1 bus at every Test Clock.
The SFV file is defined as an ASCII file that consists of a set of SVF statements. The maximum number of
characters on a line is 256, although one SVF statement can span more htan one line. Each statement
consists of a command and associated parameters. Each SVF statement is terminated by a semicolon. SVF
is not case sensitive.

IEEE 1532 Files

Courtesy ieee.org:
The IEEE 1532 files implement programming capabilities within programmable integrated circuit devices,
utilizing (and compatible with) the 1149.1 communication protocol. This standard allows the programming of
one or more compliant devices concurrently, while mounted on a board or embedded in a system, known as
In-System Configuration.

Generate a Programming File for SmartFusion
You can configure and generate a new PDB file from FlashPoint.
If you are using Single Mode, click Create to add a new PDB, or click Modify to make changes to a loaded
PDB.
In Chain Mode, if you have not already done so, construct a chain and click Create PDB to create a new
PDB for programming, or click Modify PDB to make changes to a loaded PDB.
FlashPoint enables you to specify your security settings and silicon features when you generate your
programming file in SmartFusion. You can specify your FPGA Array, FlashROM, and Embedded Flash
Memory by importing FDB, UFC and EFC files, respectively (as shown in the figure below). If you have
imported a FlashROM and Embedded Flash Memory file you can click Modify to configure these feature
before saving your PDB file.
Click Specify I/O States During Programming to set custom I/O states.
Note: You must import an FDB to populate Port Name and Macro Cell columns.

Figure 69 · FlashPoint Programming Settings for SmartFusion

166 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generate a Programming File for CoreMP7/Cortex-M1 Device
Support

FlashPoint enables you to program FPGA Array and FlashROM features for CoreMP7/Cortex-M1 devices.
You can program these features separately using different programming files or you can combine them into
one programming file. Each feature is listed as a silicon feature in the GUI. You can generate a
programming file with one, two, or all of the silicon features from the Programming File Generator first
page. For CoreMP7/Cortex-M1 device support, you cannot select your own security settings. The generated
programming file always has the encrypted FPGA Array content. The programming file generation is the
same as the ProASIC3 family devices.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.

FPGA Array

FlashROM

2. Click Next or Finished depending on the silicon features you selected.
If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate
Programming Files dialog box appears. Use this dialog box box to specify the programming file name,
location, and output format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532 file).

For more information on DAT files, refer to the Data File Generator (DatGen) section of the DirectC User's Guide.

CoreMP7/Cortex-M1 Device Security
CoreMP7/Cortex-M1 devices are shipped with the following security enabled:
• FPGA Array enabled for AES encrypted programming and verification.
• FlashROM enabled for plain text read and write.

You cannot select your own security settings. The generated programming file includes the encrypted
FPGA Array content.

Programming FlashROM and FPGA Array
For CoreMP7/Cortex-M1 device support, the programming generation for FlashROM and FPGA Array is the
same as the programming generation for ProASIC3 and ProASIC family devices.

Generate a Programming File for AFS Device Support - Designer
Only

FlashPoint enables you to program Security Settings, FPGA Array, Embedded Flash Memory Blocks, and
FlashROM features for AFS device support. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI. You can generate a programming file with one, two, or all of the silicon features from the
Programming File Generator first page.

AFS Programming
In addition to FPGA Array, FlashROM and security setting, the Fusion devices provide Embedded Flash
Memory
Blocks (FB) for both Analog configuration initialization and regular memory storage. Depending on the
targeted AFS device, you may have one, two, or four FBs available to you. FlashPoint enables you to
initialize the FB Instance(s), as desribed in the Embedded Flash Memory help.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.

http://www.actel.com/documents/directc_ug.pdf

Generate a Programming File for Serialization Support in In House Programming (IHP)

Libero SoC User's Guide 167

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Settings

FPGA Array

FlashROM

Embedded Flash Memory Block

Figure 70 · FlashPoint- Programming File Generator for AFS

Note: Check the check box in the Program column to enable block modification.
2. Check the Programming previously secured devices(s) box if you want to program previously

secured devices.
3. Enter the Silicon signature.
4. Depending upon the Silicon features you selected, click Finish or Next.

If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate
Programming Files dialog box appears. Use this dialog box box to specify the programming file
name, location, and output format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532 file).
For more information on DAT files, refer to the Data File Generator (DatGen) section of the DirectC
User's Guide.

Programming Security Settings, FlashROM, and FPGA Array
For AFS device support, the programming generation for Security Settings, FlashROM and FPGA Array is
the same as the programming generation for ProASIC3 family devices.

Generate a Programming File for Serialization Support in In House
Programming (IHP)

FlashPoint allows you to program security settings, FPGA Array, and FlashROM features for SmartFusion,
IGLOO, ProASIC3, Fusion family devices. You can program these features separately using different

http://www.actel.com/documents/directc_ug.pdf

168 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI.

SVF Serialization Support in IHP
In addition to FPGA Array, FlashROM, and security setting, FlashPoint supports generating SVF files with
serialization support in IHP.

To generate SVF with serialization support:
1. Select the Silicon feature(s) you want to program.

• Security settings

• FPGA Array

• FlashROM

• Programming Embedded Flash Memory Block

2. Import the UFC file which contains serialization data to FlashROM. Click Next.
3. Type in the number of devices to program (as shown in the figure below).

Figure 71 · Type Number of Devices

4. Click Target Programmer and select Microsemi IHP.

Generate a Programming File for Serialization Support in In House Programming (IHP)

Libero SoC User's Guide 169

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 72 · Select Microsemi IHP

5. Click OK. The Generate Programming Files window appears (as shown in the figure below). Select
Serial Vector Files (*.svf).

Figure 73 · Select Serial Vector Files

6. Click Generate. An Microsemi-specific SVF file will be generated with a corresponding serialization
data file.

Note: Generated SVF files will only work with IHP.

170 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Creating a Programming Database (PDB) File in Designer
The programming database (PDB) file supports SmartFusion, IGLOO, ProASIC3 and Fusion devices only.
This allows reconfiguration of the security settings, FlashROM, FPGA Array, and Embedded Flash Memory
Blocks. You create the file in Designer using FlashPoint and you modify the file in FlashPro.
You must create programming files for SmartFusion in FlashPro; see the Generate a Programming File for
SmartFusion topic for more information.

1. From the Designer main window, click the Programming File button. This brings up FlashPoint (see
figure below).

Figure 74 · FlashPoint Programming File Generator - PDB File

2. Select the silicon feature(s) to be programmed: Security Settings, FPGA array, FlashROM, and
Embedded Flash Memory Block. If you are programming a previously secured device, check the
Programming previously secured device(s) and enter the silicon signature.

3. Click Finish to create the PDB file.

See Also
Configuring security and FlashROM settings in FlashPro
Configuring security settings in FlashPro
Configuring FPGA array settings
Configuring FlashROM settings in FlashPro
Configuring Embedded Flash Memory Block settings in FlashPro

Programming Embedded Flash Memory Block
For more information about the Embedded Flash Memory Block, see the Flash Memory System Builder
online help.

To program the Embedded Flash Memory Block:
1. Check the Program box to enable Embedded Flash Memory Block modification.

http://www.actel.com/documents/asb_flashrom_nvm_ug.pdf

Programming the FlashROM

Libero SoC User's Guide 171

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

2. Click the Modify button to import Embedded Flash Memory Block configuration and memory content.

The Modify Embedded Flash Memory Block dialog box appears.

Figure 75 · Modify Embedded Flash Memory Block Content Dialog Box

3. Click the Import Configuration File button (if available) to import the Embedded Flash Memory Block
configuration and memory content from the EFC file. This will populate the client table below. All
clients that belong to this block will be selected by default.

4. Click the Import content button if you want to change the client memory content.
5. Click OK.

Note: FlashPoint audits original configuration and memory content files and warns you if the files
cannot be located or if they have been updated.

Programming the FlashROM
You can program selected memory pages and specify the region values of the FlashROM.
• Single STAPL file for all devices: generates one programming file with all the generated increment

values or with values in the custom serialization file.
• One STAPL file per device: generates one programming file for each generated increment value or

for each value in the custom serialization file.
1. Select your target Programmer type.

• Select Generic STAPL Player when generating STAPL files for generic STAPL players.
• Select Silicon Sculptor II, BP Auto Programmer, or FlashPro5/4/3x/3 when generating programming

files for those programmers.
• Select Microsemi IHP (In House Programming) when generating STAPL or SVF files for Microsemi

SoC (formerly Actel) IHP.
2. Click OK.

FlashPoint generates your programming file.

Note: You cannot change the FlashROM region configuration from FlashPoint. You can only
change the configuration from the FlashROM core generator.

For more information, click the Help button in FlashROM.

To program FlashROM:
1. Select FlashROM from the Generate Programming File page.
2. Enter the location of the FlashROM configuration file. The FlashROM Settings page appears (see

figure below).

172 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 76 · FlashROM Settings

3. Select the FlashROM memory page that you want to program.
4. Enter the data value for the configured regions.
5. If you selected the region with a Read From File, specify the file location.
6. If you selected the Auto Increment region, specify the Start and Max values.

Enter the number of devices you want to program.
Select your target Programmer Type.

Figure 77 · Select Programmer

7. Click Finish.
FlashPoint generates your programming file.

Note: You cannot change the FlashROM region configuration from FlashPoint. You can only change the
configuration from the FlashROM core generator.

Silicon Signature

Libero SoC User's Guide 173

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Silicon Signature
With Libero SoC tools, you can use the silicon signature to identify and track Microsemi designs and
devices. When you generate a programming file, you can specify a unique silicon signature to program into
the device. This signature is stored in the design database and in the programming file, and programmed
into the device during programming.
The silicon signature is accessible through the USERCODE JTAG instruction.
Note: If you set the security level to high, medium, or custom, you must program the silicon

signature along with the Security Setting. If you have already programmed the Security
Setting into the target device, you cannot reprogram the silicon signature without
reprogramming the Security Setting.

Note: The previously programmed silicon signature will be erased if:
• You have already programmed the silicon signature and
• You are programming the security settings, but you do not have an entry in the silicon signature field

Programming Security Settings
FlashPoint allows you to set a security level of high, medium, or none (SmartFusion uses radio buttons and
the option Clear Security instead of None).

To program Security Settings on the device:
1. If you choose to program Security Settings on the device from the Generate Programming File page,

the wizard takes you to the Security Settings page.

Your Security Settings page depends on your family.

2. Set the security level for FPGA, FlashROM, and EFMB (see the table below for a description of the
security levels).

Table 4 · FPGA, FlashROM, and EFMB Security Settings

Security
Level

Security Option Description

High Protect with a 128-
bit Advanced
Encryption Standard
(AES) key and a
Pass Key

Access to the device is protected by an AES Key
and the Pass Key.
The Write and Verify operations of the FPGA Array
use a 128-bit AES encrypted bitstream.
 From the JTAG interface, the Write and Verify
operations of the FlashROM use a 128-bit AES
encrypted bitstream. Read back of the FlashROM
content via the JTAG interface is protected by the
Pass Key.
Read back of the FlashROM content is allowed from
the FPGA Array. The Read and Verify operations of
the EFMB module are protected by Pass Key from
the JTAG interface. The Write operations of the
EFMB module use a 128-bit AES encrypted
bitstream.

Medium Protect with Pass
Key

The Write and Verify operations of the FPGA Array
require a Pass Key.
From the JTAG interface, the Read and Write
operations on the FlashROM content require a Pass
Key. You can Verify the FlashROM content via the
JTAG interface without a Pass Key.
Read back of the FlashROM content is allowed from
the FPGA Array. The Read, Write, and Verify

174 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security
Level

Security Option Description

operations of the EFMB module are protected by
Pass Key from the JTAG interface.

None No security The Write and Verify operations of the FPGA Array
do not require keys. The Read, Write, and Verify
operations of the FlashROM content also do not
require keys. The Read, Write, and Verify operations
of the EFMB module content do not require keys.

This option is available for SmartFusion; to choose it,
de-select the Security Settings checkbox.

Note: When a Device is programmed with a Pass key and AES key, only the Pass key is required for

reprogramming since re-entering the correct Pass key unlocks the bits that restrict programming to
require AES encryption and also unlocks the bits that prohibit reprogramming altogether (if
locked); thus both plaintext and encrypted programming are [re-] enabled.

3. Enable eNVM client JTAG protection - Enables eNVM client JTAG protection in the event you have
not set Medium or High security. Enables you to protect specific clients with a user pass key and then
leave others unprotected. This can be advantageous if you want to protect your IP, but give another
user access to the rest of the eNVM for storage. You can also set custom security levels for your
eNVM.
NOTE: EFMB (Fusion) is called eNVM for SmartFusion devices.

4. Enter the Pass Key and/ or the AES Key as appropriate. You can generate a random key by clicking
the Generate random key button.
The Pass Key protects all the Security Settings for the FPGA Array, FlashROM, and/or EFMB.
The AES Key decrypts the FPGA Array, FlashROM, and/or EFMB programming file content. Use the
AES Key if you intend to program the device at an unsecured site or if you plan to update the design at
a remote site in the future.

You can also customize the security levels by clicking the Custom Level button. For more information, see
the Custom Security Levels section.
To change or disable your security keys you must run the ERASE_SECURITY action code. This erases your
security settings and enables you to generate the programming file with new keys and reprogram, or to
generate a programming file that has no security key.

Custom Security Levels
For advanced use, you can customize your security levels.

To set custom security levels:
1. Click the Custom Level button in the Security Settings page. The Custom Security Level dialog

box appears.
2. Select the FPGA Array Security and the FlashROM Security levels. For SmartFusion and Fusion

devices, you can also choose the Embedded Flash Memory Block level of security. The FPGA Array
and the FlashROM can have different Security Settings. See the tables below for a description of the
custom security option levels for FPGA Array and FlashROM.

Table 5 · FPGA Array

Security Option Description

Lock for both writing and verifying Allows
writing/erasing

Custom Security Levels

Libero SoC User's Guide 175

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

and verification
of the FPGA
Array via the
JTAG interface
only with a
valid Pass
Key.

Lock for writing

Allows the
writing/erasing
of the FPGA
Array only with
a valid Pass
Key.
Verification is
allowed
without a valid
Pass Key.

Use the AES Key for both writing and verifying

Allows the
writing/erasing
and verification
of the FPGA
Array only with
a valid AES
Key via the
JTAG
interface. This
configures the
device to
accept an
encrypted
bitstream for
reprogramming
and verification
of the FPGA
Array. Use this
option if you
intend to
complete final
programming
at an
unsecured site
or if you plan
to update the
design at a
remote site in
the future.
Accessing the
device security
settings
requires a valid
Pass Key.

Allow write and verify Allows
writing/erasing

176 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

and verification
of the FPGA
Array with
plain text
bitstream and
without
requiring a
Pass Key or an
AES Key. Use
this option
when you
develop your
product in-
house.

Note: The ProASIC3 family FPGA Array is always read protected regardless of the Pass Key or

the AES Key protection.
Table 6 · FlashROM

Security Option Description

Lock for both reading and writing

Allows the
writing/erasing and
reading of the
FlashROM via the
JTAG interface
only with a valid
Pass Key.
Verification is
allowed without a
valid Pass Key.

Lock for writing

Allows the
writing/erasing of
the FlashROM via
the JTAG interface
only with a valid
Pass Key. Reading
and verification is
allowed without a
valid Pass Key.

Use the AES Key for both writing and verifying

Allows the
writing/erasing and
verification of the
FlashROM via the
JTAG interface
only with a valid
AES Key. This
configures the
device to accept
an encrypted
bitstream for
reprogramming
and verification of

Custom Security Levels

Libero SoC User's Guide 177

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

the FlashROM.
Use this option if
you complete final
programming at an
unsecured site or if
you plan to update
the design at a
remote site in the
future.
Note: The
bitstream that is
read back from the
FlashROM is
always
unencrypted (plain
text).

Allow reading, writing, and verifying

Allows
writing/erasing,
reading and
verification of the
FlashROM content
with a plain text
bitstream and
without requiring a
valid Pass Key or
an AES Key.

Note: The FPGA Array can always read the FlashROM content regardless of these Security

Settings.
Table 7 · Embedded Flash Memory Block

Security Option Description

Lock for reading, verifying, and writing

Allows the writing
and reading of the
Embedded Flash
Memory Block via
the JTAG interface
only with a valid
Pass Key.
Verification
accomplished by
reading back and
compare.

Lock for writing

Allows the writing
of the Embedded
Flash Memory
Block via the JTAG
interface only with
a valid Pass Key.
Reading and
verification is
allowed without a

178 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

valid Pass Key.

Use AES Key for writing

Allows the writing
of the Embedded
Flash Memory
Block via the JTAG
interface only with
a valid AES Key.
This configures the
device to accept
an encrypted
bitstream for
reprogramming of
the Embedded
Flash Block. Use
this option if you
complete final
programming at an
unsecured site or if
you plan to update
the design at a
remote site in the
future. The
bitstream that is
read back from the
Embedded Flash
Memory Block is
always
unencrypted (plain
text), when a valid
pass key is
provided.

Allow reading, writing, and verifying

Allows writing,
reading and
verification of the
Embedded Flash
Memory Block
content with a
plain text bitstream
and without
requiring a valid
Pass Key or an
AES Key.

3. To make the Security Settings permanent, select Permanently lock the security settings check box.

This option prevents any future modifications of the Security Setting of the device. A Pass Key is not
required if you use this option.

Note: When you make the Security Settings permanent, you can never reprogram the Silicon
Signature. If you Lock the write operation for the FPGA Array or the FlashROM, you can never
reprogram the FPGA Array or the FlashROM, respectively. If you use an AES key, this key
cannot be changed once you permanently lock the device.

Custom Security Levels

Libero SoC User's Guide 179

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

4. (SmartFusion Only) Enable M3 Debugger option enables access to the M3 debugger even if security is
enforced. Select the Enable M3 debugger checkbox if you want to access the M3 debugger after
programming.

5. To use the Permanent FlashLock™ feature (One-time programmable or OTP), select Lock for both
writing and verifying for FPGA Array, Lock for both reading and writing for FlashROM, Lock for
reading, writing, and verifying each Embedded Flash Memory Block (for Fusion and SmartFusion),
if present, and select the Permanently lock the security settings checkbox as shown in the figure
below. This will make your device one-time programmable.

Figure 78 · Custom Security Level

6. Click the OK button. The Security Settings page appears with the Custom security settings

information as shown in the figure below.

180 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 79 · Security Settings

Reprogramming a Secured Device
You must know the previous Security Settings of the device before you can reprogram a device with
Security Settings.

To program a secured device:
1. In the Generate Programming File window, click the Programming previously secured devices(s)

check box (see figure below).

Reprogramming a Secured Device

Libero SoC User's Guide 181

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 80 · Generate Programming File

2. Specify the previously programmed security setting for the FlashROM and/or the FPGA Array. To
generate a programming file for encrypted programming please ensure that the Security settings
checkbox is unchecked.

3. If you programmed the device with a custom security level, click the Custom Level button to open the
Custom security dialog box, and select the Security Settings for the FPGA Array or the FlashROM
that you programmed (see figure below).

182 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 81 · Security Settings

4. Enter the previously programmed Pass Key and/or the AES Key.
5. Click Finish.

Note: Enter the AES Key only if you want to perform encrypted programming.

Programming a Secured SmartFusion Device
After you create a PDB you may wish to export a programming file for a secured device. To do so:

1. Create a PDB file (as explained above) with security set to High or Medium. Save the PDB file.
2. From the File menu, choose Export Single Programming File. The Export Programming Files dialog

box appears.
3. Click the Export programming file(s) for currently secured device checkbox. This exports

programming files for devices that already have security settings programmed.
4. Choose your outputs and enter your output file Name and Location.
5. Click Export to create the file(s). Your updated secured programming files are in the directory you

specified.

Custom Serialization Data for FlashROM Region
FlashPoint enables you to specify a custom serialization file as a source to provide content for programming
into a Read from file FlashROM region. You can use this feature for serializing the target device with a
custom serialization scheme.

To specify a FlashROM region:
1. From the Properties section in the FlashROM Settings page, select the file name of the custom

serialization file (see figure below). For more information on custom serialization files, see Custom
Serialization Data File Format.

Custom Serialization Data File Format

Libero SoC User's Guide 183

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 82 · FlashROM Settings

2. Select the FlashROM programming file type you want to generate from the two options below:

• Single programming file for all devices option: generates one programming file with all the values
in the custom serialization file.

• One programming file per device: generates one programming file for each value in the custom
serialization file.

3. Enter the number of devices you want to program.
4. Click the Target Programmer button.
5. Select your target Programmer type.
6. Click OK.

Custom Serialization Data File Format
FlashPoint supports custom serialization data files that specify the data in binary, HEX, decimal, or ASCII
text. The custom serialization data files may contain multiple data with the Line Feed (LF) character as the
delimiter. You can create a file by entering serialization data into any type of text editor. Depending on the
serialization data format (hex, ASCII, binary, decimal), input the serialization data according to the size of
the region you specified in the FlashROM settings page.

Semantics
 Each custom serialization file has only one type of data format (binary, decimal, Hex or ASCII text). For
example, if a file contains two different data formats (i.e. binary and decimal) it is considered an invalid file.
The length of each data file must be shorter or equal to the selected region length. If the data is shorter then
the selected region length, the most significant bits shall be padded with 0’s. If the specified region length is
longer then the selected region length, it is considered an invalid file.
The digit / character length is as follows:
-Binary digit: 1 bit

-Decimal digit: 4 bits

-Hex digit: 4 bits

-ASCII Character: 8 bits

Note: Note the standard example below:
If you wanted to use, for example, device serialization for three devices with serialization data 123, 321, and
456, you would create file name from_read.txt. Each line in from_read.txt corresponds to the serialization
data that will be programmed on each device. For example, the first line corresponds to the first device to be
programmed, the second line corresponds to the second device to be programmed, and so on.

Hex serialization data file example
The following example is a Hex serialization data file for a 40-bit region. Enter the serialization data below
into file created by any text editor:
123AEd210

AeB1

0001242E

184 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: If you enter an invalid Hex digit such as 235SedF1, an error occurs. An error will also occur
if you enter data that is out of range, i.e. 4300124EFE.

The following is an example of programming "AeB1" into Region_7_1 located on page 7, from Word 5 to
Word 1 in the FlashROM settings page. See Custom serialization data for FlashROM region for more
information.

 Table 15 ... Word 5 Word 4 Word 3 Word 2 Word 1 Word 0

Page 7 00 00 00 AE B1 ...

Binary serialization data file example
The following example is a binary serialization data file for a 16-bit region:
1100110011010001
100110011010011

11001100110101111 (This is an error: data out of range)

1001100110110111

1001100110110112 (This is an error: invalid binary digit)

Decimal serialization data file example
The following example is a decimal serialization data file for a 16-bit region:
65534

65535

65536 (This is an error: data out of range)

6553A (This is an error: invalid decimal digit)

Text serialization data file example
The following example is a text serialization data file for a 32-bit region:
AESB

A)e

ASE3 23 (This is an error: data out of range)

65A~

1234

AEbF

Syntax
Indentations in the syntax below indicate a wrapped line. If a line wraps and is not indented, then it should
appear on one line; you may need to expand your help window to view the syntax correctly.
Custom serialization data file =

 <hex region data list> | <decimal region data list> |

 <binary region data list> | <ascii text data list>

Hex region data list = <hex data> <new line> { < hex data> <new line> }

Decimal region data list = <decimal data> <new line> {<decimal data><new line> }

Binary region data list = <binary data> <new line> { <binary data> <new line> }

ASCII text region data list = < ascii text data> <new line> { < ascii text data> <new
line> }

hex data = <hex digit> {<hex digit>}

decimal data = < decimal digit> {< decimal digit>}

binary data = < binary digit> {< binary digit>}

ASCII text data = <ascii character> {< ascii character >}

new line = LF

binary digit = ‘0’|‘1’

Specifying I/O States During Programming

Libero SoC User's Guide 185

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

decimal digit = ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’| ‘9’

hex digit = ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’|‘A’|‘B’|‘C’|‘D’ | ‘E’| ‘F’ |

 ‘a’| ‘b’ | ‘c’| ‘d’ | ‘e’| ‘f’

ascii character = characters from SP(0x20) to‘~’(0x7E).

File Format Limitations
The read from file data size cannot exceed the size of the region. The maximum size supported for each
format is described below:
HEX - limited to the size of the FlashROM page. Maximum size of 128-bits
DEC - 32-bit unsigned numbers. Maximum decimal value is: 4294967295
BIN - limited to the size of the FlashROM page. Maximum size of 128-bits
TEXT - limited to the size of the FlashROM page. Maximum size of 128-bits

Specifying I/O States During Programming
In Libero SoC, the I/O states can be set prior to programming, and held at the set values during
programming. This feature is only available after layout is completed.

1. From the Designer GUI, click Modify I/O States During Programming . The Programming File
Generator window appears.

2. Click Specify I/O States During Programming to display the Specify I/O States During Programming
dialog box.

3. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (as shown in the figure below).

4. Set the I/O Output state. You can set Basic I/O settings if you want to use the default I/O settings for
your pins, or use Custom I/O settings to customize the settings for each pin. See Specifying I/O States
During Programming - I/O States and BSR Details for more information about setting your I/O state
and the corresponding pin values. Basic I/O state settings are:
• 1 – I/O is set to drive out logic High
• 0 – I/O is set to drive out logic Low
• Last Known State: I/O is set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming
• Z - Tri-State: I/O is tristated

186 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 83 · I/O States During Programming Window

6. Click OK to return to the FlashPoint – Programming File Generator window.

Note: I/O States During Programming are saved to the ADB and resulting programming files after
completing programming file generation.

Custom I/O Settings and Boundary Scan Registers
Each I/O in your device is comprised of an Input, Output and Output Enable Boundary Scan Register (BSR)
cell..
The BSR cells enable you to define I/O states during programming and control the individual states for each
Input, Output, and Output Enable register.
The Specify I/O States During Programming dialog box enables access to each of these BSR cells for
control over the individual states. You can use the I/O State (Output Only) settings to set a specific output
state and ignore the other values for the individual BSR elements, or you can click the Show BSR Details
checkbox for control over the settings for each Input, Output Enable, and Output as you exit programming.

Specifying I/O States During Programming - I/O States and BSR
Details

The I/O States During Programming dialog box enables you to set custom I/O states prior to programming.

I/O State (Output Only)
Sets your I/O states during programming to one of the values shown in the list below.

• 1 – I/Os are set to drive out logic High
• 0 – I/Os are set to drive out logic Low
• Last Known State: I/Os are set to the last value that was driven out prior to entering the programming

mode, and then held at that value during programming
• Z - Tri-State: I/Os are tristated

Specifying I/O States During Programming - I/O States and BSR Details

Libero SoC User's Guide 187

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

When you set your I/O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

Table 8 · Default I/O Output Settings

Output State Settings

Input Control (Output
Enable)

Output

Z (Tri-State) 1 0 0

0 (Low) 1 1 0

1 (High) 0 1 1

Last_Known_State Last_Known_State Last_Known_State Last_Known_State

Table Key:
• 1 – High: I/Os are set to drive out logic High
• 0 – Low: I/Os are set to drive out logic Low
• Last_Known_State - I/Os are set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming

Boundary Scan Registers - Enabled with Show BSR Details
 Sets your I/O state to a specific output value during programming AND enables you to customize the values
for the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).
For example, if you want to Tri-State a pin during programming, set Output Enable to 0; the Don't Care
indicates that the other two values are immaterial.
If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during
programming, you may set all the values to 1.

Table 9 · BSR Details I/O Output Settings

Output State Settings

Input Output Enable Output

Z (Tri-State) Don't Care 0 Don't Care

0 (Low) Don't Care 1 0

1 (High) Don't Care 1 1

Last Known State Last State Last State Last State

Table Key:
• 1 – High: I/Os are set to drive out logic High
• 0 – Low: I/Os are set to drive out logic Low
• Don't Care – Don’t Care values have no impact on the other settings.
• Last_Known_State – Sampled value: I/Os are set to the last value that was driven out prior to entering

the programming mode, and then held at that value during programming
The figure below shows an example of Boundary Scan Register settings.

188 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 84 · Boundary Scan Registers

Specify I/O States During Programming Dialog Box
The I/O States During Programming dialog box enables you to specify custom settings for I/Os in your
programming file. This is useful if you want to set an I/O to drive out specific logic, or if you want to use a
custom I/O state to manage settings for each Input, Output Enable, and Output associated with an I/O.

Load from file
Load from file enables you to load an I/O Settings (*.ios) file. You can use the IOS file to import saved
custom settings for all your I/Os. The exported IOS file have the following format:
• Used I/Os have an entry in the IOS file with the following format:
set_prog_io_state -portName {<design_port_name>} -input <value> -outputEnable <value> -
output <value>

• Unused I/Os have an entry in the IOS file with the following format:
set_prog_io_state -pinNumber {<device_pinNumber>} -input <value> -outputEnable <value> -
output <value>

Where <value> is:

• 1 – I/O is set to drive out logic High
• 0 – I/O is set to drive out logic Low
• Last_Known_State: I/O is set to the last value that was driven out prior to entering the programming

mode, and then held at that value during programming
• Z - Tri-State: I/O is tristated

Save to file
Saves your I/O Settings File (*.ios) for future use. This is useful if you set custom states for your I/Os and
want to use them again later in conjunction with a PDC file.

Generate a DAT file

Libero SoC User's Guide 189

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Port Name
Lists the names of all the ports in your design.

Macro Cell
Lists the I/O type, such as INBUF, OUTBUF, PLLs, etc.

Pin Number
The package pin associate with the I/O.

I/O State (Output Only)
Your custom I/O State set during programming. This heading changes to Boundary Scan Register if you
select the BSR Details checkbox; see the Specifying I/O States During Programming - I/O States and BSR
Details help topic for more information on the BSR Details option.

Figure 85 · I/O States During Programming Dialog Box

Generate a DAT file
DAT files are generated via the Generate Programming Files dialog box.

To access the Generate Programming Files dialog box from Libero SoC and generate a DAT file:
1. In the Design Flow window, expand Implement Design, right-click Generate Programming Data and

choose Open Interactively. This opens Designer.
2. Click Programming File to start FlashPoint.
3. Set your feature and I/O options if necessary. Click Finish. This opens the Generate Programming File

dialog box, as shown in the figure below.

190 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 86 · Generate Programing Files Dialog Box - DirectC File (*.dat)

4. Set your output file Name and Location.
5. Set your Output Formats to DirectC file (*.dat) and Programming Data File (*.pdb).
6. Click Generate to create your file.

FlashLock®
Microsemi’s SmartFusion devices contain FlashLock circuitry to lock the device by disabling the
programming and readback capabilities after programming. Care has been taken to make the locking
circuitry very difficult to defeat through electronic or direct physical attack.
FlashLock has three security options: No Lock, Permanent Lock, and Keyed Lock.

No Lock
Creates a programming file which does not secure your device.

Permanent Lock
The permanent lock makes your device one time programmable. It cannot be unlocked by you or anyone
else.

Keyed Lock
Within each device, there is a multi-bit security key user key. The number of bits depends on the size of the
device. Once secured, read permission and write permission can only be enabled by providing the correct
user key to first unlock the device. The maximum security key for the device is shown in the dialog box.

Generating Bitstream and STAPL files
Bitstream allows you to generate a STAPL file for SmartFusion, IGLOO, ProASIC3, Fusion devices. Please
consult the Program Files table to find out which file type you should choose.

To generate a STAPL file:
1. From the Tools menu, choose Programming File.
2. Select Bitstream or STAPL from the File Type drop-down list box. Bitstream files are not available for

SmartFusion, IGLOO, ProASIC3 and Fusion devices.
3. FlashLock. Select one of the following options:

SPI Programming Tutorial Overview

Libero SoC User's Guide 191

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• No Locking: Creates a programming file which does not secure your device.
• Use Keyed Lock: Creates a programming file which secures your device with a FlashLock key. The

maximum security key for the device is shown in the dialog box. The maximum security key for the
device is shown in the dialog box.

• Use Permanent Lock: Creates a one-time programmable device.
4. Click OK. Designer validates the security key and alerts you to any concerns.

Note: The bitstream file header contains the security key.

SPI Programming Tutorial Overview
SmartFusion2 and IGLOO2 devices can be programmed using multiple programming methods.
Refer to the Programming User Guide for your respective device for details on different programming
methods.
The following tutorials describe programming methods that involve the MSS/HPMS SPI_0 ports:

• Auto Programming
• In Application Programing (IAP) Tutorial
• Programming Recovery - Auto Update

Auto Programming
Auto programming uses the Microcontroller Subsystem SPI port (SPI_0) to fetch the bitstream from the
external SPI flash (pre-programmed) connected to the same port and then program the FPGA Fabric and
eNVM. The transaction between the System controller and the external SPI flash happens in SPI master
mode.
The SPI_0 port is enabled to operate as a SPI master at power-on reset or DEVRST_N assertion if the
FLASH_GOLDEN_N pin is pulled low. The Auto Programming can be protected in the Security Policy
Manager > Update Policy.

1. Right-click Configure Security and Programming > Configure Security and choose Configure
Options (as shown in the figure below).

Figure 87 · Launch Security Policy Manager

2. In Security key mode select Enable customer security options.
3. In Security policies click the checkbox to enable Update Policy.
4. Click the Update Policy button and click to enable Auto Programming.

Auto programming uses a *.spi programming file. You must export a *.spi file using Export Bitstream (under
Handoff Design for Production).

192 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: SPI file programming for Auto Programming, Auto Update (IAP), Programming Recovery, and IAP/ISP
Services currently can only program security once with the master file. Update files cannot update the
security settings. In addition, Programming Recovery, Silicon Signature, Firewall, and Tamper Macro can
only be programmed with the master file and cannot be updated.

DEVICE_INFO programming

When the DEVICE_INFO programming action is run with a STAPL file for SmartFusion2 and IGLOO2
devices, you will see the following message:

"Info: Algorithm Version, Programmer, Software Version, Programming Software, Programming Interface
Protocol, and Programming File Type information do not get programmed with Auto Programming, Auto
Update (IAP), Programming Recovery, or IAP/ISP Services and should be ignored."

In Application Programming (IAP) Tutorial
In Application Programming (IAP) is a two-step process. In the first step, the intended bitstream is written to
an external SPI flash connected to SPI_0 port of MSS. In the second step, Cortex-M3 (SmartFusion2) or
user logic in Fabric (IGLOO2) calls the IAP programming service of the system controller to program the
FPGA fabric and eNVM with the bitstream fetched from the external SPI flash.
In order to perform IAP, the required functional blocks must be configured by pre-programming the chip.
To enable SmartFusion2/IGLOO2 device for IAP, you must configure the following components in Libero
SoC:
• Source of application image: eSRAM, eNVM or DDR/SDR memories or Fabric
• Source of programming bitstream: MSS peripherals including SPI_0 port
• Interface between System Controller and Cortex-M3: COMM_BLK

To create a programming file with IAP configuration (SmartFusion2 steps shown):
1. Create a Libero SoC project targeting the desired SmartFusion2 device. Select SmartFusion2

Microcontroller. Click the checkbox to enable Use Design Tool and select the SmartFusion2
Microcontroller Subsystem (MSS). Click OK to continue. A dialog box appears to name your new
component.

2. Name the component IAP_Setup_MSS_0.
3. Double-click IAP_Setup_MSS_0 to configure the blocks:
• ENVM stores the two step IAP application code.
• USB is the interface used to read the programming bitstream and download it to the External SPI

flash.
• MSS_CCC is the Cortex-M3 Clock
• RESET Controller is the Chip reset
• SPI_0 is connected with External SPI flash
• MMUART_1 is the Host PC communication to get status

See the SmartFusion2 Microcontroller Subsystem User Guide section on How to Use Blocks for
details on how to configure them.

4. Click SmartDesign > Generate Component.
5. Complete the design flow up to Place and Route and export the firmware to enable the MSS

component.
6. Click Generate Bitstream or Export Bitstream to export a programming file you can use to program

your device.

Note: Libero SoC will error out if SPI_0 routs to the fabric instead of a package pin.
DEVICE_INFO programming

When the DEVICE_INFO programming action is run with a STAPL file for SmartFusion2 and IGLOO2
devices, you will see the following message:

http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user

Programming Recovery Tutorial

Libero SoC User's Guide 193

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

"Info: Algorithm Version, Programmer, Software Version, Programming Software, Programming Interface
Protocol, and Programming File Type information do not get programmed with Auto Programming, Auto
Update (IAP), Programming Recovery, or IAP/ISP Services and should be ignored."

Programming Recovery Tutorial
If programming recovery is enabled, SmartFusion2/IGLOO2 device automatically recovers from a power
failure during a programming operation. Programming recovery requires an external SPI flash to be
connected to the MSS SPI_0 port. The FPGA must be pre-programmed with the programming recovery
settings. Programming recovery settings define the location of the image and how to recovery will take
place.
For a blank device the image location is set to MSS SPI_0 port where an external SPI flash must be
connected.
Note:

Notes:

Programming Recovery cannot be updated with _UEK1 or _UEK2 programming files. Only the master
programming file can be used.
SPI file programming for Auto Programming, Auto Update (IAP), Programming Recovery, and IAP/ISP
Services currently can only program security once with the master file. Update files cannot update the
security settings. In addition, Programming Recovery, Silicon Signature, Firewall, and Tamper Macro can
only be programmed with the master file and cannot be updated.

To configure Programming Recovery:
1. Under Configure Security and Programming Options double-click Configure Programming

Recovery.
2. Select Enable Programming Recovery. If Auto update is selected then Design version is mandatory.

You must enter the design version in the Configure User Programming Data menu.
3. Check Enable Programming Recovery and set the SPI clock frequency and data transfer mode.

Refer to the table below for SPI data transfer options. For a blank device SPO and SPH are defaulted
to 1.

Table 10 · SPI Signal Polarity Modes

SPO SPH SPI
Clock in

Idle

Sample
Edge

Shift
Edge

SPI
Select in

Idle

SPI Select Between
Frames

0 0 Low Rising Falling High Stays active until all the
frames set by frame
counter have been
transmitted

0 1 Low Falling Rising High

1 0 High Falling Rising High

1 1 High Rising Falling High

Note: SPO = SPI clock polarity; SPH = SPI clock phase

If Enable Auto Update is checked, Programming recovery is automatically enabled. In this scenario when
the device is powering up, it will be auto programmed with the bitstream stored in SPI_0 port if the update
SPI image design version is greater than the design version currently programmed in the device.
During programming recovery, if there is a programming failure due to power failure, then the the device will
be recovered with the golden image.

194 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Back Level protection - If you enable Back Level protection it provides bitstream replay protection. The
BACKLEVEL value limits the design versions that the device can update. So, only programming bitstreams
with DESIGNER > BACKLEVEL are allowed for programming

Figure 88 · Bypass Back Level Version Check

4. In the Update Policy dialog box click the checkbox to enable Back Level Protection, as shown in the
figure above. Note that in order to use Back Level Protection you must enter the Design version in the
Configure User Programming Data dialog box. By default the Back Level bypass is checked in order to
continue with programming recovery with current/golden image in the event of power failure. This
allows the golden SPI image to be programmed even if the design version is less than the backlevel
version without the need of a pass key.

Consider an instance where the device is programmed with a golden image first which has
DESIGNVER = 2 and BACKLEVEL = 1. Now you want to program the device with an update image
that has DESIGNVER = 3 and BACKLEVEL = 2. If the Back Level bypass is not checked and power
fails, the programming recovery will stop and the device will be left inoperable because the golden
image DESIGNVER is not greater than the BACKLEVEL of update image.

5. Export the SPI directory for Programming recovery. The flash device on the MSS SPI_0 port contains
a directory at address 0 with the information shown in the table below.

Offset Name Description

0 GOLDEN_IMAGE_ADDRESS[3:0] Contains the address where the

SmartFusion2 Programming Tutorial Overview

Libero SoC User's Guide 195

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Offset Name Description

golden image starts

4 GOLDEN_IMAGE_DESIGNVER[1:0] Contains the design version of the
golden image

6 UPDATE_IMAGE_ADDRESS[3:0] Contains the address where the
update image starts

10 UPDATE_IMAGE_DESIGNVER[1:0] Contains the design version of the
update image

6. Right-click Export Programming File and choose Configure Options.
7. In the Export Bitstream dialog box, click the checkbox to enable Export SPI directory for

programming recovery and click the Specify SPI Directory button.
8. In the SPI Directory dialog box enter the Design version and browse to the location of the Golden

SPI Image and/or Update SPI Image. You must enter the Address of the bitstream manually (as
shown in the figure below).

DEVICE_INFO programming

When the DEVICE_INFO programming action is run with a STAPL file for SmartFusion2 and IGLOO2
devices, you will see the following message:

"Info: Algorithm Version, Programmer, Software Version, Programming Software, Programming Interface
Protocol, and Programming File Type information do not get programmed with Auto Programming, Auto
Update (IAP), Programming Recovery, or IAP/ISP Services and should be ignored."

SmartFusion2 Programming Tutorial Overview
The SmartFusion2 Programming Tutorial describes the basic steps for SmartFusion2 programming.
Only the bold steps in the Design Flow window are required to complete and program your design. Note that
the bold steps are completed automatically if you use the Build button.

1. MSS Configuration - eNVM
eNVM configuration enables you to configure eNVM as a ROM so that it can be included in the eNVM
digest calculations.
Data Security Configuration controls which masters have access to which memory region within the
MSS.

2. Generate Bitstream
Generate bitstream for programming within Libero.

3. Edit Design Hardware Configuration
Configures Device I/O States During Programming.

4. Configure Security and Programming Options
• Security Policy Manager

• Configure Bitstream

• Update eNVM Memory Content

5. Program Design
Configure Actions/Procedures (sets programming options) and programs your device.

6. Handoff Design for Production
• Export Bitstream
• Export BSDL

196 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

MSS Configuration - eNVM

eNVM Configuration
You must create a MSS to configure your eNVM. Use System Builder to configure your eNVM for IGLOO2.
eNVM configuration enables you to configure eNVM as a ROM so that it can be included in the eNVM digest
calculations. To do so:

1. Open your MSS and double-click the eNVM block to open the eNVM configuration dialog box, as
shown in the figure below.

Figure 89 · eNVM Configuration Dialog Box

The example design shown in the figure above already has a Data Storage Client.
2. Double-click the Data Storage Client to open the Modify Data Storage Client dialog box, as shown

in the figure below.

MSS Configuration - eNVM

Libero SoC User's Guide 197

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 90 · Modify Data Storage Client Dialog Box - Use as ROM Selected

3. Click Use as ROM (as shown in the figure above) to configure the memory region as a ROM and
include the eNVM digest calculations.

4. Click OK in the Modify Data Storage Client dialog box to continue.
5. Double-click Serialization to open the Add Serialization Client dialog box (as shown in the figure

below) and reserve a client for serialization. Add your Client name and eNVM Start address and
Number of pages, as appropriate. You can configure the content of your serialization client in the
Serialization Client Editor, available from the Update eNVM Memory Content dialog box.

Figure 91 · Add Serialization Client Dialog Box

6. Click OK in the Add Serialization Client dialog box to continue.
7. Click OK in the eNVM Configuration dialog box to return to the MSS.

Enable Data Security
The Data Security Configuration controls which masters have access to which memory region within the
MSS. To configure your data security:

198 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Double-click the Security block in the MSS to open the MSS Security Policies Configurator, as shown in
the figure below.

Figure 92 · MSS Security Policies Configurator

Masters are listed on the left, and slaves are shown at the top. All masters have access to all slaves by
default; click to enable or disable Read/Write access for specific masters and slaves.
Restrict your master/slave Read/Write access according to your preference and click OK to continue.
Note: SPI file programming for Auto Programming, Auto Update (IAP), Programming Recovery, and IAP/ISP
Services currently can only program security once with the master file. Update files cannot update the
security settings. In addition, Programming Recovery, Silicon Signature, Firewall, and Tamper Macro can
only be programmed with the master file and cannot be updated.

Generate Bitstream - SmartFusion2, IGLOO2, and RTG4
Generates the bitstream for use with the Run PROGRAM Action tool.
The tool incorporates the Fabric design, eNVM configuration (if configured) and security settings (if
configured) to generate the bitstream file. You need to configure the bitstream before you generate the
bitstream. Right-click Generate Bitstream and choose Configure Options to open the Configure Bitstream
dialog box to select which components you wish to program. Only features that have been added to your
design are available for programming. For example, you cannot select eNVM for programming if you do not
have an eNVM in your design.
Modifications to the Fabric design, eNVM configuration, or security settings will invalidate this tool and
require regeneration of the bitstream file.
The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in
the Create Design, Create Constraints and Implement Design sections of the Design Flow window.
This operation is completed automatically as the last step if you use the Build button.
When the process is complete a green check appears next to the operation in the Design Flow window (as
shown in the figure below) and information messages appear in the Log window.

Edit Design Hardware Configuration - Device I/O States During Programming

Libero SoC User's Guide 199

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 93 · Generate Bitstream (Complete)

See also
Configure Bitstream Dialog Box

Edit Design Hardware Configuration - Device I/O States During
Programming

You can configure your FPGA I/Os while the device is being programmed using Device I/O States During
Programming.
In the Design Flow window, expand Edit Design Hardware Configuration and double-click Device I/O
States During Programming.
The Device I/O States During Programming dialog box appears.
Click a value in the I/O State (Output Only) column to set your I/O State options according to your
preference, as shown in the figure below.

Figure 94 · Set I/O State

200 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Policy Manager (SPM)
Expand Configure Security and Programming Options, double-click Configure Security to customize
the security settings in your design.
Use this dialog box to set your User Keys, Security Policies and Microsemi factory test mode access level.
Note: Microsemi enabled default bitstream encryption key modes are disabled after user security is
programmed.

Figure 95 · Security Policy Manager Dialog Box

Security Key Mode

Bitstream encryption with default key - Encrypt bitstream files with Microsemi default key (pre-placed key
in silicon). When this option is selected, user keys, security and Microsemi factory test mode access level
configurations are disabled.
Enable custom security options - Enables you to set User Keys, Security Policies and Microsemi factory
test mode access level (see below for a description).

User keys and Security policies protection

Write-protect using FlashLock/UPK1 - Protect UEK1 (User Encryption Key 1), DPK (Debug Pass Key)
and Security Policies using FlashLock/ UPK1.
Note: UEK2 (User Encryption Key2) is protected by UPK2 (User Pass Key 2).
Permanently write-protect - Permanently protect UEK1 (User Encryption Key 1), UPK2 (User Pass Key 2),
UEK2 (User Encryption Key 2), DPK (Debug Pass Key), Security Policies, and Microsemi factory test mode
access level. This setting, once programmed will not be modified in the device. Microsemi enabled default
bitstream encryption key modes are permanently disabled as well.
Note: When this option is selected, you cannot specify the FlashLock/UPK 1 and UPK2 (User Pass Key 2)
value, since the value cannot be used to unlock the corresponding protected features.

Microsemi Factory Test Mode Access Level

Protect factory test mode access using FlashLock/UPK1 - Protects access to Microsemi factory test
mode using Flashlock/ UPK1.
Permanently protect factory test mode access - Permanently locks access to Microsemi factory test
mode.
Note: When this option is selected, User Key Set 2 is permanently write-protected. Once programmed, User
Key Set 2 cannot be changed in the device. You can specify UEK2 (User Encryption Key 2). However, you
cannot specify UPK2 (User Pass Key 2), since the value cannot be used to unlock User Key Set 2.

Bitstream Configuration

Libero SoC User's Guide 201

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Allow factory test mode access - Allows access to Microsemi factory test mode.
Security Policies

Update Policy - Sets your Fabric, eNVM and Back Level protections. See the Update Policy topic for more
information.
Note: If Update Policy is enabled and Fabric/eNVM update are protected by UPK1:
Fabric update is disabled for Auto Programming, IAP/ISP services, Programming Recovery and Auto
update. FlashLock/UPK1 unloading is only available for JTAG and SPI slave programming.
eNVM update is disabled for Auto Programming, IAP/ISP Services, Programming Recovery and Auto
Update. FlashLock/UPK1 unlocking is only available for JTAG and SPI Slave programming.
See the following example.

Debug Policy - Enables and sets your Debug Pass Key and debug options. See the Debug Policy topic for
more information.
Key Mode Policy - Configures the key mode to enable or disable. See the Key Mode Policy topic for more
information.

Configuring User Keys

User Key Set 1 is required. User Key Set 1 includes FlashLock/UPK1 (User Pass Key 1) and UEK1 (User
Encryption Key 1).
User Key Set 2 is optional. User Key Set 2 includes UPK2 (User Pass Key 2) and UEK2 (User Encryption
Key 2).
Note that User Pass Key 2 (UPK2) protects only User Encryption Key 2 (UEK2).

Bitstream Configuration
Expand Configure Security and Programming Options and double-click Bitstream Configuration to open the
Bitstream Configuration dialog box, as shown in the figure below.

202 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 96 · Configure Bitstream Dialog Box

You can program your Security, Fabric, eNVM or any combination.
Features (Security, Fabric, eNVM) are enabled for programming by default when you add them to your
design. If you manually disable a feature in this dialog box then you must re-enable it here if you want it
included during programming.

Update eNVM Memory Content (SmartFusion2 and IGLOO2)
Right-click Update eNVM Memory Content and choose Configure Options (eNVM Memory Content >
Configure Options) or double-click Update eNVM Memory Content to open the dialog box and modify
your eNVM content.
The Update eNVM Memory Content dialog box enables you to update your eNVM content for programming
without having to rerun Compile and Place and Route. It is useful if you have reserved space in the eNVM
configurator within the MSS for firmware development, for example. Use the Update eNVM Memory Content
dialog box when you have completed your firmware development and wish to incorporate your updated
firmware image file into the project.
Note: To disable a client for programming, you must modify the client and select “No Content (Client is a
placeholder and will not be programmed)”. The content from the memory file, serialization data file, or auto-
incremented serialization content will be preserved if you later decide to enable this client for programming.
Clients disabled for programming will not be included in the generated bitstream and will not be
programmed.

Modify Data Storage Client
Double-click the Storage Client to open the Modify Data Storage Client dialog box.

Update eNVM Memory Content (SmartFusion2 and IGLOO2)

Libero SoC User's Guide 203

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: You cannot add, delete or rename a data storage client in the Modify Data Storage Client dialog box.
To make these changes, go to the eNVM configurator inside the MSS/HPMS Configurator or navigate to the
System Builder’s Memory page (eNVM tab).

Figure 97 · Modify Data Storage Client Dialog Box

You have three options to specify the eNVM content:

• Import a Memory File
• Fill eNVM content with Zero’s
• Assign No Content (eNVM as a Placeholder). The client will not be included in the programming

bitstream and will not be programmed

If you have completed Place and Route and you import a memory file for the eNVM content, you do not
have to rerun Compile or Place and Route. You can program or export your programming file directly.
Programming will generate a new programming file that includes your updated eNVM content.
You can also specify the start address where the data for that client starts, the word size and the number of
words to reserve for the data storage client.

Modify Serialization Client
Double-click the Serialization Client to open the Modify Serialization Client dialog box.
Note: You cannot add, delete or rename a Serialization Client in the Modify Serialization Client dialog box.
Go to the eNVM configurator inside the MSS/HPMS Configurator or the System Builder Memory page
(eNVM tab) to make these changes.

204 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 98 · Modify Serialization Client Dialog Box

You have three options to specify the eNVM content:

• Import a Memory File
• Increment values automatically
• Assign No Content (eNVM as a Placeholder). The client will not be included in the programming

bitstream and will not be programmed
If you have completed Place and Route and you import a memory file for the eNVM content, you do not
have to rerun Compile or Place and Route. You can program or export your programming file directly.
Programming will generate a new programming file that includes your updated eNVM content.
You can also specify the start address where the data for the Serialization Client starts, the number of pages
and the maximum number of devices you want to program serialization data into.
Setting a maximum number of devices to program for Serialization clients will generate a programming
bitstream file that has serialization content for the number of devices specified. The maximum number of
devices to program must match for all serialization clients. If the user would like to program a subset of the
devices during production programming, this can be done within the FlashPro Express tool, which allows
you to select a range of indices desired for programming for that serialization programming job session.
Refer to the FlashPro Express User's Guide for more information.

Program Design - Run PROGRAM Action
Expand Program Design and double-click Run PROGRAM Action to program your device with default
settings, as shown in the figure below.

Handoff Design for Production

Libero SoC User's Guide 205

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 99 · Program Device in the Design Flow Window

Right-click Run PROGRAM Action and choose from the following menu options:
• Clean and Run All - Cleans all tools, deletes all reports and output files and runs through

programming. All logs will be updated with new files.
• Clean - deletes only reports and output files associated with this tool; the other tool files and reports

are unaffected.
• Configure Actions/Procedures - Enables you to set the specific Action you wish to program. Select

your programming action from the dropdown menu.

Handoff Design for Production
In order to handoff your design for production you must export a programming file or generate a BSDL file.
See the Export Bitstream - SmartFusion2, IGLOO2, and RTG4 topic for complete instructions on how to
handoff your design for production.
You can also export your programming job.

Export BSDL File
Double-click Export BSDL File to generate a BSDL file for your project.
Right-click Export BSDL File and choose Clean and Run All to remove all data and output from tools run
previously and rerun the Design Flow up through this point.

Identify Debug Design
Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.
To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click
Instrument Design.
Identify features:
• Instrument and debug your FPGA directly from RTL source code .
• Internal design visibility at full speed.
• Incremental iteration - Design changes are made to the device from the Identify environment using

incremental compile. You iterate in a fraction of the time it takes route the entire device.

206 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Debug and display results - You gather only the data you need using unique and complex triggering
mechanisms.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow
outlined below.

To use the Identify Instrumentor and Debugger:
1. Create your source file (as usual) and run pre-synthesis simulation.
2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a

Programming File) without starting Identify.
3. Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
4. In Synplify, click Options > Configure Identify Launch to setup Identify.
5. In Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.
6. In the Implementations Options dialog, make sure the Implementation Results > Results Directory

points to a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your
resulting EDN file

7. From the Instumentor UI specify the sample clock, the breakpoints, and other signals to probe.
Synplify creates a new synthesis implementation. Synthesize the design.

8. In Libero SoC, select the edif netlist of the Identify implementation you want to use in the flow. Right-
click Compile and choose Organize Input Files > Organize Source Files and select the edif netlist
of your Identify implementation.

9. In Libero SoC, run Compile, Place and Route and Generate a Programming File with the edif netlist
you created with the Identify implementation.

10. In Libero SoC, run Synthesis, Place and Route and Generate a Programming File.
Note: Libero SoC works from the edif netlist of the current active implementation, which is the
implementation you created in Synplify for Identify debug.

11. Double-click Identify Debug Design in the Design Flow window to launch the Identify Debugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

Device Debug
Device Debug / SmartDebug enables you to use JTAG to interrogate and view embedded silicon features
and device status (FlashROM, Security Settings, Embedded Flash Memory (NVM) and Analog System).
 It provides tools to help troubleshoot some of the common issues related to the Embedded Flash Memory
and Analog System.
Device Debug supports IGLOO, ProASIC3, SmartFusion and Fusion devices. SmartDebug supports
SmartFusion2 and ProASIC3 devices.
The user support is separated into two sections:

• Using Device Debug to Find Solutions to Common Issues - Contains common issues and
troubleshooting instructions that will enable you to solve your problems as quickly as possible.

• Frequently Asked Questions - Answers to the most frequently asked questions about the tools and
silicon features related to your solution.

If you are unfamiliar with Device Debug, you may find it helpful to review the Getting Started with
SmartDebug topic. You can view descriptions of the Device Debug interface in the Reference section of the
help.

Getting Started with SmartDebug
Note: SmartDebug is referred to as Device Debug in some older families.
This topic introduces the basic elements and features of SmartDebug. If you are already familiar with the
user interface, proceed to the Solutions to Common Issues Using SmartDebug or Frequently Asked
Questions sections.

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#downloads

Using SmartDebug with SmartFusion and Fusion

Libero SoC User's Guide 207

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

SmartDebug (Device Debug for some older families) enables you to use JTAG to interrogate and view
embedded silicon features and device status (FlashROM, Security Settings, Embedded Flash Memory
(NVM) and Analog System). SmartDebug is available as a part of the FlashPro programming tool.
See the Using SmartDebug topic for an overview of the use flow.
You can use the debugger to:
• Get device status and view diagnostics
• Use the FlashROM debug GUI to read out and compare content
• Use the Embedded Flash Memory Debug GUI to read out and compare your content with your original

files
• Use the Analog System Debug to read out and compare your analog block configuration with your

original file

Using SmartDebug with SmartFusion and Fusion
Note: SmartDebug is referred to as Device Debug in some older families.
The most common flow for SmartDebug is:

1. Start FlashPro. If necessary, create a new project.
2. Set up your FlashPro Project with or without a PDB file. If you are in single-device mode you will need

a PDB file. You can create a PDB file in both Single Device and Chain mode.

With a PDB, you will get additional information such as FlashROM and Embedded Flash Memory
partitions when debugging the silicon features. Best practice is to use a PDB with a valid-use design to
start a debug session.

3. Select the target device from your chain and click Inspect Device.
4. Click Device Status to get device status and check for issues
5. Examine individual silicon features (FlashROM, Embedded Flash Memory Block and Analog System)

on the device.

208 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Solutions to Common Issues Using
SmartDebug

Embedded Flash Memory (NVM) - Failure when
Programming/Verifying

If the Embedded Flash Memory failed verification when executing the PROGRAM_NVM, VERIFY_NVM or
PROGRAM_NVM_ACTIVE_ARRAY action, the failing page may be corrupted. To confirm and address this
issue:

1. In the Inspect Device window click View Flash Memory Content.
2. Select the Flash Memory block and client (or page range) to retrieve from the device.
3. Click Read from Device; the retrieved data appears in the lower part of the window.
4. Click View Detailed Status to check the NVM Status.

Note: You can use the check_flash_memory and read_flash_memory Tcl commands to perform
diagnostics similar to the commands outlined above.

5. If the NVM is corrupted you must reset the affected NVM pages.
To reset the corrupted NVM pages, either re-program the pages with your original data or ‘zero-out’
the pages by using the Tcl command recover_flash_memory.

If the Embedded Flash Memory failed verification when executing a VERIFY_NVM or
VERIFY_NVM_ACTIVE_ARRAY action, the failure may be due to the change of content in your design. To
confirm this, repeat steps 1-3 above.
Note: NVM corruption is still possible when writing from user design. Check NVM status for

confirmation.

Analog System Not Working as Expected
If the Analog System is not working correctly, it may be due the following:

1. System supply issue. To troubleshoot:

• Physically verify that all the supplies are properly connected to the device and they are at the proper
level. Then confirm by running the Device Status.

• Physically verify that the relevant channels are correctly connected to the device.
2. Analog system is not properly configured. You can confirm this by examining the Analog System.

ADC Not Sampling the Correct Value
If the ADC is sampling all zero values then the wrong analog pin may be connected to the system, or the
analog pin is disconnected. If that is not the case and the ADC is not sampling the correct value, it may be
due to the following:

1. System supply issues - Run the device status to confirm.
2. Analog system is not configured at all - To confirm, read out the ACM configuration and verify if the

ACM content is all zero.
3. Analog system is not configured correctly - To confirm, read out the ACM configuration and verify that

the configuration is as expected .

Once analog block configuration has been confirmed, you can use the sample_analog_channel Tcl
command for debug sampling of the analog channel with user-supplied sampling parameters.

ADC Not Sampling the Correct Value

Libero SoC User's Guide 209

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

If you have access to your Analog System Builder settings project (<Libero IDE
project>/Smartgen/AnalogBlock), you may use the compare function provided by the tool.

210 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Frequently Asked Questions

How do I unlock the device security so I can debug?
You must provide the PDB file with a User Pass Key in order to unlock the device and continue debugging.
If you do not have a PDB with User Pass Key, you can create a PDB file in FlashPro (if you know the Pass
Key value).

How do I export a report?
You can export three reports from the SmartDebug GUI: Device Status, Client Detailed Status from the
NVM, or the Compare Client Content report from the NVM. Each of those reports can be saved and printed.
 If using a Tcl command, you can use the –file <filename> option for the following commands:
read_flash_memory

check_flash_memory

compare_memory_client

read_device_status

read_flashrom

read_analog_block_config

sample_analog_channel

compare_flashrom_client

compare_analog_config

For example, you can use the following command to export the content of the client 'datastore1' in NVM
block 0 to the report file datastore1_content.txt:
read_flash_memory –client “datastore1” –file {C:\temp\datastore1_content.txt}

For more information about Tcl commands supported by SmartDebug, see SmartDebug Tcl Commands.

How do I generate diagnostic reports for my target device?
A set of diagnostic reports can be generated for your target device depending on which silicon feature you
are debugging. A set of Tcl commands are available to export those reports. The following is a summary of
those Tcl commands based on the silicon features.
When using the –file parameter, ensure that you use a different file name for each command so you do not
overwrite the report content. If you do not specify the –file option in the Tcl, the output results will be directed
to the FlashPro log window.

For the overall device:

read_device_status

read_id_code

For FlashROM:

compare_flashrom_client

read_flashrom

For Embedded Flash Memory (NVM):

compare_memory_client

check_flash_memory

read_flash_memory

For Analog Block:

Where can I find files to compare my contents/settings?

Libero SoC User's Guide 211

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

read_analog_block_config

compare_analog_config

sample_analog_channel

To execute the Tcl command, from the File menu choose Run Script.

Where can I find files to compare my contents/settings?

FlashROM
You can compare the FlashROM content in the device with the data in the PDB file. You can find the PDB in
the <Libero IDE project>/Designer/Impl directory.

Embedded Flash Memory (NVM)
You can compare the Embedded Flash Memory content in the device with the data in the PDB file. You can
find the PDB in the <Libero IDE project>/Designer/Impl directory.

Analog System
You can compare the Analog System configuration in the device with the data in the loaded PDB file or in
the Analog System folder. Go to:

• Fusion devices - <Libero IDE project>/Smartgen/AnalogBlock
• SmartFusion devices - <Libero IDE Project>/component/<SmartDesign Project>/MSS_ACE_0

The tool automatically identifies the necessary files in the selected folder for comparison.

What is a UFC file? What is an EFC file?
UFC is the User FlashROM Configuration file, generated by the FlashROM configurator; it contains the
partition information set by the user. It also contains the user-selected data for region types with static data.
However, for AUTO_INC and READ_FROM_FILE, regions the UFC file contains only:

• Start value, end value, and step size for AUTO_INC regions, and
• File directory for READ_FROM_FILE regions

EFC is the Embedded Flash Configuration file, generated by the Flash Memory Builder in the Project
Manager Catalog; it contains the partition information and data set by the user.
Both UFC and EFC information is embedded in the PDB when you generate the PDB file.

Is my FPGA fabric enabled?
When your FPGA fabric is programmed, you will see the following statement under Device State in the
Device Status report:
FPGA Array Status: Programmed and Enabled

If the FPGA fabric is not programmed, the Device State shows:
FPGA Array Status: Not Enabled

212 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Embedded Flash Memory (NVM) Frequently
Asked Questions

Is my Embedded Flash Memory (NVM) programmed?
To figure out if your NVM is programmed, read out and view the NVM content or perform verification with the
PDB file.
To examine the NVM content, see the FlashROM Memory Content Dialog Box.
To verify the NVM with the PDB select the VERIFY or VERIFY_NVM action in FlashPro.

How do I display Embedded Flash Memory (NVM) content in the
Client partition?

You must load your PDB into your FlashPro project in order to view the Embedded Flash Memory content in
the Client partition. To view NVM content in the client partition:

1. Load your PDB into your FlashPro project.
2. Click Inspect Device.
3. Click View Flash Memory Content.
4. Choose a block from the drop-down menu.
5. Select a client.
6. Click Read from Device. The Embedded Flash Memory content from the device appears in the Flash

Memory dialog box.

See the Flash Memory Dialog Box topic for more description on viewing the NVM content.

How do I know if I have Embedded Flash Memory (NVM)
corruption?

When Embedded Flash Memory is corrupted, checking Embedded Flash Memory may return with any or all
of the following page status:

• ECC1/ECC2 failure
• Page write count exceeds the 10-year retention threshold
• Page write count is invalid
• Page protection is set illegally (set when it should not be)

See the How do I interpret data in the Flash Memory (NVM) Status Report? topic for details.
If your Embedded Flash Memory is corrupted, you can recover by reprogramming with original design data.
Alternatively, you can ‘zero-out’ the pages by using the Tcl command recover_flash_memory.

Why does Embedded Flash Memory (NVM) corruption happen?
Embedded Flash Memory corruption occurs when Embedded Flash Memory programming is interrupted due
to:

• Supply brownout; monitor power supplies for brownout conditions. For SmartFusion monitor the
VCC_ENVM/VCC_ROSC voltage levels; for Fusion, monitor VCC_NVM/VCC_OSC.

• Reset signal is not properly tied off in your design. Check the Embedded Memory reset signal.

How do I recover from Embedded Flash Memory corruption?

Libero SoC User's Guide 213

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

How do I recover from Embedded Flash Memory corruption?
Reprogram with original design data or ‘zero-out’ the pages by using the Tcl command
recover_flash_memory.

What is a JTAG IR-Capture value?
JTAG IR-Capture value contains private and public device status values. The public status value in the value
read is ISC_DONE, which indicates if the FPGA Array is programmed and enabled.
The ISC_DONE signal is implemented as part of IEEE 1532 specification.

What does the ECC1/ECC2 error mean?
ECC is the Error Correction Code embedded in each Flash Memory page.
ECC1 – One bit error and correctable.
ECC2 – Two or more errors found, and not correctable.

How can I tell if my FlashROM is programmed?
To verify that your FlashROM is programmed, read out and view the FlashROM content or perform
verification with the PDB file by selecting the VERIFY or VERIFY_FROM action in FlashPro.

Can I compare serialization data?
To compare the serialization data, you can read out the FlashROM content and visually check data in the
serialization region. Note that a serialization region can be an AUTO_INC or READ_FROM_FILE region.
For serialization data in the AUTO_INC region, check to make sure that the data is within the specified
range for that region.
For READ_FROM_FILE region, you can search for a match in the source data file.

Can I tell what security options are programmed in my device?
To determine the programmed security settings, run the Device Status option from the Inspect Device dialog
and examine the Security Section in the report.
This section lists the security status of the FlashROM, FPGA Array and Flash Memory blocks.

Is my analog system configured?
To determine if the analog block is configured, run the Device Status option from the Inspect Device dialog
and examine the Analog Block Section in the report. For example, the excerpt from the Device Status report
below shows that the analog block status is operational:
Analog Block:

OABTR Register (HEX): 0dbe37b

3.3V (vdd33): PASS

1.5V (vdd15): PASS

Bandgap: PASS

-3.3V (vddn33): PASS

ADC Reference: PASS

FPGA_Good: PASS

Status: Analog Block is operational

If you read out an all zero value when examining the Analog System Configuration, it is possible that the
Analog System is not configured.

214 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

You need to compare your analog system configuration with the design configuration from the Analog
System Builder.
The -3.3V (vddn33) voltage is optional.

How do I interpret data in the Device Status report?
The Device Status Report generated from the FlashPro SmartDebug Feature contains the following
sections:
• IDCode (see below)
• User Information
• Device State
• Analog Block (SmartFusion and Fusion only)
• Factory Data
• Security Settings

Device Status Report: IDCode
The IDCode section shows the raw IDCode read from the device. For example, in the Device Status report
for an AFS600 device, you will find the following statement:
IDCode (HEX): 233261cf

The IDCode is compliant to IEEE 1149.1. The following table lists the IDCode bit assignments:
Table 11 · IDCode Bit Assignments

Bit Field (little
endian)

Example Bit Value for
AFS600 (HEX)

Description

Bit [31-28] (4 bits) 2 Silicon Revision

Bit [27-12] (16
bits)

3326 Device ID

Bit [11-0] (12 bits) 1cf IEEE 1149.1 Manufacturer ID for
Microsemi

Device Status Report: User Info
The User Information section reports the information read from the User ROW (UROW) of IGLOO,
ProASIC3, SmartFusion and Fusion devices. The User Row includes user design information as well as
troubleshooting information, including:
• Design name (10 characters max)
• Design check sum (16-bit CRC)
• Last programming setup used to program/erase any of the silicon features.
• FPGA Array / Fabric programming cycle count

For example:
User Information:

UROW data (HEX): 603a04e0a1c2860e59384af926fe389f

Programming Method: STAPL

Programmer: FlashPro3

Programmer Software: FlashPro vX.X

Design Name: ABCBASICTO

Device Status Report: Device State

Libero SoC User's Guide 215

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Design Check Sum: 603A

Algorithm Version: 19

Array Prog. Cycle Count: 19

Table 12 · Device Status Report User Info Description

Category Field Description

User Row Data (Example)
UROW data (HEX):
603a04e0a1c2860e59384af926fe389f

Raw data from User Row
(UROW)

Programming
Troubleshooting
Info

(Example)
Programming Method: STAPL
Programmer: FlashPro3
Programmer Software: FlashPro v8.6
Algorithm Version: 19

Known programming setup
used. This includes:
Programming method/file,
programmer and software. It
also includes programming
Algorithm version used.

Design Info (Example)
Design Name: ABCASICTO
Design Check Sum: 603A

Design name (limited to 10
characters) and check sum.

Design check sum is a 16-
bit CRC calculated from the
fabric (FPGA Array)
datastream generated for
programming. If encrypted
datastream is generated
selected, the encrypted
datastream is used for
calculating the check sum.

Device Status Report: Device State
The device state section contains:.

• IR-Capture register value, and
• The FPGA status

The IR-Capture is the value captured by the IEEE1149.1 instruction register when going through the IR-
Capture state of the IEEE 1149.1 state machine. It contains information reflecting some of the states of the
devices that is useful for troubleshooting.
One of the bits in the value captured is the ISC_DONE value, specified by IEEE 1532 standard. When the
value is ‘1’ it means that the FPGA array/fabric is programmed and enabled. This is available for IGLOO,
ProASIC3, SmartFusion and Fusion devices.
For example:
Device State:

IRCapture Register (HEX): 55

FPGA Array Status: Programmed and enabled

For a blank device:
Device State:

IRCapture Register (HEX): 51

FPGA Array Status: Not enabled

216 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Device Status Report: Analog Block
The Analog block of the SmartFusion and Fusion devices monitors some of the key power supplies needed
by the device to function. These power supply status is captured in the OABTR test register in the Analog
block.
For example, if you run Device Status when the Fabric and Analog configuration is programmed and
powered up successfully the report indicates:
Analog Block:

OABTR Register (HEX): 0dbe3bb

3.3V (vdd33): PASS

1.5V (vdd15): PASS

Bandgap: PASS

-3.3V (vddn33): PASS

ADC Reference: PASS

FPGA_Good: PASS

Status: Analog Block is operational

Table 13 · Device Status Report - Analog Block Description

Analog Block Status Description

OABTR Register RAW data captured from the device

3.3V (vdd33) Vcc33a supply status

1.5V (vdd15) Vccnvm supply status

Bandgap Internal bandgap supply status

ADC Reference ADC reference voltage status

-3.3V (vddn33) Vddn33 supply status (optional voltage)

FPGA Good FPGA array or Fabric status

If the Fusion device is erased, the report indicates:
Analog Block:

OABTR Register (HEX): 188e3ba

3.3V (vdd33): PASS

1.5V (vdd15): PASS

Bandgap: PASS

-3.3V (vddn33): FAIL

ADC Reference: FAIL

FPGA_Good: FAIL

Status: Analog Block is non-operational

Analog Block is not programmed

Device Status Report: Factory Data
The Factory Data section lists the Factory Serial Number (FSN).
Each of the IGLOO, ProASIC3, SmartFusion and Fusion devices has a unique 48-bit FSN.

Device Status Report: Security

Libero SoC User's Guide 217

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Device Status Report: Security
The security section shows the security options for the FPGA Array, FlashROM and Flash Memory (NVM)
block that you programmed into the device.
For example, using a Fusion AFS600 device:
Security:

Security Register (HEX): 0000000088c01b

FlashROM

Write/Erase protection: Off

Read protection: Off

Encrypted programming: Off

FPGA Array

Write/Erase protection: Off

Verify protection: Off

Encrypted programming: Off

FlashMemory Block 0

Write protection: On

Read protection: On

Encrypted programming: Off

FlashMemory Block 1

Write protection: On

Read protection: On

Encrypted programming: Off

Table 14 · Device Status Report - Security Description

Security
Status Info

Description

Security
Register (HEX)

Raw data captured from the device's security status register

Write/Erase
Protection

Write protection is applicable to FlashROM, FPGA Array (Fabric)and
Flash Memory (NVM) blocks. When On, the Silicon feature is
write/erase protected by user passkey.

Read
Protection

Read protection is applicable to FlashROM and Flash Memory (NVM)
blocks. When On, the Silicon feature is read protected by user
passkey.

Verify
Protection

Verify Protection is only applicable to FPGA Array (Fabric) only. When
On, the FPGA Array require user passkey for verification.

Reading back from the FPGA Array (Fabric) is not supported.

Verification is accomplished by sending in the expected data for
verification.

Encrypted
Programming

Encrypted Programming is supported for FlashROM, FPGA Array
(Fabric) and Flash Memory (NVM) blocks. When On, the silicon
feature is enable for encrypted programmed. This allows field design
update with encrypted datastream so the user design is protected.

218 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Encrypted Programming
To allow encrypted programming of the features, the target feature cannot be Write/Erase protected by user
passkey.
The security settings of each silicon feature when they are enabled for encrypted programming are listed
below.

FPGA Array (Fabric)
Write/Erase protection: Off

Verify protection: Off

Encrypted programming: On

Set automatically by Designer or FlashPro when you select to enable encrypted programming of the FPGA
Array (Fabric). This setting allows the FPGA Array (Fabric) to be programmed and verified with an encrypted
datastream.

FlashROM
Write/Erase protection: Off

Read protection: On

Encrypted programming: On

Set automatically by Designer or FlashPro when you select to enable encrypted programming of the
FlashROM. This setting allows the FlashROM to be programmed and verified with an encrypted datastream.
FlashROM always allows verification. If encrypted programming is set, verification has to be performed with
encrypted datastream.
Designer and FlashPro automatically set the FlashROM to be read protected by user passkey when
encrypted programming is enabled. This protects the content from being read out of the JTAG port after
encrypted programming.

Flash Memory (NVM) Block
Write/Erase protection: Off

Read protection: On

Encrypted programming: On

The above setting is set automatically set by Designer or FlashPro when you select to enable encrypted
programming of the Flash Memory (NVM) block. This setting allows the Flash Memory (NVM) block to be
programmed with an encrypted datastream.
The Flash Memory (NVM) block does not support verification with encrypted datastream.
Designer and FlashPro automatically set the Flash Memory (NVM) block to be read protected by user
passkey when encrypted programming is enabled. This protects the content from being read out of the
JTAG port after encrypted programming.

How do I interpret data in the Flash Memory (NVM) Status Report?
The Embedded Flash Memory (NVM) Status Report generated from the FlashPro SmartDebug feature
consists of the page status of each NVM page. For example:
Flash Memory Content [Page 34 to 34]

FlashMemory Page #34:

Status Register(HEX): 00090000

Status ECC2 check: Pass

Data ECC2 Check: Pass

Write Count: Pass (2304 writes)

Total number of pages with status ECC2 errors: 0

Total number of pages with data ECC2 errors: 0

Total number of pages with write count out of range: 0

FlashMemory Check PASSED for [Page 34 to 34]

The 'check_flash_memory' command succeeded.

Create Standalone SmartDebug Project

Libero SoC User's Guide 219

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The Execute Script command succeeded.

Table 15 · Embedded Flash Memory Status Report Description

Flash
Memory

Status Info

Description

Status
Register
(HEX)

Raw page status register captured from device

Status
ECC2
Check

Check for ECC2 issue in the page status

Data ECC2
Check

Check for ECC2 issue in the page data

Write Count Check if the page-write count is within the expected range.

The expected write count is greater than or equal to:

6,384 - SmartFusion devices
2,288 - Fusion devices

Note: Write count, if corrupted, cannot be reset to a valid value within the
customer flow;invalid write count will not prevent device from being
programmed with the FlashPro tool.

The write count on all good eNVM pages is set to be 2288 instead of 0 in
the manufacturing flow. The starting count of the eNVM is 2288. Each
time the page is programmed or erased the count increments by one.
There is a Threshold that is set to 12288, which equals to 3 * 4096.

Since the threshold can only be set in multiples of 4096 (2^12), to set a
10,000 limit, the Threshold is set to 12288 and the start count is set to
2288; and thus the eNVM has a 10k write cycle limit. After the write count
exceeds the threshold, the STATUS bit goes to 11 when attempting to
erase/program the page.

Create Standalone SmartDebug Project
A standalone SmartDebug project can be configured in two ways:

• Import DDC files exported from Libero
• Construct Automatically

From the SmartDebug main window, click Project and choose New Project. The Create SmartDebug
Project dialog box opens.

220 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 100 · Create SmartDebug Project Dialog Box

Import from DDC File (created from Libero)
When you select the Import from DDC File option in the Create SmartDebug Project dialog box, the Design
Debug Data of the target device and all hardware and JTAG chain information present in the DDC file
exported in Libero are automatically inherited by the SmartDebug project. The programming file information
loaded onto other Microsemi devices in the chain, including ProAsic3/E, SmartFusion, and Fusion devices,
are also transferred to the SmartDebug project.
Debug data is imported from the DDC file (created through Export SmartDebug Data in Libero) into the
debug project, and the devices are configured using data from the DDC file.

Construct Automatically
When you select the Construct Automatically option, a debug project is created with all the devices
connected in the chain for the selected programmer. This is equivalent to Construct Chain Automatically in
FlashPRO.

Configuring a Generic Device
For Microsemi devices having the same JTAG IDCODE (i.e., multiple derivatives of the same Die—for
example, M2S090T, M2S090TS, and so on), the device type must be configured for SmartDebug to enable
relevant features for debug. The device can be configured by loading the programming file, by manually
selecting the device using Configure Device, or by importing DDC files through Programming Connectivity
and Interface. When the device is configured, all debug options are shown.
For debug projects created using Construct Automatically, you can use the following options to debug the
devices:
• Load the programming file – Right-click the device in Programming Connectivity and Interface.
• Import Debug Data from DDC file – Right-click the device in Programming Connectivity and Interface.

The appropriate debug features of the targeted devices are enabled after the programming file or DDC file is
imported.

Programming Connectivity and Interface

Libero SoC User's Guide 221

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Connected FlashPRO Programmers
The drop-down lists all FlashPro programmers connected to the device. Select the programmer connected
to the chain with the debug device. At least one programmer must be connected to create a standalone
SmartDebug project.
Before a debugging session or after a design change, program the device through Programming
Connectivity and Interface.

See Also
Programming Connectivity and Interface
View Device Status
Export SmartDebug Data (from Libero)

Import from DDC File (created from Libero)
When you select the Import from DDC File option in the Create SmartDebug Project dialog box, the Design
Debug Data of the target device and all hardware and JTAG chain information present in the DDC file
exported in Libero are automatically inherited by the SmartDebug project. The programming file information
loaded onto other Microsemi devices in the chain, including ProAsic3/E, SmartFusion, and Fusion devices,
are also transferred to the SmartDebug project.
Debug data is imported from the DDC file (created through Export SmartDebug Data in Libero) into the
debug project, and the devices are configured using data from the DDC file.

Construct Automatically
When you select the Construct Automatically option, a debug project is created with all the devices
connected in the chain for the selected programmer. This is equivalent to Construct Chain Automatically in
FlashPRO.

Configuring a Generic Device
For Microsemi devices having the same JTAG IDCODE (i.e., multiple derivatives of the same Die—for
example, M2S090T, M2S090TS, and so on), the device type must be resolved for SmartDebug to enable
relevant features for debug. The device can be resolved by loading the programming file, manually selecting
the device using Configure Device, or by importing DDC files through Programming Connectivity and
Interface. When the device is resolved, all debug options are shown.
For debug projects created using Construct Automatically, you can use the following options to debug the
devices:

• Load the programming file – Right-click the device in Programming Connectivity and Interface.
• Import Debug Data from DDC file – Right-click the device in Programming Connectivity and Interface.

The appropriate debug features of the targeted devices are enabled after the programming file or DDC file is
imported.

Programming Connectivity and Interface
To open the Programming Connectivity and Interface dialog box, from the standalone SmartDebug Tools
menu, choose Programming Connectivity and Interface. The Programming Connectivity and Interface
dialog box displays the physical chain from TDI to TDO.

222 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 101 · Programming Connectivity and Interface Dialog Box – Project created using Import from DDC File

All devices in the chain are disabled by default when a standalone SmartDebug project is created using the
Construct Automatically option in the Create SmartDebug Project dialog box.

Figure 102 · Programming Connectivity and Interface window – Project created using Construct Automatically

The Programming Connectivity and Interface dialog box includes the following actions:
• Construct Chain Automatically - Automatically construct the physical chain.

Running Auto-Construct in Programming Connectivity and Interface removes all existing
debug/programming data included using DDC/programming files. The project is the same as a new
project created using the Construct Automatically option.
• Scan and Check Chain – Scan the physical chain connected to the programmer and check if it

matches the chain constructed in the scan chain block diagram.
• Run Programming Action – Option to program the device with the selected programming procedure.

When two devices are connected in the chain, the programming actions are independent of the device.
For example, if M2S090 and M2GL010 devices are connected in the chain, and the M2S090 device is to
be programmed and the M2GL010 device is to be erased, both actions can be done at the same time
using the Run Programming Action option.
• Zoom In – Zoom into the scan chain block diagram.
• Zoom Out – Zoom out of the scan chain block diagram.

Hover Information
The device tooltip displays the following information if you hover your cursor over a device in the scan chain
block diagram:
• Name: User-specified device name. This field indicates the unique name specified by the user in the

Device Name field in Configure Device (right-click Properties).
• Device: Microsemi device name.
• Programming File: Programming file name.

Programming Connectivity and Interface

Libero SoC User's Guide 223

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Programming action: The programming action selected for the device in the chain when a
programming file is loaded.

• IR: Device instruction length.
• TCK: Maximum clock frequency in MHz to program a specific device; standalone SmartDebug uses

this information to ensure that the programmer operates at a frequency lower than the slowest device
in the chain.

Device Chain Details
The device within the chain has the following details:

• User-specified device name
• Device name
• Programming file name
• Programming action – Select Enable Device for Programming to enable the device for programming.

Enabled devices are green, and disabled devices are grayed out.

Right-click Properties

Configure Device - Ability to reconfigure the device.
• Family and Die: The device can be explicitly configured from the Family, Die drop-down.
• Device Name: Editable field for providing user-specified name for the device.

224 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Enable Device for Programming - Select to enable the device for programming. Enabled devices are
shown in green, and disabled devices are grayed out.
Load Programming File - Load the programming file for the selected device.
Select Programming Procedure/Actions- Option to select programming action/procedures for the devices
connected in the chain.
• Actions: List of programming actions for your device.
• Procedures: Advanced option; enables you to customize the list of recommended and optional

procedures for the selected action.
Import Debug Data from DDC File - Option to import debug data information from the DDC file.
The DDC file selected for import into device must be created for a compatible device. When the DDC file is
imported successfully, all current device debug data is removed and replaced with debug data from the
imported DDC file.
The JTAG Chain configuration from the imported DDC file is ignored in this option.
If a programming file is already loaded into the device prior to importing debug data from the DDC file, the
programming file content is replaced with the content of the DDC file (if programming file information is
included in the DDC file).

Debug Context Save
Debug context refers to the user selections in debug options such as Debug FPGA Array, Debug SERDES,
and View Flash Memory Content. In standalone SmartDebug, the debug context of the current session is
saved or reset depending on the user actions in Programming Connectivity and Interface.
The debug context of the current session is retained for the following actions in Programming Connectivity
and Interface:

• Enable Device for Programming
• Select Programming Procedure/Actions
• Scan and Check Chain
• Run Programming Action

The debug context of the current session is reset for the following actions in Programming Connectivity and
Interface:

• Auto Construct – Clears all the existing debug data. You need to reimport the debug data from DDC
file.

• Import Debug Data from DDC file
• Configure Device – Renaming the device in the chain
• Configure Device – Family/Die change
• Load Programming File

Selecting Devices for Debug
Standalone SmartDebug provides an option to select the devices connected in the JTAG chain for debug.
The device debug context is not saved when another debug device is selected.

Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4

Libero SoC User's Guide 225

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4

Introduction
Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be routed to
unused I/Os. Nets are selected and assigned to probes using the Probe Insertion window in SmartDebug.
The rerouted design can then be programmed into the FPGA, where an external logic analyzer or
oscilloscope can be used to view the activity of the probed signal.

Figure 103 · Probe Insertion in the Design Process

The Probe Insertion debug feature is complementary to Live Probes and Active Probes. Live Probes and
Active Probes use a special dedicated probe circuitry.

Probe Insertion
1. Double-click SmartDebug Design in the Design Flow window to open the SmartDebug main window.

226 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: FlashPro Programmer must be connected for SmartDebug.
2. Select Debug FPGA Array and then select the Probe Insertion tab.

Figure 104 · Probe Insertion Tab

In the left pane of the Probe Insertion tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are shown with the Name and Type in the Netlist View.

3. Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them
to the Active Probes UI. You can also add the selected probe points by clicking the Add button. The
probes list can be filtered by using the Filter box.
Each entry has a Net and Driver name which identifies that probe point.
The selected net(s) appear in the Probes table in the Probe Insertion tab, as shown in the figure
below. SmartDebug automatically generates the Port Name for the probe. You can change the Port
Name from the default if desired.

4. Assign a package pin to the probe using the drop-down list in the Package Pin column. You can assign
the probe to any unused package pin (spare I/O).

Active Probes (SmartFusion2, IGLOO2, and RTG4)

Libero SoC User's Guide 227

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 105 · Debug FPGA Array > Probe Insertion > Add Probe

5. Click Run.

This triggers Place and Route in incremental mode, and the selected probe nets are routed to the
selected package pin. After incremental Place and Route, Libero automatically reprograms the device
with the added probes.
The log window shows the status of the Probe Insertion run.

Probe Deletion
To delete a probe, select the probe and click Delete. To delete all the probes, click Delete All.
Note: Deleting probes from the probes list without clicking Run does not automatically remove the probes
from the design.

Reverting to the Original Design
To revert to the original design after you have finished debugging:

1. In SmartDebug, click Delete All to delete all probes.
2. Click Run.
3. Wait until the action has completed by monitoring the activity indicator (spinning blue circle). Action is

completed when the activity indicator disappears.
4. Close SmartDebug.

Active Probes (SmartFusion2, IGLOO2, and RTG4)
In the left pane of the Active Probes tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are listed with the Name and Type (which is the physical location of
the flip-flop) in the Netlist View.

228 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them to the
Active Probes UI. You can also add the selected probe points by clicking the Add button. The probes list
can be filtered by using the Filter box.

Figure 106 · Active Probes Tab in SmartDebug FPGA Array Dialog Box

When you have selected the desired probe, points appear in the Active Probe Data chart and you can read
and write multiple probes (as shown in the figure below).
You can use the following options in the Write Value column to modify the probe signal added to the UI:
• Drop-down menu with values ‘0’ and ‘1’ for individual probe signals
• Editable field to enter data in hex or binary for a probe group or a bus

Figure 107 · Active Probes Tab - Write Value Column Options

Live Probes (SmartFusion2, IGLOO2, and RTG4)
The Live Probes tab displays a table with the probe name and pin type.
Note: SmartFusion2 and IGLOO2 support two probe channels, and RTG4 supports one probe channel.

Live Probes (SmartFusion2, IGLOO2, and RTG4)

Libero SoC User's Guide 229

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

SmartFusion2 and IGLOO2
Two probe channels (ChannelA and ChannelB) are available. When a probe name is selected, it can be
assigned to either ChannelA or ChannelB.
You can assign a probe to a channel by doing either of the following:
• Right-click a probe in the table and choose Assign to Channel A or Assign to Channel B.
• Click the Assign to Channel A or Assign to Channel B button to assign the probe selected in the

table to the channel. The buttons are located below the table.
When the assignment is complete, the probe name appears to the right of the button for that channel, and
SmartDebug configures the ChannelA and ChannelB I/Os to monitor the desired probe points. Because
there are only two channels, a maximum of two internal signals can be probed simultaneously.
Click the Unassign Channels button to clear the live probe names to the right of the channel buttons and
discontinue the live probe function during debug.
Note: At least one channel must be set; if you want to use both probes, they must be set at the same time.
The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

Figure 108 · Live Probes Tab (SmartFusion2 and IGLOO2) in SmartDebug FPGA Array Dialog Box

RTG4
One probe channel (Probe Read Data Pin) is available for RTG4 for debug. When a probe name is selected,
it can be assigned to the Probe Channel (Probe Read Data Pin).
You can assign a probe to a channel by doing either of the following:
• Right-click a probe in the table and choose Assign to Probe Read Data Pin.
• Click the Assign to Probe Read Data Pin button to assign the probe selected in the table to the

channel. The button is located below the table.
Click the Unassign probe read data pin button to clear the live probe name to the right of the channel
button and discontinue the live probe function during debug.
The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

230 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 109 · Live Probes Tab (RTG4) in SmartDebug FPGA Array Dialog Box

Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3
Only)

Inspect Device is available as a part of the FlashPro programming tool. Refer to Using SmartDebug for
information about how to configure FlashPro to access this feature.
In the Inspect Device dialog box, you can access all SmartDebug features, such as the FlashROM,
Embedded Flash Memory (NVM), and Analog Block. If you have multiple devices and programmers
connected, choose your target device/programmer from the drop-down menu, and use the ID code to verify
that you are inspecting the correct device.
View Device Status - Displays the Device Status Report. The Device Status Report is a summary of your
device state, analog block test values, user information, factory data, and security information. You can save
or print your information for future reference.
View Analog Block Configuration - Opens the Analog Block Configuration dialog box. You can view the
channel configuration for your analog block and compare the channel configuration with any other analog
block file.
View Flash Memory Content - Opens the Flash Memory dialog box. You can view the details for each flash
memory block in your device.
View FlashROM Content - Opens the FlashROM data dialog box. You can view a list of the physical blocks
in your FlashROM and the client partitions in FlashROM configuration files.

Analog Block Configuration Dialog Box (SmartFusion and Fusion Only)

Libero SoC User's Guide 231

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 110 · Inspect Device Dialog Box

Analog Block Configuration Dialog Box (SmartFusion and Fusion
Only)

In the Analog Block Configuration dialog box, you can:
• View the channel configuration on your analog system and identify if/how the channels are configured.
• Compare with the design configuration from the Analog System Builder for Fusion and SmartDesign

MSS Configurator for SmartFusion.

 The values displayed for each channel vary depending on the device family and channel you select; the
Channel configuration register read from the ACM is shown for each analog channel. Individual, decoded bit
fields of the register are listed immediately beneath (as described in the Fusion and SmartFusion
handbook). The dialog box may display the following values:
Fusion Device:

• Analog MUX select
• Internal chip T monitor
• Scaling factor control
• Current monitor switch
• Current monitor drive control
• Direct analog input switch
• Pad polarity - G, T, V, C pad polarity, positive or negative
• Select low/high drive
• Prescaler op amp mode

SmartFusion Device:

• Gain select
• Channel state
• Direct Input state
• Current Monitor state
• Current monitor strobe state
• Comparator state
• Hysteresis select
• Analog MUX select
• DAC input select

232 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Temperature monitor state
• Temperature monitor strobe state
• Vref switch state

To use the compare feature, select the Compare with checkbox. If the loaded PDB file contains Analog
Block configuration information, the comparison appears automatically.
To use a specific Project File, click Browse and navigate to the Analog System Builder directory for Fusion
or SmartDesign for SmartFusion. In a typical IDE project, this directory is located at:

• Fusion - <project_root>/smartgen/<analog_block_core_name>
• SmartFusion - <project root>/component/work/<SmartDesign project>/MSS_ACE_0

After specifying the compare directory, the differences (if any) are indicated in red on a channel by channel
basis, as shown in the figure below.

Figure 111 · Analog Block Configuration Dialog Box for a Fusion Device (Differences in Red)

View Device Status (SmartFusion2, IGLOO2, and RTG4 Only)
Click View Device Status in the standalone SmartDebug main window to display the Device Status Report.
The Device Status Report is a complete summary of IDCode, device certificate, design information,
programming information, digest, and device security information. Use this dialog box to save or print your
information for future reference.
Note: This information is available for SmartFusion2 and IGLOO2 devices only. For RTG4 devices, View
Device Status displays IDCode information only.

View Device Status (SmartFusion2, IGLOO2, and RTG4 Only)

Libero SoC User's Guide 233

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

IdCode
IDCode read from the device under debug.

Device Certificate
Device certificate displays Family and Die information if device certificate is installed on the device.
If the device certificate is not installed on the device, a message indicating that the device certificate may not
have been installed is shown.

Design Information
Design Information displays the following:

234 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Design Name
• Design Checksum
• Design Version
• Back Level
• Operating Voltage
• Internal Oscillator

Digest Information
Digest Information displays Fabric Digest, eNVM_0 Digest and eNVM_1 Digest (for M2S090 and M2S150
devices only) computed from the device during programming. eNVM digest is shown when eNVM is used in
the design.

Device Security Settings
Device Security Settings indicate the following:

• Factory test mode access
• Power on reset delay
• System Controller Suspend Mode

In addition, if custom security options are used, Device Security Settings indicate:
• User Lock segment is protected
• User Pass Key 1/2 encrypted programming is enforced for the FPGA Array
• User Pass Key 1/2 encrypted programming is enforced for the eNVM_0 and eNVM_1
• SmartDebug write access to Active Probe and AHB mem space
• SmartDebug read access to Active Probe, Live Probe & AHB mem space
• UJTAG access to fabric

Programming Information
Programming Information displays the following:
• Cycle Count
• VPP Range
• Temp Range
• Algorithm Version
• Programmer
• Software Version
• Programming Software
• Programming Interface Protocol
• Programming File Type

Embedded Flash Memory (NVM) Content Dialog Box
(SmartFusion and Fusion Only)

You can do the following in the NVM content dialog box:

• View content of Flash Memory pages (as shown in the figure below)
• Compare device content with original design content (requires a PDB that contains your EFC data)
• Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-

year retention threshold

Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only)

Libero SoC User's Guide 235

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Fusion Devices: Choose your block from the From block drop-down list This action populates the Select
drop-down list with the names of the clients in the selected block that is configured in the Flash Memory
System Builder.
SmartFusion Devices: Block selection is unused and unavailable.
Choose a client name from the Select drop-down list and click Read from Device to view the values. You
can also view a specific page range by selecting the <Page Range> option in the Select drop-down list and
then specifying the start page and the end page.
You must click Read from Device each time you specify a new page range to update the view.
If you do not have your original design programming database (PDB) file, you can examine and retrieve a
range of pages. Specify a page range if you wish to examine a specific set of pages. Page Status
information appears to the right.

Figure 112 · Flash Memory Content Dialog Box for a SmartFusion Device (SmartDebug)

Embedded Flash Memory: Browse Retrieved Data (SmartFusion
and Fusion Only)

The retrieved data table displays the content of the selected client or the page range selection. Corrupted
page content is displayed in red. Read-only page content, corresponding to clients defined with the Prevent
read option in Flash Memory System Builder, is displayed with a gray background. If content cannot be read
(for example, pages are read-protected, but security has been erased), the content is displayed as XX. The
mouse tooltip summarizes abnormal content status (as shown in the figure below).

236 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The corresponding page number and address (relative to the current block) are displayed in the left column.
The client size specified in the Flash Memory System Builder is shown at the top of the content table.
In the Retrieved Data View, you can enter an Address value (such as 0010) in the Go to Address field and
click the corresponding button to go directly to that address.
Click View Detailed Status for a detailed report on the page range you have selected.
For example, if you want to view a report on pages 1-3, set the Start Page to 1, set the End Page to 3, and
click Read from Device. Then click View Detailed Status The figure below is an example of the data for a
specific page range.

Figure 113 · Flash Memory Details Dialog Box (SmartDebug)

Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only)

Libero SoC User's Guide 237

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 114 · Flash Memory Browse Retrieved Data

Embedded Flash Memory: Compare Memory Client (SmartFusion
and Fusion Only)

After you retrieve the data from the device, the Compare Client Content button lets you compare the content
of the selected client from the device with the original programming database (PDB) file. The differences are
shown in the Compare Memory Client dialog box (as shown in the figure below).
Note: This option is not available when you select to retrieve the data based on a page range.

238 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 115 · Compare Memory Client Dialog Box

FlashROM Content Dialog Box (Fusion and SmartFusion Only)
In the FlashROM Content dialog box, you can view the physical blocks in your FlashROM and the client
partitions specified in the original design content (requires a PDB that contains your UFC data). If the
project’s PDB does not contain UFC data, only the physical blocks are displayed.
Scroll through the table to view the Words and Pages for your physical blocks.
The Client Partitions section lists the names and configuration details of the clients set up in the FlashROM
Builder. It automatically finds all mismatched client regions. To view the differences between a client and the
device content, select a region row in the Client Partitions table. This action highlights the corresponding
device content in the Physical Blocks table. The mismatch details are displayed below the Client Partitions
table.
To copy the content of the Physical Blocks table to clipboard, select one or more cells in the table and type
Ctrl+C.

Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion Only)

Libero SoC User's Guide 239

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 116 · FlashROM Content Dialog Box

Device Debug / SmartDebug Tcl Commands (SmartFusion,
IGLOO, ProASIC3, and Fusion Only)

Note: Tcl commands in this section may not be supported by all device families listed above. See
the individual commands for specific device support.

The following table lists the Tcl commands related to Device Debug / SmartDebug for SmartFusion and
Fusion). Click the command to view more information.

Table 16 · Device Debug / SmartDebug Tcl Commands

Command Action Type

check_flash_memory Performs diagnostics of the page status and
data information.

Embedded
Flash

240 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action Type

Memory
(NVM)

compare_analog_config Compares the content of the analog block
configurations in your design against the
actual values in the device.

Analog Block

compare_flashrom_client Compares the content of the FlashROM
configurations in your design against the
actual values in the selected device.

FlashROM

compare_memory_client Compares the memory
client in a specific device
and block.

Embedded
Flash
Memory
(NVM)

read_analog_block_config Reads each channel
configuration on your
analog system, enabling
you to identify if/how each
channel is configured.

Analog Block

read_device_status Displays a summary of the selected device.

read_flashrom Reads the content of the FlashROM from
the selected device.

FlashROM

read_flash_memory Reads information from the NVM modules
(page status and page data).

Embedded
Flash
Memory
(NVM)

read_id_code Reads IDCode from the device without
masking any IDCode fields.

recover_flash_memory Removes ECC2 errors due to memory
corruption by reprogramming specified flash
memory (NVM) pages and initializing all
pages to zeros.

Embedded
Flash
Memory
(NVM)

sample_analog_channel Samples analog channel; enables you to
debug ADC conversion of the preconfigured
analog channel (you must provide ADC
conversion parameters).

set_debug_device Identifies the device you intend to debug.

set_debug_programmer Identifies the programmer you want to use
for debugging (if you have more than one).

Using SmartDebug with SmartFusion2, IGLOO2, and RTG4
The most common flow for SmartDebug is:

Device Status Report (SmartFusion and Fusion Only)

Libero SoC User's Guide 241

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

1. Create your design. You must have a FlashPro programmer connected to use SmartDebug.
2. Expand Debug Design and double-click Smart Debug Design in the Design Flow window.

SmartDebug opens for your target device.
3. Click View Device Status to view the device status report and check for issues.
4. Examine individual silicon features, such as FPGA debug.

Device Status Report (SmartFusion and Fusion Only)
This dialog box displays the Device Information report. The Device Information report is a complete
summary of your device state, analog block test values, user information, factory serial number, and security
information. Use this dialog box to save or print your information for future reference.

Figure 117 · Device Status Report

242 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Debug SERDES (SmartFusion2, IGLOO2, and RTG4)
 You can examine and debug the SERDES blocks in your design in the Debug SERDES dialog box (shown
in the figure below).
To Debug SERDES, expand SmartDebug in the Design Flow window and double-click Debug SERDES.
Debug SERDES Configuration is explained below. See the PRBS Test and Loopback Test topics for
information specific to those procedures.
SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

Debug SERDES - Configuration

Configuration Report
The Configuration Report output depends on the options you select in your PRBS Test and Loopback Tests.
The default report lists the following for each Lane in your SERDES block:
Lane mode - Indicates the programmed mode on a SERDES lane as defined by the SERDES system
register.
PMA Ready - Indicates whether PMA has completed its internal calibration sequence for the specific lane
and whether the PMA is operational. See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User
Guide on the Microsemi website for details.
TxPll status - Indicates the loss-of-lock status for the TXPLL is asserted and remains asserted until the PLL
reacquires lock.
RxPLL status - Indicates the CDR PLL frequency is not grossly out of range of with incoming data stream.
Click Refresh Report to update the contents of your SERDES Configuration Report. Changes to the
specified SERDES register programming can be read back to the report.

SERDES Register Read or Write
Script - Runs Read/Write commands to access the SERDES control/status register map using a script.
Enter the full pathname for the script location or click the browse button to navigate to your script file. Click
Execute to run the script.

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

Debug SERDES – PRBS Test

Libero SoC User's Guide 243

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 118 · Debug SERDES - Configuration

Note: The PCIe and XAUI protocols only support PRBS7. The EPCS protocol supports PRBS7/11/23/31.

Debug SERDES – PRBS Test
PRBS data stream patterns are generated and checked by the internal SERDES block. These are used to
self-test signal integrity of the device. You can switch the device through several predefined patterns.
View Loopback Test settings in the Debug SERDES - Loopback Test topic.
SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

SERDES Lanes
Select the Lane and Lane Status on which to run the PRBS test. Lane mode indicates the programmed
mode on a SERDES lane as defined by the SERDES system register.

Test Type
Near End Serial Loopback (On-Die) enables a self test of the device. The serial data stream is sent from
the SERDES TX output and folded back onto the SERDES RX input.
Serial Data (Off-Die) is the normal system operation where the data stream is sent off chip from the TX
output and must be connected to the RX input via a cable or other type of electrical interconnection.

244 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Pattern
The SERDESIF includes an embedded test pattern generator and checker used to perform serial
diagnostics on the serial channel, as shown in the table below.

Pattern Type

PRBS7 Pseudo-Random data stream of 2^7 polynomial sequences

PRBS11 Pseudo-Random data stream of 2^11 polynomial sequences

PRBS23 Pseudo-Random data stream of 2^23 polynomial sequences

PRBS31 Pseudo-Random data stream of 2^31 polynomial sequences

Cumulative Error Count
Lists the number of cumulative errors after running your PRBS test. Click Reset to reset to zero. 1. By
default, Cumulative Error Count = 0, the Data Rate text box is blank, and Bit Error Rate = NA.

Figure 119 · Debug SERDES - PRBS Test

Note: If the design uses SERDES PCIe, PRBS7 will be the only option shown for PRBS tests..

Bit Error Rate
Displays the Bit Error Rate (BER) for the PRBS test in progress.
The formula for calculating the BER is as follows:

 BER = (#bit errors+1)/#bits sent
 #bits sent = Elapsed time/bit period

When clicked on Start:

Debug SERDES – Loopback Test

Libero SoC User's Guide 245

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• The BER is updated every second for the entered data rate and errors observed.
• If no data rate is entered by the user, the BER is set to the default.

When clicked on Stop:

• The BER resets to default.

When clicked on Reset:
• The BER is reset to default.
• If no test is in progress, the BER remains in the default value.
• If the PRBS test is in progress, the BER calculation restarts.

Debug SERDES – Loopback Test
Loopback data stream patterns are generated and checked by the internal SERDES block. These are used
to self-test signal integrity of the device. You can switch the device through predefined tests.
See the PRBS Test topic for more information about the PRBS test options.
SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

SERDES Lanes
Select the Lane and Lane Status on which to run the Loopback test. Lane mode indicates the programmed
mode on a SERDES lane as defined by the SERDES system register.

Test Type
PCS Far End PMA RX to TX Loopback- This loopback brings data into the device and deserializes and
serializes the data before sending it off-chip. This loopback requires 0PPM clock variation between the TX
and RX SERDES clocks.
See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for
details.
Near End Loopback (On Die) - To enable, select the Near End Loopback (On Die) option and click Start.
Click Stop to disable. Using this option allows you to send and receive user data without sending traffic off-
chip. You can test design functionality without introducing other issues on the PCB.
See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for
details.

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide
http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

246 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 120 · Debug SERDES - Loopback Test

Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 Only)

Libero SoC User's Guide 247

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Debugging

Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 Only)
In the Debug FPGA Array dialog box, you can view your Live Probes, Active Probes, and Memory Blocks,
and Insert Probes (Probe Insertion).
The Debug FPGA Array dialog box includes the following four tabs:
• Live Probes
• Active Probes
• Memory Blocks
• Probe Insertion

Live Probes (SmartFusion2, IGLOO2, and RTG4)
The Live Probes tab displays a table with the probe name and pin type.
Note: SmartFusion2 and IGLOO2 support two probe channels, and RTG4 supports one probe channel.

SmartFusion2 and IGLOO2
Two probe channels (ChannelA and ChannelB) are available. When a probe name is selected, it can be
assigned to either ChannelA or ChannelB.
You can assign a probe to a channel by doing either of the following:
• Right-click a probe in the table and choose Assign to Channel A or Assign to Channel B.
• Click the Assign to Channel A or Assign to Channel B button to assign the probe selected in the

table to the channel. The buttons are located below the table.

When the assignment is complete, the probe name appears to the right of the button for that channel, and
SmartDebug configures the ChannelA and ChannelB I/Os to monitor the desired probe points. Because
there are only two channels, a maximum of two internal signals can be probed simultaneously.
Click the Unassign Channels button to clear the live probe names to the right of the channel buttons and
discontinue the live probe function during debug.
Note: At least one channel must be set; if you want to use both probes, they must be set at the same time.
The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

248 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 121 · Live Probes Tab (SmartFusion2 and IGLOO2) in SmartDebug FPGA Array Dialog Box

RTG4
One probe channel (Probe Read Data Pin) is available for RTG4 for debug. When a probe name is selected,
it can be assigned to the Probe Channel (Probe Read Data Pin).
You can assign a probe to a channel by doing either of the following:
• Right-click a probe in the table and choose Assign to Probe Read Data Pin.
• Click the Assign to Probe Read Data Pin button to assign the probe selected in the table to the

channel. The button is located below the table.
Click the Unassign probe read data pin button to clear the live probe name to the right of the channel
button and discontinue the live probe function during debug.
The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

Figure 122 · Live Probes Tab (RTG4) in SmartDebug FPGA Array Dialog Box

Active Probes (SmartFusion2, IGLOO2, and RTG4)

Libero SoC User's Guide 249

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Active Probes (SmartFusion2, IGLOO2, and RTG4)
In the left pane of the Active Probes tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are listed with the Name and Type (which is the physical location of
the flip-flop) in the Netlist View.
Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them to the
Active Probes UI. You can also add the selected probe points by clicking the Add button. The probes list
can be filtered by using the Filter box.

Figure 123 · Active Probes Tab in SmartDebug FPGA Array Dialog Box

When you have selected the desired probe, points appear in the Active Probe Data chart and you can read
and write multiple probes (as shown in the figure below).
You can use the following options in the Write Value column to modify the probe signal added to the UI:

• Drop-down menu with values ‘0’ and ‘1’ for individual probe signals
• Editable field to enter data in hex or binary for a probe group or a bus

Figure 124 · Active Probes Tab - Write Value Column Options

250 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Memory Blocks (SmartFusion2, IGLOO2, and RTG4)
The left pane in the Memory Blocks tab shows the list of defined memory blocks that are specified in your
design. Select a memory block and add it to the UI. After you select a memory block, you can click Read
Block to show the current content of the memory or write to individual memory locations. Each field is
editable, and multiple memory locations can be written at the same time.
Each field is a 9-bit memory word (for SmartFusion2 and IGLOO2 devices) and 9-bit or 12-bit memory word
(for RTG4 devices, depending on the memory configuration). Valid inputs are hexadecimal values between
0x0 and 0x1FF (for SmartFusion2, IGLOO2, and RTG4 devices in 9-bit mode) and 0x0 and 0xFFF (for
RTG4 devices only in 12-bit mode), as shown in the figure below.

Figure 125 · Debug FPGA Array - Memory Blocks Tab

Fields that have changed but have not yet been written appear in red text until you click Write Block to
initiate a memory write (as shown in the figure below).

Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4

Libero SoC User's Guide 251

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 126 · Memory Blocks with Updated Values

Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4

Introduction
Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be routed to
unused I/Os. Nets are selected and assigned to probes using the Probe Insertion window in SmartDebug.
The rerouted design can then be programmed into the FPGA, where an external logic analyzer or
oscilloscope can be used to view the activity of the probed signal.

252 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Probe Insertion in the Design Process
The Probe Insertion debug feature is complementary to Live Probes and Active Probes. Live Probes and
Active Probes use a special dedicated probe circuitry.

Probe Insertion
1. Double-click SmartDebug Design in the Design Flow window to open the SmartDebug main window.

Note: FlashPro Programmer must be connected for SmartDebug.
2. Select Debug FPGA Array and then select the Probe Insertion tab.

Figure 127 · Probe Insertion Tab

In the left pane of the Probe Insertion tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are shown with the Name and Type in the Netlist View.

3. Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them
to the Active Probes UI. You can also add the selected probe points by clicking the Add button. The
probes list can be filtered by using the Filter box.
Each entry has a Net and Driver name which identifies that probe point.
The selected net(s) appear in the Probes table in the Probe Insertion tab, as shown in the figure
below. SmartDebug automatically generates the Port Name for the probe. You can change the Port
Name from the default if desired.

4. Assign a package pin to the probe using the drop-down list in the Package Pin column. You can assign
the probe to any unused package pin (spare I/O).

Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4

Libero SoC User's Guide 253

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 128 · Debug FPGA Array > Probe Insertion > Add Probe

5. Click Run.

This triggers Place and Route in incremental mode, and the selected probe nets are routed to the
selected package pin. After incremental Place and Route, Libero automatically reprograms the device
with the added probes.
The log window shows the status of the Probe Insertion run.

Probe Deletion
To delete a probe, select the probe and click Delete. To delete all the probes, click Delete All.
Note: Deleting probes from the probes list without clicking Run does not automatically remove the probes
from the design.

Reverting to the Original Design
To revert to the original design after you have finished debugging:

1. In SmartDebug, click Delete All to delete all probes.
2. Click Run.
3. Wait until the action has completed by monitoring the activity indicator (spinning blue circle). Action is

completed when the activity indicator disappears.
4. Close SmartDebug.

254 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

SmartDebug Tcl Commands

SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTG4)
The following table lists the Tcl commands related to SmartDebug for SmartFusion2, IGLOO2, and RTG4.
Click the command to view more information.

Table 17 · SmartDebug Tcl Commands

Command Action

DDR/MDDR

ddr_read Reads the value of specified configuration registers
pertaining to the DDR memory controller (MDDR/FDDR)

ddr_write Writes the value of specified configuration registers
pertaining to the DDR memory controller (MDDR/FDDR)

Probe

add_to_probe_group Adds the specified probe points to the specified probe
group

create_probe_group Creates a new probe group

delete_active_probe Deletes either all or the selected active probes.

load_active_probe_list Loads the list of probes from the file.

move_to_probe_group Moves the specified probe points to the specified probe
group.

set_live_probe Set Live probe channels A and/or B to the specified probe
point (or points).

select_active_probe Manages the current selection of active probe points to be
used by active probe READ operations.

read_active_probe Reads active probe values from the device.

remove_from_probe_group Move out the specified probe points from the group.

save_active_probe_list Saves the list of active probes to a file.

select_active_probe Manages the current selection of active probe points to be
used by active probe READ operations.

ungroup Disassociates the probes as group.

unset_live_probe Discontinues the debug function and clears live probe
channels.

write_active_probe Sets the target probe point on the device to the specified
value.

Export Pin Report

Libero SoC User's Guide 255

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

LSRAM

read_lsram Reads a specified block of large SRAM from the device.

write_lsram Writes a seven bit word into the specified large SRAM
location.

uSRAM

read_usram Reads a uSRAM block from the device.

write_usram Writes a seven bit word into the specified uSRAM location.

SERDES

prbs_test Starts, stops, resets the error counter and reads the error
counter value in PRBS tests.

loopback_test Starts and stops the loopback tests.

serdes_lane_reset In EPCS mode, this command resets the lane. In PCI
mode, this command resets the lane, all other lanes in the
link, and the corresponding PCIe controller.

serdes_read_register Reads the SERDES register value and displays the result
in the log window/console.

serdes_write_register Writes the value to the SERDES register.

Additional Commands

export_smart_debug_data Exports debug data for the SmartDebug application.

Export Pin Report
In the Design Flow window, expand Handoff Design for Production. Right-click Export Pin Report to export a
pin report.
The Export Pin Reports Dialog Box opens. Click the Browse Button to navigate to a disk location where you
want the pin report to be saved to.
Check the checkbox to make your selections:
• Pin Report sorted by Port Name
• Pin Report sorted by Package Pin Name
• I/O Bank Report
• I/O Register Combining Report

The Pin Report lists the pins in your device sorted according to your preference: sort by Port Name or
Sorted by Package Pin Name. The Pin Report generates two files:

• <design>_pinrpt_name.rpt - Pin report sorted by name.
• <design>_pinrpt_number.rpt - Pin report sorted by pin number.

 You must select at least one report.
Export Pin Report also generates a Bank Report by default; the filename is <design>-bankrpt.rpt.

256 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 129 · Export Pin Report Dialog Box

Export Pin Report also generates an I/O Register Combining Report listing the I/Os which have been
combined into a Register for betting timing performance.

Export BSDL File
Double-click Export BSDL File (in the Libero SoC Design Flow window, Handoff Design for Production >
Export BSDL File) to generate the BSDL File report to your Design Datasheet/Report.
For SmartFusion, IGLOO, ProASIC3, and Fusion devices, do the following:

1. Open Designer interactively.
2. Click Compile.
3. Click Layout.
4. Click Programming File and click Finish when done.
5. In the Generate Programming Files dialog box, under Output formats, select IEEE 1532 Files (*.bsd,

*.isc).
6. Click Generate to generate the related BSDL file.

The BSDL file provides a standard file format for electronics testing using JTAG. It describes the boundary
scan device package, pin description and boundary scan cell of the input and output pins. BSDL models are
available as downloads for many Microsemi SoC devices; see the Microsemi website for more information.

Export IBIS Model
Double-click Export IBIS Model (in the Libero SoC Design Flow window, Handoff Design for Production >
Export IBIS Model) to generate the IBIS Model report.
The IBIS model report provides an industry-standard file format for recording parameters like driver output
impedance, rise/fall time, and input loading, which may then be used by software applications such as
Signal Integrity tools or IBIS simulators.
The exported IBIS file has the file extension *.ibs (named <root>.ibs) and is displayed in the Files tab.
For SmartFusion2, IGOO2 and RTG4 devices, the IBIS report *.ibs file exported from Libero SoC supports
the Model Selector keyword as specified in the IBIS 5.0 Specifications.

http://www.actel.com/download/bsdl/default.aspx
http://ibis.org/ver5.0

Export Firmware – SmartFusion2

Libero SoC User's Guide 257

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

In the [Pin} section of the IBIS *.ibs file, listed under the model_name are the Model Selector tag. The IBIS
*.ibs file has a [Model Selector] section that describes the model selector and its list of models. The Model
Selector tag in the [Pin] section establishes the relationship between the pin and the [Model Selector].

Figure 130 · Model Selector *.ibs File

With this Model Selector feature support, users can load the *.ibs file from Libero SoC into Signal Integrity
applications or IBIS simulators and switch the I/O to different models for individual I/Os on-the-fly in the
tools. There is no need to go back to the Libero SoC I/O Attribute Editor to change the I/O settings and run
Compile to switch to different I/O settings.
See the IBIS model application note for more information on IBIS models.

Export Firmware – SmartFusion2
When your design has been completed, you can export the design firmware configuration using the Export
Firmware tool. The firmware configuration contains:
• Register configuration files for MSS, FDDR, and SERDES blocks instantiated in your design. This

information must be compiled with your application along with the SmartFusion2 CMSIS firmware core
to have proper Peripheral Initialization when the Cortex-M3 boots.

• Firmware drivers compatible with the hard and soft peripherals instantiated in your design.
To export your design firmware configuration, double-click Export Firmware in the Libero SoC Design Flow
window under Handoff Design for Firmware Development. The Export Firmware dialog box opens.

http://www.actel.com/documents/Ibis_AN.pdf

258 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 131 · Export Firmware Dialog Box

Location: Provide the location where you want the firmware configuration files to be exported. When you
export the firmware, Libero SoC creates a Firmware folder to store all the drivers and register configuration
files.
Export hardware configuration (Software IDE independent):Beginning in Libero SoC v11.7, the Export
hardware configuration option exports register configuration files for MSS, FDDR and SERDES blocks
instantiated in your design. CMSIS and other firmware drivers must be generated using the standalone
Firmware Catalog executable. These options are available to support SoftConsole 4.0 flow.

Create firmware project for: <selected Software Tool Chain>

This option is checked by default. Libero SoC creates the firmware project for the IDE tool of your choice
and creates the SoftConsole/IAR/Keil (per your choice) folder to store the projects.
To enable you to manage your firmware project separately from Libero’s automatically generated firmware
data, the created software workspace contains two software projects:
hardware_platform - This project contains all the firmware and hardware abstraction layers that correspond
to your hardware design. This project is configured as a library and is referenced by your application project.
The content of this folder is overwritten every time you export your firmware project.
application - This project produces a program and results in the binary file. It links with the
hardware_platform project. This folder does not get overwritten when you re-export your firmware. This is
where you can write your own main.c and other application code, as well as add other user drivers and files.
You can reference header (*.h) files of any hardware peripherals in the hardware_platform project – include
paths are automatically set up for you.
To build your workspace, make sure you have both the hardware_platform and _application projects set to
the same compile target (Release or Debug) and build both projects.
To open your exported firmware projects you must invoke your third-party development tool (SoftConsole,
Keil or IAR) outside Libero SoC and point it to the exported firmware workspace.
Note: You must re-export firmware if you make any changes to your design.

TCL Command
export_firmware \

-export_dir {D:\Designs\software_drivers} \

-create_project 1 \

-software_ide {Keil}

Version Supported
Libero SoC v11.7 supports the following versions of third-party development tools:

Running Libero SoC from your Software Tool Chain

Libero SoC User's Guide 259

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• SoftConsole v3.4
• IAR v7.4
• Keil V5.16

Running Libero SoC from your Software Tool Chain
When launched from your software toolchain, Libero SoC becomes solely an MSS configurator. This can be
useful if you are responsible for the embedded code development for the SmartFusion device and are more
comfortable in your existing software tool chain.
Any FPGA fabric development needs to be done using the regular Libero® SoC tool flow. Using the Libero
SoC in the software toolchain mode only enables you to configure the SmartFusion Microcontroller
Subsystem (MSS) and not the FPGA fabric.
The MSS Configurator can be integrated in any software development IDE that supports external tools.
Configure your IDE to start the Libero SoC executable and use the parameters below to customize your
interface. For SoftConsole, Keil and IAR the parameters are:
"PROJECT_LOCATION:<path>" //Project directory location, and the location of your
generated MSS files.

"DESIGN_NAME:<name>" //Name of your design.

"STARTED_BY:<tool>" //Identifies which tool invoked the MSS Configurator; can be
SoftConsole, Keil, or IAR EWARM

See Also

Exporting Firmware and the Software IDE Workspace
Libero SoC Frequently Asked Questions
Software IDE Integration
View/Configure Firmware Cores

Application Notes
Application notes are available for all Microsemi SoC devices. A full list of application notes is available at
the Microsemi SoC website.
Application notes are organized by product or type. For example, you can view a full list of application notes
for SmartFusion, or you can view a list of application notes on Design Entry that includes documents for all
available families.
The following is a short list of popular application notes covering a range of applications and devices.

• AC333: Connecting User Logic to the SmartFusion Microcontroller Subsystem App Note (design files
required - 23 MB) - Describes how to create AHB Lite or APB3 wrapper on custom logic and how to
connect it to the MSS System via the Fabric Interface Controller.

• AC225 Programming Antifuse Devices App Note - Provides an overview of the programming options
available for the antifuse families.

• AC362: SmartFusion cSoC: Programming FPGA Fabric and eNVM Using In-Application Programming
Interface App Note (design files required - 50 MB)

• AC335: Building an APB3 Core for SmartFusion cSoC FPGAs App Note (design files required - 13
MB) - Describes how to create an APB3 wrapper interface for your logic or IP and connect it to the
MSS via the Fabric Interface Controller.

• AC265: Clock Generation and Distribution Design Example App Note (design files required - 1 MB) -
Demonstrates the use of the IGLOO and ProASIC3 clock conditioning circuits and phase-locked loops
(PLLs) to generate multiple clock signals with different phases and frequencies.

Tutorials and Training Modules
Software tutorials, webcasts and online training modules are available on the Microsemi website. See the
website for a full list.

http://www.microsemi.com/design-support/application-notes#fpgas-amp-socs
http://www.actel.com/techdocs/appnotes/smartfusion.aspx
http://www.actel.com/techdocs/appnotes/smartfusion.aspx
http://www.actel.com/techdocs/appnotes/design_entry.aspx
http://www.actel.com/documents/User_Logic_MSS_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC333_DF
http://www.microsemi.com/soc/download/rsc?f=A2F_AC333_DF
http://www.actel.com/documents/AntifuseProgram_AN.pdf
http://www.actel.com/documents/A2F_AC362_AN.pdf
http://www.actel.com/documents/A2F_AC362_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC362_DF
http://www.actel.com/documents/SmartFusion_Build_APB3core_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC335_DF
http://www.actel.com/documents/Clock_Generation_Distribution_AN.pdf
http://www.actel.com/download/rsc?f=Clock_Generation_Distribution_DF
http://www.actel.com/products/software/libero/docs.aspx
http://www.actel.com/support/webcasts/default.aspx
http://mscctraining.com/

260 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The following list is an example of the tutorials available. Training modules may require you to register to
enter the Microsemi Training Portal. Registration is free.

Example Tutorials
ARM Cortex M1-Embedded Processor Tutorial (design files required - 105 MB) - Describes how to create a
Cortex-M1 processor system that runs on the Fusion development kit board available from Microsemi SoC.
SmartFusion cSoC Webserver Demo Using uIP and FreeRTOS - Demonstrates the SmartFusion device
capabilities using the SmartFusion Development Kit Board. Requires the following design files and the
SmartFusion Development Kit Board.

• Design files using Softconsole (RAR, 15.2 MB, 5/12)
• Design files using IAR (RAR, 11.9 MB, 5/12)
• Design files using Keil (RAR, 13.5 MB, 5/12)
• Programming File (RAR, 226 KB, 5/12)

Using Keil µVision and Microsemi SmartFusion (programming files required - 91 KB)- Describes the process
of operating an ARM Keil MDL Toolkit featuring µVision and Microsemi's SmartFusion family.

Catalog
In the Libero SoC, from the View menu choose Windows > Catalog.
The Catalog displays a list of available cores, busses and macros (see image below).

Figure 132 · Libero SoC Catalog

From the Catalog, you can create a component from the list of available cores, add a processor or
peripheral, add a bus interface to your SmartDesign component, instantiate simulation cores or add a macro
(Arithmetic, Basic Block, etc.) to your SmartDesign component.
 Double-click a core to configure it and add it to your design. Configured cores are added to your list of
Components/Modules in the Design Explorer.
Click the Simulation Mode checkbox to instantiate simulation cores in your SmartDesign Testbench.
Simulation cores are basic cores that are useful for stimulus, such as driving clocks, resets, and pulses.

Viewing Cores in the Catalog
The font indicates the status of the core:

http://www.actel.com/documents/CortexM1-Processor_Tutorial_UG.pdf
http://www.microsemi.com/soc/download/rsc?f=CortexM1_Proc_Tutorial_DF
http://www.actel.com/documents/SmartFusion_Webserver_uIPRTOS_UG.pdf
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_SoftConsole_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_IAR_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_Keil_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_PF
http://www.actel.com/documents/Keil_SmartFusion_tutorial.pdf
http://www.actel.com/download/rsc?f=Keil_SmartFusion_tutorial_PF

Catalog Options Dialog Box

Libero SoC User's Guide 261

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Plain text - In vault and available for use
• Asterisk after name (*) - Newer version of the core (VLN) available for download
• Italics - Core is available for download but not in your vault
• Strikethrough - core is not valid for this version of Libero SoC

The colored icons indicate the license status. Blank means that the core is not license protected in any way.
Colored icons mean that the core is license protected, with the following meanings:

Green Key - Fully licensed; supports the entire design flow.
Yellow Key - Has a limited or evaluation license only. Precompiled simulation libraries are provided,
enabling the core to be instantiated and simulated within Libero SoC. Using the Evaluation version of the
core it is possible to create and simulate the complete design in which the core is being included. The
design is not synthesizable (RTL code is not provided). No license feature in the license.dat file is needed
to run the core in evaluation mode.You can purchase a license to generate an obfuscated or RTL netlist.
Yellow Key with Red Circle - License is protected; you are not licensed to use this core.

Right-click any item in the Catalog and choose Show Details for a short summary of the core specifications.
Choose Open Documentation for more information on the Core. Right-click and choose Configure Core to
open the core generator.
Click the Name column heading to sort the cores alphabetically.
You can filter the cores according to the data in the Name and Description fields. Type the data into the filter
field to view the cores that match the filter. You may find it helpful to set the Catalog Display Options to List
cores alphabetically when using the filters to search for cores. By default the filter contains a beginning
and ending ‘*’, so if you type ‘controller’ you get all cores with controller in the core name (case insensitive
search) or in the core description. For example, to list all the Accumulator cores, in the filter field type:
accu

Catalog Options
Click the Options button to customize the Catalog Display Options. Click the Catalog Options drop-down
arrow to import a core, reload the Catalog, or enter advanced download mode.
You may want to import a core from a file when:

• You do not have access to the internet and cannot download the core, or
• A core is not complete and has not been posted to the web (you have an evaluation core)

See Also
Project Manager - Cores Dialog Box (Advanced Download Mode)

Catalog Options Dialog Box
The Catalog Options dialog box (as shown below) enables you to customize your Catalog display. You can
add a repository, set the location of your vault, and change the View Settings for the Catalog. To display this
dialog box, click the Catalog Options button .

Figure 133 · Catalog Display Options Dialog Box

262 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Vault/Repositories Settings
Repositories

A repository is a location on the web that contains cores that can be included in your design.
The Catalog Options dialog box enables you to specify which repositories you want to display in your Vault.
The Vault displays a list of cores from all your repositories, and the Catalog displays all the cores in your
Vault.
The default repository cannot be permanently deleted; it is restored each time you open the Manage
Repositories dialog box.
Any cores stored in the repository are listed by name in your Vault and Catalog; repository cores displayed
in your Catalog can be filtered like any other core.
Type in the address and click the Add button to add new repositories. Click the Remove button to remove a
repository (and its contents) from your Vault and Catalog. Removing a repository from the list removes the
repository contents from your Vault.

Vault location
Use this option to choose a new vault location on your local network. Enter the full domain pathname in the
Select new vault location field. Use the format:
\\server\share

and the cores in your Vault will be listed in the Catalog.

View Settings
Display

Group cores by function - Displays a list of cores, sorted by function. Click any function to expand the list
and view specific cores.
List cores alphabetically - Displays an expanded list of all cores, sorted alphabetically. Double click a core
to configure it. This view is often the best option if you are using the filters to customize your display.
Show core version - Shows/hides the core version.

Filters
Filter field - Type text in the Filter Field to display only cores that match the text in your filter. For example,
to view cores that include 'sub' in the name, set the Filter Field to Name and type sub.
Display only latest version of a core - Shows/hides older versions of cores; this feature is useful if you are
designing with an older family and wish to use an older core.
Show all local and remote cores - Displays all cores in your Catalog.
Show local cores only - Displays only the cores in your local vault in your Catalog; omits any remote cores.
Show remote cores that are not in my vault - Displays remote cores that have not been added to your
vault in your Catalog.

Changing Device Information
Device and package information, device variations, and operating conditions are set when you import a
netlist and compile a new design. However, you can change this information for existing designs.

To change device information for existing designs:
1. In the Project menu, choose Project Settings. The Project Settings dialog box opens.
2. Select your updated options, such as Die, Package, and Speed.
3. Click Close.

Refer to the Microsemi FPGA Data Book or call your local Microsemi Sales Representative for information
about device, package, speed grade, variations, and operating conditions.

Core Manager

Libero SoC User's Guide 263

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Compatible Die Change
When you change the device, some design information can be preserved depending on the type of change.

Changing Die Revisions
If you change the die from one technology to another, all information except timing is preserved. An example
is changing an A1020A (1.2µm) to an A1020B (1.0µm) while keeping the package the same.

Device Change Only
Constraint and pin information is preserved, when possible. An example is changing an A1240A in a PL84
package to an A1280A in a PL84 package.

Repackager Function
When the package is changed (for the same device), the Repackager automatically attempts to preserve the
existing pin and Layout information by mapping external pin names based on the physical bonding
diagrams. This always works when changing from a smaller package to a larger package (or one of the
same size). When changing to a smaller package, the Repackager determines if any of the currently
assigned I/Os are mapped differently on the smaller package. If any of the I/Os are mapped differently, then
the layout is invalidated and the unassigned pins identified.

Core Manager
The Core Manager only lists cores that are in your current project. If any of the cores in your current project
are not in your vault, you can use the Core Manager to download them all at once.
For example, if you download a sample project and open it, you may not have all the cores in your local
vault. In this instance you can use the Core Manager to view and download them with one click. Click
Download All to add any missing cores to your vault. To add any individual core, click the green download
button.
To view the Core Manager, from the View menu choose Windows > Cores.
The column headings in the Core Manager are:
• Name - Core name.
• Vendor - Source of the core.
• Core Type - Core type.
• Version - Version of the core used in your project; it may be a later version than you have in your

vault. If so, click Download All to download the latest version.

Deleting Files
Files can be deleted from the current project or from the disk.

To delete a file from the project:
1. Select the Files tab in the Design Explorer window.
2. Right-click the file and choose Delete from Project. The file remains on your disk.

To delete a file from your project and the disk:
1. Select the Files tab in the Design Explorer window.
2. Right-click the file and choose Delete from Disk and Project. The file is deleted from your disk and

is no longer part of any project.

Design Hierarchy in the Design Explorer
The Design Hierarchy tab displays a hierarchical representation of the design based on the source files in
the project. The software continuously analyzes and updates source files and updates the content. The
Design Hierarchy tab (see figure below) displays the structure of the modules and components as they
relate to each other.

264 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 134 · Design Hierarchy

You can change the display mode of the Design Hierarchy by selecting Components or Modules from the
Show drop-down list. The components view displays the entire design hierarchy; the modules view displays
only schematic and HDL modules.
The file name (the file that defines the block) appears next to the block name in parentheses.
To view the location of a component, right-click and choose Properties. The Properties dialog box displays
the pathname, created date, and last modified date.
All integrated source editors are linked with the SoC software. If a source is modified and the modification
changes the hierarchy of the design, the Design Hierarchy automatically updates to reflect the change.
If you want to update the Design Hierarchy, from the View menu, choose Refresh Design Hierarchy.

To open a component:
Double-click a component in the Design Hierarchy to open it. Depending on the block type and design state,
several possible options are available from the right-click menu. You can instantiate a component from the
Design Hierarchy to the Canvas in SmartDesign.
Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

Table 18 · Design Hierarchy Icons

Icon Description

 SmartDesign component

 SmartDesign component with HDL netlist not generated

 IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

Core

 Error during core validation

 Updated core available for download

 HDL netlist

Libero SoC User's Guide 265

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Design Menu - Libero SoC

Command Icon Function

Place and Route Runs the push-button flow for place and route.

Reports Creates and/or opens the Datasheet Reports for your project.

Design Summary Generate a design summary for your project.

266 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Designer in Libero SoC

Microsemi's Designer software is integrated with the Libero SoC Project Manager. The Designer interface
opens only when you choose not to use the default settings in the push-button design flow.
To implement your design, click the Build button in the Libero SoC Design Flow window. If you wish to
change the default settings for any element in the design flow, right-click the function and choose Open
Interactively.
The following tools are available to run interactively:
SmartTime
SmartPower
NetlistViewer
PinEditor
ChipPlanner
I/O Attribute Editor

Edit Core Definition - Ports and Parameters Dialog Box
This dialog box appears when you add a core you created with HDL+.
Click to select any Extracted Parameter and click the Delete button to remove it from the list. Extracted
Parameters may be configured if you add the HDL+ core to the Canvas.
If you delete an Extracted Parameter and want to re-add it to the list click the Re-extract ports and
parameters from HDL button.
Click Add/Edit bus interfaces to open the Edit Core Definition - Bus Interfaces dialog box.

Figure 135 · Edit Core Definition - Ports and Parameters Dialog Box

Libero SoC User's Guide 267

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Edit Menu - Libero SoC

Command Icon Shortcut Function

Undo

CTRL +
Z

Reverses your last action

Redo

CTRL +
Y

Reverses the action of your last Undo command

Find CTRL +
F

Displays the Find dialog box, which you use to locate
instances, nets, ports, and regions

Find Next F3 Finds the next occurrence of the text in the Find field

Execute Script Dialog box
You can use the Execute Script dialog box to run Tcl scripts from within Libero SoC. You do not need to
have a design open to run a script.
Specify a script file, enter Arguments (if necessary), and click Run to execute.

Figure 136 · Execute Script Dialog Box

Script file
Specify a script file. Browse to Select a script file with a valid extension (*.tcl or *.dsf).
Arguments
Input your arguments for your script file (if necessary).

Export Script Dialog Box
The Export Script Files dialog box enables you to export Tcl script file, which is useful if you want to run
Libero SoC in batch mode or run operations from the command line.

Figure 137 · Export Script Dialog Box

268 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Script file
Specifies the location of the file you are about to save.
Include commands from current session only limits your commands to the current session. Deselect if
you wish to include commands from other sessions.
File name formatting
Relative file names (relative to the script file location) truncates all the directories in the script with
relative filenames. Select this option if you do not plan to move the script file.
Qualified file names (full path; including directory name) includes the full pathname for all the files and
directories. Select this option if you want to move the file to a different directory.

File Menu - Libero SoC

Command Icon Shortcut Sub-menu Function

New SmartDesign Opens the appropriate New file
dialog box and prompts you to enter
a name and specify additional
options (if necessary)

HDL

SmartDesign
Testbench

HDL
Testbench

SDC (sdc)

Physical
Design
Constraint
(PDC)

Simulation
Script (do)

Open Opens the Open dialog box; enables
you to select a file to open

Close
<filename>

 Closes the current file; the Project
Manager remains open

Save
<filename>

Ctrl + S Saves the current file

Save
<filename>
As

 Saves the current file as a different
type (such as a TXT file)

Import Files Opens the Import Files dialog box;
enables you to import project files
into the Project Manager. Types
include HDL Source Files, HDL
Stimulus Files, Blocks, I/O
Constraint (PDC) Files, Timing
Constraint files, and more.

Files Tab and File Types

Libero SoC User's Guide 269

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Icon Shortcut Sub-menu Function

Link Files Create Link Opens the Create Link dialog box;
browse to select the file you wish to
link. Linked files are added to the
Design Explorer in the Modules
defined in multiple files list.

 Change All
Links

Opens the Change All Links dialog
box; enables you to update/change
all the links for the files in your
project at once.

 Unlink All:
Copy Files
Locally

Copies all linked files to your local
project.

Export Allows you to export I/O PDC,
Floorplan PDC, Netlist, Back-
Annotated Data, and Design
Summary.

VHDL
Library >

 Add Library Adds VHDL library to your Design
Hieararchy

 Rename
Library

Renames an existing VHDL library

 Remove
Library

Removes an existing VHDL library
from your project

Print
Reports

 Displays the Print dialog box (if
available); allows you to print a
report that contains project
information and device details.

Files Tab and File Types
The Files tab displays all the files associated with your project, listed in the directories in which they appear.
Right-clicking a file in the Files tab provides a menu of available options specific to the file type. You can
also delete files from the project by selecting Delete from Project from the right-click menu. You can delete
files from the project and the disk by selecting Delete from Disk and Project from the right-click menu.
You can instantiate a component by dragging the component to a SmartDesign Canvas or by selecting
Instantiate in SmartDesign from the right-click menu.
You can configure a component by double-clicking the component or by selecting Open Component from
the right-click menu.

File Types
When you create a new project in the Libero SoC it automatically creates new directories and project files.
Your project directory contains all of your 'local' project files. If you import files from outside your current
project, the files must be copied into your local project folder. (The Project Manager enables you to manage
your files as you import them.)

270 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.
The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero
SoC project.
component directory - Stores your SmartDesign components (SDB and CXF files) for your Libero SoC
project.
constraint directory - All your constraint files (SDC, PDC)
designer directory - ADB files (Microsemi Designer project files), -_ba.SDF, _ba.v(hd), STP, PRB (for
Silicon Explorer), TCL (used to run designer), impl.prj_des (local project file relative to revision), designer.log
(logfile)
Note: The Microsemi ADB file memory requirement is equivalent to 2x the size of the ADB file. If

your computer does not have 2x the size of your ADB file's memory available, please make
memory available on your hard drive.

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog
simulation directory - meminit.dat, modelsim.ini files
smartgen directory - GEN files and LOG files from generated cores
stimulus directory - BTIM and VHD stimulus files
synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify logfile),
precision.log (Precision logfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero SoC)
tooldata directory - includes the log file for your project with device details.

HDL Templates in the Libero SoC
Use the templates in the Libero SoC Project Manager to create HDL.
To use the templates included with the Project Manager, from the View menu, choose Windows > HDL
Templates. Find the template you want to use and double-click to add it to your HDL file.
Place the cursor where you want to add the template, browse the list of VHDL and Verilog templates, and
double-click the template to add it to your design.
The VHDL and Verilog templates are useful if you want to modify your netlist but are unfamiliar with the
language. The templates facilitate the writing of HDL files by inserting predefined language constructs. You
can also save your own template files to reuse in other designs (for example, if you wanted to add the same
header in all your files).

To create a user template:
• Import an HDL file as a template, or
• Save an open HDL file from the text editor as a template. To do so, right-click in the text editor and

choose Export as Template.

 Help Menu - Libero SoC
The Help menu enables you to access the Libero SoC online help, reference manuals, check for updates,
and view your license and version information.

Command Function

Help Topics Opens the Libero Project Manager online help

Reference Manuals Opens the Libero SoC Documentation Catalog

Microsemi Technical
Support

Displays the Microsemi customer support web page in your
default browser

Import Files Dialog Box (Project Manager)

Libero SoC User's Guide 271

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Function

Microsemi SoC Web
Site

Displays the Microsemi SoC page in your default browser

Release Notes Opens the Libero SoC Design Suite web page in your default
browser

Check for Software
Updates

Checks for updates to the Libero Project Manager software

License Details Displays detailed license information for your version of
Libero SoC

About Libero Displays version and release numbers for Libero SoC

Import Files Dialog Box (Project Manager)
Use the Import Files dialog box to add new files to your project in the Libero SoC Project Manager.
You can import schematics, VHDL or Verilog source files, stimulus files, SDC, PDC, VCD, and SAIF files,
cores, and even tool profiles (from other Libero SoC projects).
Browse to and select the file you wish to add and click Import, or click Cancel to return to the Project
Manager.

Look in
Specifies your current directory. Browse to find your file if it is not listed here. If you are in the correct
directory and your file is not listed here, select the File of type extension to match it.

272 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

File name
Type the file name, or browse to its location and select it.
File of type
Specify the file type displayed in the dialog box.
To access this dialog: from the File menu, choose Import Files.

Importing Schematics
You can import any schematic created with ViewDraw AE.

To import a schematic file:
1. From the File menu, choose Import Files.
2. In Files of type, choose Schematics.
3. In Look in, navigate to the drive/folder where the file is located.
4. Select the file to import and click Open. The schematic is imported into your project and appears in the

Files tab, under Schematic files.

To open the schematic, click ViewDraw AE in the Design Flow window, or right-click the file in the File
Manager and select Open Schematic.

License Details
To display information about your license:
From the Help menu, choose License Details. The software displays your complete license configuration,
all Microsemi-installed software and versions, as well as your HostID and disk volume serial number.

Link Files
You can add or change links for individual files in your project, or change all the links in your files at once.
To add a link to an individual file, right-click the file in the Files list and choose Create Link From File.
Navigate to the file you wish to link to your project and click Create Link. The Project Manager adds the file
to your Files list; a small link icon indicates that the source file is not stored with the project.

If you have a single project file with a broken link , right-click the file and choose Change Link. This
opens the Change Link dialog box and enables you to specify a new file location.
You can update all the links in your project at once. This is useful when you are linking to shared network
folders that may have been renamed or moved. To change links for your entire project, from the File menu,
choose Change All Links. This opens the Change All Links dialog box. Enter (or browse) your old and new
paths to update the links for your project.

Figure 138 · Change All Links Dialog Box

To unlink a file, right-click the file in the Files tab and choose Unlink: copy file locally. This copies the file
to the directory in your project folder that corresponds to the file type.
To unlink all files and copy them to your local project, from the File menu choose Unlink All: Copy files
locally.

Log Window

Libero SoC User's Guide 273

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

You can also change/remove links from the Design Explorer; to do so, right-click the file in the Design
Explorer > Modules defined in multiple files and choose Change Link.

Log Window
Colors and Symbols
The log window displays Messages, Errors, Warnings, and Information. Messages are represented by
symbols and color-coded. The default colors are:

Type Color

Error Red

Warning Blue

Information Black

The colors can be changed by using the Preferences dialog box.

Linked Messages
Error and warning messages that are dark blue and underlined are linked to online help to provide you with
more details or helpful workarounds. Click them to open online help.

New Project Creation Wizard – Project Details
You can create a Libero SoC project using the New Project Creation Wizard. You can use the pages in the
wizard to:

• Specify the project name and location
• Select the device family and parts
• Set the I/O standards
• Use System Builder or MSS in your design project
• Import HDL source files and/or design constraint files into your project

Figure 139 · Libero SoC New Project Creation Wizard

274 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Project
Project Name - Identifies your project name; do not use spaces or reserved Verilog or VHDL keywords.
Project Location – Identifies your project location on disk.
Description – General information about your design and project. The information entered appears in your
Datasheet Report View.
Preferred HDL type - Sets your HDL type: Verilog or VHDL. Libero-generated files (SmartDesigns,
SmartGen cores, etc.) are created in your specified HDL type. Libero SoC supports mixed-HDL designs.
Enable Block Creation - Enables you to build blocks for your design. These blocks can be assembled in
other designs, and may have already completed Layout and been optimized for timing and power
performance for a specific Microsemi device. Once optimized, the same block or blocks can be used in
multiple designs.

Note - If you enable Block Creation at this point, but later choose to use the Enhanced Constraint Flow,
the Block Creation methodology will be disabled for this project.

When you are finished, click Next to proceed to the Device Selection page.

See Also
New Project Creation Wizard - Device Selection
New Project Creation Wizard – Device Settings
New Project Creation Wizard – Design Template
New Project Creation Wizard – Add HDL Source Files
New Project Creation Wizard - Add Constraints

New Project Creation Wizard – Device Selection
The Device Selection page is where you specify the Microsemi device for your project. Use the filters and
drop-down lists to refine your search for the right part to use for your design.
This page contains a table of all parts with associated FPGA resource details generated as a result of a
value entered in a filter.
When a value is selected for a filter:

• The parts table is updated to reflect the result of the new filtered value.
• All other filters are updated, and only relevant items are available in the filter drop-down lists.

For example, when SmartFusion2 is selected in the Family filter:

• The parts table includes only SmartFusion2 parts.
• The Die filter includes only SmartFusion2 dies in the drop-down list for Die.

New Project Creation Wizard – Device Selection

Libero SoC User's Guide 275

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 140 · New Project Creation Wizard - Device Selection Page

Family – Specify the Microsemi device family. Only devices belonging to the family are listed in the parts
table.
Die / Package / Speed - Set your device die, package, and speed grade, respectively. Only parts matching
the filtering option are listed in the parts table.
Core Voltage - Set the core voltage for your device. Wide range voltage for die voltage (VCCA) and VCCI is
available for ProASIC3L and 1.2V IGLOO devices. Two numbers separated by a "~" are shown if a wide
range voltage is supported. For example, 1.2~1.5 means that the device core voltage can vary between 1.2
and 1.5 volts.
Range - Define the voltage and temperature ranges a device may encounter in your application. Tools such
as SmartTime, SmartPower, timing-driven layout, power-driven layout, the timing report, and back-annotated
simulation are affected by operating conditions.
Supported ranges include:
• Commercial (COM) - Junction temperature is a function of ambient temperature, air flow, and power

consumption.
• Industrial (IND) - Junction temperature is a function of ambient temperature, air flow, and power

consumption.
• Military (MIL) - Junction temperature is a function of the case temperature, air flow, and power

consumption.
Note: Supported operating condition ranges vary according to your device and package.
Refer to your device datasheet to find your recommended temperature range.
Set your I/O operating voltages in Project Settings > Device I/O Settings.
Reset Filters – Reset all filters to the default ALL option except Family.
Search Parts – Enter a character-by-character search for parts. Search results appear in the parts table.
When Device Selection is completed, click on:

• Next to proceed to the Device Settings page
OR

• Finish to complete New Project Creation with all remaining defaults. Note that for some technologies,
on Finish, you may be prompted to complete the ECF Choice pop-up Dialog box in order to select
either Classic Constraint Flow or Enhanced Constraint Flow for the project.

276 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

New Project Creation Wizard – Device Settings
The Device Settings page is where you set the Device I/O Technology, PLL Supply Voltage, Reserve pins
for Probes and activate the System Controller Suspended Mode.

Figure 141 · New Project Creation Wizard – Device Settings Page

Default I/O Technology - Set all your I/Os to a default value. You can change the values for individual I/Os
in the I/O Attribute Editor. The I/O Technology available is family-dependent.
Reserve Pins for Probes (SmartFusion2, IGLOO2 and RTG4) - Reserve your pins for probing if you intend
to debug using SmartDebug.
Reserve Pins for SPI (RTG4 only) – Check this box to reserve pins for SPI functionality in Programming.
This option is displayed in the Compile Report when the compile process completes.
PLL Supply Voltage (V) (SmartFusion2, IGLOO2 only) - Set the voltage for the power supply that you plan
to connect to all the PLLs in your design, such as MDDR, FDDR, SERDES, and FCCC.
Maximum Core Voltage Rail Ramp Up Time (SmartFusion2, IGLOO2 only) - Power-up management
circuitry is designed into every SmartFusion2 and IGLOO2 SoC FPGA. These circuits ensure easy transition
from the powered-off state to the powered-up state of the device. The SmartFusion2, IGLOO2, and RTG4
system controller is responsible for systematic power-on reset whenever the device is powered on or reset.
All I/Os are held in a high-impedance state by the system controller until all power supplies are at their
required levels and the system controller has completed the reset sequence.
The power-on reset circuitry in SmartFusion2 and IGLOO2 devices requires the VDD and VPP supplies to
ramp monotonically from 0 V to the minimum recommended operating voltage within a predefined time.
There is no sequencing requirement on VDD and VPP. Four ramp rate options are available during design
generation: 50 μs, 1 ms, 10 ms, and 100 ms. Each selection represents the maximum ramp rate to apply to
VDD and VPP.
Device information (such as Die, Package and Speed) can be modified later in the Project Settings dialog
box.
System Controller Suspended Mode (SmartFusion2, IGLOO2 only) - Enables designers to suspend
operation of the System Controller. Enabling this bit instructs the System Controller to place itself in a reset
state when the device is powered up. This effectively suspends all system services from being performed.
For a list of system services, refer to the SmartFusion2 or IGLOO2 System Controller User's Guide for your
device on the Microsemi website.
Device information (such as Die, Package and Speed) can be modified later in the Project Settings dialog
box.
When Device Settings is completed, click on:

http://www.microsemi.com/

New Project Creation Wizard – Design Template

Libero SoC User's Guide 277

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Next to proceed to the next page.
OR

• Finish to complete New Project Creation. The ECF Choice Dialog box will pop-up enabling you to
select either Classic Constraint Flow or Enhanced Constraint Flow for the project.

New Project Creation Wizard – Design Template
The Design Template page is where you can use Libero SoC’s built-in template to automate your design
process. The template uses the System Builder tool for system-level design or the Microcontroller
Subsystem (MSS) in your design. Both will speed up your design process.

Figure 142 · New Project Creation Wizard – Design Template Page

None- Select if you do not want to use a design template.
Create a System Builder based design (SmartFusion2 and IGLOO2 only) – Use System Builder to
generate your top-level design.
Create a Microcontroller (MSS) based design (SmartFusion2 and IGLOO2 only) – Instantiate a
Microcontroller (MSS) in your design. The version of the MSS cores available in your vault is displayed.
Select the version you desire.
Use Standalone Initialization for MDDR/FDDR/SERDES Peripherals (SmartFusion2 and IGLOO2 only) –
Check this box if you want to create your own peripheral initialization logic in SmartDesign for each of your
design peripherals (MDDR/FDDR/SERDES). When checked, System Builder does not build the peripherals
initialization logic for you. Standalone initialization is useful if you want to make the initialization logic of each
peripheral separate from and independent of each other.
When Design Template is completed, click on:
• Next to proceed to the Add HDL Sources page

OR
• Finish to complete New Project Creation. The ECF Choice Dialog box will pop-up enabling you to

select either Classic Constraint Flow or Enhanced Constraint Flow for the project.

New Project Creation Wizard – Add HDL Source Files
The Add HDL Source Files page is where you add HDL design source files to your Libero SoC project. The
HDL source files can be imported or linked to the Libero SoC Project.

278 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 143 · New Project Creation Wizard - Add HDL Source Files Page

Import File – Navigate to the disk location of the HDL source. Select the HDL file and click Open. The HDL
file is copied to the Libero Project in the <prj_folder>/hdl folder.
Link File – Navigate to the disk location of the HDL source. Select the HDL file and click Open. The HDL file
is linked to the Libero Project. Use this option if the HDL source file is located and maintained outside of the
Libero project.
Delete - Delete the selected HDL source file from your project. If the HDL source file is linked to the Libero
project, the link will be removed.
When Add HDL Sources is completed, click on:

• Next to proceed to the Add Constraints page
OR

• Finish to complete New Project Creation. Depending on your chosen device, the ECF Choice Dialog
box may pop-up enabling you to select either Classic Constraint Flow or Enhanced Constraint Flow for
the project.

New Project Creation Wizard - Add Constraints
The Add Constraints page is where you add Timing constraints and Physical Constraints files to your Libero
SoC project. The constraints file can be imported or linked to the Libero SoC Project.

New Project Creation Wizard - Add Constraints

Libero SoC User's Guide 279

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 144 · New Project Creation Wizard – Add Constraints Page

Import File – Navigate to the disk location of the constraints file. Select the constraints file and click Open.
The constraints file is copied to the Libero Project in the <prj_folder>/constraint folder.
Link File – Navigate to the disk location of the constraints file. Select the constraints file and click Open.
The constraints file is linked to the Libero Project. Use this option if the constraint file is located and
maintained outside of the Libero project.
Delete - Remove the selected constraints file from your project. If the constraints file is linked to the Libero
project, the link will be removed.
When Add Constriants is completed, click on:

• Finish to complete New Project Creation. You may be prompted to complete the ECF Choice pop-up
Dialog box in order to select either Classic Constraint Flow or Enhanced Constraint Flow for the
project.

The Reports tab displays the result of the New Project creation.

Figure 145 · Reports Tab

280 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

New File Dialog Box
The New File dialog box opens when you choose to create any of the following new files:
• SmartDesign
• SmartDesign Testbench – Use a SmartDesign to instantiate and connect stimulus cores or modules to

drive your Root design.
• HDL
• HDL Testbench – Creates a new HDL testbench in your project. You can use a testbench to apply

stimulus, analyze results or to compare the results of two different simulations.
• SDC (sdc) – SDC Timing Constraint File
• I/O Constraint (PDC) File – I/O Constraint File
• Floorplan Constraint (PDC) File – Floorplanning PDC Constraint File

Simulation Script (do) – Libero creates the “run.do” script by default and passes it to ModelSim to run the
simulation. The user can create a customized *.do script (different from the default “run.do” script) and use
the Project Settings (Project > Project Settings > Simulation Options > Do file > User Definded DO file) to
pass it to ModelSim to run the simulation.

To create a new file:
1. From the File menu, choose New File > New.
2. Select the file type from the submenu.
3. Enter a name for the new file.
4. Set any additional options specific to the file type.
5. Click OK and then click Save to create the new file.

For SmartDesign or SmartDesign Testbench creation, Libero opens the SmartDesign canvas for you to
create the design graphically. When the design or testbench is generated and saved, a Verilog or VHDL file
is created to capture the design/testbench, and the file is added to the project location.
For HDL, HDL testbench, SDC, PDC, or Simulation *.do file creation, Libero opens the HDL Editor for you to
create the file. When the file is saved, it is added to the Libero project.

File Type File Extension File Location Opens/Editable with
Libero Tool

HDL
Design
File

*.v
(Verilog)
*.vhd
(VHDL)

<prj_folder>/hdl HDL Editor

HDL
Testbench

*.v (Verilog)
*.vhd (VHDL)

<prj_folder>/stimulus HDL Editor

SDC
Timing
Constraint
File

*.sdc <prj_folder>/constraints HDL
Editor
Constraint
Editor

I/O PDC
Constraint

*.pdc <prj_folder>/constraints/io HDL
Editor
I/O Editor

Floorplan
PDC

*.pdc <prj_folder>/constraints/fp HDL
Editor

Open Project Dialog Box

Libero SoC User's Guide 281

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

File Type File Extension File Location Opens/Editable with
Libero Tool

Constraint Chip
Planner

Simulation
scipt (Do)

*.do <prj_folder>/simulation HDL Editor

Open Project Dialog Box
Use the Open Project dialog box to navigate to and open existing projects in the Project Manager. Browse to
your project and click Open, or click Cancel to return to the Project Manager.

Look in
Specifies the directory that contains your project.
File name
Type the file name, or browse to its location and select it.
File of type
Specify the file type displayed in the dialog box.
To access this dialog: from the Project menu, select Open Project.

Opening your Libero SoC project
Libero SoC does not open your most recent project automatically. You can change your default startup
preferences in the Startup tab.

282 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To open a project in Libero SoC:
From the File menu, choose Open Project or New Project. If you create a new project the Project Manager
opens the New Project Creation Wizard.
Tip: Recent saved projects are available from the Project menu. From the Project menu, choose Recent
Projects, and then select the project to open.
You can open an existing project by double-clicking the *.prj file or dragging the *.prj file over the Libero SoC
desktop icon.

See Also
open_project

Organize Constraint Files
The Organize Constraint Files dialog box enables you to set the constraint file and order in the Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Constraint files.

To specify the constraint file order:
1. In the Design Flow window under Implement Design, right-click Compile and choose Organize Input

Files > Organize Constraint Files. The Organize Constraint Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected

tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to

change the order.
4. Click OK.The files appear in the Design Flow window under Implement Design > Compile >

Constraints with a green check mark to indicate that they are being used in the project.

Figure 146 · Organize Constraint Files Dialog Box

Organize Simulation Files Dialog Box
The Organize Simulation files dialog box enables you to set the constraint file order in Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Simulation files.

To specify the simulation file order:
1. In the Design Flow window under Implement Design > Verify Post Layout Implementation, right-click

Simulate and choose Organize Input Files > Organize Simulation Files. The Organize Simulation
Files dialog box appears.

Organize Source Files Dialog Box – Synthesis

Libero SoC User's Guide 283

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.

3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order.

4. Click OK.

Figure 147 · Organize Simulation Files Dialog Box

Organize Source Files Dialog Box – Synthesis
The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.
Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

To specify the file order:
1. In the Design Flow window under Implement Design, right-click Synthesize and choose Organize

Input Files > Organize Source Files. The Organize Source Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected

tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to

change the order of the Associated Source files.
4. Click OK.

284 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 148 · Organize Source Files Dialog Box

Organize Stimulus Files Dialog Box
The Organize Stimulus files dialog box enables you to set the stimulus file order in Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Stimulus files.

To specify the stimulus file order:
1. In the Design Flow window under Create Design > Verify Pre-Synthesized Design, right-click Simulate

and choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files dialog box
appears.

2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.

3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order.

4. Click OK.

Figure 149 · Organize Stimulus Files Dialog Box

Physical Synthesis and the Libero SoC

Libero SoC User's Guide 285

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Physical Synthesis and the Libero SoC
If you want to run physical synthesis on your design (such as with PALACE) you must run it manually.
Automatic physical synthesis is not supported from within the Libero SoC.

286 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Preferences

User Preferences Dialog Box

Use the Preferences dialog to customize the Libero SoC Project Manager.

To set your preferences:
1. From the Project menu, choose Preferences.
2. Specify your preferences.

Software update

Log window

Vault update

Startup (File association)

Text Editor

IP Cores

Design Flow

Proxy

PDF reader (Linux only)

Web browser (Linux only)

3. Click OK.

Note: These preferences are stored on a per-user basis; they are not project specific.

Project Menu - Libero SoC

Libero SoC User's Guide 287

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Project Menu - Libero SoC

Command Sub-
menu

Icon Function

New Project

Starts the New Project Wizard

Open Project

Opens the Open Project dialog box

Close <project
name>

 Closes the current active project; the Project
Manager remains open

Save <project
name>

Saves the current project

Save As <project
name>

 Saves the current project in a new directory;
prompts you to enter a new project name

Archive Project Creates an archive (*.zip file) of your existing
project.

Project Settings Opens the Project Settings dialog box, enables
you to set your Device, HDL Type, Design Flow,
Simulation and Simulation Library options.

Tool Profiles Opens the Project Profile dialog box; enables
you to specify locations for your third-party
synthesis, stimulus, and simulation tools. Libero
SoC includes tools for synthesis, stimulus, and
simulation.

Vault/Repositories
Settings

 Opens the Vault/Repositories Settings dialog
box; enables you to view/change the location of
your vault and repositories.

Preferences Opens the Preferences dialog box

Execute Script Opens Execute Script dialog box; enables you to
run Tcl script from the Project Manager

Export Script File Opens the Export Script dialog box; enables you
to export a Tcl script

Recent Projects Opens list of recent projects.

Exit Closes Libero SoC

288 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Project Settings Dialog Box
The Project Settings dialog box enables you to modify your Device, HDL, and Design Flow settings and your
Simulation Options. In Libero SoC, from the Project menu, click Project Settings.
The following figure shows an example of the Project Settings dialog box.

Figure 150 · Project Settings Dialog Box

Device Selection
Sets the device Family, Die, and Package for your project. See the New Project Creation Wizard - Device
Selection page for a detailed description of the options.

Device Settings
Reserve Pins for Probes (SmartFusion2, IGLOO2, and RTG4 only) - Reserve your pins for probing if you
intend to debug using SmartDebug.
Reserve Pins for SPI (RTG4 only) – Check this box to reserve pins for SPI functionality in Programming.
This reserved SPI pin option is displayed in the Compile Report when the compile process completes.
Default I/O Technology - Sets all your I/Os to a default value. You can change the values for individual I/Os
in the I/O Attributes Editor.

Design Flow

Preferred Language
Sets your HDL to VHDL or Verilog. You can import both Verilog and VHDL files into your project. However,
the HDL files generated in the flow (such as the post-layout netlist for simulation) are created in the HDL
(Verilog or VHDL) you set as the Preferred Language here.
When Verilog is selected, both System Verilog and Verilog 2001 (default) are supported. The default
standard (Verilog 2001) is used when a project is first created for Verilog.
When VHDL is selected, both VHDL 2008 (default) and VHDL 93 are supported. The default standard
(VHDL 2008) is used when a project is first created for VHDL.

Block flow (Available only in Classic Constraint Flow)
Enable block creation - Enables you to create and publish design blocks (*.cxz files) in Libero SoC. Design
blocks are low-level components that may have completed the place-and-route step and met the timing and
power requirements. These low-level design blocks can then be imported into a Libero SoC project and re-
used as components in a higher level design. See Designing with Designer Block Components in Online
Help for more information.

Project Settings: Simulation

Libero SoC User's Guide 289

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Root < >
Enable synthesis - Option to enable or disable synthesis for your root file; useful if you wish to skip
synthesis on your root file by default.

Synthesis gate level netlist format
Sets your gate level netlist format to Verilog or EDIF. For Secure IP design flow, you must set the format to
Verilog. See the Microsemi website for more information about the Secure IP flow.

Design methodology (for SmartFusion2 and IGLOO2 only)
Use standalone initialization for MDDR/FDDR/SERDES peripherals – Enables you to create your own
peripheral initialization logic in SmartDesign for each of your design peripherals (MDDR/FDDR/SERDES).
When checked, System Builder does not build the peripherals initialization logic for you. Standalone
initialization is useful if you want to make the initialization logic of each peripheral separate from and
independent of each other.
For more information, refer to the SmartFusion2 Standalone Peripheral Initialization User Guide or the
IGLOO2 Standalone Peripheral Initialization User Guide.

Reports (Available only in Enhanced Constraint Flow)
Maximum number of high fanout nets to be displayed - Enter the number of high fanout nets to be
displayed. The default value is 10. This means the top 10 nets with the highest fanout will appear in the
<root>_compile_netlist_resource.xml> Report.
Abort Flow if Errors are found in Physical Design Constraints (PDC) – (Enhanced Constraint Flow only)
Check this checkbox to abort Place and Route if the I/O or Floorplanning PDC constraint file contains errors.
Abort Flow if Errors are found in Timing Constraints (SDC) – (Enhanced Constraint Flow only) Check
this checkbox to abort Place and Route if the Timing Constraint SDC file contains errors.
See the Project Settings: Design flow topic for more information.

Analysis Operating Conditions (For SmartFusion2, IGLOO2, and RTG4)
Sets the Operating Temperature Range (COM/IND/MIL/Custom), the Core Voltage Range
(COM/IND/MIL/Custom) and Default I/O Voltage Range (COM/IND/MIL/Custom).
Radiation (krad) - For RTG4 only, enter the radiation value (in krads) for your device. Valid range is from 0
to 300.
Enable Single Event Transient mitigation (RTG4 only) - Controls the mitigation of Single Event Transient
(SET) in the FPGA fabric. When this box is checked, SET filters are turned on globally (including URAM,
LSRAM, MACC, I/O FF, Regular FF, DDR_IN, DDR_OUT) to help mitigate radiation-induced transients. By
default, this box is unchecked.
These settings are propagated to Verify Timing, Verify Power, and Backannotated Netlist for you to perform
Timing/Power Analysis.
Note: For SmartFusion, IGLOO, ProAsic3, and Fusion projects, The Temperature and Voltage Range tables
are disabled. To perform Timing/Power analysis with different operating conditions, invoke Designer and
make the operating condition settings in the Project Settings page.

Simulation Options and Simulation Libraries
Sets your simulation options. See the Project Settings: Simulation Options topic for more information.

Project Settings: Simulation
To access this dialog box, from the Project menu choose Project Settings and click Simulation options >
DO File.
Use the Simulation tab to set your simulation values in your project. You can set change how Libero SoC
handles Do files in simulation, import your own Do files, set simulation run time, and change the DUT name
used in your simulation. You can also change your library mapping in this dialog box.

http://www.microsemi.com/
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134377
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134378

290 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 151 · Project Settings: - DO File

DO file
Use automatic DO file

 Select if you want the Project Manager to automatically create a DO file that will enable you to simulate your
design.
Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is empty,
there will not be a run command included in the run.do file.
Testbench module name - Specify the name of your testbench entity name. Default is “testbench,” the
value used by WaveFormer Pro.
Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project Manager
replaces <top> with the actual top level macro when you run simulation (presynth/postsynth/postlayout).
Generate VCD file - Click the checkbox to generate a VCD file.
VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click power.vcd
and type to change the name.
User defined DO file - Enter the DO file name or click the browse button to navigate to it.
DO command parameters - Text in this field is added to the DO command.

Waveforms
Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.
Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Project Manager outputs the line 'add wave
/testbench/*' in the DO file run.do. If you select DUT then Project Manager outputs the line 'add wave
/testbench/DUT/*' in the run.do file.
Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands
SDF timing delays - Select Minimum (Min), Typical (Typ), or Maximum (Max) timing delays in the back-
annotated SDF file.
Disable Pulse Filtering during SDF-based Simulations - When the check box is enabled the
+pulse_int_e/1 +pulse_int_r/1 +transport_int_delays switch is included with the vsim command for post-
layout simulations; the checkbox is disabled by default.

Project Sources

Libero SoC User's Guide 291

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Resolution
The default is family specific (review the dialog box for your default setting), but you can customize it to fit
your needs.
Additional options - Text entered in this field is added to the vsim command.

Timescale
TimeUnit - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list, which is the time base for
each unit. The default setting is ns.
Precision - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list. The default setting is ps.

Simulation Libraries
Use default library path - Sets the library path to default from your Libero SoC installation.
Library path - Enables you to change the mapping for your simulation library (both Verilog and VHDL).
Type the pathname or click the Browse button to navigate to your library directory.

Project Sources
Project sources are any design files that make up your design. These can include schematics, HDL files,
simulation files, testbenches, etc. Anything that describes your design or is needed to program the device is
a project source.
Source files appear in the Project Flow window. The Design Hierarchy tab displays the structure of the
design modules as they relate to each other, while the Files tab displays all the files that make up the
project.
The design description for a project is contained within the following types of sources:

• Schematics
• HDL Files (VHDL or Verilog)
• SmartDesign components

One source file in the project is the top-level source for the design. The top-level source defines the inputs
and outputs that will be mapped into the devices, and references the logic descriptions contained in lower-
level sources. The referencing of another source is called an instantiation. Lower-level sources can also
instantiate sources to build as many levels of logic as necessary to describe your design.

File Linking
The Project Manager enables you to link to files not managed in your Libero project. Linked files are useful if
you want to preserve a file in an archive, or if more than one person is using a file and it is impractical to
store it on your local machine. If you link to external files and rename your project, the Project Manager asks
if you want to copy the external files into your project or continue using the link. Note that some files (such
as schematics) cannot be linked.
Some project sources can be imported.
Sources for your project can include:

Source File Extension

Schematic *.1-9

Verilog Module *.v

VHDL Entity *.vhd

SmartDesign Component *.vhd

Testbench *.vhd

292 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Source File Extension

Stimulus *.tim

Programming Files *.afm; *.prb

See Also
Creating HDL Sources
Generating a Bitstream file
Generating Programming files

Reserved Microsemi Keywords
See the online help for a complete list of reserved Microsemi keywords.

Right-Click (Shortcut) Menu Options in Libero SoC Design
Hierarchy

Right-click menu options vary depending on your design state.
The option in bold the right-click menu is the action performed when you double-click the tool. For example,
if you expand Implement Design and right-click Synthesize, Run is bold, indicating that it is the default
action when you double-click the tool in the Design Hierarchy.
• Run - Runs the current tool. If any predecessor tools are required to be in the PASSED state, then

they will be run as well.
• Clean and Run All- Clean all predecessor tools (deletes Report and output files) and run up to this

tool.
• Clean - Delete report and output files of this tool. Subsequent tools become OUT OF DATE.
• Open Interactively - Open the tool to set/change the tool options.
• Update and Run -- Available if a tool is in the OUT OF DATE state; it cleans all predecessor tools that

are in the OUT OF DATE state and runs up to this tool.
• Run Synthesize > Compile > Place and Route > Verify Timing > Generate Programming Data >

Program Device - Enables you to bypass the Fabric portion of the design flow.

For example, in SmartFusion you can go directly from MSS configuration to Program Device by just
using the .EFC file. For users who are not using any of the FPGA fabric, this is useful because you can
skip the entire FPGA flow. In that instance you can select Run MSS Configurator > Program Device.

• Organize Input Files - Enables you to customize which project files are used by the tool.
• Import Files - Shortcut to import files that are relevant to that tool. For example, the relevant files for

the Compile tool are PDC and SDC files, so the dialog is pre-filtered to only allow importing of those
types

• Edit Profile - Shortcut to open the Tool Profiles dialog box.
• View Report - Opens the report of that tool in the Reports view.
• Configure Options- - Opens the Libero SoC tool options specific to that tool.

Save Project As Dialog Box
The Save Project As dialog box enables you to save your entire project with a new name and location.
Enter the name and location for your modified project and click OK to continue.

Save Project As Dialog Box

Libero SoC User's Guide 293

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 152 · Save Project As Dialog Box

Archive (*.zip) - Creates a ZIP file of your project and saves it at the specified location. This is useful if you
want to create a quick zip of your project.
Project Name
Type the project name for your modified project.
Project Location
Accept the default location or Browse to the new location where you can save and store your project. All
files for your project are saved in this directory.
Content
Copy Links locally - Select this checkbox to copy the links from your current project into your new project.
If you do not select this checkbox, the links will not be copied and you must add them manually.
Files

• All - Includes all your project and source files; the state of the project is retained.
• Project files only - Copies only the project-related information required to retain the state of the

project.
• Source files only - Copies all the source files into the specified location. This means the configuration

of all the tools in the tool chain is retained but the states are not. Source files means constraint
information and component information available in the component, hdl and smartgen directories.

Files are saved as shown in the table below.

 Folder Name Files

All Project Source

component All
Files

All Files All Files

constraint All
Files

All Files All Files

294 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

 Folder Name Files

All Project Source

hdl All
Files

All Files All Files

stimulus All
Files

All Files All Files

viewdraw All
Files

All Files All Files

smartgen All
Files

All Files All Files

firmware All
Files

All Files All Files

CoreConsole All
Files

All Files All Files

SoftConsole/Keil/IAR All
Files

All Files All Files

Phy_Synthesis All
Files

All Files Not Copied

simulation All
Files

*.ini, *.bfm, *.do., *.vec *.ini, *.bfm,
*.do., *.vec

synthesis All
Files

*.edn, *.sdc, *.so, *.prj, *.srr, *.v,
run_options.txt, synplify.log

*.prj files

Designer/impl1 All
Files

All Files *.ide_des files

Designer/<root> All
Files

All Files Not Copied

tooldata All
Files

All Files All Files

To access this dialog, from the Project menu, choose Save Project As.

Saving Files
Files and projects are saved when you close them.

To save an active file:
• From the Project menu, choose Save or Save As.

• Click the Save button in the toolbar.

Script Export Options Dialog Box

Libero SoC User's Guide 295

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Script Export Options Dialog Box
If you export a Tcl script in the Project Manager, the Script Export Options dialog box appears.

Figure 153 · Script Export Options Dialog Box

Include commands from current project only - Select this option if you want to include all the commands
from your current project.
Filename Formatting - Choose Relative filenames if you do not intend to move the Tcl script from the
saved location, or Qualified filenames if you plan to move the Tcl script on your machine.

Search in Libero SoC
Search options vary depending on your search type.

To find a file:
1. Use CTRL + F to open the Search window.
2. Enter the name or part of name of the object you wish to find in the Find field. '*' indicates a wildcard,

and [*-*] indicates a range, such as if you search for a1, a2, ... a5 with the string a[1-5].
3. Set the Options for your search (see below for list); options vary depending on your search type.
4. Click Find All (or Next if searching Text).

Searching an open text file, Log window or Reports highlights search results in the file itself.
All other results appear in the Search Results window (as shown in the figure below).

Match case: Select to search for case-sensitive occurrences of a word or phrase. This limits the search so it
only locates text that matches the upper- and lowercase characters you enter.
Match whole word: Select to match the whole word only.

296 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 154 · Search Results

Current Open SmartDesign
Searches your open SmartDesign, returns results in the Search window.
Type: Choose Instance, Net or Pin to narrow your search.
Query: Query options vary according to Type.

Type Query Option Function

Instance Get Pins Search restricted to all pins

Get Nets Search restricted to all nets

Get Unconnected Pins Search restricted to all unconnected pins

Net Get Instances Searches all instances

Get Pins Search restricted to all pins

Pin Get Connected Pins Search restricted to all connected pins

Get Associated Net Search restricted to associated nets

Get All Unconnected Pins Search restricted to all unconnected pins

Current Open Text Editor
Searches the open text file. If you have more than one text file open you must place the cursor in it and click
CTRL + F to search it.
Find All: Highlights all finds in the text file.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.
Replace with: Replaces the text you searched with the contents of the field.
Replace: Replaces a single instance.
Replace All: Replaces all instances of the found text with the contents of the field.

Design Hierarchy
Searches your Design Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Select a Workspace Dialog Box

Libero SoC User's Guide 297

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Stimulus Hierarchy
Searches your Stimulus Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Log Window
Searches your Log window; results are highlighted in the Log window - they do not appear in the Search
Results window.
Find All: Highlights all finds in the Log window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Reports
Searches your Reports; returns results in the Reports window.
Find All: Highlights all finds in the Reports window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Files
Searches your local project file names for the text in the Search field; returns results in the Search window.
Find All: Lists all search results in the Search window.

Files on disk
Searches the files' content in the specified directory and subdirectories for the text in the Search field;
returns results in the Search window.
Find All: Lists all finds in the Search window.
File type: Select a file type to limit your search to specific file extensions, or choose *.* to search all file
types.

Select a Workspace Dialog Box
This dialog box enables you to choose which processor you want to open when you have two or more
processors in your design.
It is only available if you have two or more processors and double-click Develop Firmware > Write
Application Code.

Figure 155 · Select a Workspace Dialog Box

Organize Source Files Dialog Box – Synthesis
The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.
Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

298 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To specify the file order:
1. In the Design Flow window under Implement Design, right-click Synthesize and choose Organize

Input Files > Organize Source Files. The Organize Source Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected

tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to

change the order of the Associated Source files.
4. Click OK.

Figure 156 · Organize Source Files Dialog Box

Stimulus Hierarchy
To view the Stimulus Hierarchy, from the View menu choose Windows > Stimulus Hierarchy.
The Stimulus Hierarchy tab displays a hierarchical representation of the stimulus and simulation files in the
project. The software continuously analyzes and updates files and content. The tab (see figure below)
displays the structure of the modules and component stimulus files as they relate to each other.

Figure 157 · Stimulus Hierarchy Dialog Box

Expand the hierarchy to view stimulus and simulation files. Right-click an individual component and choose
Show Module to view the module for only that component.

Text Editor

Libero SoC User's Guide 299

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Seelct Components or Modules from the Show drop-down list to change the display mode. The
Components view displays the stimulus hierarchy; the modules view displays HDL modules and stimulus
files.
The file name (the file that defines the module or component) appears in parentheses.
Click Show Root Testbenches to view only the root-level testbenches in your design.
Right-click and choose Properties; the Properties dialog box displays the pathname, created date, and last
modified date.
All integrated source editors are linked with the SoC software; if you modify a stimulus file the Stimulus
Hierarchy automatically updates to reflect the change.

To open a stimulus file:
Double-click a stimulus file to open it in the HDL text editor.
Right-click and choose Delete from Project to delete the file from the project. Right-click and choose Delete
from Disk and Project to remove the file from your disk.
Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

Table 19 · Design Hierarchy Icons

Icon Description

 SmartDesign component

 SmartDesign component with HDL netlist not generated

 SmartDesign testbench

SmartDesign testbench with HDL netlist not generated

 IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

 HDL netlist

Text Editor
You can use the Libero IDE HDL text editor or another text editor.

To set your text editor preferences:
1. From the Project menu, choose Preferences.
2. Click Text editor.
2. Set your options and click OK.

Libero SoC text editor options:
• Use Libero text editor: Select to use the Libero HDL text editor.
• Enable block folding: This option lets you fold (hide) portions of your text.
• Enable line numbers: This option enables you to see line numbers in the text editor.
• Open programming/debugging files as read-only:Select to specify read-only permission to .stp and

.prb files.
User defined text editor
• User defined text editor: Deselect Use Libero text editor to activate this area. Enter the location of the

the EXE for your alternative text editor.
• Additional parameters: Use to specify other settings to pass to the text editor. Typically, it is not

necessary to modify this field.

300 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

User Template Location - Sets the path where your user templates are exported.

Tool Profiles Dialog Box
The Tool Profiles dialog box enables you to add, edit, or delete your project tool profiles.
Each Libero SoC project can have a different profile, enabling you to integrate different tools with different
projects.

To set or change your tool profile:
1. From the Project menu, choose Tool Profiles. Select the type of tool you wish to add.

• To add a tool: Select the tool type and click the Add button . Fill out the tool profile and click OK.
• To change a tool profile: After selecting the tool, click the Edit button to select another tool, change

the tool name, or change the tool location.
• To remove a tool from the project:After selecting a tool, click the Remove button.

2. When you are done, click OK.

Figure 158 · Libero SoC Tool Profiles Dialog Box

Figure 159 · The tool profile with the padlock icon indicates that it is a pre-defined tool profile (the default tool that comes with
the Libero SoC Installation.)

Figure 160 · To export the tool profile and save it for future use, click the Export Tool Profiles dialog box and save the tool
profile file as a tool profile *.ini file. The tool profile *.ini file can be imported into a Libero SoC project (File > Import >
Others) and select Tool Profiles (*.ini) in the File Type pull-down list.

Tools Menu - Libero SoC

Command Function

Waveformer Lite Opens the Waverformer Lite stimulus tool, if configured.

Vault/Repositories Settings Dialog Box
 Use the Repository dialog box to add, remove, or reset your repositories to default settings.

Videos - Libero SoC

Libero SoC User's Guide 301

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 161 · Repositories Settings Dialog Box

Use the Vault location dialog box to specify a new location for your local vault.

Figure 162 · Vault location Settings Dialog Box

The Vault location is common to all Microsemi software. Changing your vault location here updates the vault
location for all the Microsemi tools you use on this machine.

Videos - Libero SoC
There are short videos available that explain a variety of elements in Libero SoC. The maximum video
length is 60 seconds, unless otherwise noted. See the SoC website for a complete list of the latest video
content, as well as tutorials and online training.

Video Links
SoC Work Area Description - The SoC Work Window displays the HDL Editor, Report view, and
SmartDesign Canvas.
Design Hierarchy Tab and Files Tab - Introduces the Design Hierarchy and Files tabs in the SoC GUI.
Design Flow Tab and Catalog - Introduces the Design Flow tab and the Catalog.
AutoConnect in SmartDesign - Demonstrates the Autoconnect feature in SmartDesign.
Connection Mode in SmartDesign - Demonstrates the manual Connection mode feature in SmartDesign.

View Design Datasheet/Report
The Design Datasheet/Report lists all the reports available for your design.

http://www.actel.com/support/training/tutorials.aspx
http://mscctraining.com/
http://media-content.s3.amazonaws.com/soc_work_area_description/soc_work_area_description.html
http://media-content.s3.amazonaws.com/dh_and_files_tabs/dh_and_files_tabs.html
http://media-content.s3.amazonaws.com/design_flow_and_catalog_tabs/design_flow_and_catalog_tabs.html
http://media-content.s3.amazonaws.com/sdesign_autoconnect_example/sdesign_autoconnect_example.html
http://media-content.s3.amazonaws.com/sdesign_connection_mode/sdesign_connection_mode.html

302 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Reports are added automatically when you move through design development. For example, Timing reports
are added when you run timing analysis on your design. The reports are updated each time you run timing
analysis.
If a report is not listed you may have to open it manually. For example, you must double-click Export IBIS
Model to display the IBIS Model report in the Design Datasheet.
You can view the following reports from here:

• Analyze Timing - Lists the following delay reports:

• Timing violations report - Flat Slack report provides information about constraint
violations.

• Timing Report - Displays the timing information organized by clock domain.

• Compile - Summarizes your compile parameters and lists any related warnings, errors, PDC
commands, device utilization and net information.

• Synthesize - Lists the following synthesis reports:
• synplify.log - Outputs the Synplify log file output; identical to log file content in

Synplify Pro AE if you run synthesis manually.

• datasheet.srr - Lists the Pin Description, DC Electrical Characteristics, and AC
electrical characteristics.

• run_options.txt - Lists all the run options organized by category: project files;
implementation; device options; compile/mapping options; mapper options.

• Export Pin Report - Lists the pins in your device sorted by I/O signal name and by package number.
• Place-and-Route - Lists the following reports:

• Place-and-Route - Lists Compile and netlist information.

• Global Net and Global Usage- Contains information about the net(s) that are assigned
or routed using Global or LocalClock resources

• I/O bank reports - Provides information on the I/O functionality, I/O technologies,
I/O banks and I/O voltages.

• Export IBIS Model - Exports the IBIS model report, which provides a standard file format for recording
parameters like driver output impedance, rise/fall time, and input loading, which may then be used by
any software application.

• Programming - Lists the programming information for your design.

View Menu - Libero SoC

Command Sub-menu Shortcut Function

Windows > Catalog Shows/hides the Catalog

Cores Shows/hides the list of cores used in your
design

Design Flow Shows/hides the Design Flow window

Design
Hierarchy

 Shows/hides the Design Hierarchy

VHDL Library - Add, Remove, or Rename

Libero SoC User's Guide 303

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Sub-menu Shortcut Function

Files Shows/hides the Files window

HDL
Templates

 Shows/hides the HDL Templates window

Log Shows/hides the Log window

Message Shows/hides the Message window

Search
Results

 Shows/hides Search results

Stimulus
Hierarchy

 Shows/hides the Stimulus Hierarchy

Start Page Displays the Welcome to Libero SoC page;
the page includes links to help and other
pages that may be helpful for new users.

Toolbars Shows the Find Bar or Project Toolbar

Refresh
Design
Hierarchy

 F5 Updates the Hierarchy tab. Useful if you add
files to the project and the software does not
show them in the Hierarchy.

Maximize
Work Area

 CTRL+W Hides the Catalog, Log Window, and Design
Explorer windows (if open) and expands the
selected tab in the Project Flow or
SmartDesign work area.

Reset Layout Returns the Libero SoC window layout to
default.

VHDL Library - Add, Remove, or Rename
Libero SoC enables you to manage your VHDL libraries from within the Project Manager.
From the File menu, select VHDL Library and Add, Rename, or Remove to update your library.
When you add a library it appears in your Hierarchy.

VHDL Library - Add, Remove, or Rename
Libero SoC enables you to manage your VHDL libraries from within the Project Manager.
From the File menu, select VHDL Library and Add, Rename, or Remove to update your library.
When you add a library it appears in your Hierarchy.

304 Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Microsemi SoC Products Group and using these support
services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 650. 318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers
who can help answer your hardware, software, and design questions about Microsemi SoC Products. The
Customer Technical Support Center spends a great deal of time creating application notes, answers to
common design cycle questions, documentation of known issues and various FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-
support/fpga-soc-support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group
home page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted
by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We
constantly monitor the email account throughout the day. When sending your request to us, please be sure
to include your full name, company name, and your contact information for efficient processing of your
request.
The technical support email address is soc_tech@microsemi.com.

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/

Libero SoC User's Guide 305

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and
corporate contacts.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms
Regulations (ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases,
select Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs,
visit the ITAR web page.

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
mailto:tech@microsemi.com
http://www.microsemi.com/soc/ITAR/

5-02-9120-36/09.16

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of
semiconductor and system solutions for communications, defense & security,
aerospace and industrial markets. Products include high-performance and radiation-
hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power
management products; timing and synchronization devices and precise time
solutions, setting the world’s standard for time; voice processing devices; RF
solutions; discrete components; Enterprise Storage and Communication solutions,
security technologies and scalable anti-tamper products; Ethernet solutions; Power-
over-Ethernet ICs and midspans; as well as custom design capabilities and services.
Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800
employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the
entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly
or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
http://www.microsemi.com/

	Table of Contents
	General Questions 22
	Instantiating into your SmartDesign 23
	Working with Processor-Based Designs in SmartDesign 24
	VHDL Construct Support in SmartDesign 25
	Making your Design Look Nice 26
	Generating your Design 27

	Welcome to Microsemi's Libero® SoC v11.7 SP2
	What's New in Libero SoC v11.7 SP2
	More Information

	Design Flow - Libero SoC
	Libero SoC Design Flow (Classic Constraint Flow)
	SmartFusion2, IGLOO2, and RTG4 Programming

	Design Flow Window Updates for SmartFusion2, IGLOO2, and RTG4
	File Types in Libero SoC
	Internal Files

	Software Tools - Libero SoC
	Frequently Asked Questions - Libero SoC
	Libero SoC Frequently Asked Questions
	Firmware Cores Frequently Asked Questions
	Libero SoC Frequently Asked Questions

	Firmware Cores Frequently Asked Questions
	Software IDE Integration
	System Builder
	Instantiate a SmartFusion MSS in your Design
	Configure the SmartFusion MSS
	Generate SmartFusion MSS Files
	Instantiate a SmartFusion2 MSS in your Design
	Configure the SmartFusion2 MSS
	Generate SmartFusion2 MSS Files
	Create ViewDraw Schematic
	About SmartDesign
	SmartDesign Design Flow
	Using Existing Projects with SmartDesign
	SmartDesign Frequently Asked Questions
	Working in SmartDesign
	General Questions
	Instantiating Into Your SmartDesign
	Working in SmartDesign
	Working with Processor-Based Designs in SmartDesign
	VHDL Construct Support in SmartDesign
	Making your Design Look Nice
	Generating your Design
	Getting Started with SmartDesign
	Creating a New SmartDesign Component
	Opening an Existing SmartDesign Component
	Saving/Closing a SmartDesign Component
	Generating a SmartDesign Component
	Importing a SmartDesign Component
	Deleting a SmartDesign Component from the Libero SoC Project
	Generating a Memory Map
	Modify Memory Map Dialog Box
	Canvas View
	Canvas Overview
	See Also

	Displaying Connections on the Canvas
	Pin and Attribute Icons

	Making Connections Using the Canvas
	Promoting Ports to Top Level
	Tying Off Input Pins
	Tying to Constant
	Making Driver and Bus Interface Pins Unused
	See Also

	Simplifying the Display of Pins on an Instance using Pin Groups
	Bus Instances
	Adding Graphic Objects
	Adding and Deleting Lines and Shapes
	Adding Text

	Auto-Arranging Instances
	Locking Instance and Top Level Port Positions
	See Also

	Replace Component for Instance
	Replace Instance Version
	Slicing
	Rename Net
	Automatic Names of Nets

	Organizing Your Design on the Canvas
	Creating a SmartDesign
	Adding Components and Modules (Instantiating)
	Adding or Modifying Top Level Ports
	Add Prefixes to Bus Interface / Group Names on Top-level Ports:
	Adding/Renaming Ports
	See Also

	Connecting Instances
	Automatic Connections
	QuickConnect
	Manual Connections
	Deleting Connections
	Top-Level Connections
	Bus Interfaces
	About Bus Interfaces
	See Also:

	Using Bus Interfaces in SmartDesign
	Adding or Modifying Bus Interfaces in SmartDesign
	Bus Interfaces
	DirectCore Bus Interfaces
	AHB
	APB
	SysInterface
	DBGInterface
	CPInterface

	Show/Hide Bus Interface Pins
	Default Tie-offs with Bus Interfaces
	Tying Off (Disabling) Unused Bus Interfaces
	Required vs. Optional Bus Interfaces
	See Also

	Promoting Bus Interfaces to Top-level
	Incremental Design
	Reconfiguring a Component
	See Also

	Fixing an Out-of-Date Instance
	See Also

	Replacing Component Version
	Design State Management
	Changing memory content

	Design Rules Check
	Generating a SmartDesign Component
	Reference
	SmartDesign Menu
	SmartDesign Glossary
	Canvas Icons
	VHDL Special Types - Examples and meta.out File Format
	Create Core from HDL
	Create HDL
	Using the HDL Editor
	Importing HDL Source Files
	Mixed-HDL Support in Libero SoC
	SmartDesign Testbench
	HDL Testbench
	HDL Type
	Name
	Clock Period (ns)

	View/Configure Firmware Cores
	Designing with Designer Block Components
	Designer Block Advantages
	Designer Block Features
	Use Designer Blocks When

	Designer Blocks and Synthesis
	See Also

	Managing I/Os in a Designer Block Component
	Globals and Designer Block Components
	Local Clock
	Limitations

	Designer Block Compile Report
	Designer Block Component Limitations
	Creating a Designer Block Component in Libero SoC
	Creating a Designer Block Component in Libero SoC
	Instantiating a Designer Block in Libero SoC
	RTL Simulation
	Simulation Options
	Selecting a Stimulus File for Simulation
	Selecting Additional Modules for Simulation
	Performing Functional Simulation
	Performing DirectCore Functional Simulation
	I/O Constraints - SmartFusion2, IGLOO2, and RTG4
	Timing Constraints - SmartFusion2, IGLOO2, and RTG4
	Floorplan Constraints - SmartFusion2, IGLOO2, and RTG4
	Constraints Overview
	I/O Constraints (PDC Files)
	Timing Constraints (SDC Files)
	Floorplanning Constraints (PDC files)

	Synthesize (Classic Constraint Flow)
	Synthesize Options
	Global Nets (Promotions and Demotion)
	Optimizations
	Additional options for Synplify Pro synthesis

	Synplify Pro ME
	Precision RTL
	Identify Debug Design
	Verify Post-Synthesis Implementation - Simulate
	Compile - SmartFusion, IGLOO, ProASIC3, Fusion
	Compile - SmartFusion2, IGLOO2, and RTG4
	Global Promotion/Demotion Options
	Block Instantiation Compile Options
	Placement
	Routing

	Compile Options (SmartFusion, IGLOO, ProASIC3, and Fusion)
	Block Instantiation
	Physical Design Constraints
	Checking the Physical Design Constraint (PDC)

	Globals Management
	Automatic Demotion/Promotion
	Local clocks

	Netlist Optimization
	Combining
	Buffer/Inverter Management

	Display of Results
	Compile Report

	Block Creation (Available only when creating Designer Blocks)
	See Also

	Configure Flash*Freeze
	Place and Route - SmartFusion2, IGLOO2, RTG4
	See Also

	Place and Route
	Power-Driven

	SmartFusion, IGLOO, ProASIC3 and Fusion Place and Route Advanced Options
	High Effort Layout Mode
	Sequential Optimization
	Router
	Repair Minimum Delay Violations
	Additional Factors

	Restore Defaults

	Simulate - Opens ModelSim ME
	Generate Back Annotated Files - SmartFusion2, IGLOO2, and RTG4
	Export Back Annotated Files
	Generate Bitstream - SmartFusion2, IGLOO2, and RTG4
	See also

	Device Programming
	See Also

	Programming Connectivity and Interface - SmartFusion2, IGLOO2, and RTG4 Only
	Hover Information
	Device Chain Details
	Right-Click Properties

	Programmer Settings - SmartFusion2, IGLOO2, and RTG4 Only
	FlashPro Programmer Settings
	FlashPro Lite Programmer Settings
	FlashPro5/4/3/3X Programmer Settings

	Device I/O States During Programming
	Configure User Programming Data
	Configure Programming Recovery
	Security Features Frequently Asked Questions
	Security Programming Files
	Security Policy Manager (SPM)
	Update Policy
	Debug Security Policy
	Key Mode Policy
	Update eNVM Memory Content (SmartFusion2 and IGLOO2)
	Modify Data Storage Client
	Modify Serialization Client

	Update uPROM Memory Content - RTG4 Only
	Serialization Client Editor
	Configure Bitstream Dialog Box - SmartFusion2, IGLOO2, and RTG4
	Generate Bitstream - SmartFusion2, IGLOO2, and RTG4
	See also

	Run PROGRAM Action - SmartFusion2, IGLOO2, and RTG4 Only
	Program Device - SmartFusion, IGLOO, ProASIC3, and Fusion
	SmartFusion2 and IGLOO2 Programming - Default Settings
	SmartFusion2 and IGLOO2 Programming - Custom Settings
	Exit Codes (SmartFusion2 and IGLOO2)
	Programming File Actions - SmartFusion2 and IGLOO2
	Options Available in Programming Actions

	Bitstream Encryption with Default Key in Security Policy Manager - SmartFusion2 and IGLOO2
	Enable Custom Security Options in the Security Policy Manager - SmartFusion2 and IGLOO2
	Programming SmartFusion in the Libero SoC
	Generating Programming Files
	Generate a Programming File in FlashPoint
	Programming File Types
	Generate a Programming File for SmartFusion
	Generate a Programming File for CoreMP7/Cortex-M1 Device Support
	CoreMP7/Cortex-M1 Device Security
	Programming FlashROM and FPGA Array

	Generate a Programming File for AFS Device Support - Designer Only
	AFS Programming
	Programming Security Settings, FlashROM, and FPGA Array

	Generate a Programming File for Serialization Support in In House Programming (IHP)
	Creating a Programming Database (PDB) File in Designer
	See Also

	Programming Embedded Flash Memory Block
	Programming the FlashROM
	Silicon Signature
	Programming Security Settings
	Custom Security Levels
	Reprogramming a Secured Device
	Custom Serialization Data for FlashROM Region
	Custom Serialization Data File Format
	Binary serialization data file example
	Decimal serialization data file example

	Specifying I/O States During Programming
	Custom I/O Settings and Boundary Scan Registers
	Specifying I/O States During Programming - I/O States and BSR Details
	I/O State (Output Only)
	Boundary Scan Registers - Enabled with Show BSR Details

	Specify I/O States During Programming Dialog Box
	Load from file
	Save to file
	Port Name
	Macro Cell
	Pin Number
	I/O State (Output Only)

	Generate a DAT file
	FlashLock®
	No Lock
	Permanent Lock
	Keyed Lock

	Generating Bitstream and STAPL files
	SPI Programming Tutorial Overview
	Auto Programming
	In Application Programming (IAP) Tutorial
	Programming Recovery Tutorial
	SmartFusion2 Programming Tutorial Overview
	MSS Configuration - eNVM
	Generate Bitstream - SmartFusion2, IGLOO2, and RTG4
	See also

	Edit Design Hardware Configuration - Device I/O States During Programming
	Security Policy Manager (SPM)
	Bitstream Configuration
	Update eNVM Memory Content (SmartFusion2 and IGLOO2)
	Modify Data Storage Client
	Modify Serialization Client

	Program Design - Run PROGRAM Action
	Handoff Design for Production
	Identify Debug Design
	Device Debug
	Getting Started with SmartDebug
	Using SmartDebug with SmartFusion and Fusion
	Solutions to Common Issues Using SmartDebug
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying
	Analog System Not Working as Expected
	ADC Not Sampling the Correct Value
	Frequently Asked Questions
	How do I unlock the device security so I can debug?
	How do I export a report?
	How do I generate diagnostic reports for my target device?
	Where can I find files to compare my contents/settings?
	What is a UFC file? What is an EFC file?
	Is my FPGA fabric enabled?
	Embedded Flash Memory (NVM) Frequently Asked Questions
	Is my Embedded Flash Memory (NVM) programmed?
	How do I display Embedded Flash Memory (NVM) content in the Client partition?
	How do I know if I have Embedded Flash Memory (NVM) corruption?
	Why does Embedded Flash Memory (NVM) corruption happen?
	How do I recover from Embedded Flash Memory corruption?
	What is a JTAG IR-Capture value?
	What does the ECC1/ECC2 error mean?
	How can I tell if my FlashROM is programmed?
	Can I compare serialization data?
	Can I tell what security options are programmed in my device?
	Is my analog system configured?
	How do I interpret data in the Device Status report?
	Device Status Report: IDCode
	Device Status Report: User Info
	Device Status Report: Device State
	Device Status Report: Analog Block
	Device Status Report: Factory Data
	Device Status Report: Security
	FPGA Array (Fabric)

	How do I interpret data in the Flash Memory (NVM) Status Report?
	Create Standalone SmartDebug Project
	Import from DDC File (created from Libero)
	Construct Automatically
	Configuring a Generic Device
	Connected FlashPRO Programmers
	See Also

	Import from DDC File (created from Libero)
	Construct Automatically
	Configuring a Generic Device

	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-click Properties
	Debug Context Save
	Selecting Devices for Debug

	Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4
	Introduction
	Probe Insertion
	Probe Deletion
	Reverting to the Original Design

	Active Probes (SmartFusion2, IGLOO2, and RTG4)
	Live Probes (SmartFusion2, IGLOO2, and RTG4)
	Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3 Only)
	Analog Block Configuration Dialog Box (SmartFusion and Fusion Only)
	View Device Status (SmartFusion2, IGLOO2, and RTG4 Only)
	IdCode
	Device Certificate
	Design Information
	Digest Information
	Device Security Settings
	Programming Information

	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion and Fusion Only)
	Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only)
	Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only)
	FlashROM Content Dialog Box (Fusion and SmartFusion Only)
	Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion Only)
	Using SmartDebug with SmartFusion2, IGLOO2, and RTG4
	Device Status Report (SmartFusion and Fusion Only)
	Debug SERDES (SmartFusion2, IGLOO2, and RTG4)
	Debug SERDES – PRBS Test
	Test Type
	Pattern
	Bit Error Rate

	Debug SERDES – Loopback Test
	Debugging
	Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 Only)
	Live Probes (SmartFusion2, IGLOO2, and RTG4)
	Active Probes (SmartFusion2, IGLOO2, and RTG4)
	Memory Blocks (SmartFusion2, IGLOO2, and RTG4)
	Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4
	Introduction
	Probe Insertion
	Probe Deletion
	Reverting to the Original Design

	SmartDebug Tcl Commands
	SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTG4)
	Export Pin Report
	Export BSDL File
	Export IBIS Model
	Export Firmware – SmartFusion2
	Running Libero SoC from your Software Tool Chain
	Application Notes
	Tutorials and Training Modules
	Catalog
	Viewing Cores in the Catalog
	Catalog Options
	See Also

	Catalog Options Dialog Box
	Vault/Repositories Settings
	View Settings

	Changing Device Information
	Compatible Die Change
	Changing Die Revisions
	Device Change Only
	Repackager Function

	Core Manager
	Deleting Files
	Design Hierarchy in the Design Explorer
	Design Menu - Libero SoC
	Designer in Libero SoC
	Edit Core Definition - Ports and Parameters Dialog Box
	Edit Menu - Libero SoC
	Execute Script Dialog box
	Export Script Dialog Box
	File Menu - Libero SoC
	Files Tab and File Types
	HDL Templates in the Libero SoC
	Help Menu - Libero SoC
	Import Files Dialog Box (Project Manager)
	Importing Schematics
	License Details
	Link Files
	Log Window
	Colors and Symbols
	Linked Messages

	New Project Creation Wizard – Project Details
	Project
	See Also

	New Project Creation Wizard – Device Selection
	New Project Creation Wizard – Device Settings
	New Project Creation Wizard – Design Template
	New Project Creation Wizard – Add HDL Source Files
	New Project Creation Wizard - Add Constraints
	New File Dialog Box
	Open Project Dialog Box
	Opening your Libero SoC project
	See Also

	Organize Constraint Files
	Organize Simulation Files Dialog Box
	Organize Source Files Dialog Box – Synthesis
	Organize Stimulus Files Dialog Box
	Physical Synthesis and the Libero SoC
	Preferences
	User Preferences Dialog Box
	Project Menu - Libero SoC
	Project Settings Dialog Box
	Device Selection
	Device Settings
	Design Flow
	Preferred Language
	Block flow (Available only in Classic Constraint Flow)
	Root < >
	Synthesis gate level netlist format
	Design methodology (for SmartFusion2 and IGLOO2 only)
	Reports (Available only in Enhanced Constraint Flow)

	Analysis Operating Conditions (For SmartFusion2, IGLOO2, and RTG4)
	Simulation Options and Simulation Libraries

	Project Settings: Simulation
	Simulation Libraries

	Project Sources
	File Linking
	See Also

	Reserved Microsemi Keywords
	Right-Click (Shortcut) Menu Options in Libero SoC Design Hierarchy
	Save Project As Dialog Box
	Saving Files
	Script Export Options Dialog Box
	Search in Libero SoC
	Select a Workspace Dialog Box
	Organize Source Files Dialog Box – Synthesis
	Stimulus Hierarchy
	Text Editor
	Tool Profiles Dialog Box
	Tools Menu - Libero SoC
	Vault/Repositories Settings Dialog Box
	Use the Vault location dialog box to specify a new location for your local vault.

	Videos - Libero SoC
	View Design Datasheet/Report
	View Menu - Libero SoC
	VHDL Library - Add, Remove, or Rename
	VHDL Library - Add, Remove, or Rename
	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

