DG0713 Demo Guide RTG4 FPGA PCIe Data Plane Demo using ScatterGather DMA Controller

a MICROCHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com

www.microsemi.com

©2021 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Contents

1	Revis	ion His	story	1			
	1.1		on 6.0				
	1.2	Revision	on 5.0				
	1.3	Revision	on 4.0				
	1.4	Revision	on 3.0				
	1.5	Revision	on 2.0				
	1.6	Revision	on 1.0				
2	PCle	Data F	Plane Demo using Scatter-Gather DMA Controller	2			
	2.1		n Requirements				
	2.2	Prerequisites					
	2.3		Design				
		2.3.1	Features				
		2.3.2	Description				
		2.3.3	Throughput Calculation				
	2.4	Setting 2.4.1	g up the Demo Design				
		2.4.1	Setting Up the Board				
		2.4.3	Connecting RTG4 Development Kit to Host PC PCIe Slot				
		2.4.4	Drivers Installation				
		2.4.5	Installing the PCIe_Data_Plane_Demo Application GUI				
	2.5		ng the Design				
		2.5.1	Summary	20			
3	Appe	ndix 1:	: Programming the Device Using FlashPro Express	21			
4	Appe	ndix 2:	: Running the TCL Script	24			
_	A	adise Os	· Dama Damieters and Duffer Descriptor Details	0.0			
5			Demo Registers and Buffer Descriptor Details				
	5.1		IA Registers (BAR1)				
	5.2	Buffer	Descriptor (16 bytes)				

Figures

Figure 1	PCIe Data Plane Demo- Block Diagram	. :
Figure 2	Data Transfer from Host PC Memory to RTG4 DDR Memory	. 5
Figure 3	Data Transfer from RTG4 DDR Memory to Host PC Memory	. 6
Figure 4	RTG4 Development Kit Setup	
Figure 5	Device Manager—PCle Device Detection	
Figure 6	Update Driver Software	Ç
Figure 7	Browse for Driver Software	1(
Figure 8	Browse for Driver Software Continued	1(
Figure 9	Windows Security	1(
Figure 10	Successful Driver Installation	11
Figure 11	PCIe Demo Application Installation	11
Figure 12	PCIe Demo Application Installation	12
Figure 13	Successful Installation of PCIe Demo Application	12
Figure 14	Device Manager—PCle Device Detection	13
Figure 15	Device Info	14
Figure 16	Demo Controls Continued	15
Figure 17	Configuration Space	16
Figure 18	PCIe BAR1 memory access	17
Figure 19	PC Memory to DDR DMA	18
Figure 20	DDR to PC Memory DMA	19
Figure 21	Both DMA Operations	2(
Figure 22	FlashPro Express Job Project	21
Figure 23	New Job Project from FlashPro Express Job	22
Figure 24	Programming the Device	22
Figure 25	FlashPro Express—RUN PASSED	23

Tables

Table 1	Design Requirements	2
Table 2	Jumper Pin Connections	
Table 3	Throughput Values	
Table 4	SGDMA Registers	
Table 5	Buffer Descriptor and Bit Descriptions	

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the current publication.

1.1 **Revision 6.0**

Updated the document for Libero SoC v2021.2.

1.2 **Revision 5.0**

Replaced Figure 15, page 14.

1.3 **Revision 4.0**

The following is a summary of the changes made in this revision.

- Added Appendix 1: Programming the Device Using FlashPro Express, page 21.
- Added Appendix 2: Running the TCL Script, page 24.
- Removed the references to Libero version numbers.

1.4 Revision **3.0**

Updated the document for Libero SoC v12.0 software release.

1.5 **Revision 2.0**

Updated the document for Libero v11.8 software release.

1.6 **Revision 1.0**

Revision 1.0 was the first publication of this document.

2 PCle Data Plane Demo using Scatter-Gather DMA Controller

This demo highlights the high-speed data transfer capability of the RTG4[™] device using the PCIe interface. To achieve high-speed and bulk-data transfers, the advanced extensible interface (AXI) based scatter-gather direct memory access (SGDMA) controller is implemented in the FPGA fabric. The SGDMA controller performs a bulk-data transfer between non-contiguous memory locations defined by buffer descriptors. The SGDMA controller is useful in systems, where getting bulk contiguous free memory locations is difficult due to memory management concepts of operating systems.

Windows kernel mode PCIe device driver is developed for interacting with the RTG4 PCIe endpoint from the host PC. These Windows device drivers are developed using the Windows Driver Kit (WDK) platform.

An application GUI (PCIe_Data_Plane_Demo) that runs in the host PC is provided for setting up and initiating the DMA transactions between the host PC memory and the DDR3 memory of the RTG4 development kit through the PCIe interface. A user space application interface is developed for the GUI to interact with the PCIe driver.

The high-speed serial interface (SERDESIF) available in the RTG4 device provides a fully hardened PCle endpoint implementation and is compliant with the PCle Base Specification Revision 2.0 and 1.1. For more information about this, refer to *UG0567: RTG4 FPGA High-Speed Serial Interface User Guide*.

2.1 Design Requirements

The following table lists the design requirements to run the design.

Table 1 • Design Requirements

Version			
Rev C or later			
64-bit Windows 7 and 10			
Note: Refer to the readme.txt file			
 provided in the design files for the software versions used with this reference design. 			
-			
_			

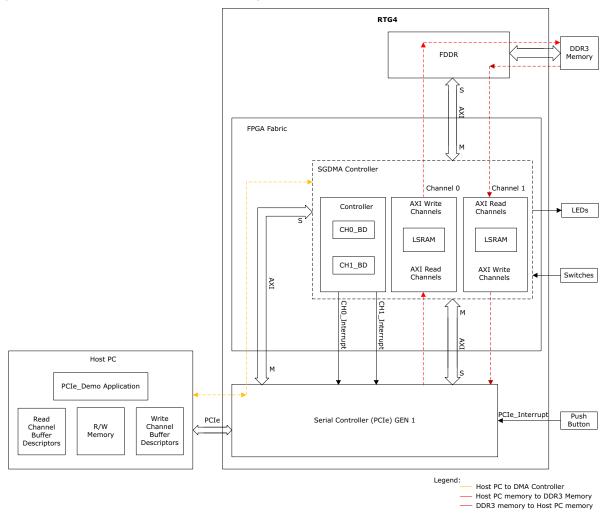
Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only. Open the Libero design to see the latest updates.

2.2 Prerequisites

Before you start:

 Download and install Libero SoC (as indicated in the website for this design) on the host PC from the following location: https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

2.3 Demo Design


The demo design files are available for download from the following path in the Microsemi website: http://soc.microsemi.com/download/rsc/?f=rtq4 dg0713 df

The PCIe_Data_Plane_Demo application on the host PC initiates the DMA transfers through the PCIe device drivers. The drivers on the host PC allocate the memory, create the buffer descriptors, and trigger the SGDMA controller in the FPGA fabric by accessing the controller registers through BAR0 space. The buffer descriptor contains the DMA source address, destination address, DMA size, and the DMA direction details. For more information on the buffer descriptor and its bit descriptions, refer to Buffer Descriptor (16 bytes), page 26.

The SGDMA controller fetches the buffer descriptors from the host PC and performs DMA transfers using the DMA channel 0 and the DMA channel 1. These DMA channels share the AXI read/write channels of the PCIe AXI and FDDR AXI slave interface to perform read and write operations to DDR/PC memories. The DMA channel 0 handles the host PC memory to DDR memory DMA transfer. The DMA channel 1 handles the DDR memory to host PC memory DMA transfer.

The following figure shows the top-level block diagram of the demo design:

Figure 1 • PCle Data Plane Demo- Block Diagram

In this design, the FDDR (west) controller is configured to access the DDR3 memory in x32 mode. The FDDR clock is configured to 320 MHz (640 Mbps DDR) with an 80 MHz DDR_FIC clock for an aggregate memory bandwidth of 1280 Mbps. The PCIe AXI interface clock and fabric DMA controller clock are configured to 80 MHz.

2.3.1 Features

Features of the PCIe Data Plane are:

- · High-speed data transfers between the host PC memory and the DDR memory.
- Each buffer descriptor supports the DMA size of 8 B to 1 MB.
- Enables continuous DMA transfers for observing throughput variations.
- The PCIe Data Plane Demo application displays:
 - The PCle negotiated link width and the link speed.
 - · The PCIe configuration space.
 - The position of DIP Switches on the RTG4 Development Kit.
- PCIe Data Plane Demo application controls the LEDs on the RTG4 Development Kit.
- Enables the read and write operations through the BAR1 to 4 KB memory in the FPGA fabric.
- Interrupts the host PC when the Push button is pressed. The PCIe_Data_Plane_Demo application
 displays the count value of the number of interrupts sent from the board.

2.3.2 Description

The design supports the following types of data transfers:

- · Host PC Memory to RTG4 DDR Memory (Read)
- RTG4 DDR Memory to Host PC Memory (Write)

The PCIe_Data_Plane_Demo application requests the PCIe device driver for DMA transfer through the user space application interface. Then, the PCIe device driver finds the available memory locations and initializes the memory read buffers. It also creates the buffer descriptor chain for the different memory locations and sends the base address of the first buffer descriptor. The DMA start command to the SGDMA controller in the FPGA fabric.

To perform the DMA transfers the SGDMA controller fetches the 8 buffer descriptors from the base address of the first buffer descriptor. The SGDMA controller is designed to get the 8 buffer descriptors (128 bytes) using a 16 beat AXI burst for optimum bandwidth utilization.

At the end of the DMA transfer, the fabric DMA controller interrupts the host PC and provides the DMA completion status and the number of clock cycles consumed to complete the DMA transaction to the PCle_Data_Plane_Demo application.

The DMA transfer flow from the host PC memory to the DDR memory flow is shown in Figure 2, page 5. The DMA transfer flow from DDR memory to host PC memory is shown in Figure 3, page 6.

Figure 2 • Data Transfer from Host PC Memory to RTG4 DDR Memory

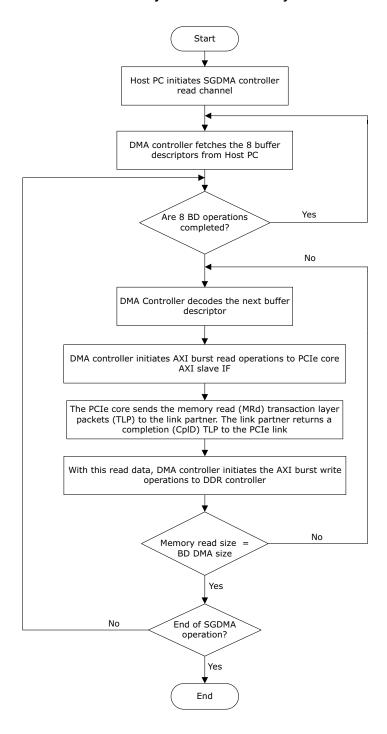
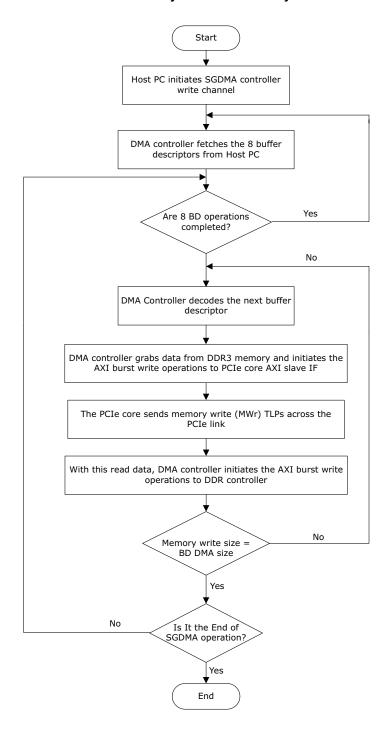



Figure 3 • Data Transfer from RTG4 DDR Memory to Host PC Memory

2.3.3 Throughput Calculation

The design implements a timer to measure the throughput of DMA transfers. The throughput includes all of the overhead of the AXI, PCIe, and DMA controller transactions. But it excludes the reading and decoding of buffer descriptors.

The design implements the following steps to measure the throughput*:

- 1. Fetches the buffer descriptors from the host PC and decodes them.
- 2. Set up the DMA controller for the complete transfer.
- 3. Starts the timer and the DMA controller.
- 4. Initiates the data transfer for the requested number of bytes.
- 5. Waits until the DMA transfer is completed.
- Records the number of clock cycles used for data transfer.

*Throughput = Transfer Size (Byte) / (Number of clock cycles taken for a transfer * Clock Period)

2.4 Setting up the Demo Design

This section describes the following procedures to set up the design:

- Setting Up the Board, page 7
- Programming the Device, page 8
- Connecting RTG4 Development Kit to Host PC PCle Slot, page 8
- Drivers Installation, page 9
- Installing the PCIe_Data_Plane_Demo Application GUI, page 11

2.4.1 Setting Up the Board

The following steps describe how to set up the hardware demo for the RTG4 Development Kit:

1. Connect the jumpers on the RTG4 Development Kit, as shown in the following table.

Table 2 • Jumper Pin Connections

Jumper	Pin (From)	Pin (To)	Comments
J11, J17, J19, J23, J26, J21, J32, J27	1	2	Default
J16	2	3	Default
J33	1	2	Default
	3	4	

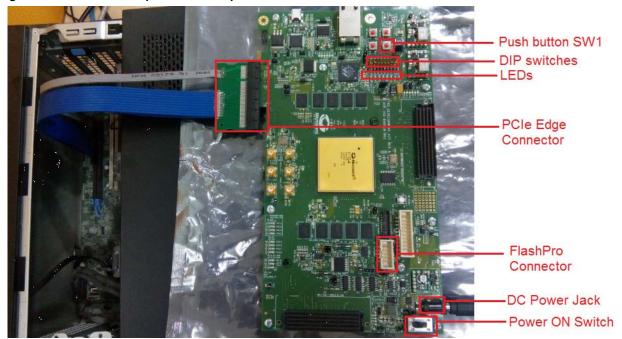
Note: Switch OFF the power supply switch **SW6** while connecting the jumpers on the RTG4 Development Kit board.

- 2. Connect the host PC to the J47 connector using the USB cable.
- 3. Connect the USB cable (mini USB to Type-A USB cable) to J47 of the RTG4 Development Kit board and another end of the cable to the USB port of the host PC.
- 4. Switch ON the power supply switch, **SW6**.

2.4.2 Programming the Device

Program the RTG4 Development Kit with the job file provided as part of the design files using FlashPro Express software, refer to Appendix 1: Programming the Device Using FlashPro Express, page 21.

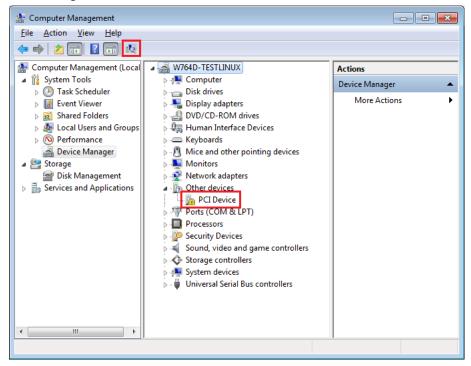
2.4.3 Connecting RTG4 Development Kit to Host PC PCle Slot


The following steps describe how to connect the RTG4 Development Kit to the host PC:

- 1. After successful programming, shut down the host PC.
- 2. Connect the J230 PCIe Edge connector of the RTG4 Development Kit to the PCIe slot of the host PC through the PCI Edge Card Ribbon Cable.

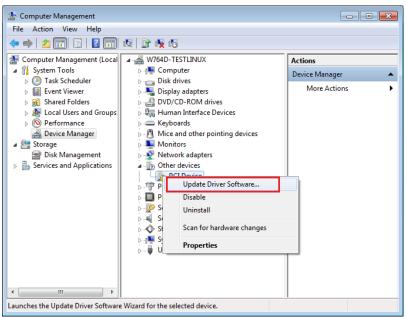
Note: Ensure that the host PC is powered off while inserting the PCIe Edge Connector. Otherwise, the PCIe device will not be detected properly. After inserting, the host PC may wake-up or start due to a glitch on the PCIe WAKEn pin. The RTG4 device does not support cold sparing, and hence causes the glitch on RTG4 PCIe I/Os while inserting the PCIe edge connector.

The following figure shows the board setup for the host PC in which the RTG4 Development Kit is connected to the host PC PCIe slot.


Figure 4 • RTG4 Development Kit Setup

3. Switch ON the host PC and check the Device Manager of the Host PC for PCIe Device. If the device is not detected, power cycle the RTG4 Development Kit and click scan for hardware changes in the Device Manager window. The following figure shows the device manager window with a PCI device.

Figure 5 • Device Manager—PCIe Device Detection


Note: If the device is still not detected, check if the BIOS version in the host PC is the latest and if PCI is enabled in the host PC BIOS.

2.4.4 Drivers Installation

Perform the following steps to install the PCIe drivers on the host PC:

 Right-click PCI Device in Device Manager and select Update Driver Software... as shown in the following figure.

Figure 6 • Update Driver Software

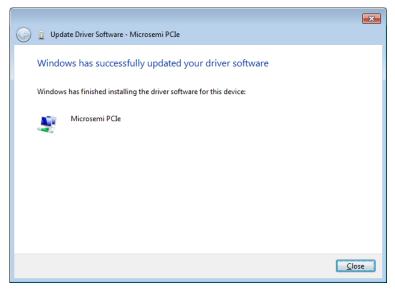
In the Update Driver Software - PCle Device window, select the Browse my computer for driver software option as shown in the following figure.

Figure 7 • Browse for Driver Software

Browse the driver's folder: <download files>/PCle Drivers/Win_64bit_PCie_Drivers and click Next as shown in the following figure.

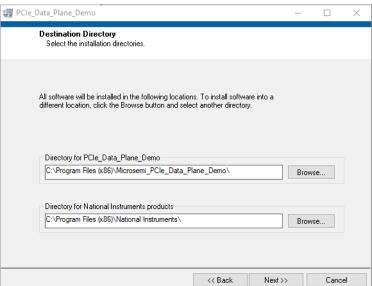
Figure 8 • Browse for Driver Software Continued

4. Windows Security dialog box is displayed and click Install, as shown in the following figure.


Figure 9 • Windows Security

After successful driver installation, a message window appears, as shown in the following figure.

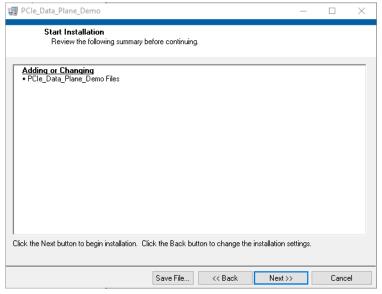
Figure 10 • Successful Driver Installation


2.4.5 Installing the PCle_Data_Plane_Demo Application GUI

The PCIe_Data_Plane_Demo application is a simple GUI that runs on the host PC to communicate with the RTG4 PCIe endpoint device. It provides the PCIe link status, driver information, and the demo controls. The PCIe_Data_Plane_Demo application invokes the PCIe driver installed on the host PC and provides commands to the driver according to the selection made.

The following steps describe how to install the PCle_Data_Plane_Demo application:

 Go to <Download Folder>\rtg4_dg0713_df\GUI\PCIe Data Plane Demo Installer V1.0, and doubleclick setup.exe, do not change the default options as shown in the following figure.


Figure 11 • PCIe Demo Application Installation

2. Click **Next** to start the installation, as shown in the following figure.

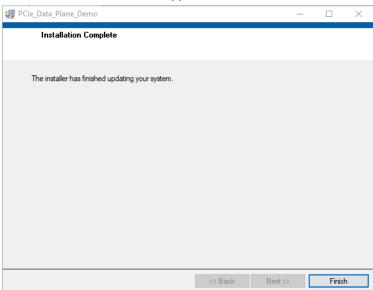
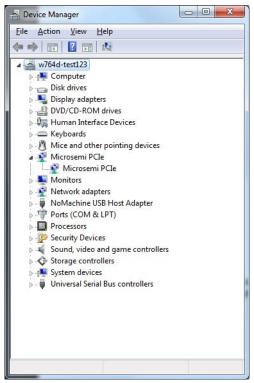


Figure 12 • PCle Demo Application Installation

- 3. Click **Finish** to complete the installation.
- 4. The installation completes successfully, as shown in the following figure.

Figure 13 • Successful Installation of PCle Demo Application

5. Restart the host PC.

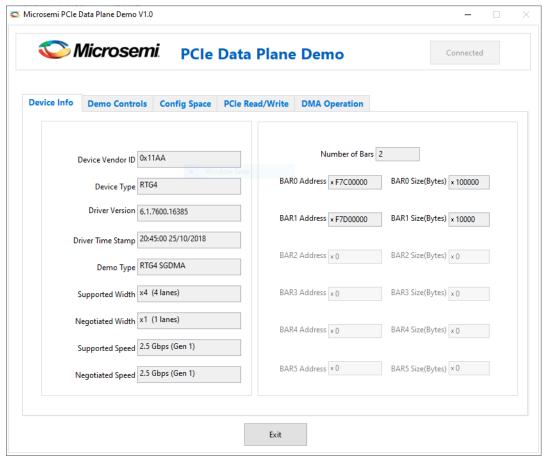


2.5 Running the Design

The following steps describe how to run the demo design:

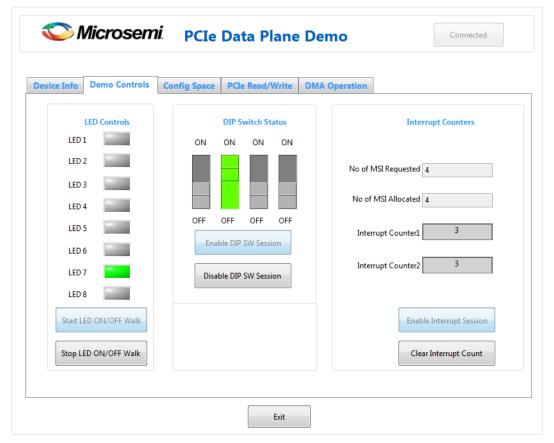
 Check for the Microsemi PCIe device in the host PC Device Manager as shown in the following figure.

Figure 14 • Device Manager—PCIe Device Detection



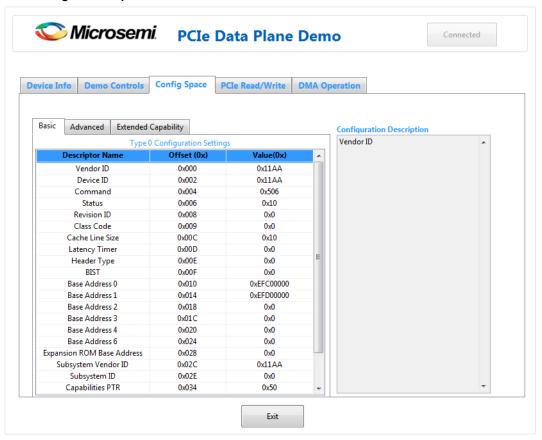
Note: If a warning appears on the Microsemi PCle driver in the **Device Manager**, uninstall them and start from Step 1 of driver installation.

- 2. Invoke the Microsemi PCle Data Plane demo application from **All Programs > Microsemi PCle Data Plane Demo > PCle_Data_Plane_Demo**.
- 3. Click **Connect**. The application detects and displays the connected kit, demo type, PCle link width, and the link speed, as shown in the following figure.


Figure 15 • Device Info

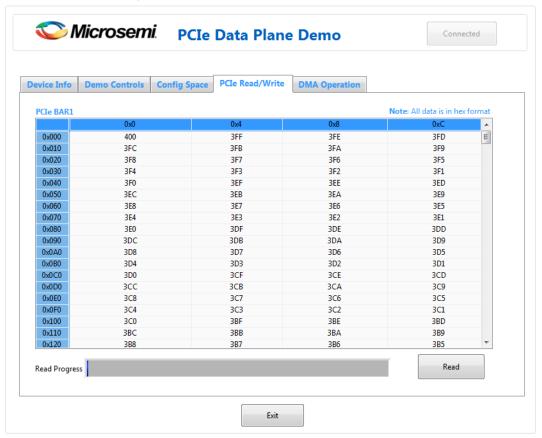
4. Click **Demo Controls** tab to display the LEDs options, DIP switch positions, and the interrupt counters. Controlling LEDs, getting the DIP switch status, and monitoring the interrupts can be done simultaneously, as shown in the following figure.

Figure 16 • Demo Controls Continued

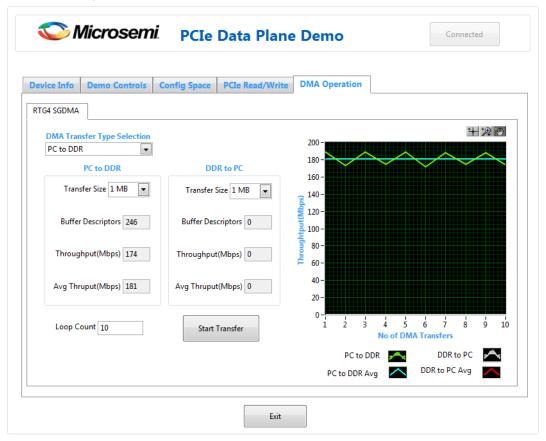


Note: Interrupt Counter1 and Counter4 are allocated for SW1 and SW2 events. Interrupt Counter2 and Counter3 are allocated for the SGDMA controller.

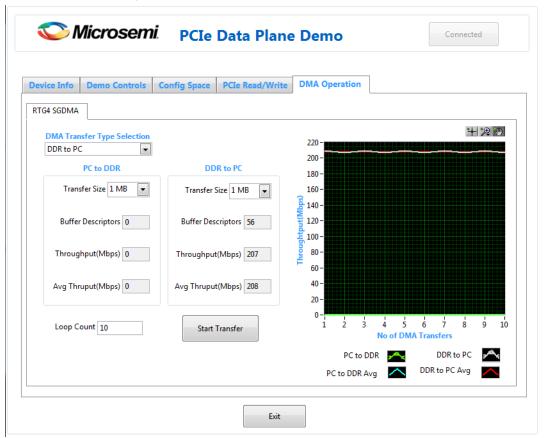
Click Config Space tab to view the details about the PCle configuration space as shown in the following figure.


Figure 17 • Configuration Space

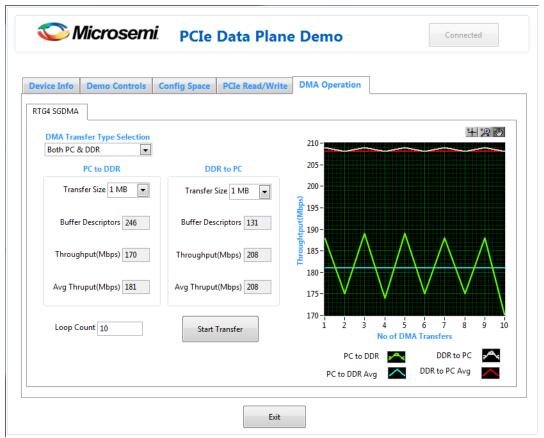
6. Click **PCIe Read/Write** tab to perform read and write to LSRAM using BAR1 space. Click **Read** to read the 4 KB memory mapped to BAR1 space, as shown in the following figure.


Figure 18 • PCIe BAR1 memory access

7. Click DMA Operation tab. Select PC to DDR as the DMA Transfer Type Selection, Loop Count, and click Start Transfer to transfer the data from host PC to RTG4 DDR memory. The transfer size can be selected from 4 KB to 1 MB. After successful DMA operation, the GUI displays the throughput and the number of buffer descriptors created by the driver as shown in the following figure.


Figure 19 • PC Memory to DDR DMA

8. Select **DDR to PC** as **DMA Transfer Type Selection** and click **Start Transfer** to transfer the data from RTG4 DDR memory to host PC as shown in the following figure.


Figure 20 • DDR to PC Memory DMA

 Select Both PC & DDR as DMA Transfer Type Selection and click Start Transfer to transfer the data from RTG4 DDR memory to the host PC as shown in the following figure.

Figure 21 • Both DMA Operations

10. To write to the BAR1, select the memory location and overwrite the existing value. After successful write operation, GUI shows the updated memory location in green color.

2.5.1 Summary

This demo shows how to implement a PCIe Data Plane design using AXI based SGDMA controller. The throughput for data transfers depends on the host PC system configuration and the type of the PCIe slots used.

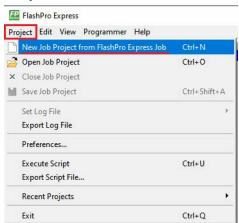
The following table lists the throughput values observed on the HP Workstation Z230 PCIe slot 4.

Table 3 • Throughput Values

DMA Transfer Type	Throughput (MB/s)
Host PC memory to DDR (read)	170 MB/s
DDR to Host PC memory (write)	220 MB/s
Host PC memory to DDR (read)/DDR to Host PC memory (write)	170/220 MB/s

3 Appendix 1: Programming the Device Using FlashPro Express

This section describes how to program the RTG4 device with the programming job file using FlashPro Express.

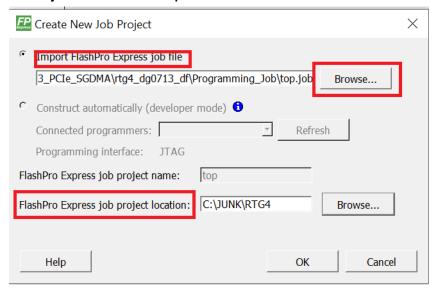

To program the device, perform the following steps:

- 1. Ensure that the jumper settings on the board are the same as those listed in *Table 3 of UG0617:* RTG4 Development Kit User Guide.
- Optionally, jumper J32 can be set to connect pins 2-3 when using an external FlashPro4, FlashPro5, or FlashPro6 programmer instead of the default jumper setting to use the embedded FlashPro5.

Note: The power supply switch, SW6 must be switched OFF while making the jumper connections.

- 3. Connect the power supply cable to the **J9** connector on the board.
- 4. Power **ON** the power supply switch **SW6**.
- If using the embedded FlashPro5, connect the USB cable to connector J47 and the host PC.
 Alternatively, if using an external programmer, connect the ribbon cable to the JTAG header J22 and connect the programmer to the host PC.
- 6. On the host PC, launch the FlashPro Express software.
- Click New or select New Job Project from FlashPro Express Job from Project menu to create a new job project, as shown in the following figure.

Figure 22 • FlashPro Express Job Project


- 8. Enter the following in the New Job Project from FlashPro Express Job dialog box:
- **Programming job file:** Click **Browse**, and navigate to the location where the .job file is located and select the file. The default location is:

<download_folder>\rtg4_dg0713_df\Programming_Job

FlashPro Express job project location: Click Browse and navigate to the desired FlashPro
Express project location.

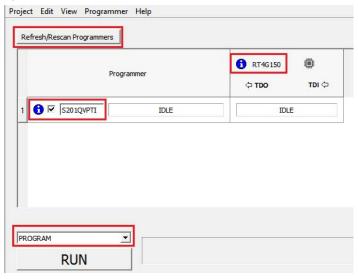
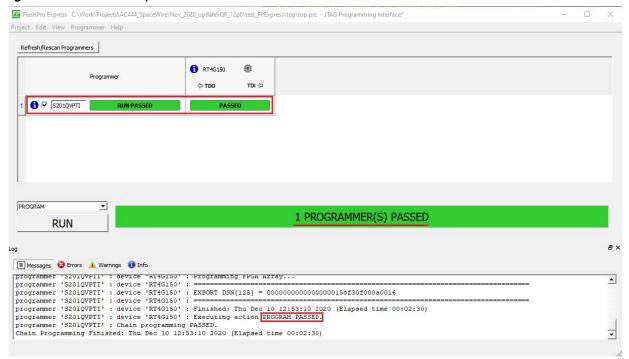


Figure 23 • New Job Project from FlashPro Express Job

- 9. Click **OK**. The required programming file is selected and ready to be programmed in the device.
- 10. The FlashPro Express window appears as shown in the following figure. Confirm that a programmer number appears in the Programmer field. If it does not, confirm the board connections and click **Refresh/Rescan** Programmers.


Figure 24 • Programming the Device

11. Click **RUN**. When the device is programmed successfully, a **RUN PASSED** status is displayed as shown in the following figure.

Figure 25 • FlashPro Express—RUN PASSED

12. Close FlashPro Express or click Exit in the Project tab.

4 Appendix 2: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

- 1. Launch the Libero software
- 2. Select Project > Execute Script....
- 3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
- 1 Click Run

After successful execution of TCL script, Libero project is created within TCL_Scripts directory.

For more information about TCL scripts, refer to rtg4_dg0713_df/TCL_Scripts/readme.txt.

Refer to *Libero*® *SoC TCL Command Reference Guide* for more details on TCL commands. Contact Technical Support for any queries encountered when running the TCL script.

5 Appendix 3: Demo Registers and Buffer Descriptor Details

5.1 SGDMA Registers (BAR1)

The following table lists the registers used to interface with the SGDMA controller. These registers are in the BAR1 address space.

Table 4 • SGDMA Registers

Register Name	Width	BAR or Address Space	Register Address	Description
RW_REG	32 bit	BAR1	0xFC00	Scratch pad register
DMA_CR	32 bit	BAR1	0xFC04	[15:0] → 0x1 CH0 start [31:16] → 0x1 CH1 start
BDA_CH0 (PC to DDR)	32 bit	BAR1	0xFC08	Host PC buffer descriptor address provided by the driver
DMA_SR_CH0	64 bit	BAR1	0xFC10	DMA status register DMA_SR[63:32] → No.of clks DMA_SR[31:24] → Error code DMA_SR[23:0] → No.of bytes
BDA_CH1 (read)	32 bit	BAR1	0xFC18	Host PC buffer descriptor address provided by the driver
DMA_SR_CH1 (DDR to PC)	64 bit	BAR1	0xFC20	DMA status register DMA_SR[63:32] → No.of clks DMA_SR[31:24] → Error code DMA_SR[23:0] → No.of bytes
CLK_FREQ	32 bit	BAR1	0xFC28	DMA clock frequency. Read only
switches	32 bit	BAR1	0xFC30	DIP switch status
LEDs	32 bit	BAR1	0xFCA0	LEDs control register

5.2 Buffer Descriptor (16 bytes)

The following table lists the buffer descriptor and its bit descriptions.

Table 5 • Buffer Descriptor and Bit Descriptions

Reserved[63:32]		Host PC Address[31:0]			
Reserved[63:56] DDR offset[55:32]	Valid descriptor[31:24]	Last transfer[23]	Direction[22:21]	Size[20:0]	

- Host PC Address[31:0]: 32-bit memory buffer address
- Size[20:0]: Size of the DMA operation
 - Maximum DMA size is 1MBytes
 - Minimum DMA size is 8 bytes
- Direction[22:21]: indicates read/ write type of DMA operation
 - "01" is DMA read operation
 - "10" is DMA write operation
- Last transfer[23]: indicates last buffer descriptor of DMA operation
- Valid descriptor[31:24]: "AA" indicates valid buffer descriptor
- DDR offset[55:32]: DDR memory offset address
 - DDR memory base address is 0x0000_0000