
Application Note AC412

IGLOO2 Flash*Freeze Entry and Exit
- Libero SoC v11.6

Table of Contents

Purpose
This application note describes the methods and steps of how to enter and exit the Flash*Freeze (F*F)
mode. It shows how to set different user-defined settings that define the behavior of static random-
access memory (SRAM) blocks during the F*F entry and exit modes using the
Libero® System-on-Chip (SoC) software. It also describes how to use System Services provided by the
CoreSysServices soft IP to enter into the F*F mode.

Introduction
Microsemi® IGLOO®2 field programmable gate array (FPGA) devices provide an ultra-low static power
solution through F*F technology. Entry into the F*F mode retains all the SRAM and registers information
and the F*F exit mode achieves rapid recovery to the Active mode.
One of the functions of the System Controller in the IGLOO2 device is to handle the System Services
requests through the communication block (COMM_BLK). The System Services are grouped into
different services. Refer to the UG0450: IGLOO2 FPGA System Controller User Guide for more details.
The IGLOO2 device enters into the F*F mode by using the F*F services request that the System
Controller provides. Some of the F*F hardware settings options can be set during the design time, such
as the clock source to be used as the standby clock source for the high performance memory subsystem
(HPMS) during F*F or defining the state of the fabric SRAM during the F*F mode.
The HPMS standby clock source and the state of the SRAMs are configured in the F*F hardware settings
in the Libero SoC software. The fabric SRAM state during F*F can either be Sleep or Suspend. In the
Suspend mode, the large SRAM (LSRAM) and micro SRAM (µSRAM) contents are retained. That is,
when the device exits the F*F mode, the contents of the SRAMs are retained. In the Sleep mode, the
SRAMs contents are not retained. Exiting from F*F is achieved by user configurable mechanism through
external I/O events (either transitions or pattern matching on I/Os). The state and the role that I/Os play
during F*F must be specified during the design time using Libero SoC. There are three different settings
available. These settings are categorized as the I/O state in the F*F mode, I/O availability in the F*F
mode, and I/O role in exiting from the F*F mode.

Purpose . 1
Introduction . 1
References . 2
Design Requirements . 2
Design Description . 2

Entering into F*F Mode . 5
Exiting from F*F Mode . 6

Hardware Implementation . 8
Running the Design . 12

Steps to Run the Design . 12
Conclusion . 17
Appendix: Design Files . 18
List of Changes . 19

Sup
ers

ed
ed
December 2015 1
© 2015 Microsemi Corporation

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
Depending on the type of the I/O, some or all of these options may not be available. Refer to the
UG0444: IGLOO2 FPGA Low Power Design User Guide for more details.
This application note describes how to set the different user-defined settings during the design time using
the Libero SoC software. It also describes how to enter the F*F mode using the System Services,
through the CoreSysServices soft IP, which provides access to the System Services. The
CoreSysServices soft IP communicates with the COMM_BLK through one of the fabric interface
controllers (FICs). Each System Service has a service request phase and a response phase. For more
details, refer to the CoreSysServices IP Handbook, which can be accessed through the Libero SoC
software. Managing the MDDR, FDDR, or SERDES before and after the F*F mode, power
measurements, are not discussed in this document.

References
The following list of references is used in this document. The references complement and help in
understanding the relevant Microsemi IGLOO2 FPGA device flows and features that are demonstrated in
this document.

• UG0450: IGLOO2 FPGA System Controller User Guide

• UG0444: IGLOO2 FPGA Low Power Design User Guide

• IGLOO2 Evaluation Kit

Design Requirements
Table 1 shows the design requirements.

Design Description
The design example consists of the HPMS configured using System Builder, a counter, SRAM wrapper
logic, IP cores (CoreSysServices, CoreAHBLite, CoreAHBToAPB3, and CoreAPB3), FLASH_FREEZE
macro, fabric AHB master, on-chip 1 MHz RC oscillator, fabric CCC (FCCC), F*F request, command
generator logic (FF_BLKS), and a synchronizer counter (CLK_Sync_CNTR_Dly) to synchronize the
clocks between the fabric and the HPMS system clock after exiting from Flash*Freeze. The fabric AHB
master along with the SRAM wrapper (AHBMASTER_FIC_RAM) is used to initialize the fabric SRAM by
moving data from the embedded nonvolatile memory (eNVM) to the fabric SRAM through FIC_0 AHB
master and slave interfaces using the AHB master in the fabric. A data storage client is defined in the
eNVM with the data to be written to the SRAM. This is used to demonstrate the state of the fabric SRAM
content after exiting from the F*F mode.
In the Active mode (non F*F), the HPMS_CCC is configured to provide a 100 MHz clock that is sourced
from the FPGA fabric through the CLK_BASE port. The FCCC is configured to provide the 50 MHz
CLK_BASE reference. The on-chip 1 MHz oscillator is the reference clock source for the FCCC.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

IGLOO2 Evaluation Kit Rev C, Rev D, or later

Host PC Any 64-bit Windows Operating System

Software Requirements

Libero SoC v11.6

FlashPro programming software v11.6

Host PC Drivers USB to UART drivers

CoreSysServices v3.1.101

Sup
ers

ed
ed
2

http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://www.microsemi.com/index.php?option=com_content&id=2067&lang=en&view=article&tab=documentation

Design Description
The CoreSysServices IP is configured to use only the F*F service option. It sends the F*F command to
the System Controller whenever it receives the F*F request enable and command from the FF_BLKS
logic. The FF_BLKS logic generates the F*F request and command based on the F*F entry input signal
(ff_trig). The FF_BLKS logic also monitors the busy signal from the CoreSysServices IP and the
FF_TO_START signal from the FLASH_FREEZE macro.
The FF_TO_START signal is asserted by the System Controller to indicate that the Flash*Freeze service
is about to start. Only 10 s are available to do housekeeping before the core is powered off. Microsemi
recommends the user to use this signal as part of the clock gating process to ensure that any glitches do
not cause a sequential element in the design to transition to an unwanted state when entering
Flash*Freeze. For more information about the FLASH_FREEZE macro, refer to the UG0450: IGLOO2
FPGA System Controller User Guide.
When the system enters into Flash*Freeze, the main clock is switched to a standby clock that is defined
by the user, where the user sets the Flash*Freeze hardware settings in the Libero design flow as shown
in Figure 7.
When the system controller comes out of the Flash*Freeze mode, MSS_CCC still runs off the standby
clock. The system controller then waits for the MCCC_MPLL_LOCK assertion and then switches the
clock to user system clock. After the lock assertion and before the MSS_CCC clock is switched to user
clock, the system controller is ready to communicate with the fabric. The following are the steps that
happen during the Flash*Freeze exit process:

1. Switch from the standby clock to the system clock (user clock) and wait for the MPLL lock
2. Wait for the clocks required by the HPMS sub-blocks and the FPGA fabric interface clocks to be

aligned
Within the MSS or HPMS CCC, the fabric alignment clock controller (FACC) interfaces with the MPLL,
generating the aligned clocks required by the MSS or HPMS sub-blocks, and controls the alignment of
the FPGA fabric interface clocks. MCCC_GLMUX_SEL is the register that contains the select line for the
four non-glitch multiplexers within FACC, which are related to the aligned clocks. All the four multiplexers
are switched by one signal as follows:

• 1: M3_CLK, APB_0_CLK, APB_1_CLK, DDR_SMC_FIC_CLK all driven from CLK_STANDBY
• 0: M3_CLK, APB_0_CLK, APB_1_CLK, DDR_SMC_FIC_CLK all driven from stage B dividers

For more information on the description of the FACC, refer to the UG0449: SmartFusion2 and IGLOO2
Clocking Resources User Guide.
The sync-up counter logic (CLK_Sync_CNTR_Dly) achieves the following:

• Waits for MCCC_MPLL_LOCK to assert
• Waits for MCCC_GLMUX_SEL to switch to the user clock
• Accounts for the time required for the HPMS clock to switch from the standby clock to the

operating clock after PLL achieves the lock and the system controller is ready to communicate
with the fabric

When MCCC_MPLL_LOCK achieves lock, MCCC_GLMUX_SEL selects the user clock instead of the
standby clock and the required time passes. GL0_EN is asserted to enable the GL0 clock that clocks the
fabric logic.Sup

ers
ed

ed
3

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
To expose the MCCC_MPLL_LOCK and MCCC_GLMUX_SEL signals to the fabric, if you are using
System Builder, convert the System Builder block into SmartDesign block. In the HPMS block, enable the
options in the Advanced Options tab, as shown in Figure 1.

The output of a counter is connected to a set of light-emitting diodes (LEDs) to monitor the state of the
fabric while entering and exiting the F*F mode. Table 2 shows the LED to pin assignment.

Figure 1 • MSS Clock CCC - Advanced Options

Table 2 • LED to Pin Assignment (IGLOO2 Evaluation Kit Board)

Counter Output Package Pin

LED_1 F4

LED_2 F3

LED_3 G7

LED_4 H7Sup
ers

ed
ed
4

Design Description
Figure 2 shows the top-level block diagram with the main blocks used in the design.

Entering into F*F Mode
Entering into the F*F mode is done through the System Services using CoreSysServices IP core. The
F*F request and command service is generated by initiating the F*F entry request through the port ff_trig
to the FF_BLKS. Upon the trigger of the ff_trig port, the FF_BLKS sends a service enable request along
with a service command byte describing the function to be performed. The F*F service requests the
System Controller to execute the F*F entry sequence. When the F*F service begins execution, the
System Controller informs the HPMS by sending a command byte E0H that F*F shutdown is imminent.
The service is stalled until this command byte is accepted by the COMM_BLK FIFO. If a new service
request is received while servicing another request, the new service request is immediately aborted. For
more information, refer to the "Flash*Freeze Service" section in the UG0450: IGLOO2 FPGA System
Controller User Guide.

Figure 2 • Top-Level Block Diagram of the Design

Sup
ers

ed
ed
5

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
As the F*F system service command is initiated, the System Controller disables the fabric, each eNVM
block, or the MSS PLL circuit based on the options specified. All these options are available as System
Services through CoreSysServices IP core by defining the SERV_OPTION_MODE [2:0] input. This
defines the mode options for F*F. For more information, refer to the CoreSysServices IP Handbook.

Exiting from F*F Mode
In IGLOO2, exiting from the F*F mode can be initiated by external I/Os events. User I/Os (MSIO, MSIOD,
or DDRIO) that are single-ended inputs can participate in the F*F exit in the following two ways:

• I/O Activity: Force F*F exit upon an activity (Wake_On_Change)
• I/O Signature: Force F*F exit upon a signature (Wake_On_1/Wake_On_0) match in which the I/O

participates with other I/Os to trigger F*F exit. This is a logical AND behavior where all I/Os must
meet the Low Power Exit settings.

The external I/O events are specified during the design time using the I/O Editor in the Libero SoC
software. Only input I/Os participate in the F*F exit event.
Note: The Wake_On_Change is a logical OR behavior with I/Os that are set as Wake_ON_1/

Wake_ON_0. This means that to wake from F*F, it must be {(All Wake-on-0 ANDed) ANDed with
(All Wake-on-1 ANDed)} ORed with (All Wake-on-Change ORed).

I/O Activity
In the I/O Activity mode, an input I/O can be selected to be part of a transition. The value at the pin of the
activity I/O is latched before going to the Low-power mode. When a change happens on the configured
I/O, the device wakes up from the F*F mode. The change can either be 1-to-0 or 0-to-1. This option is
equivalent to the Wake_On_Change option in the I/O Editor. This can be set on more than one I/O. The
Wake_On_Change is a logical OR behavior with other I/Os that are set as Wake_On_Change.

I/O Signature
Any input I/O can be selected to be a part of a signature match value that is used to wake-up from the
F*F mode. All the selected I/Os have to match a static predetermined value at the same time. If the
configured signature values match the values at I/Os, then the device exits from the F*F mode. I/Os can
be a mixture of different signature settings. An I/O can be configured to participate in the F*F exit upon a
0-to-1 or it can be configured to participate in the F*F exit upon a 1-to-0 transition. These options are
equivalent to Wake_On_1 (transition from 0-to-1) and Wake_On_0 (transition from 1-to-0) settings in the
I/O Editor in the Libero SoC software.
All other I/Os that are not participating in the F*F exit mechanism are tristated or held to the previous
state (LAST_VALUE) before entering the F*F mode. The Selection is set using I/O state in Flash*Freeze
mode column options in the I/O Editor using the Libero SoC, as shown in Figure 8 on page 11.
SW5 (four different dual in-line package [DIP] switches) on the IGLOO2 Evaluation Kit board is used to
demonstrate the pattern matching wake-up mechanism. Four different inputs are created in the top-level
design where each input is assigned to a DIP switch as shown in Figure 3 on page 7.
SW4 on the Evaluation Kit board is used to demonstrate the transition (Wake_On_Change) wake-up
event mechanism, as shown in Figure 3.

Figure 3 • DIP Switches and the SW4 Connectivity in Top-Level Design

Sup
ers

ed
ed
6

Hardware Implementation
Hardware Implementation
The hardware implementation involves configuring the HPMS and the necessary F*F settings. The
HPMS configuration is done using the System Builder. The design example consists of the HPMS, a
counter, SRAM wrapper logic, IP cores (CoreSysServices, CoreAHBLite, CoreAHBToAPB3, and
CoreAPB3), FLASH_FREEZE macro, fabric AHB master, on-chip 25/50 MHz RC oscillator, FCCC, and
FF_BLKS as shown in Figure 4 on page 8. The IP cores along with the SRAM wrapper are used to
initialize the fabric SRAM (AHBMASTER_FIC_RAM) by moving data from the eNVM to the fabric SRAM
through FIC_0 AHB master and slave interfaces. A Data Storage client is defined in the eNVM with the
data to be written to the SRAM. This is used to demonstrate the state of the fabric SRAM content after
exiting from F*F.

Figure 4 • Top-Level Hardware DesignSup
ers

ed
ed
7

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
The HPMS is configured using the Device Features page in the System Builder, to use HPMS System
Services and HPMS on-chip Flash Memory (eNVM) as shown in Figure 5. The HPMS is also configured
to provide the clock and reset signals to all the blocks including the CoreSysServices IP and FF_BLKS.

The eNVM data storage client is defined using the Configure Flash Memory option under the
Memories page in the System Builder configurator. The .mem file used to define the data storage client
is located at <project location>\IGLOO2_FlashFreeze\constraint\ folder.

Figure 5 • System Builder Configurations for HPMS System Services and eNVM

Sup
ers

ed
ed
8

Hardware Implementation
The HPMS_CCC clock source is sourced from the FPGA Fabric Input through the CLK_BASE port
where an FCCC is used. The FCCC is configured to provide the 50 MHz CLK_BASE clock using GL0
output. The reference clock for the FCCC is the on-chip 50 MHz RC oscillator. Figure 6 shows the
system clocks configurations for the HPMS_CLK and FIC_0_CLK clock settings. System Builder
automatically instantiates FCCC and RCOSC and configures them accordingly.

The standby clock source for the HPMS in the F*F mode and the state of the SRAMs (µRAM and
LSRAM) during the F*F mode are configured using the Flash*Freeze Hardware Settings dialog in the
Libero SoC software, as shown in Figure 7 on page 11. The following are the HPMS clock source options
that are available to be used during the F*F mode:

• On-chip 1 MHz RC oscillator
• On-chip 50 MHz RC oscillator

Figure 6 • HPMS System Clocks Configurations

Sup
ers

ed
ed
9

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
The following are the µRAM/LSRAM state options that are available to be used during the F*F mode:
• Suspend
• Sleep

The I/Os F*F exit mechanism is specified using the Low Power Exit setting in the I/O Editor in the Libero
SoC software, as shown in Figure 8.
Note:

• The I/O available in F*F option applies only to I/Os allocated to the HPMS peripherals.

• When I/Os are set to be available during the F*F mode, the I/O state in F*F option does not apply.

• Only inputs or bidirectional I/Os participate in signature/activity F*F exit. This means that the Low
Power Exit options are available to be set on inputs and/or bidirectional I/Os only.

Figure 7 • Flash*Freeze Hardware Settings Dialog

Figure 8 • Specifying I/O State and Functionality Options Using I/O EditorSup
ers

ed
ed
10

Running the Design
The F*F exit behavior of input I/Os (DIP1-4) and SW5 are configured using the I/O Editor in the Libero
SoC, as shown in Figure 8. The DIP switch-to-package pin assignment for the IGLOO2 Evaluation Kit is
shown in Table 3.

Running the Design
The design example demonstrates the following options:

• Entering into the F*F mode
• Exiting from the F*F mode by I/O activity, or I/Os signature.
• Checking the content of the SRAM post F*F based on whether the SRAM was put into the Sleep

or Suspend mode
The design example is designed to run on the IGLOO2 Evaluation Kit board. Refer to
www.microsemi.com/index.php?option=com_content&id=2067&lang=en&view=article&tab=documentati
on for more detailed board information.

Steps to Run the Design
Programming
This step runs FlashPro in the batch mode to program the IGLOO2 M2GL010 on the IGLOO2 Evaluation
Kit board.

1. Before programming and powering up the IGLOO2 board, confirm that the jumpers are positioned
as shown in Table 4.

2. Plug the FlashPro4 ribbon cable into connector J5 (JTAG Programming Header) on the IGLOO2
Evaluation Kit board.

3. Connect the power supply to the J6 connector and FlashPro Programmer.
4. Change the power supply SW7 switch to ON.
5. Open the IGLOO2_FlashFreeze Libero project (refer to "Appendix: Design Files" section on page

18).
6. Update the eNVM client memory file path. For more information about how to correct the errors

detected during eNVM programming data generation, refer to
http://soc.microsemi.com/kb/article.aspx?id=SL5657.

Table 3 • DIP Switch to Package Pin Assignment

Input DIP Switch Package Pin

DIP1 L19

DIP2 L18

DIP3 K21

DIP4 K20

SW4 J18

SW2 (ff_trig) K16

Table 4 • Board Jumper Settings

Jumper Setting

J3 1-2 installed

J8 1-2 installedSup
ers

ed
ed
11

http://www.microsemi.com/index.php?option=com_content&id=2067&lang=en&view=article&tab=documentation
http://www.microsemi.com/index.php?option=com_content&id=2067&lang=en&view=article&tab=documentation
http://soc.microsemi.com/kb/article.aspx?id=SL5657

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
7. Expand Program Design in the Design Flow window. Double-click on Run PROGRAM Action
to begin programming as shown in Figure 9. A green check mark appears next to the
Program Design in the Design Flow window to indicate programming is completed successfully.

Note: The IGLOO2 Evaluation Kit board can be programmed using the FlashPro standalone with the
provided *.stp file. For more information, refer to "Appendix: Design Files" on page 18.

Entering F*F Mode and Using External I/O Activity (Wake_On_Change) to
Exit F*F Mode

1. To enter into the F*F mode, press and release the F*F entry (ff_trig) push button (SW2). This puts
the device state into the F*F mode. Observe that the LEDs stop toggling indicating that the fabric
entered into the F*F mode.

2. To exit from F*F, press and release the push button switch 4 (SW4). SW4 is configured to wake
the device from F*F upon an I/O activity. The activity could be a change from 1-to-0 or a 0-to-1.
This is set on per I/O basis in the I/O Editor by setting the Wake_On_Change attribute. For the
purpose of this design, SW4 (package pin J18) is used. Observe that the LEDs start to toggle
again indicating that the device exited from the F*F mode.

Entering F*F Mode and Using External I/O Signature
(Wake_On_1/Wake_On_0) to Exit F*F Mode
The following steps demonstrate how to exit from F*F using signature I/O matching. One or more I/Os
can be configured to wake-up the device based on a change from 0-to-1 or 1-to-0 or a combination of
both.
When more than one I/O is configured to participate in the signature wake-up, it is a logical AND of all
I/Os. For the purpose of this demo, a set of DIP switches are used. Two DIP switches are configured as
Wake_On_1 and two are configured as Wake_On_0. All four switches must meet the criteria for the
device to exit the F*F mode.

1. If the device is in the F*F mode, wake up the device as indicated in the previous step.
2. To enter into the F*F mode, press and release the F*F entry push button (SW2). This puts the

device state into the F*F mode. Observe that the LEDs stop toggling, indicating that the fabric
entered into the F*F mode.

Figure 9 • Program the Design

Sup
ers

ed
ed
12

Running the Design
3. To wake-up the device from the F*F mode, toggle DIP switches 1 and 2 to 1 position (OFF) AND
toggle DIP switches 2 and 3 to 0 position (ON) as shown in Figure 10. Upon this setting, the
device exits from the F*F mode. Observe that the LEDs start to toggle again indicating that the
device exited from the F*F mode.

Note: The DIP switches combination shown in Figure 10 constantly keeps the device in the Active mode,
since that combination is configured to wake-up the device. Before proceeding to the next step,
ensure that the combination setting of the DIP switches is different than what is shown in Figure 10
on page 14.

SRAM Content after Entering and Exiting from F*F Mode
This step demonstrates that the SRAM content is retained and not lost while the device is in the F*F
mode. The SRAM is set to be in the Suspend mode during F*F. For more information, refer to "Hardware
Implementation" on page 8. To check the content of the SRAM after entering and exiting from F*F,
SmartDebug is used to read back the content of the SRAM from the device after exiting from the F*F
mode.

Figure 10 • Toggling DIP Switches

Sup
ers

ed
ed
13

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
1. Check the content of the SRAM before entering into the F*F mode. While the device is in the
Active mode (non F*F), double-click SmartDebug Design entry from the Design Flow window
as shown in Figure 11.

The SmartDebug window opens.
2. Click Debug FPGA Array as shown in Figure 12.

The debug file is automatically generated into the Libero SoC project (<Libero SoC project
path>/designer/<top level design name>/<design_name>_debug.txt). The debug file is
automatically loaded into the SmartDebug window.

Figure 11 • Launching SmartDebug Design Tools

Figure 12 • SmartDebug Window - Debug FPGA Array

Sup
ers

ed
ed
14

Running the Design
3. Select the Memory Blocks tab in the Debug FPGA Array window and select Read Block as
shown in Figure 13. The SmartDebug tool reads the SRAM content from the device and shows it
in the Memory Block Data section as shown in Figure 13.

In the previous steps, the data shown is the content of the SRAM while the device is in the Active
mode. The next steps demonstrate putting the device into F*F, exiting from it, and checking the
content of the SRAM after exiting from the F*F mode.

4. Enter into the F*F mode. Press and release the F*F entry push button (SW2). This puts the
device state into the F*F mode. Observe that the LEDs stop toggling, indicating that the fabric
entered into the F*F mode.

5. Exit from F*F. Press and release SW4.

Figure 13 • SRAM Read-back Content before F*F entry

Sup
ers

ed
ed
15

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
In this design, the SRAM is set for the Suspend mode during the F*F mode, therefore, the content
of the SRAM is retained. Therefore, when reading through SmartDebug, the SRAM content after
F*F exit is the same data that is stored into the SRAM before entering into the F*F mode, as
shown in Figure 14.

The data read from the SRAM at a particular address is the same data that is written into the
SRAM before entering into the F*F mode.

Conclusion
This application note describes how to put the IGLOO2 device into the F*F mode using System Services
and demonstrates the different options that can be used to wake up the IGLOO2 device from the F*F
mode. In addition, it also shows how to set different hardware behavior during F*F at design time, and
demonstrates the effect of the F*F on the fabric SRAM content depending on the user-defined F*F
hardware settings in the Libero SoC software.

Figure 14 • Reading SRAM Content After F*F Exit

Sup
ers

ed
ed
16

Appendix: Design Files
Appendix: Design Files
The design files can be downloaded from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2gl_ac412_liberov11p6_df

The design file has Libero SoC Verilog project, the .mem file for the eNVM data storage client, and
programming files (*.stp) for IGLOO2 Evaluation Kit board. Refer to the Readme.txt file included in the
design file for the directory structure and description.

Sup
ers

ed
ed
17

http://soc.microsemi.com/download/rsc/?f=m2gl_ac412_liberov11p6_df

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.6
List of Changes
The following table shows the important changes made in this document for each revision.

Date Changes Page

Revision 4
(December 2015)

Updated the document for Libero v11.6 software release (SAR 68372). NA

Revision 3
(January 2015)

Updated the document for Libero v11.5 software release (SAR 62939). NA

Revision 2
(August 2014)

Updated the document for Libero v11.4 software release (SAR 59065). NA

Revision 1
(January 2014)

Initial release. NA

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

Sup
ers

ed
ed
18

List of Changes
Sup
ers

ed
ed
19

51900280-4/12-15

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as
custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and
has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

Sup
ers

ed
ed

mailto:sales.support@microsemi.com
www.microsemi.com

	Purpose
	Introduction
	References
	Design Requirements
	Design Description
	Entering into F*F Mode
	Exiting from F*F Mode
	I/O Activity
	I/O Signature

	Hardware Implementation
	Running the Design
	Steps to Run the Design
	Programming
	Entering F*F Mode and Using External I/O Activity (Wake_On_Change) to Exit F*F Mode
	Entering F*F Mode and Using External I/O Signature (Wake_On_1/Wake_On_0) to Exit F*F Mode
	SRAM Content after Entering and Exiting from F*F Mode

	Conclusion
	Appendix: Design Files
	List of Changes

