SmartFusion2 Low Standby Power - Libero SoC v11.6

DG0565 Demo Guide

October 2015

SmartFusion2 Low Standby Power - Libero SoC v11.6

Revision History

Date	Revision	Change
October 21, 2015	3	Third release
February 27, 2015	2	Second release
September 12, 2014	1	First release

Confidentiality Status

This document is a non-confidential.

Table of Contents

Pr	eface	. 4
	About this document	. 4
	Intended Audience	. 4
	References	
Sn	nartFusion2 SoC FPGA Low Standby Power - Libero SoC v11.6	. 5
	Introduction	. 5
	Design Requirements	
	Demo Design	
	Introduction	. 6
	Extracting the Source Files	
	Creating the Design	
	Launching Libero SoC	
	Connecting Components in the Canvas	
	Synthesis and Layout	
	Programming	
	Running the Demo Design	
	Precise Standby Power Measurement	
	Total Power (Dynamic and Static)	32
	Standby Power	32
۸	opendix: Power Estimator	22
٨	List of Changes	26
А	List of Changes	30
R	Product Support	37
D	Customer Service	
	Customer Technical Support Center	
	Technical Support	
	Website	
	Contacting the Customer Technical Support Center	
	My Cases	
	Outside the U.S.	
	ITAR Technical Support	38

Preface

About this document

This demo is for the SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) devices. It provides instructions on how to use the reference design.

Intended Audience

SmartFusion2 devices are used by:

- FPGA designers
- · System-level designers

References

Microsemi Publications

- SmartFusion2 and IGLOO2 Power Estimator User Guide
- UG0444: SmartFusion2 SoC and IGLOO2 FPGA Low Power Design User Guide
- UG0445: SmartFusion2 Soc and IGLOO2 FPGA Fabric User Guide

SmartFusion2 SoC FPGA Low Standby Power - Libero SoC v11.6

Introduction

Microsemi[®] SmartFusion2 SoC FPGAs are designed to meet the demand of low power FPGAs. The SmartFusion2 devices exhibit lower power consumption in static and dynamic modes. This demo guide demonstrates how to implement the standby power mode on the SmartFusion2 devices using SmartDesign and measure the standby power. The design drives the light emitting diodes (LEDs) on the SmartFusion2 Security Evaluation Kit with a pattern based on the state of the switches SW1 and SW3, as shown in Table 1.

Table 1 • LEDs Pattern

LED E1, F4, F3, G7 Behavior	Standby Entry (SW1)		Standby Exit (SW3)
LEDs toggle	Released		Released
LEDs on	Depressed and Released		Released
LEDs toggle	Depressed and Released		Depressed

This demo guide describes the following:

- Creating a Libero[®] System-on-Chip (SoC) project
- Implementing the standby power mode on the SmartFusion2 devices using SmartDesign
- Importing a PDC file, running layout, and programming the SmartFusion2 silicon
- Measuring the standby power using a standard digital voltmeter (DVM)/multimeter

Design Requirements

Table 2 lists the design requirements.

Table 2 • Design Requirements

Design Requirements	Description
Hardware Requirements	·
SmartFusion2 Security Evaluation Kit: 12 V adapter FlashPro4 programmer	Rev D or later
Desktop or Laptop	Any Windows 64-bit Operating System
Software Requirements	·
Libero SoC	v11.6
FlashPro Programming Software	v11.6

Demo Design

Introduction

The demo design files are available for download from the following path in the Microsemi website:

http://soc.microsemi.com/download/rsc/?f=m2s_dg0565_liberov11p6_df

The demo design files include:

- · Libero SoC project
- · Constraint file
- Programming file
- · Source files
- · Readme file

Refer to the Readme.txt file provided in the design files for the complete directory structure.

The design consists of a 32 kHz external main crystal oscillator, fabric CCC (FCCC), standby power control logic, and fabric logic block. Figure 1 shows the block diagram of the design.

The FCCC is configured to provide a 100 MHz clock to the fabric logic. It is also configured with

phase-locked loop (PLL) power-down enabled. The 32 kHz external main crystal oscillator is the reference clock source for FCCC. The lock signal is used as the reset signal to the fabric logic. The standby power control logic consists of a clocked S-R latch, which powers down the PLL of FCCC. The fabric logic consists 4202 stages of 8-bit loadable up-counters, 252 stages of 16-bit shift registers,

55 LSRAM blocks, 56 uSRAM blocks, and 42 math blocks. It also consists an LED driver block, which is connected to a set of light-emitting diodes (LEDs) to monitor the state of the fabric while entering and exiting the standby power mode.

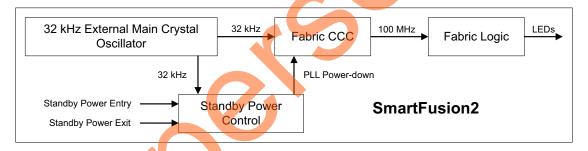


Figure 1 • Design Block Diagram

Extracting the Source Files

Extract the required files to the <C:\ or D:\>Microsemi_prj folder on PC. Confirm that a folder named SF2 Standby tutorial containing sub-folders named Source files and Constraints are extracted.

Creating the Design

This section describes how to create the standby power mode enabled design using SmartDesign. Some source files are provided in the *Source_files* folder.

Launching Libero SoC

The following steps describe how to launch Libero SoC:

 Go to Start > Programs > Microsemi Libero SoC v11.6 > Libero SoC v11.6, or double-click the shortcut icon on the PC. This opens the Libero SoC Project Manager window, as shown in Figure 2.

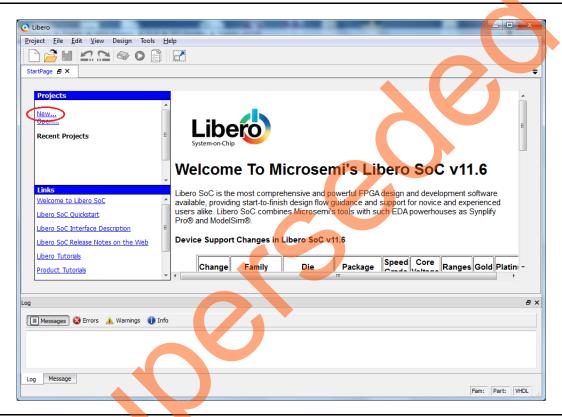


Figure 2 • Libero SoC Project Manager

- 2. Create a new project using one of the following options:
 - Select New on the Start Page tab, as shown in Figure 2.
 - In the Libero SoC menu, go to Project > New Project.

This opens the **New Project** window, as shown in Figure 3 on page 8.

- 3. Enter the following information in the **New Project Project Details** window, as shown in Figure 3 on page 8:
 - Project Name: SF2 Standby
 - Project Location: <C:\ or D:\>Microsemi prj\SF2 Standby tutorial
 - Preferred HDL type: VHDL
 - Enable Block Creation: Not selected

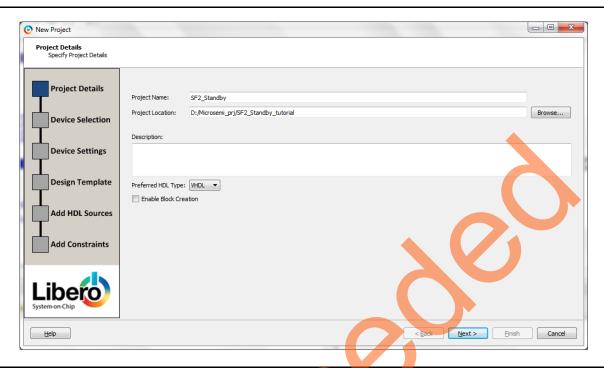


Figure 3 • New Project - Project Details

- 4. Click Next. This opens New Project Device Selection window, as shown in Figure 4 on page 9.
- 5. Select the following values from the drop-down list, highlighted in Figure 4 on page 9:
 - Family: SmartFusion2
 - **Die**: M2S090TS
 - Package: 484 FBGA
 - Speed: -1
 - Core Voltage: 1.2
 - Range: COM

6. Select the filtered device M2S090TS-1FG484, as shown in Figure 4.

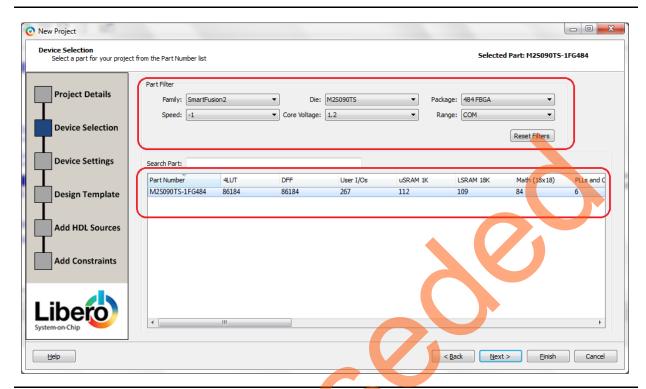


Figure 4 • New Project - Device Selection

- 7. Click Next. This opens New Project Device Settings window, as shown in Figure 5 on page 10.
- 8. Select the following values in the **Power supplies** section from the drop-down list, highlighted in Figure 5 on page 10:
 - PLL Supply Voltage (V): 3.3 V
 - Power on Reset Delay: 100 ms

The PLL analog supply voltage can be either 2.5 V or 3.3 V. The voltage setting in the **New Project - Device Settings** window must match the PLL analog supply voltage on the board to ensure that the PLL works properly. The PLL analog supply voltage is connected to 3.3 V on the SmartFusion2 Security Evaluation Kit.

9. Do not change the default selections. Click Finish.

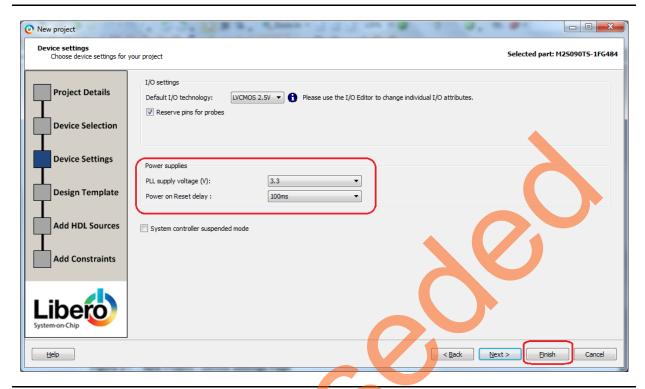


Figure 5 • New Project - Device Settings

10. In the **Design Flow** window, expand **Create Design**, as shown in Figure 6 on page 11.

11. Right-click Create SmartDesign and click Run.

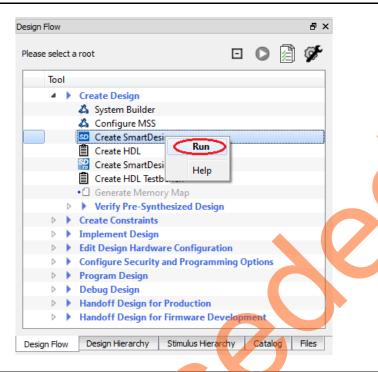


Figure 6 • Creating SmartDesign

12. In the **Create New SmartDesign** dialog box enter the **Name** as SF2_Standby and click **OK**. A new SmartDesign canvas opens.

Figure 7 • Entering SmartDesign Name

13. This design uses a fabric CCC to generate a 100 MHz internal clock. The CCC reference clock is the 32 kHz external main crystal oscillator.

14. In the IP catalog, expand Clock & Management.

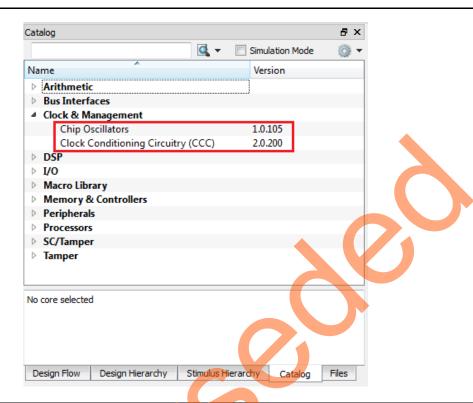


Figure 8 • Clock & Management Category of Libero SoC IP Catalog

- 15. Drag an instance of the clock conditioning circuitry (CCC) v2.0.200 component into the SmartDesign canvas.
- 16. Double-click the FCCC_0 component in the SmartDesign canvas and open the FAB CCC Configurator window, as shown in Figure 9.
- 17. Click the **Basic** tab in the **FAB CCC Configurator** window, as shown in Figure 9 on page 13 and enter the following information:
 - Reference Clock Frequency: 0.032 MHz
 - Reference Clock: Select Oscillators > Crystal Oscillator from the drop-down list
 - GL0: Checked; Frequency: 100 MHz

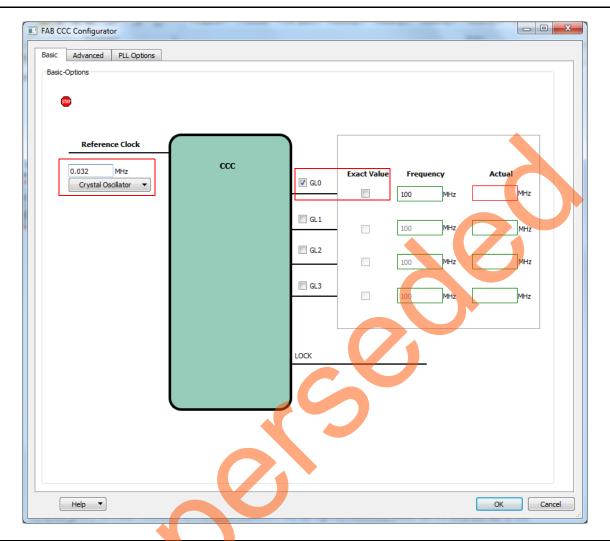


Figure 9 • Configuring Fabric CCC

18. Click the **Advanced** tab in the **FAB CCC Configurator** window and select **Internal > PLL Internal** from the drop-down list as PLL feedback source, as shown in Figure 10.

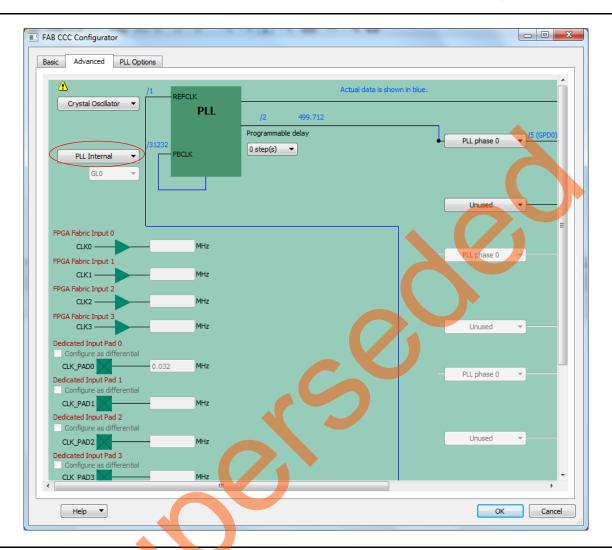


Figure 10 • Configuring PLL Feedback Source

19. Click the PLL Options tab in the FAB CCC Configurator window and select the Expose PLL_ARST_N and PLL_POWERDOWN_N signals checkbox, as shown in Figure 11.

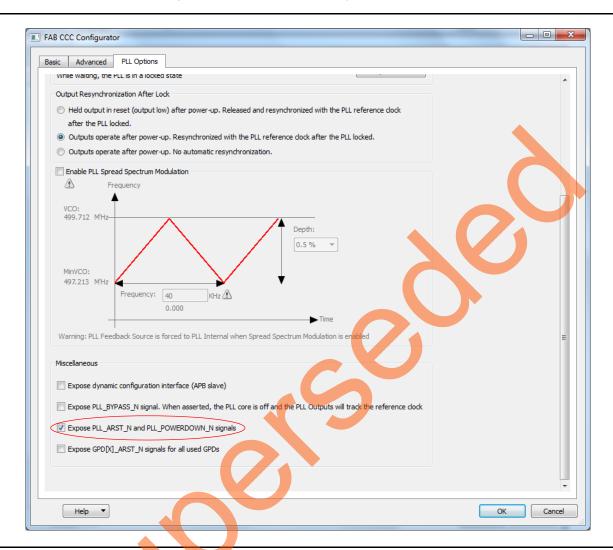


Figure 11 • Configuring PLL Power-down Signal

- 20. Click OK.
- 21. Drag an instance of the Chip Oscillators v1.0.105 component from the IP catalog into the SmartDesign canvas.
- 22. Double-click the OSC_0 component in the SmartDesign canvas and open the **Chip Oscillators Configurator** window, as shown in Figure 12 on page 16.
- 23. Configure the external main crystal oscillator to drive FCCC and fabric logic. Enter the following information as shown in Figure 12 on page 16:
 - External Main Crystal Oscillator: Selected
 - Source: Select Crystal (32 KHz 20 MHz) from the drop-down list
 - Frequency: 0.032 MHz
 - Drives Fabric CCC(s): SelectedDrives Fabric Logic: Selected

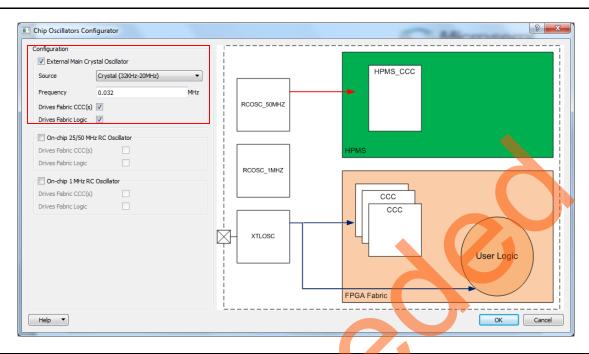


Figure 12 • Configuring Chip Oscillators

24. Click **OK**.

25. Import the VHDL source files into the project by selecting **Create HDL** under **Create Design** in the **Design Flow** tab. Right-click and select **Import Files...**, as shown in Figure 13.

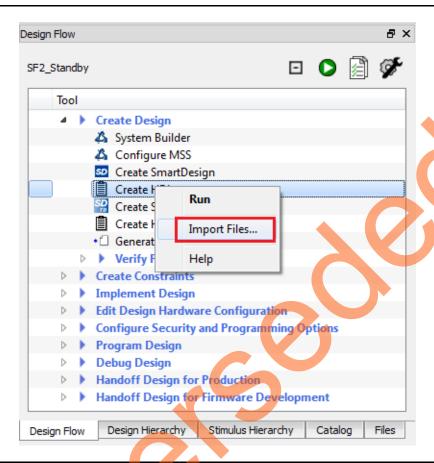


Figure 13 • Importing HDL Source Files

26. Browse to <*C*:\ or *D*:\>Microsemi_prj\SF2_Standby_tutorial\Source_files select all .vhd, .v, and .h files, and click **Open**.

The files are visible in the **Design Hierarchy** tab.

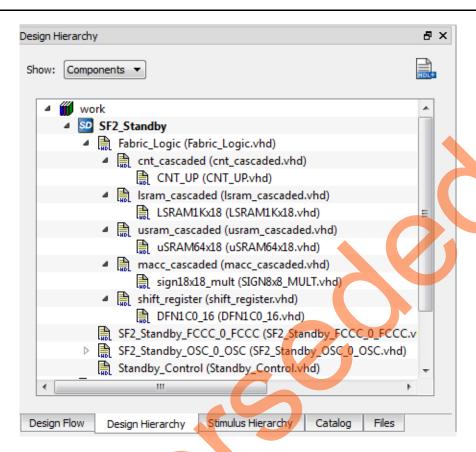


Figure 14 • Design Hierarchy Tab with Imported Files

- 27. Drag the Standby_Control and Fabric Logic components into the SmartDesign canvas. The SmartDesign resembles Figure 15 on page 19.
- 28. Align the components to improve the appearance of the canvas.

 Expand the canvas area by selecting View > Maximize Work Area, or click the icon on the tool bar.

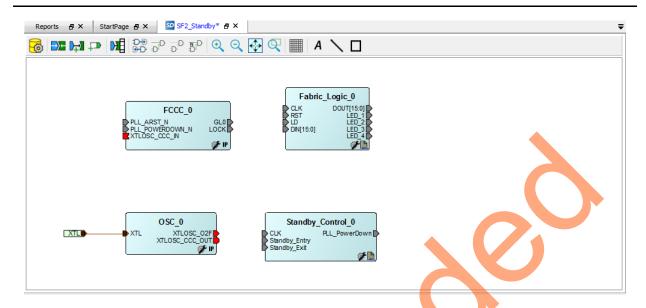


Figure 15 • SmartDesign Canvas after Adding Components

Connecting Components in the Canvas

SmartDesign in Libero SoC has a connection mode that supports click, drag, and release to connect the components. Connect the components in the SmartDesign canvas using the following procedure:

- 1. Select SmartDesign > Connection Mode from the Libero SoC menu.
- 2. Connect the XTLOSC_CCC_OUT port of OSC_0 component to the XTLOSC_CCC_IN port of the FCCC_0 component as follows:
 - a. Click and hold the XTLOSC_CCC_OUT port of the OSC_0 component.
 - b. Drag the XTLOSC CCC IN port of the FCCC 0 component and release the mouse button to connect.
 - Note: You can also connect the ports by selecting them using CTRL (Ctrl + Click to select a port), right-clicking any of the selected ports, and selecting Connect.
- 3. Connect the other components in the SmartDesign canvas as per Table 3.

Table 3 • Connections in Canvas

From	То
OSC_0: XTLOSC_O2F	Standby_Control_0: CLK
Standby_Control_0: PLL_PowerDown	FCCC_0: PLL_ARST_N
	FCCC_0: PLL_POWERDOWN_N
FCCC_0: GL0	Fabric_Logic_0: CLK
FCCC_0: LOCK	Fabric_Logic_0: RST

4. Select SmartDesign > Connection Mode from the Libero SoC menu to exit the connection mode.

5. Promote the ports shown in Table 4 to the top level. Right-click the port and select **Promote to Top Level**.

Table 4 • Promote to Top Level

Ports	
Standby_Control_0: Standby_Entry	
Standby_Control_0: Standby_Exit	
Fabric_Logic_0: LD	
Fabric_Logic_0: DIN[15:0]	_
Fabric_Logic_0: DOUT[15:0]	
Fabric_Logic_0: LED_1	
Fabric_Logic_0: LED_2	
Fabric_Logic_0: LED_3	
Fabric_Logic_0: LED_4	

The SmartDesign canvas appears, as shown in Figure 16. Drag the components or use the SmartDesign Auto Arrange feature to improve the appearance of the canvas.

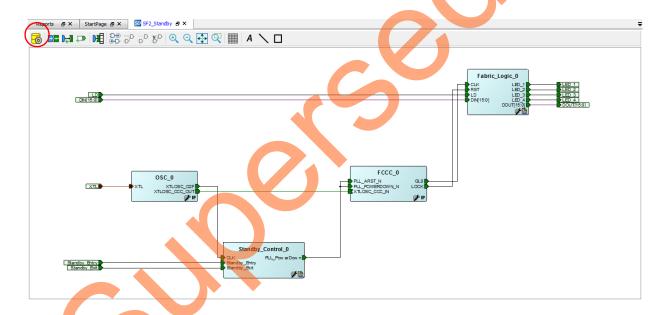


Figure 16 • SmartDesign Canvas after Connections

- 6. Go to File > Save SF2_Standby to save the design.
- 7. Generate the design by selecting **SmartDesign > Generate Component**, or by clicking the **Generate Component** icon on the SmartDesign toolbar (highlighted in Figure 16).
- 8. Go to View > Restore Work Area to restore the work area, if you expanded the work area earlier.
- 9. Confirm that the message SF2_Standby was generated appears in the Libero Log window.
- 10. Go to File > Close SF2_Standby to close the design.

Importing Physical Constraint files

This section describes how to import a physical design constraint (PDC) file to make I/O attribute and pin assignments for the layout.

The following steps describe how to make I/O assignments:

- 1. Expand Create Constraints in the Design Flow tab.
- 2. Right-click I/O Constraints and select Import Files.....

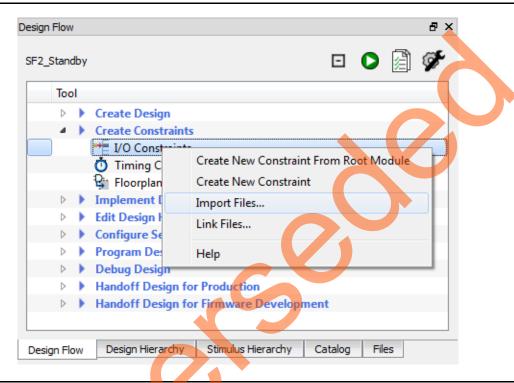


Figure 17 • Importing I/O PDC Constraint File

- 3. Browse to <C:\ or D:\>Microsemi_prj\SF2_Standby_tutorial\Constraints, select the sF2_standby.pdc file, and click Open.
- 4. Click No in the Information dialog box.

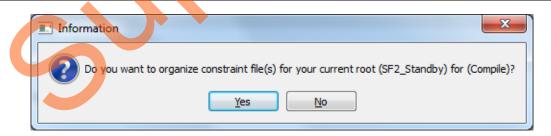


Figure 18 • Information Dialog Box after Importing PDC Constraint File

The file is visible in the Libero SoC Files tab under constraint > io.

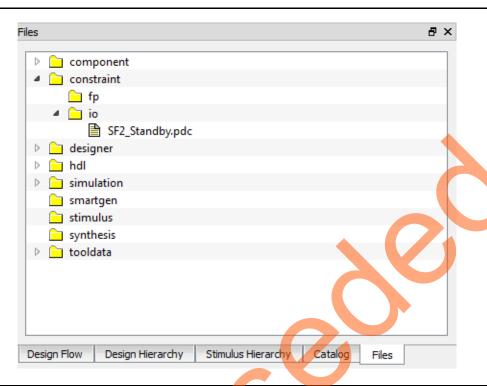


Figure 19 • I/O PDC Constraint File in Libero SoC Project

A description of the designer PDC constraints is available in the Libero Help (Go to Help > Help Topics > Implement Design > Constraint Place and Route > Assigning Design Constraints > Design Constraints Guide > Reference > Constraints by File Format > PDC Command Reference).

Synthesis and Layout

Use the push-button flow to synthesize the design with Synplify Pro, run layout and generate the programming file as mentioned below:

- Expand Create Constraints > I/O Constraints in the Libero SoC Design Flow tab. Right-click SF2_Standby.pdc under Constraints.
- 2. Right-click and select **Use for Compile**, as shown in Figure 20. A green tick mark appears on the constraint file indicating that the file will be used.

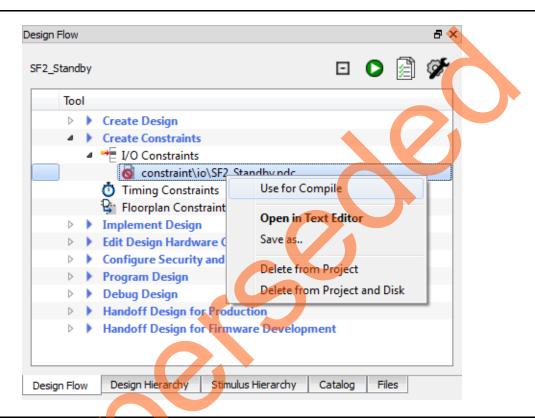


Figure 20 • Selecting I/O PDC Constraint File in Design Flow Tab

3. Click Generate Bitstream icon in the Design Flow tab (highlighted in Figure 21), or select Design > Generate Bitstream to synthesize the design, run layout using the I/O constraints that are created and generate the programming file.

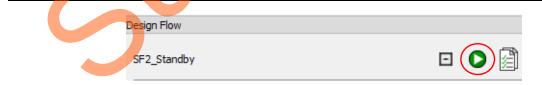


Figure 21 • Generate Programming Data Icon

Note: It may take 1-2 hours to complete the flow.

The design implementation tools run in batch mode. Successful completion of a design step is indicated by a green tick mark next to **Implement Design** in the **Design Flow** tab, as shown in Figure 22.

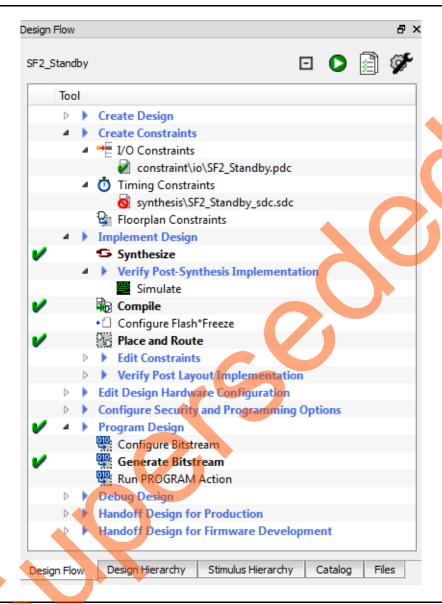


Figure 22 • Successful Design Implementation

4. Generate a power report by right-clicking **Verify Power** under **Verify Post Layout Implementation** in the **Design Flow** tab and selecting **Run**.

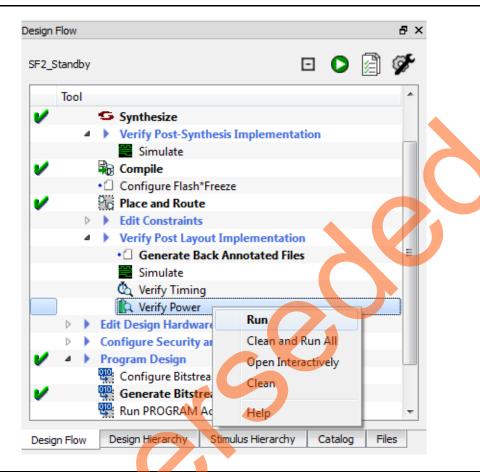


Figure 23 • Generating Post Layout Power Report

5. The **Reports** tab displays reports for the tools used to implement the design. Select **SF2_Standby_power_report.xml** under **Verify Power** in the **Reports** tab to view the power consumption.

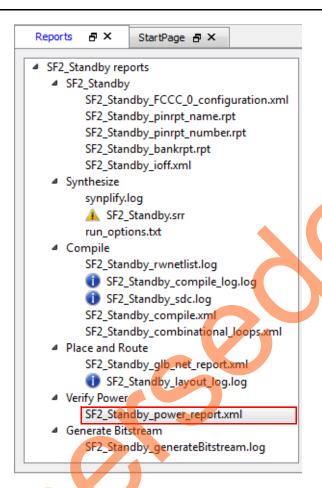


Figure 24 • Reports Tab after Implementing Design

The **Reports** tab displays the power report, as shown in Figure 25.

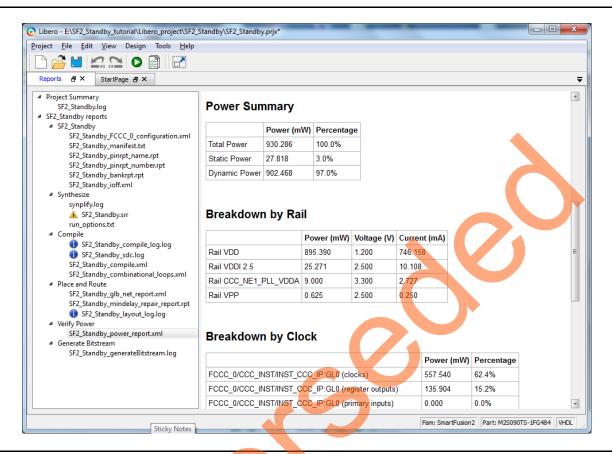


Figure 25 • Power Report

Programming

The following steps describe how to run FlashPro in the batch mode and program SmartFusion2 M2S090TS on the SmartFusion2 Security Evaluation Kit board:

1. Prior to programming and powering up the SmartFusion2 Security Evaluation Kit board, ensure that the jumpers are positioned as shown in Table 5.

Table 5 • Jumper Settings

Jumper	Location	Setting
J3	Above the On/Off Switch in Figure 26	1-2 installed
J8	Below the JTAG Programming Header (J5) in Figure 26	1-2 installed

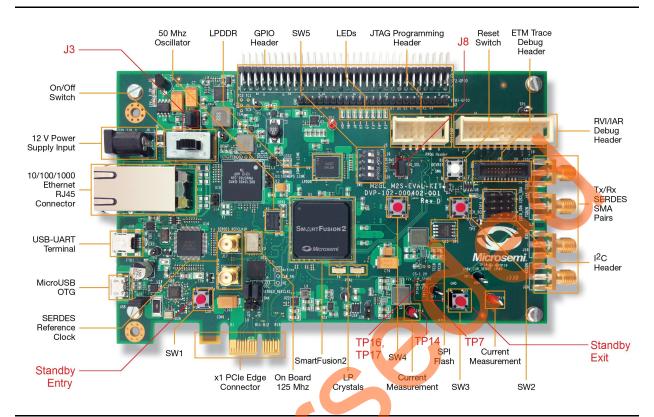


Figure 26 • SmartFusion2 Security Evaluation Kit

- 2. Plug the FlashPro4 ribbon cable into connector J5 (JTAG Programming Header) on the SmartFusion2 Security Evaluation Kit board.
- 3. Connect FlashPro4 to the USB port of the PC using the mini USB cable.
- 4. Install the FlashPro4 drivers if prompted. The drivers are located at: <FlashPro Installation Directory>\Drivers.
- 5. Power on the board by plugging in the power cable and switching on the power switch. Three green LEDs on the top left of the board are powered on.

6. In the **Design Flow** tab, expand **Program Design**. Right-click **Run PROGRAM Action** and select **Run** to begin programming.

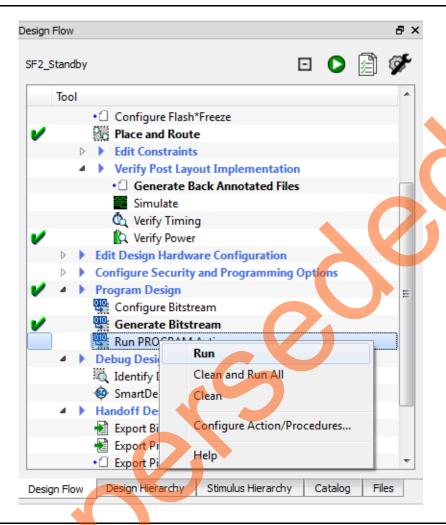


Figure 27 • Launching Programming Software from Design Flow Tab

FlashPro runs in the batch mode and programs the device. Programming messages are visible in the Libero SoC log window. Programmer number differs.

Note: Do not interrupt the programming sequence. It may damage the device or programmer.

The following message is visible in the Reports view under Program Device when the device is programmed successfully, as shown in Figure 28 on page 30. Programmer number differs:

programmer '92327' : device 'M2S090TS' : Executing action PROGRAM PASSED.

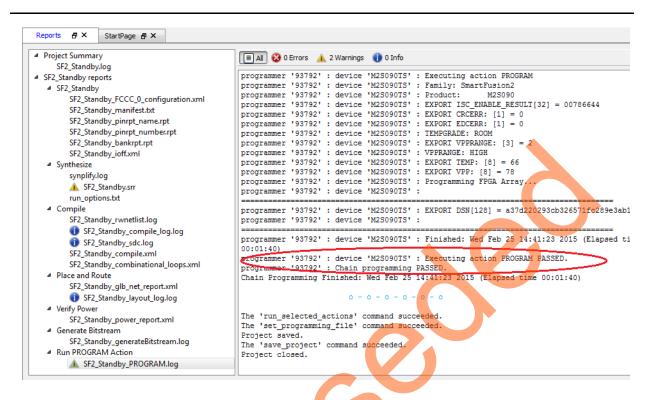


Figure 28 • Programming Messages in Libero SoC Log Window

7. A green tick mark appears next to **Program Design and Program Device** in the **Design Flow** tab indicating that programming is completed successfully.

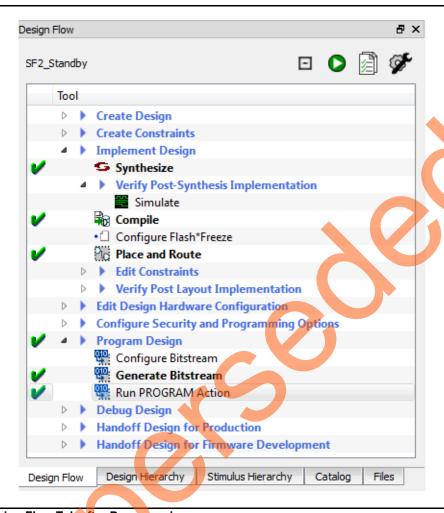


Figure 29 • Design Flow Tab after Programming

8. Go to Project > Exit to close Libero SoC. Select Yes, if prompted about saving the changes.

Running the Demo Design

Power Measurement (Normal Operation and Standby)

The SmartFusion2 Security Evaluation Kit board has a voltage measuring circuit that measures the voltage across the VDD (1.2 V) current sense resistor.

The core power can be calculated using following equations:

Core Current (mA) = Measured Voltage $(mV) \div 5(Scaling \ Factor)$ EQ 1

Core Power (mW) = 1.2 × Core Current

Connect the positive terminal of a standard digital voltmeter (DVM)/Multimeter to TP14 and negative terminal to TP7. Note the digital voltmeter/Multimeter reading and calculate the power using above equations.

Precise Standby Power Measurement

Precise and accurate power measurements can be obtained by measuring voltage across the 1.2 V, 0.05Ω sense resistor. Test points TP16 and TP17 can be used to directly measure voltage across the 1.2 V sense resistor. Since the current drawn by the device in standby mode is expected to be around or less than 10 mA, the voltage measured across the 0.05Ω sense resistor is expected to be less than 0.5 mV. A precise digital voltmeter such as Fluke-287 that can measure sub-millivolt readings must be used to read voltage measured across the sense resistor.

Convert the voltage measured across sense resistor to power using the following equation:

Power $(mW) = (Voltage(mV)/0.05) \times 1.2$

EQ3

EQ 2

Total Power (Dynamic and Static)

The following steps describe how to calculate total power:

- 1. Reset the board by pressing and releasing the Reset button (SW6 DEVRST).
- 2. Observe the pattern of the LEDs E1, F4, F3, and G7 after resetting the board.
- 3. Measure the power

Note: If the LEDs are not toggling after reset, the device is in the Standby mode. Press and release the standby exit push button (SW3) and observe the LEDs lighting pattern. When the LEDs start toggling, measure the power.

Standby Power

The following steps describe how to calculate standby power:

- Press and release the standby entry push button (SW1) and observe the LEDs lighting pattern. The LEDs stop toggling.
- 2. Measure the power.
- 3. Press and release the standby exit push button (SW3).
- 4. When finished, remove power from the board.

Appendix: Power Estimator

Power Estimator

The following steps describe how to use Power Estimator and calculate the total power:

- 1. Download the Power Estimator. SmartFusion2 and IGLOO2 Power Calculator.
- 2. Double-click and open the power estimator spreadsheet.
- 3. Click the Summary worksheet. The Summary worksheet provides the device settings and the power summary.
- 4. Change the device settings by entering the following information:
 - Family: Select SmartFusion2 from the drop-down list
 - Device: Select M2S090TS from the drop-down list
 - Package: Select 484 FBGA from the drop-down list

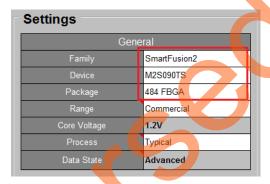


Figure 1 • Settings Section in the Device Settings and Summary Worksheet

The Summary worksheet has an integrated initialize power estimator wizard. This wizard provides an option to select design specific information. Upon running the wizard, it populates the power estimator spreadsheet with information about the design and performs power estimation for the design.

5. Click **Initialize Power Estimator** as shown in Figure 2. The **Initialize Power Estimator** dialog box opens as shown in Figure 3 on page 34.

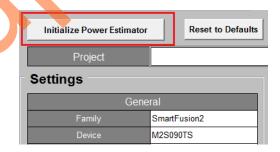


Figure 2 • Initialize Power Estimator

Appendix: Power Estimator

- 6. Enter the following information in the Initialize Power Estimator dialog box:
- Set all FPGA fabric resources to: 50%
- IO:
 - Technology: LVCMOS25
 - #Inputs: 19#Outputs: 20
- Default RAM Enable Rate: 100%

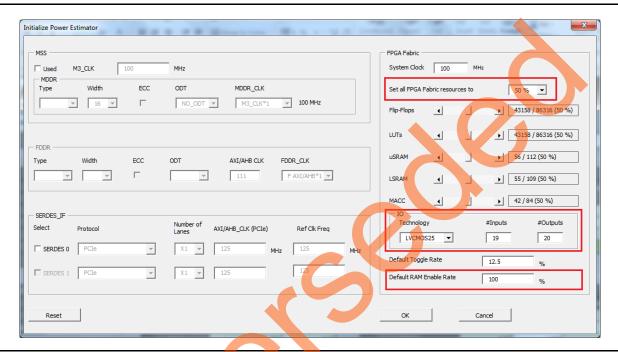


Figure 3 • Initialize Power Estimator Wizard

- 7. Click OK. Click Yes in the Reset and set to the values specified dialog box.
- 8. Click the CCC & Oscillator worksheet.
- 9. Enter the following information in the Oscillator Power table for the external main crystal oscillator:
 - Used: Select Yes from the drop-down list
 - Frequency (MHz): 0.032
- 10. Scroll down to the FAB CCC Power section. Enter the following information in the FAB CCC Power table:
 - Name: FCCC_0
 - Reference clock frequency (MHz): 0.032
 - PLL output frequency (MHz): 500 MHz
 - Output1 frequency (MHz):100 MHz

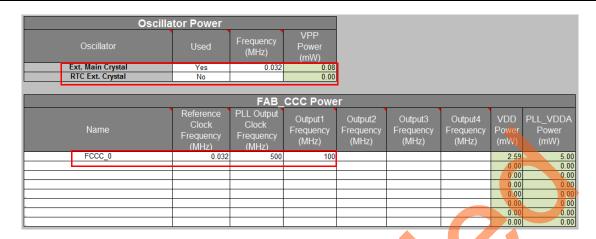


Figure 4 • FAB_CCC and Oscillator Work Sheet

11. Click the **Summary** worksheet to get the total power. The Power Summary section is populated with the Total Active Mode power.

Figure 5 • Power Summary

12. The **Modes and Scenarios** section is populated with the total power in the Active, Standby and Flash*Freeze modes.

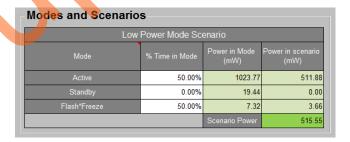


Figure 6 • Modes and Scenarios

13. Close Power Estimator.

A – List of Changes

The following table shows important changes made in this document for each revision.

Date	Changes	Page
Revision 3 (October 2015)	Updated the document for Libero SoC v11.6 (SAR 71490).	NA
Revision 2 (February 2015)	Updated the document for Libero SoC v11.5 (SAR 64705).	NA
Revision 1 (September 2014)	Initial release.	NA

B - Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call 800.262.1060 From the rest of the world, call 650.318.4460 Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support.

Website

You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home page, at http://www.microsemi.com/products/fpga-soc/fpga-and-soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and corporate contacts.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases, select **Yes** in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.