UG0678 User Guide Sequence Controller v4.1

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Contents

	1.1	on History 1 Revision 2.0 1 Revision 1.0 1	1
2	Introdu	uction)
		vare Implementation	
	3.2	Configuration Parameters	5
	3.3	Resource Utilization	Ę

Figures

Liguro 1	System-Level Block Diagram of Sequence Controller	2
riquie i	System-Level block Diagram of Sequence Controller	

Tables

Table 1	Inputs and Outputs of Sequence Controller	1
Table 2	Configuration Parameters	5
Table 3	Resource Utilization Report of Sequence Controller Block	5

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 2.0

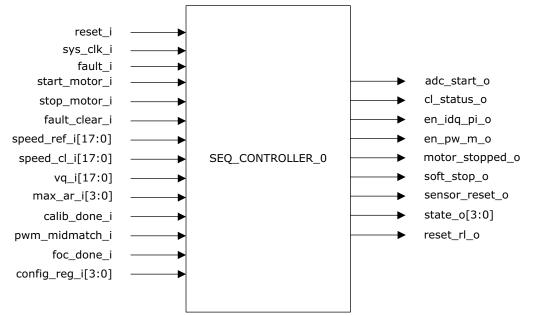
The following is a summary of the changes in revision 2.0 of this document.

- Added the IP version to the document title.
- Removed g_STD_IO_WIDTH configuration parameter from section Configuration Parameters, page 5.

1.2 Revision 1.0

Revision 1.0 was the first publication of this document.

2 Introduction


Implementation of field oriented control (FOC) of AC motor needs an intelligent state machine (FSM) apart from the transformations and closed loop control. It is useful to have all the state transitions managed in a single IP module. The Sequence Controller IP manages the starting, stopping, fault, and fault clear operations through FSM. It also manages the transition from closed loop to open loop and vice versa. It acts as a master block that controls all other IPs involved in FOC. The sequence controller triggers the ADC sampling and conversion, enables and disables the PWM based on the motor operating state and also enables and disables current and speed PI controllers.

3 Hardware Implementation

The following figure shows the block diagram of sequence controller.

Figure 1 • System-Level Block Diagram of Sequence Controller

The start_motor_i and stop_motor_i signals are used to trigger motor starting and stopping operations. The speed_ref_i input is the motor reference speed, while the speed_cl_i input is the threshold motor speed at which the cl_status_o is asserted. This signal is asserted, as long as the reference speed is equal to or above the threshold speed. The vq_i input is the lq PI output and is used in checking for rotor lock condition. If a rotor lock is detected, the motor is restarted from zero speed. The number of times the motor is restarted before entering FAULT state is specified by the max_ar_i state. The calib_done_i signal must be asserted (level high), when predetermined ADC samples have been accumulated for offset computation.

The pwm_midmatch_i signal is an active high pulse of one system clock cycle width which is asserted periodically at the rate of the PWM frequency. The foc_done_i signal must be asserted (active high pulse with one system clock cycle delay) when all the FOC loop computations are complete. The adc_start_o provides the start conversion pulse (rising edge) for an ADC interface block. The en_idq_pi_o signal is used to enable the current PI controller(s). The en_pwm_o is used to enable the PWM generation block. The motor stopped_o signal (level high) can be used to clear accumulators or buffers in the design. The sensor_reset_o signal is used to reset and initiate sensor calibration.

3.1 Inputs and Outputs

The following table lists the input and output ports of sequence controller.

Signal Name	Direction	Description
reset_i	Input	Active low asynchronous reset signal to design.
sys_clk_i	Input	System clock.
fault_i	Input	Active high level indicates fault occurrence and forces the FSM to Fault state where motor is stopped. It remains in Fault state unless cleared through fault_clear.
start_motor_i	Input	Rising edge on the signal triggers the FSM to start the motor.
stop_motor_i	Input	Active high level on the signal triggers the FSM to go to Stop state and the motor is stopped.
fault_clear_i	Input	Rising edge in this signal clears fault if fault_i is 0 and FSM is released from Fault state to Idle state.
calib_done_i	Input	Active high level triggered signal to indicate ADC offset calculation done.
pwm_midmatch_i	Input	Periodic active high pulse (1 clock cycle width) that are used to trigger ADC and FOC loop.
foc_done_i	Input	Active high pulse (1 clock cycle width) indicating completion of FOC loop computations.
speed_ref_i	Input	Motor speed reference input.
speed_cl_i	Input	Threshold speed value above which the motor operates in closed loop. Open loop angle is used if speed is below threshold.
vq_i	Input	Q-axis voltage (IQ PI Output).
max_ar_i	Input	Maximum number of auto-restarts before fault condition is asserted.
config_reg_i	Input	Configuration register. config_reg_i(3): Soft Stop – When 1, enabled; When 0, disabled. config_reg_i(2): Startup Mode – When 1, C/f; When 0, V/f. config_reg_i(1): Sensor calibration (calibrates sensor to angle 0). config_reg_i(0): Auto restart (when rotor slips) - When 1, enabled; When 0, disabled.
adc_start_o	Output	ADC start signal (active high pulse).
cl_status_o	Output	Indicates if motor is in closed loop (active high level) or open loop.
en_idq_pi_o	Output	Enable signal for current PI controllers.
en_pwm_o	Output	Enable signal for 3 phase PWM block.
motor_stopped_o	Output	Indicates motor stopped/not running (Active high level).
soft_stop_o	Output	Soft Stop signal (Active high level) to rate limiter block.

Table 1 • Inputs and Outputs of Sequence Controller

Signal Name	Direction	Description	
sensor_reset_o	Output	Sensor reset signal (active low level) activates sensor calibration.	
reset_rl_o	Output	Reset rate limiter signal (active high level).	
state_o	Output	Debug signal indicates the FSM state of the sequence controller.	

Table 1 • Inputs and Outputs of Sequence Controller (continued)

3.2 Configuration Parameters

The following table shows the description of the configuration parameter used in the hardware implementation of sequence controller. This is generic parameter and can be varied as per the requirement of the application.

Table 2 •	Configuration	Parameters
	oomiguruuon	i urumeters

Signal Name	Description
g_DEBUG	When 0, supports synthesis When 1, supports simulation

3.3 **Resource Utilization**

Sequence controller is implemented on the SmartFusion[®]2 system-on-chip (SoC) field programmable gate array (FPGA) and IGLOO[®]2 devices. The following table lists the resource utilization report after synthesis.

Cell Usage	Count
Sequential elements	50
Combinational logic	197
MACC	0
RAM1kx18	0
RAM64x18	0