
SmartFusion2/IGLOO2 FPGA
Timing Constraints User’s Guide

For Libero SoC v11.7 SP1

Revision 2 2

Table of Contents

Introduction . 3

1 Using Synopsys Design Constraints . 4
Object Access . 4

Timing Assertions . 5

Timing Exceptions . 6

2 Timing Constraints and Design Flow . 7
Timing Constraints for Synplify Revision 2Pro . 7

SCOPE and Using the Forward Annotated SDC . 12

Timing Constraints for Timing-Driven Place and Route . 15

Improving Placer Performance . 21

3 Constraints for SmartFusion2 and IGLOO2 IP Blocks . 24
Oscillators . 24

Fabric Clock Conditioning Circuit (CCC) for SmartFusion2 and IGLOO2 . 25

SERDES/DDR Configuration Subsystem (MSS/HPMS FIC_2) . 27

CoreResetP False Paths (SmartFusion2 and IGLOO2 Only) . 29

High Speed Serial Interface (SERDES) Block . 34

4 Constraint Case Studies. 37
Source-Synchronous Interface . 37

Constraints and Combinational Paths . 39

SmartFusion2 MSS and PCIe Design . 44

MSS (TBI Interface) to SERDES (SmartFusion2 Only) . 48

A Product Support . 50
Customer Service . 50

Customer Technical Support Center . 50

Technical Support . 50

Website . 50

Contacting the Customer Technical Support Center . 50

ITAR Technical Support . 51

Revision 2 3

Introduction

In designing FPGA synchronous digital designs, from design entry to physical implementation, rarely do
you achieve the required timing performance of the design without iteration. You often must go through
numerous iterations of the design cycle - HDL design capture, synthesis, physical implementation (Place
and Route) and Timing Analysis in order to achieve timing closure.

Setting Timing Constraints and performing Timing Analysis are the two most important steps in design
iterations towards timing closure.

For SmartFusion2 and IGLOO2 designs, Microsemi recommends setting timing constraints for both
synthesis and place and route steps. You must first set the timing assertion constraints; see "Timing
Assertions" on page 5.

If timing performance is not met in the first iteration, you may consider setting additional and more
advanced timing constraints in the second and subsequent iterations. See "Timing Exceptions" on page
6.

1 – Using Synopsys Design Constraints

The Synopsys® Design Constraint (SDC) is a Tcl-based format used by Synopsys tools to specify the
design intent and timing constraints. Microsemi supports a variation of the SDC format for constraints
management.

You can use the following types of SDC commands when creating SDC constraints for SmartFusion2
and IGLOO2 designs:

• Object Access

• Timing Assertions

• Timing Exceptions

Object Access
SDC timing constraints apply to specific design objects. Table 1-1 summarizes the object access
commands supported by SmartTime (the Microsemi static timing analysis tool incorporated with the
place and route tools). Refer to the SmartTime online help for more information.

Implicit vs. Explicit Specification
In general, SDC commands include design objects as an argument. SDC supports both implicit and
explicit object specification.

When the tool determines the object type by searching for the object, it is called an implicit object
specification. When the object type is specified (to avoid ambiguity) using a nested object access
command, it is called an explicit object specification.

For example: If you have a net named 'my_net1', the implicit specification is my_net1 and the explicit
specification is [get_nets my_net1].

Not all design objects are applicable to all SDC commands. Each SDC command accepts a pre-defined
set of design objects as arguments. Microsemi recommends that you use the explicit object specification
method to avoid ambiguity regarding object type. If multiple object types are returned after searching an
implicit specification, the object types are prioritized based on the tool's priority object list.

Refer to the SmartTime online help for more information.

Table 1-1 • Object Access Commands Supported by SmartTime

Design Object Command(s)

Cells / Instances get_cells

Clocks get_clocks

Nets get_nets

Pins get_pins

Ports get_ports, all_inputs, all_outputs

Registers all_registers
Revision 2 4

Wild Card Characters
Table 1-2 lists the wild card characters available for use in SDC commands.

Note that the matching function requires that you add a backslash (\) before each slash in the pin names
in case the slash does not denote the hierarchy in your design.

Hierarchy and Pin Separators
Synplify Pro software defaults to the use of '.' (period) as both the hierarchy and pin separators for timing
constraints.

For example: [get_pins {top_level.blockA.instance123.my_pin}]

To change the hierarchy separator from the default '.' (period) to the '/' (forward slash), use the command:

set_hierarchy_separator { / }

SmartTime software defaults to the use of '/' as a design hierarchy separator and ":" as the pin separator
character.

For example: [get_pins {top_level/blockA/instance123:my_pin}]

Notice that '/' is the hierarchy separator used to indicate that 'instance123' is present in the design
hierarchy below top_level ' blockA. The ":" pin separator identifies 'my_pin' on 'instance123'.

Bus Naming Conventions
All buses in the SDC file must use the Verilog-style naming convention name[index].

For example: [get_ports addr_bus_out[1]]

If you want to specify the constraint on the entire bus, you can simply use [get_port addr_bus_out].

Comments
You can add comments to an SDC file by preceding the comment line with a pound sign (#).

This is a comment line

Timing Assertions
Timing assertions are intended to capture your design timing requirements.

They include the following SDC commands:

• Clock Period/Frequency

– create_clock

– create_generated_clock

• Input / Output Delay

– set_input_delay

– set_output_delay

– set_external_check

– set_clock_to_output

• Clock-to-clock Uncertainty

– set_clock_uncertainty

Table 1-2 • Object Access Commands Supported by SmartTime

Wild Card Function

\ Interprets the next character literally

* Matches any string
Revision 2 5

• Clock Source Latency

– set_clock_latency

Refer to "Timing Constraints and Design Flow" on page 7 for the Timing Assertion SDC commands
Synplify Pro and SmartTime support.

Timing Exceptions
Use timing exceptions to identify design paths that require the default single cycle timing relationships to
be overridden. SDC commands for timing exceptions include:

• False path

– set_false_path

• Multicycle path

– set_multicycle_path

• Maximum delay path

– set_max_delay

• Minimum delay path

– set_min_delay

• Disabled timing arcs

– set_disable_timing

Timing Exceptions and Precedence Order
When the same timing path has more than one timing exception constraint, SmartTime honors the timing
constraint with the highest precedence and ignores the other timing exceptions according to the order of
precedence shown in Table 1-3. Synplify Pro honors the timing constraints according to Precedence
Order in Table 1-4.

Table 1-3 • Timing Exception - Precedence Order for SmartTime

Timing Exceptions Order of Precedence

set_disable_timing 1

set_false_path 2

set_maximum_delay/set_minimum_delay 3

set_multicycle_path 4

Table 1-4 • Timing Exception - Precedence Order for Synplify Pro

Timing Exceptions Order of Precedence

set_false_path 1

set_max_delay/set_min_delay 2

set_multicycle_path 3
Revision 2 6

2 – Timing Constraints and Design Flow

This chapter describes where to specify timing constraints and perform timing analysis in the Libero
design flow (Figure 2-1). Microsemi recommends that you supply Synplify Pro and SmartTime with
adequate and complete timing constraints. Also, you must review the timing reports from both Synplify
Pro and SmartTime to ensure that the design has been constrained properly and is meeting the timing
goals.

Libero tools (Timing Driven Place and Route and SmartTime) support a subset of Synopsys SDC timing
constraints relevant for FPGA designs.

Microsemi recommends that you create two sets of timing constraints in the Libero flow.

• FDC timing constraints for synthesis with Synplify Pro.

• SDC timing constraints for the Libero Timing Driven Place and Route and SmartTime phases.

Timing Constraints for Synplify Pro

Overview
Synplify Pro supports the FPGA Design Constraints (FDC) format. The FDC format includes:

• A subset of the Synopsys SDC standard for timing constraints

• Legacy timing constraint format supported by Synplify Pro

You can provide timing constraints to Synplify Pro by:

Figure 2-1 • Timing Constraints in the Design Flow
Revision 2 7

• Importing the timing constraint file(s) into the Libero project. Identify the timing constraint file(s) to
be passed to Synplify Pro in Libero GUI. Right click the file(s) and choose Use for Synthesis. For
details about importing timing constraints in the Libero GUI, refer to the Libero online help.

• Creating the timing constraints using the SCOPE (Synthesis Constraints Optimization
Environment) GUI available in Synplify Pro software. Constraints created using SCOPE are
saved to a constraints file using the FDC format.

Supported Synplify Pro Timing Constraints
The following timing constraints are supported by Synplify Pro for FPGA synthesis:

• create_clock

• create_generated_clock

• set_input_delay

• set_output_delay

• set_false_path

• set_multicycle_path

• set_max_delay

• set_clock_latency

• set_clock_uncertainty

Refer to the Synplify Pro for Microsemi Reference Manual for details on the options and arguments,.

Constraints for Design Requirements
Synthesis software uses timing constraints to make trade-offs that lead to optimum use of resources to
achieve requested timing goals. Timing constraints are essential to ensure that the right choices are
made by the synthesis tool while performing logic and mapping optimizations of the design.

Microsemi recommends that you include Clock Constraints and Input and Output Delay Constraints.

There are two types of clock constraints:

• create_clock

• create_generated_clock

To define the design clocks for SmartFusion2 designs,:

• Use create_clock constraint to identify and constrain oscillators and primary input ports used as
clocks.

• Use create_generated_clock constraint to identify and constrain fabric CCC output pins used as
clocks.

FDC Example with create_clock and create_generated_clock
In the example below a combination of create_clock and create_generated_clock constraints are used to
define the required clock constraints.

First the clock source is identified as the input port clk_in at 50 MHz.

Then this clock source is used to generate a 200 MHz clock (clk_core) using a CCC:

Input Port 'clk_in' @ 50MHz is the clock source
create_clock -name {input_clock} \
-period 20 \
-waveform {0 10} \
[get_ports clk_in]
CCC generates clk_core using clk_in as the source
clk_core @ 200MHZ
create_generated_clock -name { clk_core }
-divide_by 1 -multiply_by 4\
-source [get_ports clk_in] \
[get_pins { clk_generator.FCCC_0.CCC_INST.GL1 }]
Revision 2 8

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

Note: The backslash "\" character is part of Tcl syntax. It breaks a long single command into multiple
lines.

Note: Synplify Pro software defaults to the use of '.' (period) as the hierarchy separator for timing
constraints. Use the set_hierarchy_separator command in the FDC file to redefine the hierarchy
separator character. For example:set_hierarchy_separator {/}

The divide_by and multiply_by factors are derived from the PLL diagram displayed on the 'Advanced' tab
of the fabric CCC configurator. Synplify Pro software defaults to 100 MHz required clock frequency for all
clocks missing a timing constraint.

FDC Example with set_input_delay and set_output_delay
In this example, set_input_delay and set_output_delay constraints are used to define the required input
and output delay timing constraints. These constraints are required to define the timing budget required
for the I/O Interface.

In this example, all constraints use clk_core from the previous example as the reference clock.

The input delay on input port(s) data_bus_in_clk_core is 2.5ns (max) and 1.0ns (min).

The output delay on output port(s) data_bus_out_clk_core is 3.0ns (max) and 1.5ns (min).

input delays
set_input_delay -clock [get_clocks clk_core] \
-max 2.5 \
[get_ports {data_bus_in_clk_core*}]

set_input_delay -clock [get_clocks clk_core] \
-min 1.0 \
[get_ports {data_bus_in_clk_core*}]

output delays
set_output_delay -clock [get_clocks clk_core]\
-max 3.0 \
[get_ports {data_bus_out_clk_core*}]

set_output_delay -clock [get_clocks clk_core] \
-min 1.5 \
[get_ports {data_bus_out_clk_core*}]

Constraint Checker
Microsemi recommends that you validate FDC or timing constraints after you import or create them. This
is especially important if the timing constraints file is imported.

Synplify Pro provides a constraint checker utility that you can use to validate the SDC timing constraints.
The constraint checker is accessible from the project menu (Run > Constraint Check) inside the
Synplify Pro GUI. It generates a constraint check report (*_cck.rpt) with details about any issues with
timing constraints. The summary section should indicate that no issues were found with the timing
constraints.

Use the constraint checker report to fix mistakes related to incorrect syntax or object names.

For details about the Synplify Pro Constraint Checker, refer to the Synplify Pro for Microsemi User Guide.

Constraints for Optimizing Your Design
Once timing constraints are checked, Microsemi recommends that you use the timing analysis feature in
Synplify Pro to determine if all the required design constraints have been provided. You can use the list of
violating design paths in the timing report to identify any missing or inaccurate timing constraints.

Note: Since the design is not yet placed, the timing report uses estimates based on wire load models for
net delays. This is the reason that timing violations at this stage may or may not appear after place
and route.
Revision 2 9

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

Microsemi recommends that you go through one pass of the entire design flow including Timing
Driven Place and Route before adding timing exceptions for synthesis. You can then use the
more accurate post place and route timing analysis report to determine required constraints.

Clock, Input and Output Delay constraints are the minimum set of required timing constraints for all
designs. Some designs may require additional timing constraints known as timing exceptions. For
example:

• False Paths (set_false_path),

• Multicycle Paths (set_multicycle_path)

• Maximum Path Delay (set_max_delay)

You can use timing exceptions to identify design paths that require the default single cycle timing
relationships to be overridden. You must guide the synthesis tool optimizations by identifying design
paths that:

• Do not have a timing relationship (set_false_path)

• Have a timing relationship that is not a single cycle (set_multicycle_path or set_max_delay)

Precedence
To resolve timing constraint conflicts when multiple timing exceptions are applied to the same design
object, the following precedence rules apply:

set_disable_timing takes precedence over all other timing exception constraints.

False Path constraint takes precedence over Maximum Path Delay/Minimum Path Delay or Multicycle
Path constraint.

Maximum Path Delay/Minimum Path Delay constraint takes precedence over Multicycle Path constraint.

Optimizing for Timing Versus Area
When you run Synplify Pro synthesis, the tool first compiles the design and then maps it to the Microsemi
technology cells.

By default, Synplify Pro automatically makes efficient trade-offs between area and timing performance to
achieve the best results. However, you can guide Synplify Pro to optimize the design for timing
performance at the expense of area. Conversely, you can guide Synplify Pro to optimize the design for
area at the expense of timing performance.

Generally speaking, optimizing for timing performance consumes more FPGA resources (area) and
optimizing for area often means larger delays (weaker timing performance). You must weigh your timing
performance needs against your area needs to determine what works best for your design.

Refer to Chapter 10 of the Synplify Pro for Microsemi User Guide for more information on optimization
options.

Post-Synthesis Timing Analysis with Synplify Pro
Synplify Pro generates a timing report after synthesis is complete. After running synthesis, click the View
Log button to open the log file in Synplify Pro.

The synthesis log file is also available from Libero SoC, under Synthesize in the Reports pane.

The file is located under the synthesis directory with the *.srr extension and viewable in Libero SoC. Click
the File tab in your Libero SoC Project. Expand the Synthesis file group. Double-click the *.srr file to open

Table 2-1 • Object Access Commands Supported by SmartTime

Timing Exception Precedence Order

set_disable_timing 1

set_false_path 2

set_maximum_delay / set_minimum_delay 3

set_multicycle_path 4
Revision 2 10

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

it in the Libero SoC Editor View pane. Scroll down to the section entitled START OF TIMING REPORT
(Figure 2-2).

The Synplify Pro timing report is broken into the following sections:

• Performance Summary

• Clock Relationships

• Interface Information

• Detailed Report for Clocks

Use the synthesis timing report to confirm:

• Constraints are being picked up and applied as expected.

• The design does not have any significant timing violations

Since the design is not yet placed, the synthesis timing report estimates net delays using wire load
models. However, the cell delays used in the timing report are accurate.

A setup timing violation can be considered significant, if the path delay excluding the net delay exceeds
the required time. This is usually an indication that either the timing requirement is unrealistic or the
design path requires additional pipelining. In either case, it is highly unlikely that a design path with cell
delays exceeding required time will meet the timing goal after place and route

Timing Exceptions
If the post-synthesis timing analysis reports that the design does not meet timing specifications for clock
speed or I/O delays, Microsemi recommends that you use timing exceptions to help synthesis.

Microsemi recommends that you go through one pass of the entire design flow, including Timing Driven
Place and Route, before adding timing exceptions for synthesis. You can then use the more accurate
post place and route timing analysis report to determine required constraints.

Use false path timing constraints to identify specific design paths that do not propagate logic level
changes and should not be considered during timing analysis. The synthesis tool ignores design paths
identified using this constraint for logic and mapping optimizations.

Use Multicycle Path, False Path and Maximum Path Delay timing constraints to identify design paths that
have a timing relationship different from the default single cycle relationship. The synthesis tool uses the
new relationship for optimizations.

Multicycle Path and False Path constraints typically result in relaxing the original single clock cycle timing
requirement. The Maximum Path Delay constraint can result in relaxing or tightening the original timing
requirement based on the time value specified by the user.

Figure 2-2 • Synplify Pro *.srr File Open in Libero SoC
Revision 2 11

FDC Examples
False Path
set_false_path -from [get_ports uart_ctrl]

Maximum Path Delay
set_max_delay -to [get_ports {ram_rd_enable}] 4.0

Multicycle Path
set_multicycle_path 4 -to [get_ports {I2C*}]

SCOPE and Using the Forward Annotated SDC
You can use SCOPE from Synplify Pro to enter constraints for the synthesis step. After synthesis,
Synplify Pro generates a *_sdc.sdc file, which contains the forward annotated timing constraints. Refer to
"Using the Forward Annotated SDC" on page 15 section for details. The recommended flow is to create
separate constraints for Synthesis and Timing-Driven Place and Route steps.

Timing Constraint Entry Using SCOPE
SCOPE is an editor provided with Synplify Pro to enter and manage timing constraints and synthesis
attributes (Figure 2-3).

The three types of constraints common to most designs are:

• Clock Constraints - All synchronous designs are driven by some kind of clocks. Timing violations
such as setup and hold time violations are meaningless without a clock constraint.

• Input and Output Delay Constraints - The Input and Output delays makes allowance for path
delays external to the FPGA. These constraints are part of the delay budgeting requirement.

• Exceptions - When a design fails to meet timing requirements, you may need more advanced
constraints to bring the design to timing closure. When applied to specific paths in the design,

Figure 2-3 • SCOPE Constraints Editor
Revision 2 12

these timing exceptions override the default behavior of Synplify Pro when these timing paths are
considered during optimization.

Before entering any constraints, first compile the design in Synplify Pro (Run > Compile Only).
Performing compile inside Synplify Pro pre-populates SCOPE with object names. This could save you
time and effort entering object names.

Prefix Identifiers Supported by SCOPE and FDC
Synplify Pro uses object identifiers defined in the following table for constraints defined in SCOPE or
FDC files (Table 2-2).

Clock Constraints
There are two types of clock constraints: create_clock and create_generated_clock. SCOPE has two
separate tabs for these two constraints.

Use the Clocks tab to identify the clock sources (create_clock). Refer to Figure 2-4.

Table 2-2 • Prefix Identifiers and Design Objects

Prefix Identifier (FDC) SDC Equivalent Design Objects to be applied

v: design_name n/a Modules

c: clock_name get_clocks Clocks

i: instance_name get_cells Instances

p: port_name get_ports Ports

t: pin_name get_pins Hierarchical ports or pins of instantiated cells

b: bus_name get_pins Bits of a bus

n: net_name get_nets Net names

Figure 2-4 • Clocks Tab
Revision 2 13

Use the Generated Clocks tab to identify the generated clocks (create_generated_clock) in the design.
Refer to Figure 2-5.

For SmartFusion2 designs:

• Oscillators or Clock Input ports are typical clock sources.

• Fabric CCC outputs are typical generated clocks.

Synplify Pro supports an advanced copy and paste feature. It is possible to copy objects from the
schematic views and paste their names into SCOPE.

For example: Highlight the output terminal pin of the oscillator (in the RTL view schematic), copy (CTRL
+ C) and then paste (CTRL + V) into SCOPE.

I/O Delay Constraints
Clock constraints are not sufficient to constrain I/O ports. Use input and output delay constraints
(set_input_delay, set_output_delay) constraints to specify I/O constraints. Navigate to the Inputs/Outputs
tab in SCOPE to do so (Figure 2-6).

Constraint Checker
To check the constraints entered so far, click on the Check Constraints button on the menu bar. Synplify
Pro generates a clock constraint check report (*_cck.rpt). The summary should indicate that no issues
are found with the timing constraints.

Figure 2-5 • Generated Clocks Tab

Figure 2-6 • Inputs/Outputs Tab
Revision 2 14

Constraint checker is also accessible from the Project menu (Project > Run > Constraint Check).

Exceptions
Some designs require additional timing constraints known as timing exceptions, such as:

• set_false_path

• set_max_delay

• set_multicycle_path

To enter timing exceptions in SCOPE navigate to the Delay Paths tab. After saving the file, from the File
menu choose Close to return to the Project view.

Using the Forward Annotated SDC
After synthesis, Synplify Pro generates a SDC file that you can use for the remaining steps in the Libero
flow. This file (with extension *_sdc.sdc) is available under Timing Constraints in the Libero Project view.

By default, this file is not used by Libero. The recommended flow is to create separate constraints for
Synthesis and Timing-Driven Place and Route steps.

Users must review the file contents of the Synplify generated forward annotated file before enabling the
file for implementation. To enable a SDC file for Timing-Driven Place and Route, right-click the file and
choose Use for Compile. Libero uses this SDC file for the remaining steps in design flow, starting from
Compile.

Limitations
• The forward annotated SDC file from Synplify Pro does not include any set_clock_latency

constraints present in the original user SDC file.

• Synplify Pro does not automatically generate clock constraints for oscillators or CCC instances.
You must supply accurate clock constraints (create_clock, create_generated_clock) to Synplify
Pro. These constraints are then forward annotated in the *_sdc.sdc file.

Timing Constraints for Timing-Driven Place and Route
Libero tools (Timing Driven Place and Route and SmartTime) support a subset of Synopsys SDC timing
constraints relevant for FPGA designs. To set timing constraints, you can use:

• SmartTime Constraint Wizard

• SmartTime Constraint Editor

• SDC file(s)

To organize the timing constraint files, use the "Organize Constraint Files" dialog box. When importing a
SDC file for Timing Driven Place and Route, make sure to include it for use by the Compile tool. To
enable a SDC file already imported in Libero, right-click on the file and choose Use for Compile (refer to
Figure 2-7).
Revision 2 15

Timing-Driven Place and Route Constraints
SmartTime Timing Analysis supports the following set of SDC timing constraints:

• create_clock

• create_generated_clock

• set_input_delay

• set_output_delay

• set_external_clock

• set_clock_to_output

• set_false_path

• set_multicycle_path

• set_max_delay

• set_min_delay

• set_clock_latency

• set_clock_uncertainty

• set_disable_timing

Figure 2-7 • SDC File for Compile
Revision 2 16

For details on the options and arguments of the SDC commands, refer to the SmartTime online help.

Constraints for Design Requirements
Microsemi recommends that you use the following flow to enter timing constraints:

1. SmartTime Constraint Wizard - Identify clocks, input and output delay constraints

2. I/O Attributes Editor - Provide complete I/O attributes information for the design

3. Generate and analyze the Constraints Coverage report

SmartTime Constraint Wizard
SmartTime includes a Constraint Wizard that enables quick and easy entry for clock and I/O constraints
(Figure 2-8).

Invoke the Constraint Wizard from SmartTime (Tool > Constraint Wizard).

The Constraint Wizard enables you to add constraints in the following order:

1. Overall clock constraint

2. Overall I/O constraint

3. Specific clock constraints

4. Generated clock constraints

5. Specific input constraints

6. Specific output constraints

Use the Overall constraint tabs to set default constraints for clocks and I/O’s.

The default constraints can be overridden by the Specific constraints for clocks and I/O’s.

Clock Constraints
For SmartFusion2/IGLOO2 designs, SmartTime identifies and generates automatic constraints for:

• Oscillators used as clock sources.

• Fabric CCC outputs used as generated clocks

Figure 2-8 • SmartTime Constraint Wizard
Revision 2 17

Clocks from sources other than the on-chip oscillator or CCC must be defined by you using the Specific
clock and Generated clock tabs.

I/O Constraints
Use the Overall I/O constraint tab to set default constraints for all input and output ports in the design.
The default I/O constraints can be overridden in the Specific input and Specific output constraint tabs for
selected ports.

For details about the Constraint Wizard, refer to the SmartTime online help.

I/O Attributes and the I/O Attribute Editor
Timing performance of I/O paths is significantly influenced by the I/O attributes.

Use the I/O Attribute Editor feature in the MultiView Navigator (MVN) tool to provide complete I/O
attribute information for the design.

For details about the I/O Attribute Editor, refer to the MultiView Navigator online help.

Constraint Coverage
It is important to generate a Constraints Coverage Report (Figure 2-9), because the timing report only
analyzes timing performance for design paths with timing constraints. Timing paths without timing
Revision 2 18

constraints may have timing violations and are not be reported. Invoke the Constraint Coverage report
from SmartTime Analyzer (Tools > Reports > Constraint Coverage).

Design paths or objects with missing constraints are listed under Enhancement Suggestions. Review
each suggestion and supply appropriate constraints to ensure that all design paths have timing
constraints.

For details about the Constraint Coverage Report, refer to the SmartTime online help

Constraints for Optimizing Your Design
Design timing constraints may need to be optimized if the design fails to meet timing requirements, even
after completing Timing Driven Place and Route (TPDR).

The recommended flow for optimizing design constraints is:

1. Run Timing Driven Place and Route. Ensure that the Timing-driven option is enabled during Place
and Route.

2. Generate and Inspect Timing Analysis reports. Analyze both the Maximum and Minimum Delay
Analysis reports.

3. Open SmartTime Constraints Editor and provide additional constraints, including timing
exceptions.

Figure 2-9 • Constraint Coverage Report
Revision 2 19

4. To improve Placer Performance:

– Debug design paths with timing violations.

– Use set_max_delay to constrain inter-clock domain paths.

Using Timing Driven Place and Route (TDPR)
The primary goal of TDPR is to meet timing constraints. If you do not select the Timing-driven option,
Place and Route will not consider timing constraints.

Ensure that Timing-driven is selected before running Place and Route (right-click Place and Route and
choose Configure Options in the Libero tool suite). This option is selected by default for SmartFusion2.

Timing Analysis Reports
SmartTime generates two types of timing reports by default for both Max and Min Delay analysis:

• Timing report - This report displays the timing information organized by clock domain.

• Timing violations report - This flat slack report provides information about constraint violations. To
generate timing analysis reports in Libero, right-click Verify Timing and choose Run.

Timing Report Contents
The timing report contains the following sections:

• Header - lists the report type, version, date and time of report and general design information

• Summary - reports the timing information for each clock domain

• Path Selections - lists the timing information for different types of paths in the design. For details,
refer to the SmartTime online help.

Timing Violation Report Contents
The timing violation report contains the following sections:

Header
The Header lists:

• Report type

• Version of SmartTime used to generate the report

• Date and time the report was generated

• General design information (name, family, etc.)

Paths
The paths section lists the timing information for the violated paths in the design.

By default, the slack threshold is 0 and the number of paths is limited. The default maximum number of
paths reported is 100.

All clocks domains are mixed in this report. The paths are listed by decreasing slack.

SmartTime Constraints Editor
The SmartTime Constraints Editor is a tool that enables you to create, view and edit all design timing
constraints. Constraints supplied through the constraints wizard or SDC files are available for editing in
the SmartTime Constraints Editor.

Use the Constraints Wizard to easily provide basic timing constraints for clocks and I/O ports. For
advanced timing constraints such as timing exceptions use the Constraints Editor.

Timing Exceptions
Based on the complexity of the design, timing exceptions may be required. Timing exceptions are timing
constraints set on specific paths in the design. For example:

• set_false_path

• set_max_delay

• set_multicycle_path

Providing these constraints requires knowledge of the data paths in the design and their timing
requirements. By default, SmartTime uses a single clock cycle to analyze any timing path that has a
clock constraint set on it. Timing exceptions are used to override the default clock constraint for the
design path.
Revision 2 20

For details about the Timing Exceptions, refer to the SmartTime online help.

Note: Based on the severity of timing violations, it may also be necessary to provide timing exception
constraints to the synthesis software. To provide timing exception constraints to the synthesis
software, include these constraints in the FDC file being provided to Synplify Pro.

Improving Placer Performance
When the design fails to meet the timing goals, the failing design paths must be analyzed carefully. Two
issues need to be analyzed:

• Can the timing performance of the failing path(s) be improved if instance placement was
modified?

Long route delays for design paths with setup violations may indicate that the instance placement
was not optimal. The design path placement can be examined using the "Chip Planner" tool which
is part of the MultiView Navigator.

• Are the timing constraints sufficient for the placer to identify and work on the true critical paths in
the design?

Ensure that a complete set of timing constraints is created and passed to the placer tool. Use the
set_max_delay constraint to properly constrain inter-clock domain design paths. The following
sections have more details on passing constraints and using set_max_delay constraints.

Placer Performance - Supported Constraints
You can pass timing constraints to the Placer by:

• Organizing the timing constraint files using the Organize Constraint Files dialog box. When
importing a SDC file for the placer, make sure to include it for use by the Compile tool.

To enable a SDC file already imported into Libero, right-click the file and choose Use for
Compile.

• Entering constraints in the SmartTime GUI - If using scenarios, ensure that the scenario is
enabled for TDPR.

Limitations
• The placer currently supports the following constraints:

– create_clock

– create_generated_clock

– set_clock_latency

– set_input_delay

– set_output_delay

– set_max_delay

– set_false_path

• The following constraints are not supported by the placer:

– set_clock_uncertainty

– set_multicycle_path

– set_min_delay

• The placer does not support inter-clock domain timing. The placer optimizes clocks within their
domain, but not between domains. To enable placer optimizations for inter-clock domain paths,
use the set_max_delay constraint. This is described in the next section.

• The placer does not include the clock generation path in the arrival/require time calculation when
set_max_delay constraint is used.
Revision 2 21

Using set_max_delay to Improve Placer Results
It may be possible to improve placer results by using set_max_delay timing constraint on design paths
with timing violations. Consider using this approach if the violating path:

• Is an inter-clock domain path.

• Contains clock generation delays that are significantly different between the start and end points.

To include additional timing constraints for the placer:

1. Clone the existing timing constraints scenario in SmartTime. From the Constraint Editor, right click
on Primary scenario and select Clone (Figure 2-10).

2. Retain the original (Primary) constraint set for timing analysis

Figure 2-10 • Timing Scenario Clones
Revision 2 22

3. Enter set_max_delay constraints for design paths that cross clock domains (Figure 2-11).

4. Use the second set of constraints (cloned scenario) exclusively for TDPR. Right-click Cloned
scenario and choose Use for TDPR (Figure 2-12).

For details about the set_max_delay constraint, refer to the SmartTime online help.

Figure 2-11 • Set_max_delay Constraints in Cloned Scenario

Figure 2-12 • Cloned Scenario for TDPR
Revision 2 23

3 – Constraints for SmartFusion2 and IGLOO2 IP
Blocks

This chapter describes the constraint requirements for the following blocks:

• Oscillators

• Fabric Clock Conditioning Circuits (CCC)

• MSS (Microcontroller, SmartFusion2 only)

• High Speed Serial Interface (SERDES)

Oscillators
There are three oscillators available in SmartFusion2:

• External Main Crystal Oscillator that can be configured for frequencies between 32 kHz and 20
MHz.

• 25/50 MHz On-chip RC Oscillator

• 1 MHz On-chip RC Oscillator

The Chip Oscillator Configurator (Figure 3-1) invoked from within Libero enables you to select and
configure the oscillator needed in the design. Upon configuration, the configurator generates a block for
all oscillators.

Depending on the configuration, the oscillator IP provides up to two outputs per clock: one hardwired
connection to the CCCs and one routed connection to the FPGA fabric.

Figure 3-1 • Oscillator Configurator
Revision 2 24

Oscillator Synthesis Constraints
You must specify a clock constraint for each oscillator used by the design. The sources of the clock are
the output pins of the oscillator. If an oscillator is used by both the CCC and the fabric, its clock constraint
will have both outputs as sources.

Figure 3-2 shows the block as seen by synthesis.

The following constraints will work for an oscillator with OSC_0 as instance name with all outputs used.
The Crystal oscillator is configured for 20 MHz.

create_clock -name osc_1MHz -period 1000 \
 [get_pins {OSC_0.RCOSC_1MHZ_O2F OSC_0.RCOSC_1MHZ_CCC}]
create_clock -name osc_50MHz -period 20 \
 [get_pins {OSC_0.RCOSC_25_50MHZ_O2F OSC_0.RCOSC_25_50MHZ_CCC}]
create_clock -name xtal_20MHz -period 50 \
 [get_pins {OSC_0.XTLOSC_O2F OSC_0.XTLOSC_CCC}]

Design Created with SystemBuilder
SystemBuilder instantiates an oscillator IP at least to use the 50 MHz clock for reset management
(CoreResetP). SystemBuilder can also configure the other oscillators. The constraints needed in this
case are similar to the one above. The instance name of the oscillator block depends on the name given
to SystemBuilder for the system name. For example, for the system named my_system, the oscillator
block will be instantiated as my_system_0.FABOSC_0. The clock constraint for the 50 MHz oscillator
used by CoreResetP that should be set for synthesis is:

 create_clock -name osc_50MHz -period 20 \
 [get_pins {my_system_0.FABOSC_0.RCOSC_25_50MHZ_O2F}]

Oscillator Place and Route Constraints
No other constraints are needed. SmartTime automatically infers clock constraints based on the
oscillator configurations.

Fabric Clock Conditioning Circuit (CCC) for SmartFusion2
and IGLOO2

CCCs are used to multiply, divide or delay clocks. Their effect is best described using generated clocks.

Figure 3-2 • Synthesis View of an Oscillator Block
Revision 2 25

Fabric CCC Synthesis Constraints
To create FCCC constraint for synthesis via generated clock, you need to use FCCC multiple and divide
factors. This information is available in the Advanced tab in the CCC Configurator accessible through the
Libero software (Figure 3-3).

The CCC configuration shown in Figure 3-3 generates three clocks:

• On GL0, a 150 MHz clock generated from the 100 MHz input clock using the PLL

• On GL1, a 200 MHz generated from the same PLL

• On GL2, a 25 MHz clock generated from the 50 MHz oscillator.

The exact division and multiplication factors can be calculated based on the divider configurations shown
in the configurator. The ones used for GL0 are circled. When the CCC is used, the multiplication factor is
given by the feedback divider (circled in blue); the division factor is given by multiplying the reference
divider (circled in red) by the output (GPD) divider (circled in green).

The corresponding generated clocks are:

create_clock -name FCCC_CLK0_PAD -period 10 [get_pins {FCCC_0.CLK0_PAD}]
create_generated_clock -name clk_150mhz -divide_by 16 -multiply_by 24 \
-source [get_pins {FCCC_0.CLK0_PAD}] \
[get_pins {FCCC_0.GL0}]
create_generated_clock -name clk_200mhz -divide_by 12 -multiply_by 24 \
-source [get_pins {FCCC_0.CLK0_PAD}] \

Figure 3-3 • FAB CCC Configurator Advanced Tab
Revision 2 26

[get_pins {FCCC_0.GL1}]
create_generated_clock -name clk_25mhz -divide_by 2 \
-source [get_pins {FCCC_0.OSC}] \
[get_pins {FCCC_0.GL2}]

Fabric CCC Place and Route Constraints
You need to add create_clock constraints for the input clock:

create_clock -name {CLK0_PAD} -period 10.000 -waveform { 0.000 5.000 }{CLK0_PAD}

SmartTime automatically infers clock constraints based on the create_clock and oscillator
configurations.

SERDES/DDR Configuration Subsystem (MSS/HPMS FIC_2)

This section is relevant for designs using the MSS DDR (MDDR), Fabric DDR (FDDR) or SERDES
blocks with the MSS FIC_2 interface for initialization. The MSS FIC_2 interface is essentially an APB3-
like subsystem which initializes the peripherals at Power Up or on a Chip Level reset. The clock for this
sub-system is generated by the MSS FIC_2 block and is defined as ¼ of the MSS (HPMS for IGLOO2)
clock.

The following sections describe:

• Creating a clock constraint for FIC_2_APB_M_PCLK.

• Specifying timing requirements for FIC_2 to CoreConfigP interface.

Creating a Clock Constraint for FIC_2_APB_M_PCLK

The following example assumes a Cortex-M3 clocked at 100MHz. The FIC_2_APB_M_PCLK frequency
is 25 MHz (¼ of the 100 MHz Cortex-M3 frequency).

Synthesis Timing Constraints
create_clock -name {FIC_2_APB_M_PCLK} -period 40 [get_pins \
{mss_system_0.mss_system_MSS_0:FIC_2_APB_M_PCLK}]

Note: The period of the clock needs to be four times the period of the MSS/HPMS_CLK.

Note: The name of the pin of the FIC_2_APB_M_PCLK clock is the hierarchical name of the pin in the
RTL design.

Place and Route Timing Constraints
create_clock -name {FIC_2_APB_M_PCLK} -period 40 [get_pins \
{mss_system_0/mss_system_MSS_0/MSS_ADLIB_INST/INST_MSS_050_IP:CLK_CONFIG_APB}]

Note: The period of the clock needs to be four times the period of the MSS/HPMS_CLK.

Note: The name of the pin of the FIC_2_APB_M_PCLK clock is the hierarchical name of the pin in the
flattened gate-level netlist created by Compile.

These constraints can also be entered using the SmartTime Constraints Editor. For details, refer to the
SmartTime User's Guide (Libero > Help >Reference Manuals > SmartTime User's Guide for
SmartFusion2, IGLOO2, and RTG4).

Specifying Timing Requirements for FIC_2 to CoreConfigP
Interface
The configuration is performed through the FIC_2 to CoreConfigP interface. This interface has built-in re-
timing to eliminate hold violations that may occur on the signals going from the MSS FIC_2 to
CoreConfigP.
Revision 2 27

The following timing requirements are needed to capture the re-timing behavior. They must be manually
entered using either an SDC file or the SmartTime Timing Constraints Editor. These constraints are for
Static Timing Analysis (STA) and Timing Driven Place and Route (TDPR).

SDC (for Compile - STA and TDPR -)
For all M2S005*/M2GL005* and M2S010*/M2GL010* devices
set_min_delay -24 -from [get_pins {*/INST_MSS_*_IP:CLK_CONFIG_APB}]
set_min_delay 0 -from [get_pins {*/INST_MSS_*_IP:CLK_CONFIG_APB}] \
 -through [get_pins\
{*/INST_MSS_*_IP:PER2_FABRIC_PENABLE */INST_MSS_*_IP:PER2_FABRIC_PSEL}] \
 -to [get_pins {*/FIC_2_APB_M_PREADY* */state[0]:D}]

For all other devices
set_min_delay -24 -from [get_pins {*/INST_MSS_*_IP:CLK_CONFIG_APB}]
set_max_delay 0 -from [get_pins {*/INST_MSS_*_IP:CLK_CONFIG_APB}] \
 -through [get_pins\
{*/INST_MSS_*_IP:PER2_FABRIC_PENABLE */INST_MSS_*_IP:PER2_FABRIC_PSEL}] \
 -to [get_pins {*/FIC_2_APB_M_PREADY* */state[0]:D}]

Note: The names of the signals in the constraints use the hierarchical names of the flattened gate-level
netlist created by Compile.

These constraints may also be entered using the SmartTime Graphical User Interface, although it is
recommended to use an SDC file.

When using the SmartTime GUI, note that negative min-delay values cannot be entered in the min-delay
constraint dialog. Only positive values are accepted (Figure 3-4).

Figure 3-4 • Set Minimum Delay Constraint Dialog Box
Revision 2 28

You may, however, enter the negative Minimum Delay value in the Min Delay Constraint Table
(Figure 3-5).

CoreResetP False Paths (SmartFusion2 and IGLOO2 Only)
CoreResetP is a soft IP Configurator Core to manage the reset circuitry of your FDDR, MDDR and
SERDES IF Blocks. CoreResetP is instantiated by System Builder to handle the reset and initialization of
peripherals. Some timing paths inside the CoreResetP block may cause hold time violations to be
reported. These are false paths and should be excluded from timing analysis. Libero automatically
identifies these paths and sets the false path constraints on them during the Compile phase in the Design
Flow. When you open the SmartTime Constraints Editor, you will see the false path constraints in the
False Path group of the SmartTime Constraints Editor (SmartTime > Constraints > Exceptions > False
Path). See Figure 3-6. You do not need to take any further action to exclude these paths from timing
analysis..

Table 3-1 lists all the potential false paths (Verilog names) inside the CoreResetP Core.

Figure 3-5 • Minimum Delay Constraint Table

Figure 3-6 • False Path Constraints in CoreResetP Block

Table 3-1 • Potential False Paths (Verilog Names) inside the CoreResetP Core

From (Source Pin) To (Sink Pin)

{/ddr_settled:CLK} {/ddr_settled_q1:D}

{/release_sdif0_core:CLK} {/release_sdif0_core_q1:D}

{/release_sdif1_core:CLK} {/release_sdif1_core_q1:D}
Revision 2 29

{/release_sdif2_core:CLK} {/release_sdif2_core_q1:D}

{/release_sdif3_core:CLK} {/release_sdif3_core_q1:D}

{/MSS_HPMS_READY_int:CLK} {/sm0_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sm0_areset_n_rcosc:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif0_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif0_areset_n_rcosc:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif1_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif1_areset_n_rcosc:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif2_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif2_areset_n_rcosc:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif3_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif3_areset_n_rcosc:ALn}

{/SDIF0_PERST_N_re:CLK} {/sdif0_areset_n_rcosc_q1:ALn}

{/SDIF0_PERST_N_re:CLK} {/sdif0_areset_n_rcosc:ALn}

{/SDIF1_PERST_N_re:CLK} {/sdif1_areset_n_rcosc_q1:ALn}

{/SDIF1_PERST_N_re:CLK} {/sdif1_areset_n_rcosc:ALn}

{/SDIF2_PERST_N_re:CLK} {/sdif2_areset_n_rcosc_q1:ALn}

{/SDIF2_PERST_N_re:CLK} {/sdif2_areset_n_rcosc:ALn}

{/SDIF3_PERST_N_re:CLK {/sdif3_areset_n_rcosc_q1:ALn}

{/SDIF3_PERST_N_re:CLK} {/sdif3_areset_n_rcosc:ALn}

{/count_sdif0_enable:CLK} {/count_sdif0_enable_q1:D}

{/count_sdif1_enable:CLK} {/count_sdif1_enable_q1:D}

{/count_sdif2_enable:CLK} {/count_sdif2_enable_q1:D}

{/count_sdif3_enable:CLK} {/count_sdif3_enable_q1:D}

{/count_ddr_enable:CLK} {/count_ddr_enable_q1:D}

{/SDIF0_CORE_RESET_N_0:CLK} {/genblk2.sdif0_phr/reset_n_q1:ALn}

{/SDIF0_CORE_RESET_N_0:CLK} {/genblk2.sdif0_phr/reset_n_clk_ltssm:ALn}

{/SDIF1_CORE_RESET_N_0:CLK} {/genblk3.sdif1_phr/reset_n_q1:ALn}

{/SDIF1_CORE_RESET_N_0:CLK} {/genblk3.sdif1_phr/reset_n_clk_ltssm:ALn}

{/SDIF2_CORE_RESET_N_0:CLK} {/genblk4.sdif2_phr/reset_n_q1:ALn}

{/SDIF2_CORE_RESET_N_0:CLK} {/genblk4.sdif2_phr/reset_n_clk_ltssm:ALn}

{/SDIF3_CORE_RESET_N_0:CLK} {/genblk5.sdif3_phr/reset_n_q1:ALn}

{/SDIF3_CORE_RESET_N_0:CLK} {/genblk5.sdif3_phr/reset_n_clk_ltssm:ALn}

{/genblk2.sdif0_phr/hot_reset_n:CLK} {/genblk2.sdif0_phr/sdif_core_reset_n_q1:ALn}

{/genblk2.sdif0_phr/hot_reset_n:CLK} {/genblk2.sdif0_phr/sdif_core_reset_n:ALn}

{/genblk3.sdif1_phr/hot_reset_n:CLK} {/genblk3.sdif1_phr/sdif_core_reset_n_q1:ALn}

Table 3-1 • Potential False Paths (Verilog Names) inside the CoreResetP Core (continued)

From (Source Pin) To (Sink Pin)
Revision 2 30

{/genblk3.sdif1_phr/hot_reset_n:CLK} {/genblk3.sdif1_phr/sdif_core_reset_n:ALn}

{/genblk4.sdif2_phr/hot_reset_n:CLK} {/genblk4.sdif2_phr/sdif_core_reset_n_q1:ALn}

{/genblk4.sdif2_phr/hot_reset_n:CLK} {/genblk4.sdif2_phr/sdif_core_reset_n:ALn}

{/genblk5.sdif3_phr/hot_reset_n:CLK} {/genblk5.sdif3_phr/sdif_core_reset_n_q1:ALn}

{/genblk5.sdif3_phr/hot_reset_n:CLK} {/genblk5.sdif3_phr/sdif_core_reset_n:ALn}

{* } {/genblk2.sdif0_phr/ltssm_q1[0]:D}

{* } {/genblk2.sdif0_phr/ltssm_q1[1]:D}

{* } {/genblk2.sdif0_phr/ltssm_q1[2]:D}

{* } {/genblk2.sdif0_phr/ltssm_q1[3]:D}

{* } {/genblk2.sdif0_phr/ltssm_q1[4]:D}

{* } {/genblk2.sdif0_phr/psel_q1:D}

{* } {/genblk2.sdif0_phr/pwrite_q1:D}

{* } {/genblk3.sdif1_phr/ltssm_q1[0]:D}

{* } {/genblk3.sdif1_phr/ltssm_q1[1]:D}

{* } {/genblk3.sdif1_phr/ltssm_q1[2]:D}

{* } {/genblk3.sdif1_phr/ltssm_q1[3]:D}

{* } {/genblk3.sdif1_phr/ltssm_q1[4]:D}

{* } {/genblk3.sdif1_phr/psel_q1:D}

{* } {/genblk3.sdif1_phr/pwrite_q1:D}

{* } {/genblk3.sdif1_phr/ltssm_q1[0]:D}

{* } {/genblk4.sdif2_phr/ltssm_q1[1]:D}

{* } {/genblk4.sdif2_phr/ltssm_q1[2]:D}

{* } {/genblk4.sdif2_phr/ltssm_q1[3]:D}

{* } {/genblk4.sdif2_phr/ltssm_q1[4]:D}

{* } {/genblk4.sdif2_phr/psel_q1:D}

{* } {/genblk4.sdif2_phr/pwrite_q1:D}

{* } {/genblk5.sdif3_phr/ltssm_q1[0]:D}

{* } {/genblk5.sdif3_phr/ltssm_q1[1]:D}

{* } {/genblk5.sdif3_phr/ltssm_q1[2]:D}

{* } {/genblk5.sdif3_phr/ltssm_q1[3]:D}

{* } {/genblk5.sdif3_phr/ltssm_q1[4]:D}

{* } {/genblk5.sdif3_phr/psel_q1:D}

{* } {/genblk5.sdif3_phr/pwrite_q1:D}

Table 3-1 • Potential False Paths (Verilog Names) inside the CoreResetP Core (continued)

From (Source Pin) To (Sink Pin)
Revision 2 31

Table 3‐2 lists all the potential false paths (VHDL names) inside the CoreResetP Core.

Table 3-2 • Potential False Paths (VHDL Names) inside the CoreResetP Core

From (Source Pin) To (Sink Pin)

{/ddr_settled:CLK} {/ddr_settled_q1:D}

{/release_sdif0_core:CLK} {/release_sdif0_core_q1:D}

{/release_sdif1_core:CLK} {/release_sdif1_core_q1:D}

{/release_sdif2_core:CLK} {/release_sdif2_core_q1:D}

{/release_sdif3_core:CLK} {/release_sdif3_core_q1:D}

{/MSS_HPMS_READY_int:CLK} {/sm0_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sm0_areset_n_rcosc:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif0_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif0_areset_n_rcosc:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif1_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif1_areset_n_rcosc:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif2_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif2_areset_n_rcosc:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif3_areset_n_rcosc_q1:ALn}

{/MSS_HPMS_READY_int:CLK} {/sdif3_areset_n_rcosc:ALn}

{/SDIF0_PERST_N_re:CLK} {/sdif0_areset_n_rcosc_q1:ALn}

{/SDIF0_PERST_N_re:CLK} {/sdif0_areset_n_rcosc:ALn}

{/SDIF1_PERST_N_re:CLK} {/sdif1_areset_n_rcosc_q1:ALn}

{/SDIF1_PERST_N_re:CLK} {/sdif1_areset_n_rcosc:ALn}

{/SDIF2_PERST_N_re:CLK} {/sdif2_areset_n_rcosc_q1:ALn}

{/SDIF2_PERST_N_re:CLK} {/sdif2_areset_n_rcosc:ALn}

{/SDIF3_PERST_N_re:CLK {/sdif3_areset_n_rcosc_q1:ALn}

{/SDIF3_PERST_N_re:CLK} {/sdif3_areset_n_rcosc:ALn}

{/count_sdif0_enable:CLK} {/count_sdif0_enable_q1:D}

{/count_sdif1_enable:CLK} {/count_sdif1_enable_q1:D}

{/count_sdif2_enable:CLK} {/count_sdif2_enable_q1:D}

{/count_sdif3_enable:CLK} {/count_sdif3_enable_q1:D}

{/count_ddr_enable:CLK} {/count_ddr_enable_q1:D}

{/SDIF0_CORE_RESET_N_0:CLK} {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/reset_n_q1:AL
n}

{/SDIF0_CORE_RESET_N_0:CLK} {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/reset_n_clk_lts
sm:ALn}

{/SDIF1_CORE_RESET_N_0:CLK} {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/reset_n_q1:AL
n}

{/SDIF1_CORE_RESET_N_0:CLK} {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/reset_n_clk_lts
sm:ALn}
Revision 2 32

{/SDIF2_CORE_RESET_N_0:CLK} {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/reset_n_q1:AL
n}

{/SDIF2_CORE_RESET_N_0:CLK} {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/reset_n_clk_lts
sm:ALn}

{/SDIF3_CORE_RESET_N_0:CLK} {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/reset_n_q1:AL
n}

{/SDIF3_CORE_RESET_N_0:CLK} {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/reset_n_clk_lts
sm:ALn}

{/SDIF0_HR_FIX_INCLUDED.sdif0_phr/hot_
reset_n:CLK}

{/SDIF0_HR_FIX_INCLUDED.sdif0_phr/sdif_core_reset
_n_q1:ALn}

{/SDIF0_HR_FIX_INCLUDED.sdif0_phr/hot_
reset_n:CLK}

{(/SDIF0_HR_FIX_INCLUDED.sdif0_phr/sdif_core_rese
t_n:ALn}

{/SDIF1_HR_FIX_INCLUDED.sdif1_phr/hot_
reset_n:CLK}

{(/SDIF1_HR_FIX_INCLUDED.sdif1_phr/sdif_core_rese
t_n_q1:ALn}

{/SDIF1_HR_FIX_INCLUDED.sdif1_phr/hot_
reset_n:CLK}

{/SDIF1_HR_FIX_INCLUDED.sdif1_phr/sdif_core_reset
_n:ALn}

{/SDIF2_HR_FIX_INCLUDED.sdif2_phr/hot_
reset_n:CLK}

{/SDIF2_HR_FIX_INCLUDED.sdif2_phr/sdif_core_reset
_n_q1:ALn}

{/SDIF2_HR_FIX_INCLUDED.sdif2_phr/hot_
reset_n:CLK}

{/SDIF2_HR_FIX_INCLUDED.sdif2_phr/sdif_core_reset
_n:ALn}

{/SDIF3_HR_FIX_INCLUDED.sdif3_phr/hot_
reset_n:CLK}

{/SDIF0_HR_FIX_INCLUDED.sdif0_phr/ltssm_q1[0]:D}

{/SDIF3_HR_FIX_INCLUDED.sdif3_phr/hot_
reset_n:CLK}

{/SDIF0_HR_FIX_INCLUDED.sdif0_phr/ltssm_q1[1]:D}

{* } {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/ltssm_q1[0]:D}

{* } {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/ltssm_q1[1]:D}

{* } {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/ltssm_q1[2]:D}

{* } {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/ltssm_q1[3]:D}

{* } {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/ltssm_q1[4]:D}

{* } {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/psel_q1:D}

{* } {/SDIF0_HR_FIX_INCLUDED.sdif0_phr/pwrite_q1:D}

{* } {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/ltssm_q1[0]:D}

{* } {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/ltssm_q1[1]:D}

{* } {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/ltssm_q1[2]:D}

{* } {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/ltssm_q1[3]:D}

{* } {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/ltssm_q1[4]:D}

{* } {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/psel_q1:D}

{* } {/SDIF1_HR_FIX_INCLUDED.sdif1_phr/pwrite_q1:D}

{* } {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/ltssm_q1[0]:D}

{* } {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/ltssm_q1[1]:D}

Table 3-2 • Potential False Paths (VHDL Names) inside the CoreResetP Core (continued)

From (Source Pin) To (Sink Pin)
Revision 2 33

High Speed Serial Interface (SERDES) Block
The high speed serial interface block or serializer/deserializer interface (SERDESIF) integrates several
functional blocks to support multiple high speed serial protocols within the FPGA. The SERDESIF block
has the following features:

• Peripheral Component Interconnect express (PCIe-PCI Express®) protocol support

• 10 Gigabit Attachment Unit Interface (XAUI) protocol support

• External Physical Coding Sub-layer (EPCS) interface supports any user defined high speed serial
protocol, such as serial Gigabit media independent interface (SGMII) protocol support

• Single or Dual serial protocol modes of operation. In Dual serial protocol modes, two protocols
can be implemented on the four physical lanes of the SERDESIF block

• SERDESIF block communications to the FPGA fabric through an AXI/AHBL interface or EPCS
interface

PCI Express Protocol Mode
In this mode, the SERDESIF block communicates with the FPGA using the AXI/AHBL interface and the
APB3 Interface for configuration; no constraints specific to this block are needed.

XAUI Protocol Mode
In XAUI mode, the SERDESIF block uses four clocks:

• APB_S_CLK for the APB3 configuration bus

• XAUI_MMD_MDC, the MDIO interface clock. In SmartTime, this clock appears as
S_AWADDR_HADDR[18] as the physical implementation re-use pins from the AXI/AHBL
interface unused in XAUI.

• XAUI_RX_CLK. Received data are synchronized to this clock.

• XAUI_OUT_CLK. Transmitted data are sampled with this clock.

APB_S_CLK and XAUI_MMD_MDC clock must be defined at their source (MSS for APB_S_CLK).

XAUI_RX_CLK and XAUI_OUT_CLK clocks may be defined on the output port of the SERDESIF block.
The example below creates these clocks for a SERDESIF block instantiated as XAUI_0.

{* } {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/ltssm_q1[2]:D}

{* } {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/ltssm_q1[3]:D}

{* } {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/ltssm_q1[4]:D}

{* } {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/psel_q1:D}

{* } {/SDIF2_HR_FIX_INCLUDED.sdif2_phr/pwrite_q1:D}

{* } {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/ltssm_q1[0]:D}

{* } {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/ltssm_q1[1]:D}

{* } {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/ltssm_q1[2]:D}

{* } {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/ltssm_q1[3]:D}

{* } {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/ltssm_q1[4]:D}

{* } {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/psel_q1:D}

{* } {/SDIF3_HR_FIX_INCLUDED.sdif3_phr/pwrite_q1:D}

Table 3-2 • Potential False Paths (VHDL Names) inside the CoreResetP Core (continued)

From (Source Pin) To (Sink Pin)
Revision 2 34

XAUI Synthesis Constraints
create_clock -name XAUI_RX_CLK -period 6.4 \
 [get_pins {XAUI_0.SERDESIF_INST.EPCS_RXCLK_0}]
create_clock -name XAUI_OUT_CLK -period 6.4 \
 [get_pins {XAUI_0.SERDESIF_INST.XAUI_OUT_CLK}]

XAUI Place and Route Constraints
create_clock -name XAUI_RX_CLK -period 6.4 \
 [get_pins {XAUI_0/SERDESIF_INST:EPCS_RXCLK_0}]
create_clock -name XAUI_OUT_CLK -period 6.4 \
 [get_pins {XAUI_0/SERDESIF_INST:XAUI_OUT_CLK }]

EPCS Protocol Mode
In EPCS mode, the SERDESIF can support up to four lanes. Two clocks are generated for each lane: RX
and TX clocks. The example below creates these clocks for a SERDESIF block instantiated as EPCS_0
using four lanes.

EPCS Protocol Synthesis Constraints
create_clock -name EPCS_0_RX_CLK -period 8 \
 [get_pins {EPCS_0.SERDESIF_INST.EPCS_RXCLK_0}]
create_clock -name EPCS_0_TX_CLK -period 8 \
 [get_pins {EPCS_0.SERDESIF_INST.EPCS_TXCLK_0}]
create_clock -name EPCS_1_RX_CLK -period 8 \
 [get_pins {EPCS_0.SERDESIF_INST.EPCS_RXCLK_1}]
create_clock -name EPCS_1_TX_CLK -period 8 \
 [get_pins {EPCS_0.SERDESIF_INST.EPCS_TXCLK_1}]
create_clock -name EPCS_2_RX_CLK -period 8 \
 [get_pins {EPCS_0.SERDESIF_INST.EPCS_RXCLK[0]}]
create_clock -name EPCS_2_TX_CLK -period 8 \
 [get_pins {EPCS_0.SERDESIF_INST.EPCS_TXCLK[0]}]
create_clock -name EPCS_3_RX_CLK -period 8 \
 [get_pins {EPCS_0.SERDESIF_INST.EPCS_RXCLK[1]}]
create_clock -name EPCS_3_TX_CLK -period 8 \
 [get_pins {EPCS_0.SERDESIF_INST.EPCS_TXCLK[1]}]
Revision 2 35

EPCS Protocol Place and Route Constraints
create_clock -name EPCS_0_RX_CLK -period 8 \
 [get_pins {EPCS_0/SERDESIF_INST:EPCS_RXCLK_0}]
create_clock -name EPCS_0_TX_CLK -period 8 \
 [get_pins {EPCS_0/SERDESIF_INST:EPCS_TXCLK_0}]
create_clock -name EPCS_1_RX_CLK -period 8 \
 [get_pins {EPCS_0/SERDESIF_INST:EPCS_RXCLK_1}]
create_clock -name EPCS_1_TX_CLK -period 8 \
 [get_pins {EPCS_0/SERDESIF_INST:EPCS_TXCLK_1}]
create_clock -name EPCS_2_RX_CLK -period 8 \
 [get_pins {EPCS_0/SERDESIF_INST:EPCS_RXCLK[0]}]
create_clock -name EPCS_2_TX_CLK -period 8 \
 [get_pins {EPCS_0/SERDESIF_INST:EPCS_TXCLK[0]}]
create_clock -name EPCS_3_RX_CLK -period 8 \
 [get_pins {EPCS_0/SERDESIF_INST:EPCS_RXCLK[1]}]
create_clock -name EPCS_3_TX_CLK -period 8 \
 [get_pins {EPCS_0/SERDESIF_INST:EPCS_TXCLK[1]}]
Revision 2 36

4 – Constraint Case Studies

This chapter has case studies for:

• Source-Synchronous Interface

• Constraints and Combinational Paths

• SmartFusion2 MSS and PCIe

Source-Synchronous Interface
Source-synchronous interfaces are commonly used for high-speed data transfer. SPI, DDR are standard
examples of source-synchronous interfaces. In a source-synchronous interface, the clock used to
synchronize the data is provided by one of the actors. Figure 4-1 shows a basic example of a source-
synchronous interface with the clock provided by the transmitter.

Figure 4-1 • Basic Source-Synchronous Transmitter
Revision 2 37

Source Synchronous Interface Design Example
The design in Figure 4-2 shows the constraints needed for a source synchronous interface. This design
has both input and output data synchronous to an output clock. The clock is generated from an oscillator
by a PLL multiplying the clock by two.

The following constraints define the three clocks needed for the design:

• One at the output of the oscillator.

• One at the output of the PLL generated from the oscillator.

• One on the output port, copy of the PLL clock, for the source-synchronous interface.

create_clock -name OSC_50MHz -period 20 [get_pins {OSC_0.RCOSC_25_50MHZ_CCC}]

create_generated_clock -name PLL_100MHz -multiply_by 2 \
 -source [get_pins {FCCC_0.OSC}] \
 [get_pins {FCCC_0.GL0}]

create_generated_clock -name clock_out -divide_by 1 \
 -source [get_pins {FCCC_0.GL0}] \
 [get_ports {clock_out}]

For output data, output delays define the requirements with respect to the output clock. The following
constraints specify that the data needs to be valid at the data_out port 2 ns before the clock edge and 0.3
ns after.

set_output_delay -max 2 -clock clock_out [get_ports {data_out}]
set_output_delay -min -0.3 -clock clock_out [get_ports {data_out}]

For input data, input delays define the requirements with respect to the output clock. The following
constraints specify that the external logic will take between 1.3 ns and 3.0 ns to send the data.

set_input_delay -max 3.0 -clock clock_out [get_ports {data_in}]
set_input_delay -min 1.3 -clock clock_out [get_ports {data_in}]

Place and Route Constraints
The clock constraints for the oscillator and the generated clocks for the CCC are automatically inferred
by SmartTime. The user should add the same input and output delay constraints.

Figure 4-2 • Source-Synchronous Interface Design Example
Revision 2 38

Constraints and Combinational Paths
This case below illustrates that constraints (in this case, input delays) set for synchronous paths may
impact combinational paths.

In the design shown in Figure 4-3, input data_in is used by both a synchronous path to flip-flop reg1 and
a combinational path to data_out.

To specify the requirements for the combinational path, a max delay can be used. For example, to
specify that the path between data_in and data_out should be shorter than 7 ns, the following max-delay
can be used:

set_max_delay 7 -from [get_ports {data_in}] -to [get_ports {data_out}]

Figure 4-3 • Constraints and Asynchronous Paths Design Example
Revision 2 39

The timing analysis of this path is shown in Table 4-1.

If constraints for the synchronous paths in the design are added (in this case, a clock and an input delay);
it will impact the max-delay.

create_clock -name clock -period 10 [get_ports {clock}]
set_input_delay -max 1.2 -clock clock [get_ports {data_in}]

Table 4-1 • Combinational Path Max Delay Example

From: data_in
 To: data_out
 data required time 7.000
 data arrival time - 6.745
 slack 0.255
 __
 Data arrival time calculation
 0.000 data_in (r)
 + 0.000 net: data_in
 0.000 data_in_ibuf/U0/U_IOPAD:PAD (r)
 + 1.802 cell: ADLIB:IOPAD_IN
 1.802 data_in_ibuf/U0/U_IOPAD:Y (r)
 + 0.000 net: data_in_ibuf/U0/YIN1
 1.802 data_in_ibuf/U0/U_IOINFF:A (r)
 + 0.083 cell: ADLIB:IOINFF_BYPASS
 1.885 data_in_ibuf/U0/U_IOINFF:Y (r)
 + 0.485 net: data_in_c
 2.370 AND2_0:A (r)
 + 0.163 cell: ADLIB:CFG2
 2.533 AND2_0:Y (r)
 + 0.692 net: data_out_c
 3.225 data_out_obuf/U0/U_IOOUTFF:A (r)
 + 0.353 cell: ADLIB:IOOUTFF_BYPASS
 3.578 data_out_obuf/U0/U_IOOUTFF:Y (r)
 + 0.000 net: data_out_obuf/U0/DOUT
 3.578 data_out_obuf/U0/U_IOPAD:D (r)
 + 3.167 cell: ADLIB:IOPAD_TRI
 6.745 data_out_obuf/U0/U_IOPAD:PAD (r)
 + 0.000 net: data_out
 6.745 data_out (r)

 6.745 data arrival time
 __
 Data required time calculation
 7.000 data_in (r)

 7.000 data_out (r)

 7.000 data required time
Revision 2 40

This input delay defines the availability of the signal at data_in regardless of the path being analyzed. It
will be used in the arrival time calculation of both paths. The timing analysis of the combinational path is
shown in Table 4-2. Notice the slack change and the input delay used in the arrival time calculation.

If the actual requirement between data_in and data_out is 7 ns, the max-delay should be 8.2 ns to
account for the input-delay. Table 4-3 shows that the slack is restored to its original value.

set_max_delay 8.2 ns -from [get_ports {data_in}] -to [get_ports {data_out}]

Table 4-2 • Combinational Path Max Delay Example - Slack Change and Input Delay Highlight

 From: data_in
 To: data_out
 data required time 7.000
 data arrival time - 7.945
 slack -0.945
 __
 Data arrival time calculation
 0.000 clock
 + 1.200 Input Delay Constraint
 1.200 data_in (r)
 + 0.000 net: data_in
 1.200 data_in_ibuf/U0/U_IOPAD:PAD (r)
 + 1.802 cell: ADLIB:IOPAD_IN
 3.002 data_in_ibuf/U0/U_IOPAD:Y (r)
 + 0.000 net: data_in_ibuf/U0/YIN1
 3.002 data_in_ibuf/U0/U_IOINFF:A (r)
 + 0.083 cell: ADLIB:IOINFF_BYPASS
 3.085 data_in_ibuf/U0/U_IOINFF:Y (r)
 + 0.485 net: data_in_c
 3.570 AND2_0:A (r)
 + 0.163 cell: ADLIB:CFG2
 3.733 AND2_0:Y (r)
 + 0.692 net: data_out_c
 4.425 data_out_obuf/U0/U_IOOUTFF:A (r)
 + 0.353 cell: ADLIB:IOOUTFF_BYPASS
 4.778 data_out_obuf/U0/U_IOOUTFF:Y (r)
 + 0.000 net: data_out_obuf/U0/DOUT
 4.778 data_out_obuf/U0/U_IOPAD:D (r)
 + 3.167 cell: ADLIB:IOPAD_TRI
 7.945 data_out_obuf/U0/U_IOPAD:PAD (r)
 + 0.000 net: data_out
 7.945 data_out (r)

 7.945 data arrival time
 __
 Data required time calculation
 7.000 data_in (r)

 7.000 data_out (r)

 7.000 data required time
Revision 2 41

If the output data will be used synchronously in the external device, it is preferable to use an output-delay
(rather than a max-delay) to specify the requirement for the asynchronous path. In our example, the
output delay below will create the same 7 ns requirements for data_in to data_out.

set_output_delay 1.8 -clock clock [get_ports {data_out}]

Table 4-3 • Combinational Path Max Delay Example - Slack Restored to Original Value

 From: data_in
 To: data_out
 data required time 8.200
 data arrival time - 7.945
 slack 0.255
 __
 Data arrival time calculation
 0.000 clock
 + 1.200 Input Delay Constraint
 1.200 data_in (r)
 + 0.000 net: data_in
 1.200 data_in_ibuf/U0/U_IOPAD:PAD (r)
 + 1.802 cell: ADLIB:IOPAD_IN
 3.002 data_in_ibuf/U0/U_IOPAD:Y (r)
 + 0.000 net: data_in_ibuf/U0/YIN1
 3.002 data_in_ibuf/U0/U_IOINFF:A (r)
 + 0.083 cell: ADLIB:IOINFF_BYPASS
 3.085 data_in_ibuf/U0/U_IOINFF:Y (r)
 + 0.485 net: data_in_c
 3.570 AND2_0:A (r)
 + 0.163 cell: ADLIB:CFG2
 3.733 AND2_0:Y (r)
 + 0.692 net: data_out_c
 4.425 data_out_obuf/U0/U_IOOUTFF:A (r)
 + 0.353 cell: ADLIB:IOOUTFF_BYPASS
 4.778 data_out_obuf/U0/U_IOOUTFF:Y (r)
 + 0.000 net: data_out_obuf/U0/DOUT
 4.778 data_out_obuf/U0/U_IOPAD:D (r)
 + 3.167 cell: ADLIB:IOPAD_TRI
 7.945 data_out_obuf/U0/U_IOPAD:PAD (r)
 + 0.000 net: data_out
 7.945 data_out (r)

 7.945 data arrival time
 __
 Data required time calculation
 8.200 data_in (r)

 8.200 data_out (r)

 8.200 data required time
Revision 2 42

The timing analysis for the path is shown in Table 4-4.

Table 4-4 • Combinational Path Output Delay Example

 From: data_in
 To: data_out
 data required time 8.200
 data arrival time - 7.945
 slack 0.255
 __
 Data arrival time calculation
 0.000 clock
 + 1.200 Input Delay Constraint
 1.200 data_in (r)
 + 0.000 net: data_in
 1.200 data_in_ibuf/U0/U_IOPAD:PAD (r)
 + 1.802 cell: ADLIB:IOPAD_IN
 3.002 data_in_ibuf/U0/U_IOPAD:Y (r)
 + 0.000 net: data_in_ibuf/U0/YIN1
 3.002 data_in_ibuf/U0/U_IOINFF:A (r)
 + 0.083 cell: ADLIB:IOINFF_BYPASS
 3.085 data_in_ibuf/U0/U_IOINFF:Y (r)
 + 0.485 net: data_in_c
 3.570 AND2_0:A (r)
 + 0.163 cell: ADLIB:CFG2
 3.733 AND2_0:Y (r)
 + 0.692 net: data_out_c
 4.425 data_out_obuf/U0/U_IOOUTFF:A (r)
 + 0.353 cell: ADLIB:IOOUTFF_BYPASS
 4.778 data_out_obuf/U0/U_IOOUTFF:Y (r)
 + 0.000 net: data_out_obuf/U0/DOUT
 4.778 data_out_obuf/U0/U_IOPAD:D (r)
 + 3.167 cell: ADLIB:IOPAD_TRI
 7.945 data_out_obuf/U0/U_IOPAD:PAD (r)
 + 0.000 net: data_out
 7.945 data_out (r)

 7.945 data arrival time
 __
 Data required time calculation
 10.000 clock
 + 0.000 Clock source
 10.000 clock (r)
 - 1.800 Output Delay Constraint
 8.200 data_out (r)

 8.200 data required time
Revision 2 43

SmartFusion2 MSS and PCIe Design
This section uses the design from the PCIe Data Plane Demo Using MSS HPDMA as an example of a
typical system created using System Builder. The design creates a DMA between a PCIe host and a
DDR3 memory. It does this using a MSS and SERDESIF IP configured as PCIe.

The design documentation can be found in the SmartFusion2 PCIe MSS HPDMA Demo Guide.

Download the design files from the Microsemi website.

SmartFusion2 MSS and PCIe Design Analysis
The block diagram of the demo is shown in Figure 4-4. It shows how MSS, SERDES_IF (configured as a
PCIe) and LSRAM are connected using an AHB bus.

In this design, I/Os are used through hard IPs and no constraints are needed. Only clocks must be
specified.

Figure 4-4 • SmartFusion2 MSS and PCIe Block Diagram
Revision 2 44

http://www.microsemi.com/document-portal/doc_download/132602-smartfusion2-pcie-mss-hpdma-demo-guide
http://www.microsemi.com/soc/download/rsc/?f=M2S_PCIE_MSSHPDMA_DEMO_DF

The design clocks are configured in System Builder, as shown in Figure 4-5. System Builder also
instantiates blocks required for the initialization of the system adding other clocks.

Figure 4-6 shows the connections of all the clocks in the system.

Figure 4-5 • SmartFusion2 MSS and PCIe System Builder Clock Configuration

Figure 4-6 • SmartFusion2 MSS and PCIe System Builder Clock Used by the System
Revision 2 45

The Advanced tab of the CCC configurator provides the details of the CCC configuration used to
generate the clocks (Figure 4-7). The 50 MHz clock is first multiplied by 10 by the PLL and then divided
by 5 and 4 to generate 100 MHz and 125 MHz, respectively.

SmartFusion2 MSS and PCIe Synthesis Constraints
The design uses two clock sources of 50 MHz: one from an input port, the other from an integrated
oscillator.

create_clock -name CLK0_PAD -period 20 [get_ports {CLK0_PAD}]

create_clock -name OSC_50MHz -period 20 \
 [get_pins {PCIE_Demo_0.FABOSC_0.RCOSC_25_50MHZ_O2F}]

The CCC generated 2 clocks from the 50 MHz system clock:

FIC_0_CLK at 100 MHz on GL0 for the AHB bus.
CLK_LTSSM at 125 MHz on GL3 used by CoreResetP.
create_generated_clock -name FIC_0_CLK -multiply_by 10 -divide_by 5 \
 -source [get_pins {PCIE_Demo_0.CCC_0.CLK0_PAD}] \
 [get_pins {PCIE_Demo_0.CCC_0.GL0}]

create_generated_clock -name CLK_LTSSM -multiply_by 10 -divide_by 4 \
 -source [get_pins {PCIE_Demo_0.CCC_0.CLK0_PAD}] \
 [get_pins {PCIE_Demo_0.CCC_0.GL3}]

Figure 4-7 • SmartFusion2 MSS and PCIe System Builder CCC Configuration
Revision 2 46

Finally, the MSS creates an asynchronous clock for the configuration APB bus of 1/4 of the Cortex-M3
clock or, in this case, 25 MHz.

create_clock -name APB_CLK -period 40 \
 [get_pins {PCIE_Demo_0.PCIE_Demo_MSS_0.FIC_2_APB_M_PCLK}]

After running synthesis, the clock summary in the synthesis report shows that all clock constraints were
taken into account and that no other clocks were inferred.

Clock Summary

Start Requested Requested Clock Clock
Clock Frequency Period Type Group
--
--
APB_CLK 50.0 MHz 20.000 declared default_clkgroup
CLK0_PAD 50.0 MHz 20.000 declared default_clkgroup
CLK_LTSSM 125.0 MHz 8.000 generated (from CLK0_PAD) default_clkgroup
FIC_0_CLK 100.0 MHz 10.000 generated (from CLK0_PAD) default_clkgroup
OSC_50MHz 50.0 MHz 20.000 declared default_clkgroup
System 1.0 MHz 1000.000 system system_clkgroup
==

If you run synthesis interactively, the same information is provided in the GUI, as shown in Figure 4-8.

SmartFusion2 MSS and PCIe Place and Route Constraints
The clocks from the oscillator and the CCC are automatically generated by SmartTime. Only CLK0_PAD
and APB_CLK must be specified.

create_clock -name CLK0_PAD -period 20 [get_ports {CLK0_PAD}]

create_clock -name APB_CLK -period 40 \
 [get_pins {PCIE_Demo_0/PCIE_Demo_MSS_0/MSS_ADLIB_INST:CLK_CONFIG_APB}]

Figure 4-8 • SmartFusion2 MSS and PCIe Clock Summary in Synplify Pro
Revision 2 47

MSS (TBI Interface) to SERDES (SmartFusion2 Only)
When you configure the MSS Ethernet MAC (Right-click MSS > Configure > double-click Ethernet) and
select the TBI Interface, the signal path on the MAC_TBI_TCGP[9:0] bus from the MSS MAC to the
SERDES in the Fabric is a multicycle path and should be constrained as such (Figure 4-9).

Figure 4-9 • Configuring the MSS Ethernet MAC for the TBI (Fabric) Interface
Revision 2 48

Figure 4-10 shows the paths between the MSS MAC and the SERDES in the fabric. The path from
MAC_TBI_TCGF[9:0] to EPCS_3_TX_DATA[9:0] is a multicycle path.

Set the multicycle path constraint in an *.SDC file. If you do not, Libero's SmartTime may report set up
and/or hold time violations.

set_multicycle_path -setup 3 -from { \
Webserver_TCP_0/Webserver_TCP_MSS_0/MSS_ADLIB_INST/INST_MSS_120_IP:GTX_CLKPF} \
 -to { SERDES_IF_0/SERDESIF_INST/INST_SERDESIF_IP:EPCS_3_TX_DATA* }

set_multicycle_path -hold 0 -from\
{Webserver_TCP_0/Webserver_TCP_MSS_0/MSS_ADLIB_INST/INST_MSS_120_IP:GTX_CLKPF} \
 -to { SERDES_IF_0/SERDESIF_INST/INST_SERDESIF_IP:EPCS_3_TX_DATA* }

Figure 4-11 describes the setup and hold timing check relations.

Pass the *.sdc file to Compile (Right-click the *.sdc file and choose Use for Compile) and select Timing-
Driven Layout Option (Place and Route > Configure Options). Check to make sure that the
multicycle path constraints are set when you open the SmartTime Constraints Editor after Layout.

Figure 4-10 • Multicycle Path from MSS MAC to SERDES (Fabric)

Figure 4-11 • Setup and Hold Timing Check Relations for Multicycle Path
Revision 2 49

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 650.318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/
fpga-soc-support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products
Group home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.
Revision 2 50

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
www.microsemi.com/soc
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

M
O
CA

W
O
Sa
Fa

E-

©2
re
lo
Co
se
re
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; Enterprise Storage and
Communication solutions, security technologies and scalable anti-tamper products; Ethernet
solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800
employees globally. Learn more at www.microsemi.com.icrosemi Corporate Headquarters

ne Enterprise, Aliso Viejo,
 92656 USA

ithin the USA: +1 (800) 713-4113
utside the USA: +1 (949) 380-6100
les: +1 (949) 380-6136
x: +1 (949) 215-4996

mail: sales.support@microsemi.com

016 Microsemi Corporation. All rights
served. Microsemi and the Microsemi
go are trademarks of Microsemi
rporation. All other trademarks and

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office.

Visit About Us for sales office listings and corporate contacts.

Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
5-02-00580-2/05.16

information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

rvice marks are the property of their
spective owners.

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:tech@microsemi.com

	Introduction
	1 – Using Synopsys Design Constraints
	Object Access
	Implicit vs. Explicit Specification
	Wild Card Characters
	Hierarchy and Pin Separators
	Bus Naming Conventions
	Comments

	Timing Assertions
	Timing Exceptions
	Timing Exceptions and Precedence Order

	2 – Timing Constraints and Design Flow
	Timing Constraints for Synplify Pro
	Overview
	Supported Synplify Pro Timing Constraints
	Constraints for Design Requirements
	Constraints for Optimizing Your Design
	Optimizing for Timing Versus Area

	SCOPE and Using the Forward Annotated SDC
	Timing Constraint Entry Using SCOPE
	Using the Forward Annotated SDC

	Timing Constraints for Timing-Driven Place and Route
	Timing-Driven Place and Route Constraints
	Constraints for Design Requirements
	Constraints for Optimizing Your Design

	Improving Placer Performance
	Placer Performance - Supported Constraints
	Limitations
	Using set_max_delay to Improve Placer Results

	3 – Constraints for SmartFusion2 and IGLOO2 IP Blocks
	Oscillators
	Oscillator Synthesis Constraints
	Oscillator Place and Route Constraints

	Fabric Clock Conditioning Circuit (CCC) for SmartFusion2 and IGLOO2
	Fabric CCC Synthesis Constraints
	Fabric CCC Place and Route Constraints

	SERDES/DDR Configuration Subsystem (MSS/HPMS FIC_2)
	Creating a Clock Constraint for FIC_2_APB_M_PCLK
	Specifying Timing Requirements for FIC_2 to CoreConfigP Interface

	CoreResetP False Paths (SmartFusion2 and IGLOO2 Only)
	High Speed Serial Interface (SERDES) Block
	PCI Express Protocol Mode
	XAUI Protocol Mode
	EPCS Protocol Mode

	4 – Constraint Case Studies
	Source-Synchronous Interface
	Source Synchronous Interface Design Example
	Place and Route Constraints

	Constraints and Combinational Paths
	SmartFusion2 MSS and PCIe Design
	SmartFusion2 MSS and PCIe Design Analysis
	SmartFusion2 MSS and PCIe Synthesis Constraints
	SmartFusion2 MSS and PCIe Place and Route Constraints

	MSS (TBI Interface) to SERDES (SmartFusion2 Only)

	A – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

