
AC454
Application Note

RTG4 SRAM Initialization After Power-up Using μPROM

51900454. 6.0 11/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary AC454 Revision 6.0 iii

Contents

1 Revision History . 1
1.1 Revision 6.0 . 1
1.2 Revision 5.0 . 1
1.3 Revision 4.0 . 1
1.4 Revision 3.0 . 1
1.5 Revision 2.0 . 1
1.6 Revision 1.0 . 1

2 RTG4 SRAM Initialization After Power-up Using µPROM . 2
2.1 Design Requirements . 3
2.2 Prerequisites . 4
2.3 Embedded SRAM and µPROM Blocks . 4
2.4 Data Storage in RTG4 µPROM . 4
2.5 Design Description . 5

2.5.1 Fabric APB Master . 5
2.5.2 CoreµPROMIF_APB . 8

2.6 Hardware Implementation . 9
2.7 Clocking Structure . 9
2.8 Reset Structure . 10
2.9 Simulating the Design . 10
2.10 Setting Up the Demo Design . 12
2.11 Running the Design . 13
2.12 Conclusion . 13

3 Appendix 1: Programming the Device Using FlashPro Express 14

4 Appendix 2: Running the TCL Script . 17

5 Appendix 3: Design Files . 18

6 Appendix 4: Customizing RAM Wrapper Interface . 19

7 Appendix 5: How to Reset RAM Block Contents Using µPROM 20

Microsemi Proprietary AC454 Revision 6.0 iv

Figures

Figure 1 Top-Level Block Diagram . 3
Figure 2 µPROM Memory Configurator GUI . 5
Figure 3 APB3 State Diagram . 6
Figure 4 Fabric Master State Diagram . 7
Figure 5 CoreµPROMIF_APB and RTG4µPROM SmartDesign Connection . 8
Figure 6 SmartDesign Top-Level Diagram . 9
Figure 7 Clocking Structure . 10
Figure 8 Reset Structure . 10
Figure 9 Waveform of RTG4 LSRAM Initialization Using µPROM . 11
Figure 10 TPSRAM Write Data and Write Address . 11
Figure 11 TPSRAM Read Data and Read Address . 12
Figure 12 RTG4 Development Kit Board . 12
Figure 13 SmartDebug LSRAM Read Data . 13
Figure 14 FlashPro Express Job Project . 14
Figure 15 New Job Project from FlashPro Express Job . 15
Figure 16 Programming the Device . 15
Figure 17 FlashPro Express—RUN PASSED . 16
Figure 18 APB Master Wrapper SmartDesign . 19
Figure 19 Catalog Window . 20
Figure 20 Sample SmartDesign Block . 20
Figure 21 uPROM Configurator . 21
Figure 22 uPROM Configurator—Initialization client . 21
Figure 23 SmartDebug Window . 22
Figure 24 Debug FPGA Array Window . 23
Figure 25 RAM Contents Reset to Zero . 23

Microsemi Proprietary AC454 Revision 6.0 v

Tables

Table 1 Design Requirements . 3
Table 2 SRAM and µPROM Blocks in the RT4G150 Device . 4
Table 3 Fabric APB Master Interface Signals . 8

Revision History

Microsemi Proprietary AC454 Revision 6.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 6.0
The following is a summary of the changes made in this revision.

• Updated the design and document for Libero SoC v2021.2.
• Updated Figure 1, page 3.
• Updated Hardware Implementation, page 9.
• Updated Clocking Structure, page 9.
• Updated Reset Structure, page 10.

1.2 Revision 5.0
The following is a summary of the changes made in this revision.

• Added Setting Up the Demo Design, page 12.
• Added Appendix 1: Programming the Device Using FlashPro Express, page 14.
• Added Appendix 2: Running the TCL Script, page 17.
• Removed the references to Libero version numbers.

1.3 Revision 4.0
The document was updated for Libero SoC v11.9 SP1.

1.4 Revision 3.0
The document was updated for Libero SoC v11.8 SP2.

1.5 Revision 2.0
The procedure to reset RAM block contents using µPROM was added. For more information, refer to
Appendix 5: How to Reset RAM Block Contents Using µPROM, page 20.

1.6 Revision 1.0
The first publication of this document.

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 2

2 RTG4 SRAM Initialization After Power-up
Using µPROM

This application note describes how to initialize the static random access memory (SRAM) blocks of
Microsemi RTG4™ field programmable gate array (FPGA) with user data after power-up. The design for
this application note uses a large SRAM (LSRAM) block, which is initialized by an FPGA fabric master
through the Advanced Microcontroller Bus Architecture Advanced Peripheral Bus interface (AMBA APB
bus).

RTG4 FPGA devices have embedded SRAM blocks (LSRAM and micro SRAM (µSRAM)) in the fabric.
Both LSRAM and µSRAM blocks are placed in multiple rows within the FPGA fabric, and they can be
accessed through the fabric routing architecture. Table 2, page 4 lists the number of LSRAM, µSRAM,
and micro programmable read-only memory (µPROM) blocks available in the RT4G150 device.

LSRAMs are used for larger data storage (up to 24,576 bits), whereas µSRAMs are used for smaller data
storage (up to 1536 bits). Both LSRAM and µSRAM are volatile. As a result, data is lost after the device
power-down. After power-up, the state of SRAM is unknown.

µPROM can be used to store programmable data for initializing the LSRAM and µSRAM blocks. µPROM
cells are located at the bottom of the FPGA fabric, and they can be accessed through the fabric interface.
This application note implements a design that uses µPROM to initialize the LSRAM block. µPROM
stores up to 10,400 36-bit words (374,400 bits of data). It supports only read operations during normal
device operation after the device is programmed. For more information about µPROM features and
architecture, refer to the µPROM section in UG0574: RTG4 FPGA Fabric User Guide.

Figure 1, page 3 shows the top-level block diagram of the design used in this application note.

The LSRAM initialization data (.mem file) is stored in the µPROM during programming. The .mem file is a
data storage client that contains the µPROM memory content. The fabric APB bus master wrapper reads
the µPROM and stores the initialization data in LSRAM. The CoreµPROMIF_APB IP core implements
the APB bus slave wrapper logic to provide read-only access to the µPROM. This design is simulated
and validated using the RTG4 Development Kit.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134407

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 3

Figure 1 • Top-Level Block Diagram

2.1 Design Requirements
The following table lists the hardware and software requirements for this demo design.

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

Table 1 • Design Requirements

Requirement Version
Hardware
RTG4 Development Kit
• 12 V adapter (provided with the kit)

Rev B or later

Host PC or laptop 64-bit Windows 7 and 10

Software Requirements
Libero® System-on-Chip (SoC) Note: Refer to the readme.txt file provided in

the design files for the software versions
used with this reference design.FlashPro Express

Host PC drivers USB to UART drivers

SYSTEMRESET

RC 50MHz OSCRTG4FCCC

RTG4FCCCECALIB

FPGA FABRIC

RTG4

CoreAPB3

Mux Arbiter

APB Master
wrapper

SRAM Block

RAM_APB_BLK

.mem File

RTG4 μPROM

Core μPROMIF_APB

User RAM
interface

Slave
Master

DEVRST_NPower_on_reset_n

GL0

GL0

Lock

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 4

2.2 Prerequisites
Before you start:

1. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the
following location: https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

2. For demo design files download link:
http://soc.microsemi.com/download/rsc/?f=rtg4_ac454_df

2.3 Embedded SRAM and µPROM Blocks
The following table lists the number of SRAM blocks (including LSRAM and µSRAM) and µPROM blocks
available in the RT4G150 device.

LSRAM is configured in a two-port mode in this design. One port is dedicated for write operations and the
other for read operations. The read and write operations are synchronous and require a clock edge.
LSRAM supports both pipelined read and non-pipelined read (flow-through) operations. µSRAM blocks
have two read data ports (port A and port B) and one write data port (port C). Read operations are
executed in synchronous and asynchronous modes. Write operation is performed only in synchronous
mode.

µPROM supports only read operation during normal device operation. Read operation is performed using
the fabric interface in synchronous mode only.

For more information about the features and use models of LSRAM, µSRAM, and µPROM, refer to
UG0574: RTG4 FPGA Fabric User Guide.

2.4 Data Storage in RTG4 µPROM
This design uses the µPROM memory content for initializing the LSRAM block after power-up.
CoreµPROMIF_APB IP provides easy access to µPROM memory for APB bus masters. It performs
address translation, allowing APB bus masters to address µPROM using word-aligned addressing. To
access µPROM memory using CoreµPROMIF_APB, RTG4µPROM core is instantiated along with
CoreµPROMIF_APB in SmartDesign. These cores are available in the Libero SoC Catalog. For more
information about instantiating CoreμPROMIF_APB and mapping RTG4μPROM, refer to the System
Integration section in CoreUPROMIF_APB_HB.pdf.

In this design, a data storage client is created to store LSRAM initialization data. It is configured to store
36-bit words in 64 locations during the configuration of µPROM. The data storage client file is provided
with the design file (refer to Appendix 3: Design Files, page 18). The RTG4μPROM core memory
configurator GUI in Libero SoC is used for creating multiple data storage clients. The following figure
shows how to create a single data storage client for this design. To allow µPROM content for simulation,
select the Use content for simulation check box.

Table 2 • SRAM and µPROM Blocks in the RT4G150 Device

Type Number of blocks in RT4G150
LSRAM 24.5 Kb blocks 209

µSRAM 1.5 Kb blocks 210

µPROM 381 Kb block 1

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134407
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
http://soc.microsemi.com/download/rsc/?f=rtg4_ac454_df
http://soc.microsemi.com/ipdocs/CoreUPROMIF_APB_HB.pdf

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 5

Figure 2 • µPROM Memory Configurator GUI

2.5 Design Description
This design includes:

• Fabric APB Master, page 5
• CoreµPROMIF_APB, page 8

2.5.1 Fabric APB Master
The fabric master performs the following functions:

1. Acts as AMBA Advanced Peripheral Bus 3 (APB3) bus interface that reads data from the µPROM
memory using CoreµPROMIF_APB slave interface.

2. Loads data into LSRAM via the APB bus I/F.
The state machine operates through the following states of an APB bus cycle:

• IDLE: This is the default state of the APB bus.
• SETUP: When a transfer is required the state machine moves to this state. In this state, the required

PSEL signal is asserted. The APB bus remains in this state for one clock cycle and moves to the
ACCESS state on the rising edge of PCLK.

• ACCESS: The PENABLE signal is asserted in this state. The address, write, and select signals are
asserted and must remain stable during the transition from SETUP to ACCESS state. The PREADY
signal controls the exit from this state in the following ways:
• If PREADY is held low by the slave, the state machine remains in this state.
• If PREADY is held high by the slave, this state is exited and moved back to the IDLE state if no

more transfers happen. If another transition happens, the state machine moves to the SETUP
state.

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 6

The following illustration shows the states in the APB bus cycle.

Figure 3 • APB3 State Diagram

After the fabric master interface reads data from µPROM memory and loads that data into fabric LSRAM,
it asserts a switch flag (init_done) to the mux arbiter block. This block lets the LSRAM ports to be used for
initialization on design startup and then releases them for user access once initialization is complete.

The LSRAM block is configured as a two-port with a depth of 512 and a width of 36. The APB3 master
wrapper logic generates the required read and write operations for LSRAM using the PREADY signal
from the slave interface. The PREADY signal is also used for inserting wait states.

The APB fabric master interface generates address and controls the signals on the bus after the rising
edge of PCLK. If PREADY is HIGH, the APB master enters the data phase to perform a read or write
operation. During the data phase, if PREADY is LOW, then the APB slave extends the data phase. The
APB fabric master must hold the data throughout extended cycles. The APB master will only read and
write the APB slaves when PREADY is HIGH.

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 7

The following illustration shows the states of the fabric master interface.

Figure 4 • Fabric Master State Diagram

PSEL = 0
PENABLE = 0

(PADDR < uPROM last
address) && (PREADY = 0)

PSEL = 1
PENABLE = 0

Yes

No

PREADY = 1

Yes

Yes

PSEL = 1
PENABLE = 1

PADDR = PADDR + 1

No

Data read from uPROM
and stored in a register

Data written in to LSRAM

Switch flag(init_done)
asserted

Data written in to LSRAM

Data read from LSRAM

Check
PREADY

Reset and stop transfer

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 8

2.5.1.1 Fabric APB Master Interface Description
The following table lists the fabric APB master interface signals.

2.5.2 CoreµPROMIF_APB
RTG4 µPROM is accessed using RTG4 µPROM core or by using CoreµPROMIF_APB IP core. The
CoreµPROMIF_APB IP core makes the RTG4 µPROM block appear as a transparent memory on the
APB bus interface. In this design, the CoreµPROMIF_APB IP core is used to perform address translation
to allow APB bus masters to directly address µPROM using word aligned addressing. The
CoreµPROMIF_APB IP core also prevents reading an invalid address space in µPROM. The
CoreµPROMIF_APB IP core must be instantiated along with the RTG4µPROM core and connected as
shown in the following figure.

Figure 5 • CoreµPROMIF_APB and RTG4µPROM SmartDesign Connection

For more information about other features and advantages of using CoreµPROMIF_APB, refer to
CoreUPROMIF_APB_HB.pdf.

Table 3 • Fabric APB Master Interface Signals

Signal Direction Description
PCLK Input APB bus clock

PRESETn Input APB bus active low reset

PRDATA[31:0] Input APB bus input 32 bit read data

RDATA[35:0] Input 36 bit µPROM read data

PREADY Input APB bus ready signal

PSLVERR Input APB bus error reporting signal

PWRITE Output APB bus write access signal

PWDATA[31:0] Output APB bus 32 bit wide write data

PENABLE Output APB bus enable signal

PSEL Output APB bus slave select signal

PADDR[15:2] Output APB bus slave address signal

Mem_data_out[35:0] Output Output data for LSRAM

rd_en Output LSRAM read enable signal

wr_en Output LSRAM write enable signal

raddr[8:0] Output LSRAM read address signal

waddr[8:0] Output LSRAM write address signal

Init_done Output Initialization done signal

http://soc.microsemi.com/ipdocs/CoreUPROMIF_APB_HB.pdf

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 9

2.6 Hardware Implementation
This design uses the Sysreset signal, a 50 MHz RC oscillator, the RTG4 fabric clock conditioning circuit
(FCCC), the RAM_APB_BLK_0 block (LSRAM block with master wrapper), and the CoreµPROMIF_APB
and RTG4µPROM IP cores, as shown in the following figure. The IP cores, along with the LSRAM
wrapper, are used to initialize the fabric SRAM by moving data from µPROM to fabric LSRAM via the
APB interface. This design uses the 50 MHz RC oscillator as a reference clock for the fabric CCC. The
fabric CCC is connected to RTG4FCCCECALIB which generates a 30 MHz clock, which is used as the
system clock.

Figure 6 • SmartDesign Top-Level Diagram

The RAM_APB_BLK_0 module contains LSRAM as a two-port memory with the depth and width
configured as 512 × 36. This module can be modified to initialize LSRAM blocks configured in any of the
various aspect ratios and operating modes supported by RTG4. For more information about using
variations of LSRAM, refer to Appendix 4: Customizing RAM Wrapper Interface, page 19.

The RTG4µPROM core imposes a maximum frequency constraint of 30 MHz on the µPROM clock.
CoreµPROMIF_APB has pre-scalar clock logic that generates µPROM clock from PCLK frequency with
the condition of µPROM clock frequency not exceeding 30 MHz. In this design, the µPROM read
operation frequency is 30 MHz.

For more information about operating µPROM at a clock frequency other than 30 MHz, refer to the
Design Constraints section in CoreUPROMIF_APB_HB.pdf.

2.7 Clocking Structure
The on-chip 50 MHz oscillator gives the reference frequency to RTG4FCCC_0,which is connected to
RTG4FCCCECALIB generates a 30 MHz clock (GL0) and drives COREUPROMIF_0, RTG4UPROM,
RTG4TPSRAM_0, and APB_master_wrp_0 blocks. The following figure shows the reset structure of the
design.

http://soc.microsemi.com/ipdocs/CoreUPROMIF_APB_HB.pdf

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 10

Figure 7 • Clocking Structure

2.8 Reset Structure
The POWER_ON_RESET and GL0 signals are given to RTG4FCCCECALIB core and the output signal
is used to reset the RTG4uPROM_0 and APB_master_wrp_0 block. After reset, the APB_master_wrp_0
block generates the init_done signal to reset the mux_blk_0. The following figure shows the reset
structure of the design.

Figure 8 • Reset Structure

2.9 Simulating the Design
The design files mentioned in Appendix 3: Design Files, page 18 include testbench files that are required
for simulating the design. As shown in the following figure, data is read from µPROM using APB interface
and loaded to LSRAM. This data can be seen using the RD[35:0] output signal of the TPSRAM block
(highlighted in the figure).

On-chip 50MHz RC
oscillator

RTG4FCCC

RTG4FCCCECALIB

CoreμPROM IF_0 RTG4μPROM RTG4TPSRAM_0 APB_master_wrp_0

PCLK PCLKCLK CLK

SYSRESET_N

RTG4FCCC_0 RTG4FCCCECALIB

RTG4μPROM_0

APB_master_wrp_0

Mux_blk_0

PRESETn

PRESETn

init_done

Lock

POWER_ON_RESET

GL0

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 11

Figure 9 • Waveform of RTG4 LSRAM Initialization Using µPROM

The following figure shows the write data and write address of TPSRAM.

Figure 10 • TPSRAM Write Data and Write Address

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 12

The following figure shows the read data and read address of TPSRAM.

Figure 11 • TPSRAM Read Data and Read Address

2.10 Setting Up the Demo Design
The following figure shows the RTG4 Development Kit board.

Figure 12 • RTG4 Development Kit Board

RTG4 SRAM Initialization After Power-up Using µPROM

Microsemi Proprietary AC454 Revision 6.0 13

2.11 Running the Design
To program the RTG4 Development Kit with the job file provided as part of the design files using
FlashPro Express software, refer to Appendix 1: Programming the Device Using FlashPro Express,
page 14.

After the RTG4 Development kit is programmed successfully, open SmartDebug in Libero SoC and
check for the LSRAM content. The LSRAM content must match with the memory file that is loaded into
µPROM through data client configurator, as shown in the following figure.

For more information about running SmartDebug to view LSRAM memory block content, refer to
TU0530: SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools Tutorial.

Figure 13 • SmartDebug LSRAM Read Data

2.12 Conclusion
This application note describes how to initialize the RTG4 FPGA LSRAM with user data programmed into
the µPROM. It provides an interface that can be instantiated in a user design to perform LSRAM
initialization using µPROM. It also explains how to simulate and validate the design on RTG4
Development Board.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133136

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC454 Revision 6.0 14

3 Appendix 1: Programming the Device Using
FlashPro Express

This section describes how to program the RTG4 device with the programming job file using FlashPro
Express.

To program the device, perform the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in Table 3 of UG0617:
RTG4 Development Kit User Guide.

2. Optionally, jumper J32 can be set to connect pins 2-3 when using an external FlashPro4, FlashPro5,
or FlashPro6 programmer instead of the default jumper setting to use the embedded FlashPro5.

Note: The power supply switch, SW6 must be switched OFF while making the jumper connections.

3. Connect the power supply cable to the J9 connector on the board.
4. Power ON the power supply switch SW6.
5. If using the embedded FlashPro5, connect the USB cable to connector J47 and the host PC.

Alternatively, if using an external programmer, connect the ribbon cable to the JTAG header J22 and
connect the programmer to the host PC.

6. On the host PC, launch the FlashPro Express software.
7. Click New or select New Job Project from FlashPro Express Job from Project menu to create a

new job project, as shown in the following figure.
Figure 14 • FlashPro Express Job Project

8. Enter the following in the New Job Project from FlashPro Express Job dialog box:
• Programming job file: Click Browse, and navigate to the location where the .job file is located and

select the file. The default location is:
<download_folder>\rtg4_ac454_df\Programming_Job

• FlashPro Express job project location: Click Browse and navigate to the desired FlashPro
Express project location.

https://www.microsemi.com/document-portal/doc_download/135213-ug0617-rtg4-fpga-development-kit-user-guide
https://www.microsemi.com/document-portal/doc_download/135213-ug0617-rtg4-fpga-development-kit-user-guide

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC454 Revision 6.0 15

Figure 15 • New Job Project from FlashPro Express Job

9. Click OK. The required programming file is selected and ready to be programmed in the device.
10. The FlashPro Express window appears as shown in the following figure. Confirm that a programmer

number appears in the Programmer field. If it does not, confirm the board connections and click
Refresh/Rescan Programmers.

Figure 16 • Programming the Device

11. Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as
shown in the following figure.

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC454 Revision 6.0 16

Figure 17 • FlashPro Express—RUN PASSED

12. Close FlashPro Express or click Exit in the Project tab.

Appendix 2: Running the TCL Script

Microsemi Proprietary AC454 Revision 6.0 17

4 Appendix 2: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design
flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

1. Launch the Libero software
2. Select Project > Execute Script....
3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
4. Click Run.
After successful execution of TCL script, Libero project is created within TCL_Scripts directory.

For more information about TCL scripts, refer to rtg4_ac454_df/TCL_Scripts/readme.txt.

Refer to Libero® SoC TCL Command Reference Guide for more details on TCL commands. Contact
Technical Support for any queries encountered when running the TCL script.

https://www.microsemi.com/document-portal/doc_download/1245481-libero-soc-v12-6-tcl-commands-reference-guide-for-smartfusion2-igloo2-and-rtg4

Appendix 3: Design Files

Microsemi Proprietary AC454 Revision 6.0 18

5 Appendix 3: Design Files

You can download the design files from the following location on the Microsemi website:
http://soc.microsemi.com/download/rsc/?f=rtg4_ac454_df

The design files consist of a Verilog version of Libero project folder, source file (data storage memory
client), and programming file (*.job) for RTG4 Development Kit. Refer to the readme.txt file included in
the design files for the directory structure and description.

http://soc.microsemi.com/download/rsc/?f=rtg4_ac454_df

Appendix 4: Customizing RAM Wrapper Interface

Microsemi Proprietary AC454 Revision 6.0 19

6 Appendix 4: Customizing RAM Wrapper
Interface

This section describes how to customize a RAM wrapper interface according to the LSRAM variation
configuration. The Fabric APB master code needs to be modified to support other LSRAM configurations
that are different from those shown in this application note. The following figure shows the RAM APB
wrapper block, which consists of the following blocks:

• RTG4TPSRAM_0: RTG4 LSRAM configured as two-port mode with 512 depth and 36 width
• APB_master_wrp_0: Fabric APB master interface
• Mux_blk_0: mux arbiter block to switch SRAM ports

Figure 18 • APB Master Wrapper SmartDesign

The RTG4TPSRAM_0 setting must be updated based on the specific variation used. Also, the fabric
APB master RTL code must be modified, changing the DATA_WIDTH and ADDR_WIDTH parameters as
necessary. After the modifications are made, SmartDesign must be connected and regenerated. This
design supports a data width of 36.

Appendix 5: How to Reset RAM Block Contents Using µPROM

Microsemi Proprietary AC454 Revision 6.0 20

7 Appendix 5: How to Reset RAM Block
Contents Using µPROM

In Libero SoC, the RTG4 uPROM Configurator allows the addition of a client for resetting the contents of
all RAM blocks. At device power-up or when the DEVRST_N signal goes active, the RAM initialization
client initializes all RAM blocks to zero. After device power-up, the data read from all µSRAM and
LSRAM address locations is zero until the RAM blocks are written to.

Note: When you read the initial zero from an address in a RAM block that has ECC enabled, its SB_CORRECT
and DB_DETECT flags get asserted. The flags for any given RAM address location reset once that
address location is written to.

The following steps describe how to initialize RAM blocks using UPROM Configurator in Libero SoC. The
design must consist of RTG4 dual-port LSRAM, two-port LSRAM, or micro SRAM blocks.

1. From the Libero Catalog, select the RTG4 uPROM macro, as shown in the following figure, and drag
it on to the SmartDesign canvas.

Figure 19 • Catalog Window

The following figure shows a sample SmartDesign block consisting of the RTG4 µPROM Configura-
tor and a two-port large SRAM instance configured as 16 1K × 18.

Figure 20 • Sample SmartDesign Block

Appendix 5: How to Reset RAM Block Contents Using µPROM

Microsemi Proprietary AC454 Revision 6.0 21

2. Open the uPROM Configurator, click Add …, and select Add init client to system, as shown in
the following figure.

Figure 21 • uPROM Configurator

The read only data client MSCC_RAM_INITIALIZATION_TO_ZERO gets added at address location
0x0, as shown in the following figure. This initializes all RAMs in the device using broadcast feature.

Note: This client cannot be edited, but it can be deleted.

Figure 22 • uPROM Configurator—Initialization client

3. After adding the initialization client, run the design flow till the Run PROGRAM Action step.

Appendix 5: How to Reset RAM Block Contents Using µPROM

Microsemi Proprietary AC454 Revision 6.0 22

4. After the device gets programmed, double-click the SmartDebug design in the Design Flow tab to
check whether the RAM block contents are reset.

5. In SmartDebug, click Debug FPGA Array…. as shown in the following figure.
Figure 23 • SmartDebug Window

Appendix 5: How to Reset RAM Block Contents Using µPROM

Microsemi Proprietary AC454 Revision 6.0 23

6. In the Debug FPGA Array window, click the Memory Blocks tab, select the
INST_RAM1K18_RT_IP instance, and click Read Block to read its content, as shown in the
following figure.

Figure 24 • Debug FPGA Array Window

The entire RAM block content is reset to zero, as shown in following figure. You can select the other
instance and read its content, which will also be reset to zero.

Figure 25 • RAM Contents Reset to Zero

	1 Revision History
	1.1 Revision 6.0
	1.2 Revision 5.0
	1.3 Revision 4.0
	1.4 Revision 3.0
	1.5 Revision 2.0
	1.6 Revision 1.0

	2 RTG4 SRAM Initialization After Power-up Using µPROM
	2.1 Design Requirements
	2.2 Prerequisites
	2.3 Embedded SRAM and µPROM Blocks
	2.4 Data Storage in RTG4 µPROM
	2.5 Design Description
	2.5.1 Fabric APB Master
	2.5.1.1 Fabric APB Master Interface Description

	2.5.2 CoreµPROMIF_APB

	2.6 Hardware Implementation
	2.7 Clocking Structure
	2.8 Reset Structure
	2.9 Simulating the Design
	2.10 Setting Up the Demo Design
	2.11 Running the Design
	2.12 Conclusion

	3 Appendix 1: Programming the Device Using FlashPro Express
	4 Appendix 2: Running the TCL Script
	5 Appendix 3: Design Files
	6 Appendix 4: Customizing RAM Wrapper Interface
	7 Appendix 5: How to Reset RAM Block Contents Using µPROM

