
September 2015

Securing Cryptographic
Assets for the Internet of

Things
White Paper

Securing Cryptographic Assets for the Internet of
Things

Introduction
THIS ARTICLE SURVEYS various white-box cryptography techniques for protecting critical
cryptographic operations and data in an environment where adversarial users have complete control of
the host computing platform (a white-box attack context). Microsemi® review s the need for white
box cryptography, describes the techniques and technologies behind a typical white-box cryptography
implementation, reviews how white-box cryptography resists attacks on critical cryptographic data and
operations, and discusses important features in any white-box implementation. Finally, due to the
expanding need for software cryptography combined with a rise in threats and attacks in the Internet of
Things, Microsemi recommends white-box cryptography as an essential technology for protecting
cryptographic operations in any software system.

The Need for White-Box Cryptography
The economic growth of the Internet of Things is unprecedented. With estimates of over 200 billion
connected devices by 2020, Internet-connected devices are influencing many aspects of modern life.
The Internet of Things is impacting a multitude of markets from robotics to point-of-sale systems; from
mobile computing devices to 3D-printing. Embedded systems produced in these markets are helping us
in the following ways:

• to inform us

• to make autonomous decisions on our behalf

• to communicate with business associates

• to manage our finances

Access to data, information systems, and digital content on these systems is commonly restricted using
encryption. For encryption to provide effective access control, it is imperative that the cryptographic key
used to encrypt the data is never revealed. Typical cryptographic implementations leave both the
algorithm and key vulnerable to tampering and reverse engineering: the most vulnerable point for any
crypto system implementation is the first moment at which the key is used. This point is easily identifiable
in modern systems using signature, pattern, and memory analysis. As an example, key extraction attacks
against keys coded as literal data arrays in unprotected software can be successfully completed in a
matter of hours.

White-Box Cryptography Overview
White-box cryptography refers to a collection of methods for obfuscating cryptographic algorithms in
order to hide their key material from unauthorized observers. White-box cryptography aims to prevent
sight-sensitive information (such as, a key) in cryptographic operations from being revealed to an
attacker even when he has full access to the system.

The name white-box cryptography is an analogy to white-box testing, where the tester is presumed to
have access to all internal details of the system. A white-box attack context is therefore a situation in
which the attacker has full control and observation of the host system. In contrast, a black-box attack
context arises when the attacker may only observe and control the inputs and outputs to the host system
at its external interfaces. In a white-box attack context, one assumes the attacker has full access to the
system, its memory, its software routines, and so on. One can safely assume, as modern systems have
become more open and mobile (laptops, tablets, phones), that they have become more accessible and
therefore vulnerable to white-box attacks.
Revision 1 2

Securing Cryptographic Assets for the Internet of Things
Figure 1 shows the relationship between a classical key and one possible white-box representation. It is
a non-trivial relationship making it impractical to reconstruct the classical key using the tools available to
a network-based attacker.

A white-box implementation typically seeks to leverage combinatorial problems against an attacker such
that access to or knowledge of the implementation does not compromise the key material even under
direct observation of cryptographic operations. A typical white-box implementation of a cryptographic
standard encrypts, decrypts, signs, and verifies sensitive data in the same way as a classical
implementation, yet it attempts to force an attacker to reverse engineer complex mathematical
transformations to obtain the secret key.

White-box cryptography is useful wherever cryptography must be performed in a potentially vulnerable
environment, where the crypto keys and/or plaintext data must be protected, or where an untrusted user
could take control of the host system. Such use cases include compromise of networked systems,
software delivered to business competitors, or commercially deployed software with private keys.

Figure 1 • Relationship between a White-box Representation and the Corresponding Classical Key
3 Revision 1

Securing Cryptographic Assets for the Internet of Things
Preventing Attacks with White-Box Cryptography
One relevant example of a high-profile attack is the 2014 Heartbleed vulnerability that allowed an
attacker to retrieve memory contents from vulnerable server-side software (namely OpenSSL). A
properly constructed Heartbleed attack exploits an input validation error in a way that causes the server
to send a small portion of its memory contents to the attacker. The memory contents delivered to an
attacker may contain portions of cryptographic key material used to secure communications between the
server and the outside world. Exposing keys can lead to compromise of the (very sensitive) data being
protected by the secure communications channel.

Had the key-material been resident in memory in a non-standard form, the impact of memory-exposure
vulnerabilities such as Heartbleed would have been lessened. Generally speaking, any attack based on
capturing or replacing cryptographic keys becomes more difficult when a white-box key representation is
in use.

Important Techniques in a White-Box Cipher Implementation
White-box products and technologies vary from institution to institution. The following features should be
considered when evaluating white-box technologies:

• Diversity

• Cipher Specific Obfuscation

• Hardware Binding

• Side-Channel Resistance

• Support for Obfuscated I/O

Diversity
Rather than implementing a single white box cryptography algorithm for all users (which would
lead to break-once-run-everywhere attacks), code generators should be used to produce unique variants
of the algorithms.

Cipher Specific Obfuscation
White-box implementations should be designed using alternate mathematical methods and obfuscation
techniques tailored to the target algorithm. White-box implementations should not simply apply
automated transformations to classical cipher implementations.

Each algorithm or cipher should be modified in ways that leverage the specific properties of the
underlying mathematics; blanket transformation should never be applied over all algorithms. As a rule-of-
thumb, the more general a transformation is, the easier it is to reverse-engineer.

Many times, standard cryptographic algorithm designs result in implementations that have fundamental
vulnerabilities to white-box attacks because they make an explicit assumption of executing on a secure
host. A strong white-box implementation should mitigate these vulnerabilities.
Revision 1 4

Securing Cryptographic Assets for the Internet of Things
Hardware Binding
Software is inherently easier to attack than hardware. By simply copying the original software system bit
for bit, an attacker is guaranteed unlimited attempts to break the system. However, hardware can enforce
more permanent penalties. A strong white-box cryptography implementation should take advantage of
hardware when available to limit the reverse engineering attempts on the obfuscated algorithm(s).

It is possible to construct a cryptographic key as a split between the data derived from a hardware
challenge, and the data stored in a non-volatile storage. White-box cipher implementations that support
such a split can then leverage hardware sensing and anti-tamper features as a prerequisite to cipher
operation.

Side-Channel Resistance
Resistance against side-channel attacks (such as simple or differential power analysis) are paramount to
protecting the key material from exposure. A solid white-box cryptography implementation should utilize
numerous side-channel analysis countermeasures to resist exposing the key to such attacks.

Support for Obfuscated I/O
In many cases, systems employing cryptography must periodically update or refresh keys, a requirement
referred to as key management. This requirement presents one of the primary security risks for systems
exposed to white-box attacks: How can one receive or derive new keys without exposing the systems to
an observer?

One approach is to produce ciphers that have obfuscated I/O interfaces. That is, ciphers that support
consuming obfuscated data, producing obfuscated data, or both. If this is combined with an ability to
produce white-box key representations from obfuscated representations of keys, the base technology is
present for building a key-management system.

Figure 2 • Important Techniques in White-box Cipher Implementation

Cipher-Specific TransformationsGeneral Transformations
Homomorphisms
Isomorphisms
Working Errors
Identities

Alternate Machine-Code Sequences
Just-in-Time Repair and Damage
Reverse-Engineering Tool Detection

E
nt

ro
py

-D
riv

en
 fo

r D
iv

er
si

ty

Key-Split with Hardware

Ideal
White-box
Cipher

Support for Obfuscated I/O
5 Revision 1

Securing Cryptographic Assets for the Internet of Things
As a simple example, consider a device that supports obfuscated-out RSA decryption, and white-box
AES-key preparation from obfuscated data. Such a device can inter-operate with a non-white-box-aware
key-management server in the following way:

1. The server can send an RSA-wrapped AES key to the device.

2. The device decrypts the wrapped key to obtain an obfuscated version of the AES key, and
subsequently runs the routine to prepare a white-box representation of the AES key from the
obfuscated result of the RSA decryption.

In this way, the device obtains an appropriate white-box representation of the AES key without exposing
the corresponding classical key to the observer.

Conclusion
Given the rise in mobile Internet connected devices combined with a growing need for secure operations
and communications, a strong white box cryptography implementation using (at a minimum) the
techniques described above should be considered an essential component to any software system that
requires cryptography. White-box cryptography is an important tool in the
systems-security-engineering toolbox; but like any security technology, it has strengths and weaknesses,
which must be accommodated in the overall security design. Refer to the Threat-Driven Security white
paper for more information on how to conduct systems-level security analysis.
6 Revision 1

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135402

Secring Cryptographic Assets-1/09.15

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as
custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and
has approximately 3,600 employees globally. Learn more at www.microsemi.com.

© 2015 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	Securing Cryptographic Assets for the Internet of Things
	Introduction
	The Need for White-Box Cryptography
	White-Box Cryptography Overview
	Preventing Attacks with White-Box Cryptography
	Important Techniques in a White-Box Cipher Implementation
	Diversity
	Cipher Specific Obfuscation
	Hardware Binding
	Side-Channel Resistance
	Support for Obfuscated I/O

	Conclusion

