
AC444
Application Note

Implementing SpaceWire Clock and Data Recovery in
RTG4 FPGAs

51900444. 4.0 1/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary AC444 Revision 4.0 iii

Contents

1 Revision History . 1
1.1 Revision 4.0 . 1
1.2 Revision 3.0 . 1
1.3 Revision 2.0 . 1
1.4 Revision 1.0 . 1

2 Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs 2
2.1 Design Requirement . 3
2.2 Prerequisites . 3
2.3 SpaceWire Coding and Signaling Overview . 4

2.3.1 SpaceWire Clock and Data Recovery . 5
2.4 RTG4 SpaceWire Clock Recovery Block Overview . 7

2.4.1 Using RTG4 SpaceWire Clock Recovery Block . 9
2.4.2 Implementing the SpaceWire Receiver using the RTG4 Recovery Block 10
2.4.3 I/O Delay Adjustment . 11
2.4.4 Timing Analysis of RTG4 Data Recovery Block . 13

2.5 Design Example . 16
2.5.1 Simulating the Design . 18
2.5.2 Running the Design . 18

2.6 Conclusion . 21

3 Appendix 1: Programming the Device Using FlashPro Express 22

4 Appendix 2: Running the TCL Script . 25
4.1 Updating TCL for New Libero Versions and IP Versions . 25

5 Appendix 3: Design and Programming Files . 26

6 Appendix 4: SpaceWire Pin list . 27

Microsemi Proprietary AC444 Revision 4.0 iv

Figures

Figure 1 DS Encoding . 4
Figure 2 SpaceWire LVDS Signaling Levels . 5
Figure 3 SpaceWire Clock and Data Recovery Logic . 5
Figure 4 SpaceWire Data and Strobe with Clock Recovery Scenario . 6
Figure 5 RTG4 SpaceWire RX Clock Recovery Block in CCC . 7
Figure 6 RTG4 SpaceWire RX Clock Recovery Block . 8
Figure 7 SpaceWire RX Clock Recovery Block Selection in CCC Configurator . 9
Figure 8 RTG4 SpaceWire Clock and Data Recovery Block Implementation . 10
Figure 9 RTG4 SpaceWire Clock and Data Recovery Waveforms . 10
Figure 10 Data Recovery Block . 11
Figure 11 Data Recovery Waveforms . 11
Figure 12 SpaceWire I/O Delay Calculation . 12
Figure 13 Typical Single Clock Cycle Path - Setup and Hold Check Window . 13
Figure 14 SpaceWire Clock Cycle Path Setup and Hold Check Window . 14
Figure 15 Libero SoC Reports Window with Timing Violations . 15
Figure 16 External Hold Violation on the SpaceWire Data Input Path . 15
Figure 17 SmartTime GUI . 15
Figure 18 Top-Level Block Diagram . 16
Figure 19 SpaceWire Design1 Simulation Waveform . 18
Figure 20 RTG4 Development Kit . 19
Figure 21 RTG4 Development Kit Connected to SpaceWire Daughter Card . 20
Figure 22 FlashPro Express Job Project . 22
Figure 23 New Job Project from FlashPro Express Job . 23
Figure 24 Programming the Device . 23
Figure 25 FlashPro Express—RUN PASSED . 24

Microsemi Proprietary AC444 Revision 4.0 v

Tables

Table 1 Design Requirements . 3
Table 2 SpaceWire Pins in RTG4 device . 8
Table 3 Recommended SpaceWire Programmable Input Delay Settings . 12
Table 4 Top-Level Interface Signals . 17
Table 5 Spacewire Pin List . 27

Revision History

Microsemi Proprietary AC444 Revision 4.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 4.0
The following is a summary of changes made in revision 4.0 of the document:

• Updated Table 3, page 12 and Table 4, page 17 to correct the I/O bank types and update example
design top-level pin names.

• Updated I/O Delay Adjustment, page 11 to explain the Libero warning seen during the design flow.
• Updated Timing Analysis of RTG4 Data Recovery Block, page 13 to use the “-all_registers”

keyword.
• Updated Figure 18 on page 16.
• Updated Running the Design, page 18.
• Added Appendix 1: Programming the Device Using FlashPro Express, page 22.
• Added Appendix 2: Running the TCL Script, page 25.
• Updated Appendix 3: Design and Programming Files, page 26.
• Removed the references to Libero version numbers.

1.2 Revision 3.0
Revision 3.0 of the document was published in March 2018. In this revision, the document was updated
for Libero SoC v11.8 SP2 software release. The following is a summary of changes made in revision 3.0
of the document:

• Demo design is migrated to enhanced constraint flow (ECF) in Libero SoC v11.8 SP2 software.
• Updated the document to incorporate RTG4-DEV-KIT boards which use PROTO devices in place of

the discontinued Engineering Silicon (ES) units.
• Added Table 3, page 12, “Recommended SpaceWire I/O Delay Settings,” to align with SpaceWire

performance limits as per DS0131: RTG4 FPGA Datasheet.

1.3 Revision 2.0
Updated the document for Libero SoC v11.7 software release (SAR 78009).

1.4 Revision 1.0
Revision 1.0 was the first publication of this document.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 2

2 Implementing SpaceWire Clock and Data
Recovery in RTG4 FPGAs

RTG4™ field programmable gate arrays (FPGAs) contains built-in clock recovery circuits for
SpaceWire applications. The clock recovery circuit and the FPGA fabric allow easy implementation of the
SpaceWire receiver block in the RTG4 FPGA device. This application note describes the usage of the
clock recovery circuit in the SpaceWire receiver implementation with a reference design. The reference
design is implemented in the RTG4 Development Kit.

The SpaceWire protocol is widely used to handle the payload data on-board a spacecraft. It uses data-
strobe (DS) encoding, which encodes the transmission clock with the data into data and strobe signals,
therefore the clock can be recovered by XORing the data and strobe lines. The recovered clock provides
the clock signals used by the receiver. The clock recovery and receiver circuitry design appear to be
simple, but could present serious timing closure challenges when targeted onto a generic FPGA
architecture. Microsemi RTG4 FPGAs have built-in RX clock recovery blocks with good jitter tolerance for
SpaceWire applications. The RX clock recovery block and the FPGA logic element allow easy
implementation for the SpaceWire receiver circuit. This application note demonstrates how to use the
built-in RX clock recovery block to recover the SpaceWire clock and to reliably capture the input data. It
provides a design example showing SpaceWire transmit and receiver block running at 180 Mbps in the
RTG4 PROTO device with STAR-Dundee FMC SpaceWire/SpaceFibre board at room temperature. The
design example also includes static timing analysis for the RTG4 SpaceWire clock and data recovery
block interface, which can be applied to the user design.

This application note refers to information from UG0574: RTG4 FPGA Fabric User's Guide, UG0586
RTG4 FPGA Clocking User's Guide, RTG4 Macro Library User's Guide and DS0131: RTG4 FPGA
Datasheet. For more information on the SpaceWire protocol, see the ECSS-E-50-12A standard from the
European Cooperation for Space Standardization.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134407
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134406
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134406
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135041
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193
http://spacewire.esa.int/content/Standard/Standard.php

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 3

2.1 Design Requirement
The following table lists the resources required to run the design.

Note: The STAR-Dundee FMC SpaceWire/SpaceFibre board is available from STAR-Dundee. For more
information go to the web-page: https://www.star-dundee.com/products/fmc-spacewirespacefibre-board.

Note: The design example shows SpaceWire clock recovery block running at 180 Mbps in the
RTG4 PROTO device at room temperature.See, DS0131: RTG4 FPGA Datasheet for RTG4 SpaceWire
clock recovery block performance numbers across the full military temperature range.

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

2.2 Prerequisites
Before you start:

1. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the
following location: https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

2. For demo design files download link:
http://soc.microsemi.com/download/rsc/?f=rtg4_ac444_df

Table 1 • Design Requirements

Requirement Version
Operating System 64-bit Windows 7 and 10

Hardware
RTG4 Development Kit (Rev B or later):
• RTG4 Development Board with one

RT4G150 PROTO device in a ceramic package with 1,657 pins
• 12 V adapter (provided with the kit)
• FlashPro4 programmer (provided with the Kit)

–

STAR-Dundee FMC SpaceWire/SpaceFibre board with 4 SpaceWire
ports

–

Host PC or Laptop

Software
Libero® System-on-Chip (SoC) Note: Refer to the readme.txt file

provided in the design files for the
software versions used with this
reference design.

FlashPro Express

http://soc.microsemi.com/download/rsc/?f=rtg4_ac444_df
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193
https://www.star-dundee.com/products/fmc-spacewirespacefibre-board
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 4

2.3 SpaceWire Coding and Signaling Overview
SpaceWire is a high-speed data link standard that provides a unified, high-speed data-handling
infrastructure for connecting sensors, processing elements, mass memory units, down-link telemetry
subsystems, and electrical ground support equipment (EGSE). SpaceWire links operate from 2 Mbps to
400 Mbps over a full-duplex, point-to-point serial link. SpaceWire uses DS encoding scheme, where
data (D) signal follows the data bitstream; that is, high when the data bit is 1 and low when the data bit is
0. The strobe (S) signal changes state whenever the data does not change from one bit to the next. This
coding scheme is illustrated in the following figure. The DS encoding and SpaceWire standard is
described in ECSS-E-50-12A standard from European cooperation for space standardization. The DS
encoding scheme is also used in the IEEE Standard 1355--1995 [1] and IEEE 1394a (Firewire) Standard
[6].

Figure 1 • DS Encoding

SpaceWire links use low voltage differential signaling (LVDS) for the D and S signals. LVDS employs
balanced signals to provide high-speed interconnection using a low voltage swing of 350 mV typical.

The signaling levels used by LVDS are shown in the following figure. Generally, a SpaceWire link
comprises two pairs of differential signals, one pair transmitting the D and S signals in one direction and
the other pair transmitting D and S signals in the opposite direction.

0 1 0 0 1 1 0 1 1 0Data

D

S

https://standards.ieee.org/findstds/standard/1355-1995.html
https://standards.ieee.org/findstds/standard/1394-2008.html
https://standards.ieee.org/findstds/standard/1394-2008.html

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 5

Figure 2 • SpaceWire LVDS Signaling Levels

2.3.1 SpaceWire Clock and Data Recovery
SpaceWire interfaces can be implemented in generic FPGA fabric architectures, but the SpaceWire clock
recovery circuitry design at the receiver side poses serious challenges specific to the FPGA device
architecture. The major challenge is related to the tight timing constraints between data and strobe
signals to generate a glitch free and low jitter recovered clock. An additional challenge is caused by the
fact that the received data is in the clock domain of the remote SpaceWire transmitter and must be re-
timed to the recovered clock. The following figure shows the logic scheme for clock and data recovery.
The SpaceWire clock is recovered by XOR-ing D and S signals.

The data signal is recovered by sampling the D input on both edges of the recovered clock. In addition,
the capture data is re-timed to the recovered clock domain to avoid any meta-stability issue.

Figure 3 • SpaceWire Clock and Data Recovery Logic

Voltage across 100 Termination Resistor

+250 mV to +400 mV typical

-250 mV to -400 mV typical

0 1 0

1,2 V typical
(0 V differential)

Receiver Input Thresholds

+100 mV typical

0 V (differential)

100 mV typical

[Vin+ - Vin-]

Transition
region

DATA(D)

STROBE(S)

D

CLK

D

CLK

D

CLK

D

CLK

Capture_FF_rising

Capture_FF_falling

FF1

FF2

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 6

When implementing the SpaceWire clock and data recovery block, the following cases must be
considered:

• Case1: S transition, D stable
• Case2: D transition, S stable
• Case3: S transition to next S transition, D stable
• Case4: D transition to next D transition, S stable

Figure 4 • SpaceWire Data and Strobe with Clock Recovery Scenario

To ensure proper operation of the SpaceWire clock recovery circuitry, the user must comply with the
following conditions:

1. When data is changing, the data event arrives before the clock edge. This ensures that the correct data value is
sampled.

Longest (D ---> Capture_FF*:D) < Shortest (D ---> Capture_FF*:CK) - Setup (FF)
EQ1

2. When strobe is changing, a strobe event does not generate a clock edge that captures the wrong data.
Bit_Period + Shortest (D ---> Capture_FF*:D) > Longest (S ---> Capture_FF*:CK)

EQ2

The RTG4 device has hardened RX clock and data recovery blocks and includes a hardwired path for
SpaceWire data input to an I/O flip-flop (IO-FF) to capture the incoming data. The I/Os include a
programmable input delay setting that allows users to control the SpaceWire data path delay and easily
meet the conditions listed in the preceding equations, EQ1 and EQ2.

The following sections describe implementing the RTG4 RX clock and data recovery block in detail.

Data (D)

Strobe (S)

Case1 Case2Case3 Case4 Case4Case4Case2 Case1 Case2 Case1

Recovered Clock

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 7

2.4 RTG4 SpaceWire Clock Recovery Block Overview
The RTG4 device has hardened RX clock recovery blocks which reside in the clock conditioning circuits
(CCCs). There are two blocks of RX clock recovery in each CCC block, as shown in the following figure.
Each RX Clock recovery block has its own multiplexing (MUXing) logic to select two inputs for data and
strobe. The SpaceWire data input is also passed to the FPGA fabric for use with SpaceWire receiver
logic and allows implementation of SpaceWire protocol IP.

Figure 5 • RTG4 SpaceWire RX Clock Recovery Block in CCC

Figure 6, page 8, shows a detailed implementation diagram of the RX clock recovery block in RTG4,
which includes the XOR logic. The RX clock recovery block includes a de-glitching circuit which can filter
out unwanted narrow clock pulses of 600 ps or less. The de-glitching circuit is used to add filtering for
either single event transient (SET) or system-level glitches. The glitch filtering circuit in the SpaceWire
clock recovery circuit is always enabled. In contrast, the SET filter for fabric flip-flops are disabled by
default and can be enabled in Libero SOC. Enabling the flip-flop SET filter is done globally through an
option that is available in the Libero SoC project settings or by using the set_mitigation netlist
constraint (in.NDC constraints) at the instance level.For more information, see the Libero SoC PDC
Commands User Guide at http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/pdc_ug.pdf.

RFDIV RDLY

Lock
Generation

RX
Recovery

(2x)

SRG

RFCLK

FBCLK

DMUX
(2x)

SMUX
(2x)

FBDIV FBDLY

PLL Core

CCC Internal Feedback
PLL_OUT

GPO
(4x)

GPMUX
(4x)

PLL_LOCK

PLL_OUT

FBCLK

CCC Configuration Block
CCC Configuration Bits

4
4

4

GLx

Yx

Fabric CCC

Fabric PLL Circuitry

RFMUX

FBMUX

4

CLKx_PAD
RCOSC_50 MHz

CLKx

PLL_POWERDOWN_N

PLL_BYPASS_N

PLL_ARST_N

GPDx_ARST_N

CGLx_ARST_N

Static Flash Bits
APB3 interface

LOCK

CGL
(4x)

CGLMUX
(4x)

4

4

8

http://coredocs.s3.amazonaws.com/Libero/11_8_0/Tool/pdc_ug.pdf

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 8

The generated RX clock is radiation hardened and drives the hardened global clock network.

Figure 6 • RTG4 SpaceWire RX Clock Recovery Block

The data and strobe dedicated input pads can be configured to use either single ended or differential I/O
standards.

The following table shows the SpaceWire pins in the RTG4150-CG1657M device. When the data and
strobe dedicated input pads are configured as single-ended I/O, only the P pins are used.When not used
for SpaceWire functionality, the unused N pins from the data and strobe inputs can be used by the FPGA
fabric design as per their respective pin nomenclature (MSIO/MSIOD/DDRIO) and bank voltage
assignment.

Note: xy represents individual SpaceWire block located at specific chip corner—NE, SE, SW, or NW.

Note: z is CCC number of either 0 or 1 for the corresponding corner of the RTG4 chip.

Note: w refers to one of the two possible input pins associated with each of the two SpaceWire recovery blocks
per CCC - SPWR_xyz_[0,1].

RT4G150 production devices support up to 16 sets of SpaceWire data and strobe input pins
(14 sets in MSIO/MSIOD and 2 sets in DDRIO banks) to implement SpaceWire data and clock recovery
block, while RTG4 ES devices only support up to 12 sets of SpaceWire data and strobe input pins. The
MSIO/MSIOD banks support true low-voltage differential signaling (LVDS) receivers, but DDRIO banks
do not support true LVDS receivers. Therefore, when using the SpaceWire input pins on the DDRIO
banks, the user needs to implement these inputs as single-ended LVCMOS or as pseudo differential
(voltage referenced) SSTL and HSTL P/N pairs. The SpaceWire data and clock placed in DDRIO banks
have limited performance compared to the SpaceWire data and clock placed in MSIO/MSIOD bank, as
shown in the SpaceWire performance data table in DS0131: RTG4 FPGA Datasheet. The performance
limitation is related to the way the programmable input delay settings are applied globally to the DDRIO
Banks. It is not possible to delay the SpaceWire data input relative to the recovered clock since the delay
setting is applied to all inputs on the bank. Therefore, on DDRIO banks, the data inputs cannot be
delayed without delaying the clock inputs.

Note: The DDRIO buffers do not have built-in SET mitigation like the MSIO/MSIOD buffers.

Some of the pin assignments are changed in the production devices, See“SpaceWire Pin Mapping from
RTG4 ES/MS Silicon to PROTO/Flight Silicon for more information. Pin assignment must be carefully
done, when migrating from RT4G150 ES silicon to RT4G150 production silicon.

Table 2 • SpaceWire Pins in RTG4 device

Port Direction Description
SPWR_xyz_w_RX_STROBE_[P/N] Input Differential Input Strobe signal from I/O pad

SPWR_xyz_w_RX_DATA_[P/N] Input Differential Input Data signal from I/O pad

RX RecoveryDMUX

SMUX

Data

Strobe

To Global
Clock

Network
De-glitching Circuit

S
el

ec
t

Fr
om

 C
LK

x_
PA

D
[3

:0
]

RX Clock

To fabric (RX#_DATA_PORT)

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135056
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135056

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 9

See the Appendix 4: SpaceWire Pin list, page 27 for the 16 sets of SpaceWire data and strobe input pins
in RTG4 production device.

2.4.1 Using RTG4 SpaceWire Clock Recovery Block
 Designers need to use the RTG4 CCC configurator in the Libero SoC software to configure the RX clock
recovery block. The RX clock recovery block generates the RX clock that can drive any of the four global
outputs from the CCC global outputs. The following steps describe how to configure the RTG4
SpaceWire Clock Recovery block, design flow proceeds from right to left in the GUI:

1. Open the RTG4 CCC configurator in the Libero SOC and click the Advanced tab, as shown in the
following figure.

Figure 7 • SpaceWire RX Clock Recovery Block Selection in CCC Configurator

2. Select the desired output clocks from the four different global clocks—GL0, GL1, GL2, and GL3. In
addition, user can also select four core clocks—Y0, Y1, Y2, and Y3. It is recommended to select the
global clock when implementing the SpaceWire RX clock recovery block, as the global networks are
radiation hardened.

3. For each selected output clock, select the reference input clock, Spacewire data input pad:
Dedicated Input pad1 or Dedicated Input pad3.

4. Select the data pad as “Dedicated Input Pad 1" or “Dedicated Input Pad 3”. The strobe pad is
automatically selected.

5. If differential inputs are used for STROBE and DATA pins, the corresponding “Configure as
differential” option beside the Dedicated Input Pads is selected.

6. Click OK to generate the RTG4 CCC configurator.

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 10

The dedicated input pad for data and strobe can also be configured as either single-ended or differential
I/O standard. For differential option, selecting one dedicated pad for the data signal automatically selects
the corresponding pad as it is a pair of P and N pads. See, RTG4 Clock Conditioning Circuit with PLL
Configuration Guide for more information on the RX clock recovery options.

2.4.2 Implementing the SpaceWire Receiver using the RTG4 Recovery
Block
The following figure, RTG4 SpaceWire Clock and Data Recovery Block Implementation, shows a basic
SpaceWire data recovery block implementation in the RTG4 device. The implementation requires using
the hardened RX clock recovery block to recover the clock and the DDR_IN macro to capture data on
both the rising and falling edges.The recovered clock and recovered data can then be used with a
SpaceWire controller IP to implement the rest of the SpaceWire receiver logic. The clock and data
recovery block use hardwired delay and the respective delays from the data and strobe input to clock
generation are almost the same. Implementing the SpaceWire receiver requires the data arrival event,
before the clock edge is generated from the same data and strobe events, to prevent incorrect capture of
data, as shown in EQ1 and EQ2. Users need to use the I/O delay settings based on their design
performance requirement and the guidance shown in Table 3, page 12, to satisfy EQ1, and EQ2 as
described in I/O Delay Adjustment, page 11.

Figure 8 • RTG4 SpaceWire Clock and Data Recovery Block Implementation

Figure 9 • RTG4 SpaceWire Clock and Data Recovery Waveforms

CCC Block

DATA(D)

STROBE(S)

DDR_IN
IO Delay QR

QF

D

CLK

DATA_PADP

DATA_PADN

STROBE_PADP

STROBE_PADN

Hardwired Connection

DATA[0]

DATA[1]

D1R D1FD0R D0F D3R D3FD2R D2F D4R D4F

D-1F, D0R D0F,D1R D1F,D2R D2F,D3R D3F,D4R

Data@IN PAD

Strobe@IN PAD
(assume only Data is

changing)

Data@DDR_IN
FF

Recovered
Clock

@DDR_IN FF

Data@
DDR_IN FF:Q

D1R D1FD0R D0F D3R D3FD2R D2F D4R D4F

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135672
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135672

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 11

The following figures show data recovery block and waveforms with the added registers to recover the
original data.

Figure 10 • Data Recovery Block

Figure 11 • Data Recovery Waveforms

2.4.3 I/O Delay Adjustment
The RTG4 SpaceWire recovered clock is routed to DDR_IN macro through the global network. The user
may need to adjust the I/O delay setting to match the clock insertion delay, so that the SpaceWire
recovered clock can sample the correct data. The I/O delay adjustment option is only available for
SpaceWire clock recovery circuits connected to MSIO/MSIOD banks. Programmable input delay settings
can be made by editing the I/O PDC file using set_io constraints with the -IN_DELAY <##> argument or
by using the I/O editor in the Libero SoC constraints manager. For an example of these constraints, see
the associated demo design project. For the SpaceWire clock recovery circuits connected to DDRIO
bank, the maximum speed which can be achieved is listed in the DS0131: RTG4 FPGA Datasheet.

Table 3, page 12 provides the recommended I/O delay settings to achieve the SpaceWire performance
rates listed in, DS0131: RTG4 FPGA Datasheet. Figure 12, page 12, shows the I/O delay calculation for
reference.

CCC Block

DDR_IN
IO Delay QR

QF

D

CLK

DFN1
QD

CLK

Data[0]

Data[1]

DATA(D)

STROBE(S)

DATA_PADP

DATA_PADN

STROBE_PADP

STROBE_PADN

D1R D1FD0R D0F D3R D3FD2R D2F D4R D4F

D-1F, D0R D0F,D1R D1F,D2R D2F,D3R D3F,D4R

Data@IN PAD

Strobe@IN PAD
(assume only Data is

changing)

Data@DDR_IN FF

Recovered Clock
@DDR_IN FF

Data@
DDR_IN FF:Q

D1R D1FD0R D0F D3R D3FD2R D2F D4R D4F

D0F,D0R D1F,D1R D2F,D2R D3F,D3RData[1:0]

D0F,D0R D1F,D1R D2F,D2R D3F,D3R D4F,D4RData
@Transmitter

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 12

The user must ensure that the data arrives at the DDR_IN register before the recovered clock arrives and
that the recovered clock does not sample the wrong data. The user can compute the data path and clock
path delay and then use the recovered clock period to choose the I/O delay.

The I/O delay settings provided in the following table achieve the SpaceWire performance rates listed in
DS0131: RTG4 FPGA Datasheet.

Figure 12 • SpaceWire I/O Delay Calculation

The recommended SpaceWire I/O Delay Settings are listed in Table 3, page 12.

The recommended I/O Delays have been chosen such that the recovered SpaceWire clock edges are
centered within the SpaceWire data window. These I/O delay settings have also been validated in silicon
testing across process, voltage, and temperature (PVT) variations and thus used to calculate the
SpaceWire frequency and data rate limits in the RTG4 Device datasheet. These programmable input
delay settings limit the data rate of the SpaceWire receiver interface, when implemented with the hard
recovery block, to the published datasheet limits for STD and -1 speed grade devices.

Note: Designers may find that these I/O delay settings are conservative, and that it's possible to further tune
the I/O delays, using the methodology above, to achieve faster performance as reported by SmartTime
4-corner timing analysis. With this faster performance, the data transitions will move closer to the
recovered clock edges. Microsemi strongly recommends using the published SpaceWire I/O delay
settings in the following table. Customers are responsible for validating whether I/O delay settings other
than the following settings will work in their system.

Table 3 • Recommended SpaceWire Programmable Input Delay Settings

CCC
Location

CCC
Dedicated
Clock Input #

SpaceWire
Recovery
Circuitry

I/O Bank
Type

SPWR DATA
Input Pin #
CG1657 (P / N)

SPWR DATA I/O
Delay Setting
SET Off

SPWR DATA I/O
Delay Setting
SET On

SW0 1 0 MSIOD N10 / N11 28 11

SW1 1 0 MSIOD N8 / P8 28 14

NW1 1 0 MSIOD V11 / V10 45 25

SE0 1 0 MSIOD N34 / P34 29 14

SE1 1 0 MSIOD N32 / M32 27 12

NE0 1 0 MSIOD V31 / V32 41 23

CCC Block

DATA(D)

STROBE(S)

DDR_IN
IO Delay QR

QF

D

CLK

Data[1]

Data[0]

DATA_PADP

DATA_PADN

STROBE_PADP

STROBE_PADN

Diff_Delay = (DATA-to-DDR_IN:CLK Delay) - (DATA-to-DDR_IN:D Delay) - Tsu = A-B- Tsu

IO_Delay_Attribute = Diff Delay % (recovery clock period)

B

A

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 13

During Place and Route with programmable input delay enabled on the SpaceWire DATA input pins,
Libero SoC will report the warning shown below. This warning can be safely ignored for this application.
The warning is generated because the SpaceWire data input is branched into two nets. One branch is
sent into the SpaceWire clock recovery block (XOR), so it can be used along with the strobe input to
recover the SpaceWire clock. The other branch is passed out of the CCC and sent to local FPGA fabric
routing for data capture by user logic in the FPGA fabric or I/O Flip-Flop (IOFF). The warning tells the
user that the SpaceWire DATA input branch sent to the CCC’s SpaceWire clock recovery circuit via a
dedicated hardwired connection would not be delayed by the user’s programmable input delay setting.
Nets using a hardwired connection from the input buffer physically bypass the input delay taps and thus
can not be affected by the programmable input delay. In contrast, the branch which is routed into the
fabric on local routing will be delayed based on the user’s programmable input delay setting. This aligns
well with the goal of Figure 10, page 11, where the I/O Delay is only applied to the fabric data input path
to compensate for the clock recovery through the CCC and global buffer insertion delay. Furthermore,
the SpaceWire clock recovery circuit must XOR the aligned STROBE and DATA inputs because a
delayed version of the DATA input would make it unsuitable for the clock recovery operation. Therefore,
this warning can be ignored for the SpaceWire clock and data recovery application.

Warning: When MSIO/MSIOD port ‘CLK3_SPWR_DATA_PADP’ directly drives a global
or CCC using a hardwired connection, the programmable input delay taps
(IN_DELAY) are ignored on this specific path because the hardwired connection
physically bypasses the delay element. The delay taps will still affect
routed connections from this port to the fabric.

2.4.4 Timing Analysis of RTG4 Data Recovery Block
SpaceWire uses a DS encoding scheme that encodes the transmission clock with the data into data and
strobe. The clock is recovered by XOR-ing the data and strobe lines together and is used to capture the
data input. To ensure proper operation of the SpaceWire clock recovery circuit, the launch and capture of
data must be on the same clock edge. The following figure shows a typical single clock cycle path setup
and hold check window.

Figure 13 • Typical Single Clock Cycle Path - Setup and Hold Check Window

NE1 1 0 MSIOD AA34 / AB34 39 23

NW0 1 0 MSIO AA8 / AB8 40 22

SW0 3 1 MSIO H10 / J9 28 12

SW1 3 1 MSIO K15 / K14 31 14

NW1 3 1 MSIOD AB5 / AB6 39 20

SE0 3 1 MSIO F27 / G27 34 17

SE1 3 1 MSIO G29 / H29 25 13

NE0 3 1 MSIOD AB37 / AB36 35 19

NE1 3 1 DDRIO AC39 / AD39 0 0

NW0 3 1 DDRIO AC3 / AD3 0 0

Table 3 • Recommended SpaceWire Programmable Input Delay Settings (continued)

Launch Clock

Capture Clock

Hold check
@ previous capture

Setup check
@ next capture edge

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 14

The following figure shows the SpaceWire cycle path setup and hold check window.

Figure 14 • SpaceWire Clock Cycle Path Setup and Hold Check Window

The following SDC constraint example demonstrates how to setup the user timing constraints for
SpaceWire clock and data recovery logic before running 4-corner timing analysis with SmartTime.
Designers must follow this format and substitute the timing parameters to match their clock period. For a
complete timing constraint example, refer to the SDC constraints provided in the design files linked in
Appendix 3: Design and Programming Files, page 26.

Note: The following SDC constraint example uses SpaceWire recovery clock of 100 MHz to align with the
maximum frequency listed for a -1 speed grade device. For more information, see the DS0131: RTG4
FPGA Datasheet. The example design files contain the SDC constraints for a 90 MHz clock to align with
the published limit for a STD speed grade device.The clock period needs to be adjusted based on the
design requirements.

#SpaceWire clock and data recovery block constraint file

set spwr_clock_frequency 100

set clock_period 10

set half_clock_period 5

#Clock Constraints

Define clock constraint on STROBE PIN

create_clock -name { CLK0_SPWR_STROBE_PADP } -period 10 \

-waveform { 0.000 5 } { CLK0_SPWR_STROBE_PADP }

create_clock -name { CLK0_SPWR_STROBE_PADN } -period 10 \

-waveform { 5 0.000 } { CLK0_SPWR_STROBE_PADN }

#Input Delay Constraints

Identify clock associated with the DATA pins

set_input_delay 0.00 -clock { CLK0_SPWR_STROBE_PADP } \

[get_ports { CLK1_SPWR_DATA_PADN CLK1_SPWR_DATA_PADP }]

set_input_delay 0.00 -clock { CLK0_SPWR_STROBE_PADN } \

[get_ports { CLK1_SPWR_DATA_PADN CLK1_SPWR_DATA_PADP }]

#Max / Min Delay Constraints

Max Delay = 0 for same edge setup check

set_max_delay 0.0 -from \

[get_ports { CLK1_SPWR_DATA_PADN CLK1_SPWR_DATA_PADP }]\

-to [all_registers]

Min Delay = -(Clock Period/2)

Launch Clock

Capture Clock

Hold check
@ previous edge

Setup check
@ same edge

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 15

set_min_delay -5 -from \

[get_ports { CLK1_SPWR_DATA_PADN CLK1_SPWR_DATA_PADP }]\

-to [all_registers]

When performing timing analysis of the SpaceWire clock and data recovery block shown in Figure 10,
page 11, the designer must ensure that 4-corner timing analysis is performed. This ensures that timing
violations at all corners are captured.

The following figure shows an example of the Libero SoC reports window indicating minimum delay
timing violations in worst case conditions.

Figure 15 • Libero SoC Reports Window with Timing Violations

The typical timing violation observed with the SpaceWire clock and data recovery block is an external
hold violation on the SpaceWire data input path as shown in the following figure.

Figure 16 • External Hold Violation on the SpaceWire Data Input Path

In the SmartTime GUI, the timing violation can also be seen by opening the corresponding analysis view
(min or max delay) at the corresponding corner / operating conditions as shown in Figure 15, page 15.
The following figure shows the SmartTime GUI with an external hold violation. If the user design
constrains the required clock frequency to be within the published SpaceWire recovery block
performance limits, and uses the recommended programmable input delay settings, the static timing
analysis should be met at all four corners.

Figure 17 • SmartTime GUI

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 16

2.5 Design Example
This application note provides the following design example, which shows RTG4 SpaceWire RX Clock
Recovery block running at 180 Mbps.

This design has SpaceWire signal generator that generates the SpaceWire data and strobe. The
SpaceWire signals are looped back using a SpaceWire FMC daughter card connected to the RTG4
Development Kit. The RX clock recovery block uses the transmitted SpaceWire signals and generates
the clock. This clock is used to sample the incoming data. The sampled data is verified against the
expected data.

Figure 18, page 16 shows the top-level block diagram. The top-level design example includes the
following sub-blocks:

• SpaceWire data and strobe generation block: Generates SpaceWire data and strobe signals. The
data is a counter pattern. A CCC is used to generate data at the desired rates. It also includes a
switch sync and register block sub-block, that synchronizes the dual in-line package (DIP) switch
inputs and configures the register block to send control signals to SpaceWire data and strobe
generation block.

• SpaceWire clock and data recovery: This block includes the SpaceWire RX clock recovery block
to generate the SpaceWire clock from the SpaceWire signals. It also samples the incoming data
using SpaceWire recovered clock.

• SpaceWire recovery data verification block: This block compares the sampled incoming data
against the expected SpaceWire data.

• Counter: A 28-bit counter clocked by the SpaceWire recovered clock.
Figure 18 • Top-Level Block Diagram

RTG4

Spacewire Recovered
Data

Verification

RTG4
CCC
Block

Spacewire
Data Recovery

 Block

Spacewire Data

Spacewire Data
and Strobe

Spacewire data
checking flags

Spacewire Data
and Strobe
loopback

Spacewire Data and Strobe
Generation Block

Counter

D
IP

 S
w

itc
he

s

Spacewire Clock and Data
 Recovery Block

Spacewire
 Recovered Clock

Spacewire
Recovered Data

Note: Data and Strobe loopback through FMC daughter card

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 17

The following table shows the top-level interface signals.

Table 4 • Top-Level Interface Signals

Signal Direction Description
CLK0_SPWR_STROBE_PADP Input Differential Input Strobe signal from I/O pad (PADP)

CLK0_SPWR_STROBE_PADN Input Differential Input Strobe signal from I/O pad (PADN)

CLK1_SPWR_DATA_PADP Input Differential Input Data signal from I/O pad (PADP)

CLK1_SPWR_DATA_PADN Input Differential Input Data signal from I/O pad (PADN)

Cntout Output Counter using SpaceWire recovered clock

DATAP Output SpaceWire Differential Data output (PADP)

DATAN Output SpaceWire Differential Data output (PADN)

STRBP Output SpaceWire Differential Strobe output (PADP)

STRBN Output SpaceWire Differential Strobe output (PADN)

DEVRST_N Input Device reset Input

DIP1 Input DIP switch1, used to initiate SpaceWire signal counter generation

DIP2 Input DIP switch2, used to insert error pattern in SpaceWire signal
counter generation

DIP3 Input DIP switch3, used to insert same data and strobe pattern in
SpaceWire signal

DIP8 Input DIP switch8, start the APB state machine

Expected_GL0 Output Expected SpaceWire clock

CCC_0_CLK3_PADP Input Differential clock input space data and strobe generation block
(PADP)

CCC_0_CLK3_PADN Input Differential clock input space data and strobe generation block
(PADN)

Recovered_data Output SpaceWire recovered data

rd_err Output APB read error

result Output Compare SpaceWire recovered data and expected data

Spacewire_GL0 Output Actual SpaceWire clock

wr_err Output APB write error

err_cnt Output Non-sticky error counter that toggles whenever data verification fails
after a successful link up.

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 18

2.5.1 Simulating the Design
The reference design includes testbench to simulate the design in the Libero SoC software. The
testbench provides the main reference clock for SpaceWire data and strobe generation block. It also
loopbacks the SpaceWire data and strobe signals. The design waits until DIP1 switch input level is high.
Once it is high, it sends SpaceWire data and strobe. The SpaceWire clock and data recovery block
recover the clock and data. The SpaceWire data checking block does the final verification.

Figure 19 • SpaceWire Design1 Simulation Waveform

2.5.2 Running the Design
The following steps describe how to run the design in the RTG4 Development Kit. Design1 and design2
examples use the same steps.

1. Connect the “STAR-Dundee SpaceWire/SpaceFibre FMC” daughter card with loop-back cable to
FMC connector HPC1 on the RTG4 Development Kit board.

2. A cable should be connected between SPW1 and SPW2 ports on the daughter card.
3. Set DIP switch settings for “STAR-Dundee SpaceWire/SpaceFibre FMC” board. For

Production/PROTO development kits, use: 00011011 00011011. For ES Development Kits, use:
0000 0000 1011 0000.

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 19

Figure 20 • RTG4 Development Kit

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 20

The following figure shows SpaceWire daughter card connected to the RTG4 Development Kit board.

Figure 21 • RTG4 Development Kit Connected to SpaceWire Daughter Card

4. Open the RTG4_SpaceWire_90MHz Libero project. See the Appendix 3: Design and Programming
Files, page 26.

5. Connect the RTG4 Development Kit to the PC using FlashPro4, FlashPro5, or FlashPro6.
6. Connect the Power supply to the J9 connector.
7. Switch ON the power supply switch, SW6.
8. Select Run PROGRAM Action in the Libero Design Flow window to program the RTG4 device.

Alternatively, the device can be programmed using FlashPro Express and the supplied programming
.job file by following the steps in Appendix 1: Programming the Device Using FlashPro Express,
page 22.

9. After successful programming, Switch ON the DIP1 and DIP8 switches and press DEVRST (SW7)
or power cycle the board. A counter pattern on LED1-4 is displayed.

10. LED8 is lit when the data compare is passing.
11. Switch ON the DIP2 switch to introduce error in data pattern and press DEVRST (SW7) or power

cycle the device. An LED8 flickers as data comparison switches between Pass and Fail. LED5,
LED6, and LED7 will also flicker whenever the data comparison fails, indicating that the error
counter is toggling.

12. Switch OFF DIP2 switch.
13. Switch ON DIP3 switch and press DEVRST (SW7) or power cycle the device to send same data and

strobe signal.
14. A counter pattern on LED1-4 stops counting as there is no SpaceWire recovered clock.
15. Switch OFF the power supply switch, SW6.

Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs

Microsemi Proprietary AC444 Revision 4.0 21

2.6 Conclusion
SpaceWire designs can be implemented in RTG4 FPGAs. There are several challenges to overcome,
when implementing SpaceWire designs on generic FPGAs. The complex problem is the recovery block
implementation. The built-in SpaceWire RX clock recovery circuit in the RTG4 allows easy
implementation of SpaceWire receiver interfaces.This application note provides additional guidance to
successfully implement and analyze SpaceWire receiver clock and data recovery circuits in RTG4
designs.

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC444 Revision 4.0 22

3 Appendix 1: Programming the Device Using
FlashPro Express

This section describes how to program the RTG4 device with the programming job file using FlashPro
Express.

To program the device, perform the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in Table 3 of UG0617:
RTG4 Development Kit User Guide.

2. Optionally, jumper J32 can be set to connect pins 2-3 when using an external FlashPro4, FlashPro5,
or FlashPro6 programmer instead of the default jumper setting to use the embedded FlashPro5.

Note: The power supply switch, SW6 must be switched OFF while making the jumper connections.

3. Connect the power supply cable to the J9 connector on the board.
4. Power ON the power supply switch SW6.
5. If using the embedded FlashPro5, connect the USB cable to connector J47 and the host PC.

Alternatively, if using an external programmer, connect the ribbon cable to the JTAG header J22 and
connect the programmer to the host PC.

6. On the host PC, launch the FlashPro Express software.
7. Click New or select New Job Project from FlashPro Express Job from Project menu to create a

new job project, as shown in the following figure.

Figure 22 • FlashPro Express Job Project

8. Enter the following in the New Job Project from FlashPro Express Job dialog box:
• Programming job file: Click Browse, and navigate to the location where the .job file is located and

select the file. The default location is:
<download_folder>/rtg4_ac444_df/Programming_Job/top.job

• FlashPro Express job project location: Click Browse and navigate to the desired FlashPro
Express project location.

https://www.microsemi.com/document-portal/doc_download/135213-ug0617-rtg4-fpga-development-kit-user-guide
https://www.microsemi.com/document-portal/doc_download/135213-ug0617-rtg4-fpga-development-kit-user-guide

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC444 Revision 4.0 23

Figure 23 • New Job Project from FlashPro Express Job

9. Click OK. The required programming file is selected and ready to be programmed in the device.
10. The FlashPro Express window appears as shown in the following figure. Confirm that a programmer

number appears in the Programmer field. If it does not, confirm the board connections and click
Refresh/Rescan Programmers.

Figure 24 • Programming the Device

11. Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as
shown in the following figure.

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC444 Revision 4.0 24

Figure 25 • FlashPro Express—RUN PASSED

12. Close FlashPro Express or click Exit in the Project tab.

Appendix 2: Running the TCL Script

Microsemi Proprietary AC444 Revision 4.0 25

4 Appendix 2: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design
flow can be reproduced from Design Implementation till generation of job file.

To re-use the supplied script, update the script.tcl file with the desired folder path in the
Prj_Location variable on line 10.

The common.tcl script specifies the versions of cores used in the IP Catalog and the Synthesis and
Simulation tool profile names. To update the IP core versions, refer to Updating TCL for New Libero
Versions and IP Versions, page 25.

To run the TCL, follow the steps below:

1. Launch the Libero software
2. Select Project > Execute Script....
3. Click Browse and select script.tcl from the downloaded AC444_Tcl_Scripts directory.
4. Click Run.
After successful execution of TCL script, the Libero project is created at the path specified by the
Prj_Location variable in the script.tcl file.

For more information about TCL scripts, refer to rtg4_ac444_df/readme.txt.

Refer to Libero® SoC TCL Command Reference Guide for more details on TCL commands. Contact
Microsemi Technical Support for any queries encountered when running the TCL script.

4.1 Updating TCL for New Libero Versions and IP Versions
Update the IP Core versions in the common.tcl and run the TCL flow in the new Libero version. By
default, the given TCL script should run for new Libero and IP releases.

If there are any mismatches in execution, check the following:

1. For Libero related errors, check Libero release notes for changes related to the design
components/tools or changes to TCL commands.

2. For IP core related errors, check the IP handbook and release notes for changes in IP configuration
parameters, ports and their functionality. If necessary, update the IP configuration parameters, ports
and connections in the TCL.

https://www.microsemi.com/document-portal/doc_download/1245481-libero-soc-v12-6-tcl-commands-reference-guide-for-smartfusion2-igloo2-and-rtg4

Appendix 3: Design and Programming Files

Microsemi Proprietary AC444 Revision 4.0 26

5 Appendix 3: Design and Programming Files

Download the RTG4 SpaceWire design files from the Microsemi Corporation website:
http://soc.microsemi.com/download/rsc/?f=rtg4_ac444_df. The RTG4 design file consists of a Libero
Verilog project and programming files for the RTG4 Development Kit. A TCL script is also included that
can be used to rebuild the demo design files from the source files as described in Appendix 2: Running
the TCL Script, page 25. See the Readme.txt file included in the design file folder for the directory
structure and description.

http://soc.microsemi.com/download/rsc/?f=rtg4_ac444_df

Appendix 4: SpaceWire Pin list

Microsemi Proprietary AC444 Revision 4.0 27

6 Appendix 4: SpaceWire Pin list

The following table lists the types of SpaceWire pin numbers, names and the I/O types.

Table 5 • Spacewire Pin List

Pin
Number Pin Name

I/O
Type

AD3 DDRIO146NB9/FDDR_W_ADDR12/SPWR_NW0_1_RX_DATA_N DDRIO

AC3 DDRIO146PB9/FDDR_W_ADDR13/GB0_11/CCC_NW0_CLKI3/SPWR_NW0_1_RX_DATA_P DDRIO

AC1 DDRIO147NB9/FDDR_W_ADDR14/SPWR_NW0_1_RX_STROBE_N DDRIO

AB1 DDRIO147PB9/FDDR_W_ADDR15/GB0_11/CCC_NW0_CLKI2/SPWR_NW0_1_RX_STROBE_P DDRIO

AC41 DDRIO94NB0/FDDR_E_ADDR14/SPWR_NE1_1_RX_STROBE_N DDRIO

AB41 DDRIO94PB0/FDDR_E_ADDR15/GB12_23/CCC_NE1_CLKI2/SPWR_NE1_1_RX_STROBE_P DDRIO

AD39 DDRIO95NB0/FDDR_E_ADDR12/SPWR_NE1_1_RX_DATA_N DDRIO

AC39 DDRIO95PB0/FDDR_E_ADDR13/GB12_23/CCC_NE1_CLKI3/SPWR_NE1_1_RX_DATA_P DDRIO

E7 MSIO253NB6/SPWR_SW0_1_RX_STROBE_N MSIO

E6 MSIO253PB6/GB1/CCC_SW0_CLKI2/SPWR_SW0_1_RX_STROBE_P MSIO

J9 MSIO254NB6/SPWR_SW0_1_RX_DATA_N MSIO

H10 MSIO254PB6/GB3/CCC_SW0_CLKI3/SPWR_SW0_1_RX_DATA_P MSIO

C11 MSIO265NB6/SPWR_SW1_1_RX_STROBE_N MSIO

C10 MSIO265PB6/GB5/CCC_SW1_CLKI2/SPWR_SW1_1_RX_STROBE_P MSIO

K14 MSIO266NB6/SPWR_SW1_1_RX_DATA_N MSIO

K15 MSIO266PB6/GB7/CCC_SW1_CLKI3/SPWR_SW1_1_RX_DATA_P MSIO

F29 MSIO334NB4/SPWR_SE0_1_RX_STROBE_N MSIO

F28 MSIO334PB4/GB17/CCC_SE0_CLKI2/SPWR_SE0_1_RX_STROBE_P MSIO

G27 MSIO335NB4/SPWR_SE0_1_RX_DATA_N MSIO

F27 MSIO335PB4/GB19/CCC_SE0_CLKI3/SPWR_SE0_1_RX_DATA_P MSIO

E33 MSIO346NB4/SPWR_SE1_1_RX_STROBE_N MSIO

D33 MSIO346PB4/GB21/CCC_SE1_CLKI2/SPWR_SE1_1_RX_STROBE_P MSIO

H29 MSIO347NB4/SPWR_SE1_1_RX_DATA_N MSIO

G29 MSIO347PB4/GB23/CCC_SE1_CLKI3/SPWR_SE1_1_RX_DATA_P MSIO

G40 MSIOD13NB2/SPWR_SE1_0_RX_STROBE_N MSIOD

G39 MSIOD13PB2/GB12_23/CCC_SE1_CLKI0/SPWR_SE1_0_RX_STROBE_P MSIOD

M32 MSIOD14NB2/SPWR_SE1_0_RX_DATA_N MSIOD

N32 MSIOD14PB2/GB12_23/CCC_SE1_CLKI1/SPWR_SE1_0_RX_DATA_P MSIOD

AB6 MSIOD167NB8/SPWR_NW1_1_RX_DATA_N MSIOD

AB5 MSIOD167PB8/GB0_11/CCC_NW1_CLKI3/SPWR_NW1_1_RX_DATA_P MSIOD

AB3 MSIOD168NB8/SPWR_NW1_1_RX_STROBE_N MSIOD

AA3 MSIOD168PB8/GB0_11/CCC_NW1_CLKI2/SPWR_NW1_1_RX_STROBE_P MSIOD

AB8 MSIOD182NB8/SPWR_NW0_0_RX_DATA_N MSIOD

Appendix 4: SpaceWire Pin list

Microsemi Proprietary AC444 Revision 4.0 28

AA8 MSIOD182PB8/GB0_11/CCC_NW0_CLKI1/SPWR_NW0_0_RX_DATA_P MSIOD

U3 MSIOD183NB8/SPWR_NW0_0_RX_STROBE_N MSIOD

T3 MSIOD183PB8/GB0_11/CCC_NW0_CLKI0/SPWR_NW0_0_RX_STROBE_P MSIOD

V10 MSIOD197NB8/SPWR_NW1_0_RX_DATA_N MSIOD

V11 MSIOD197PB8/GB0_11/CCC_NW1_CLKI1/SPWR_NW1_0_RX_DATA_P MSIOD

M1 MSIOD198NB8/SPWR_NW1_0_RX_STROBE_N MSIOD

M2 MSIOD198PB8/GB0_11/CCC_NW1_CLKI0/SPWR_NW1_0_RX_STROBE_P MSIOD

P8 MSIOD218NB7/SPWR_SW1_0_RX_DATA_N MSIOD

N8 MSIOD218PB7/GB0_11/CCC_SW1_CLKI1/SPWR_SW1_0_RX_DATA_P MSIOD

K4 MSIOD219NB7/SPWR_SW1_0_RX_STROBE_N MSIOD

K5 MSIOD219PB7/GB0_11/CCC_SW1_CLKI0/SPWR_SW1_0_RX_STROBE_P MSIOD

N11 MSIOD227NB7/SPWR_SW0_0_RX_DATA_N MSIOD

N10 MSIOD227PB7/GB0_11/CCC_SW0_CLKI1/SPWR_SW0_0_RX_DATA_P MSIOD

G2 MSIOD228NB7/SPWR_SW0_0_RX_STROBE_N MSIOD

G3 MSIOD228PB7/GB0_11/CCC_SW0_CLKI0/SPWR_SW0_0_RX_STROBE_P MSIOD

K38 MSIOD22NB2/SPWR_SE0_0_RX_STROBE_N MSIOD

K37 MSIOD22PB2/GB12_23/CCC_SE0_CLKI0/SPWR_SE0_0_RX_STROBE_P MSIOD

P34 MSIOD23NB2/SPWR_SE0_0_RX_DATA_N MSIOD

N34 MSIOD23PB2/GB12_23/CCC_SE0_CLKI1/SPWR_SE0_0_RX_DATA_P MSIOD

M41 MSIOD43NB1/SPWR_NE0_0_RX_STROBE_N MSIOD

M40 MSIOD43PB1/GB12_23/CCC_NE0_CLKI0/SPWR_NE0_0_RX_STROBE_P MSIOD

V32 MSIOD44NB1/SPWR_NE0_0_RX_DATA_N MSIOD

V31 MSIOD44PB1/GB12_23/CCC_NE0_CLKI1/SPWR_NE0_0_RX_DATA_P MSIOD

U39 MSIOD58NB1/SPWR_NE1_0_RX_STROBE_N MSIOD

T39 MSIOD58PB1/GB12_23/CCC_NE1_CLKI0/SPWR_NE1_0_RX_STROBE_P MSIOD

AB34 MSIOD59NB1/SPWR_NE1_0_RX_DATA_N MSIOD

AA34 MSIOD59PB1/GB12_23/CCC_NE1_CLKI1/SPWR_NE1_0_RX_DATA_P MSIOD

AB39 MSIOD73NB1/SPWR_NE0_1_RX_STROBE_N MSIOD

AA39 MSIOD73PB1/GB12_23/CCC_NE0_CLKI2/SPWR_NE0_1_RX_STROBE_P MSIOD

AB36 MSIOD74NB1/SPWR_NE0_1_RX_DATA_N MSIOD

AB37 MSIOD74PB1/GB12_23/CCC_NE0_CLKI3/SPWR_NE0_1_RX_DATA_P MSIOD

Table 5 • Spacewire Pin List (continued)

Pin
Number Pin Name

I/O
Type

	1 Revision History
	1.1 Revision 4.0
	1.2 Revision 3.0
	1.3 Revision 2.0
	1.4 Revision 1.0

	2 Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs
	2.1 Design Requirement
	2.2 Prerequisites
	2.3 SpaceWire Coding and Signaling Overview
	2.3.1 SpaceWire Clock and Data Recovery

	2.4 RTG4 SpaceWire Clock Recovery Block Overview
	2.4.1 Using RTG4 SpaceWire Clock Recovery Block
	2.4.2 Implementing the SpaceWire Receiver using the RTG4 Recovery Block
	2.4.3 I/O Delay Adjustment
	2.4.4 Timing Analysis of RTG4 Data Recovery Block

	2.5 Design Example
	2.5.1 Simulating the Design
	2.5.2 Running the Design

	2.6 Conclusion

	3 Appendix 1: Programming the Device Using FlashPro Express
	4 Appendix 2: Running the TCL Script
	4.1 Updating TCL for New Libero Versions and IP Versions

	5 Appendix 3: Design and Programming Files
	6 Appendix 4: SpaceWire Pin list

