SmartPower for Libero SoC Software v11.5 User's Guide

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file may point to external files and generate an error when clicked. View the online help included with software to enable all linked content.

Table of Contents

Table of Contents	3
Welcome to SmartPower	7
Starting SmartPower	8
SmartPower Interface	9
Summary Tab	9
Domains Tab	11
Analysis Tab	13
Frequencies Tab	16
Probabilities Tab	17
Preferences Toolbar	18
Modes and Scenarios Toolbar	19
SmartPower Standard Toolbar and Menu Commands	20
Power - Settings Summary	23
Initializing Frequencies and Probabilities	23
Power Options	29
Operating Conditions	30
Custom Operating Modes	33
Scenarios	35
Power Reports	37
Scenario Power Report	43
Cycle-Accurate Power Reports	48
Activity and Hazards Reports	52
Cycle-Accurate Power Analysis	56
Importing a VCD File	62
Importing a SAIF File in Designer	66
Removing a VCD File	67
Auditing Files	67
Calculating Power	69
Steps to Calculate Power	69
Extracting Power Consumption of a Specific Clock Domain	69
Advanced Analysis of I/Os	69
Define Clock Domains and Set of Pins	70
Specify Clock and Data Frequencies in SmartPower	71
Viewing and Verifying the InputSet in SmartPower	71
Specifying Individual Pin Frequencies	72
Specifying Individual Pin Probabilities	72
Vectorless Estimation	73
Viewing Results (Design Level)	73

Analyzing Results	73
Cross-Probing in SmartPower	74
SmartPower Calculation Equations	76
SmartPower Tcl Commands	
battery_settings	78
report (Activity and Hazards Power Report)	78
report (Cycle Accurate Power Report)	82
report (Data Change History)	85
report (Power)	86
report (Power Scenario)	94
set_mode_for_pdpr	96
set_pin_enable_rate	97
set_pin_probability	97
smartpower_add_new_custom_mode	
smartpower_add_new_scenario	
smartpower_add_pin_in_domain	
smartpower_change_clock_statistics	
smartpower_change_setofpin_statistics	101
smartpower_commit	101
smartpower_create_domain	
smartpower_edit_custom_mode	
smartpower_edit_scenario	
smartpower_initialize_clock_with_constraints	104
smartpower_init_do	104
smartpower_init_set_clocks_options	
smartpower_init_set_combinational_options	
smartpower_init_set_enables_options	
smartpower_init_set_othersets_options	
smartpower_init_set_primaryinputs_options	
smartpower_init_set_registers_options	
smartpower_init_set_set_reset_options	110
smartpower_init_setofpins_values	111
smartpower_remove_all_annotations	
smartpower_remove_custom_mode	112
smartpower_remove_domain	113
smartpower_remove_file	113
smartpower_remove_pin_probability	114
smartpower_remove_pin_frequency	115
smartpower_remove_pin_of_domain	115
smartpower_remove_scenario	116
smartpower_remove_vcd	117
smartpower_report_power	117
smartpower_report_power_activity_map	125
smartpower_report_power_peak_analyzer	128
smartpower_report_power_sequencer	132

smartpower_restore	134
smartpower_set_battery_capacity	135
smartpower_set_cooling	135
smartpower_set_mode_for_analysis	136
smartpower_set_operating_condition	136
smartpower_set_operating_conditions	137
smartpower_set_pin_frequency	138
smartpower_set_pin_probability	139
smartpower_set_preference	139
smartpower_set_process	141
smartpower_set_scenario_for_analysis	142
smartpower_set_temperature_opcond	142
smartpower_set_thermalmode	143
smartpower_set_voltage_opcond	144
smartpower_temperature_opcond_set_design_wide	145
smartpower_temperature_opcond_set_mode_specific	145
smartpower_voltage_opcond_set_design_wide	146
smartpower_voltage_opcond_set_mode_specific	147
SmartPower Obsolete TCL Commands	149
Data Change History - SmartPower	153
Product Support1	154
Contacting the Customer Technical Support Center	
Non-Technical Customer Service	

Welcome to SmartPower

Welcome to SmartPower, the Microsemi SoC state-of-the-art power analysis tool. SmartPower enables you to globally and in-depth visualize power consumption and potential power consumption problems within your design, so you can make adjustments – when possible – to reduce power.

SmartPower provides a detailed and accurate way to analyze designs for Microsemi SoC FPGAs: from toplevel summaries to deep down specific functions within the design, such as gates, nets, IOs, memories, clock domains, blocks, and power supply rails.

You can analyze the hierarchy of block instances and specific instances within a hierarchy, and each can be broken down in different ways to show the respective power consumption of the component pieces.

SmartPower also analyses power by functional modes, such as Active, Flash*Freeze, Shutdown, Sleep, or Static, depending on the specific FPGA family used. You can also create custom modes that may have been created in the design. Custom modes can also be used for testing "what if" potential operating modes.

SmartPower has a very unique feature that enables you to create test scenario profiles. A profile enables you to create sets of operational modes, so you can understand the average power consumed by this combination of functional modes. An example may be a combination of Active, Sleep, and Flash*Freeze modes – as would be used over time in an actual application.

SmartPower generates detailed hierarchical reports of the power consumption of a design for easy evaluation. This enables you to locate the power consumption source and take appropriate action to reduce the power if possible.

SmartPower supports use of files in the Value-Change Dump (VCD) format, as specified in the IEEE 1364 standard, generated by the simulation runs. Support for this format lets you generate switching activity information from Model *Sim* or other simulators, and then utilize the switching activity-over-time results to evaluate average and peak power consumption for your design.

Starting SmartPower

Note: When you launch SmartPower, you must first set your target clock and data frequencies before you evaluate your power consumption.

You cannot launch SmartPower if your design is not in a post-layout state in Designer. If you invoke SmartPower before compiling your netlist, Designer guides you through the compile and layout process.

There are three ways to invoke the SmartPower analysis tool:

- Choose SmartPower from the Tools menu.
- Click the **SmartPower** icon in the Designer toolbar.
- Click the SmartPower button in Designer design flow.

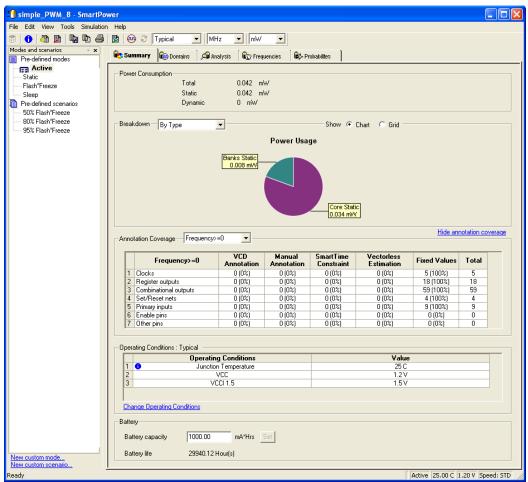


Figure 1 · SmartPower User Interface

SmartPower Interface

Summary Tab

The Summary tab is divided into five sections: Power Consumption, Breakdown, Annotation Coverage, Operating Conditions, and Battery Life.

ites e	ium	mary 🔯 Domains 🗍 🔎 Ana	alysis 🕼 Frequ	uencies 🛛 🔒 🖧 Pr	obabilites				
Po	wer	Consumption							
		Total	0.042 m ^y	W					
		Static	0.042 m ^v	W					
		Dynamic	0 mW						
Bre	eaki	down By Type	•			Chart 🔿 Grid —			
				Power Usag	je				
			Banks Static 0.008 mVV		Core Stati 0.034 mVV				
An	not	ation Coverage - Frequency>=	=0 🔽				<u>Hide ann</u>	iotation coverac	10
		Frequency>=0	VCD Annotation	Manual Annotation	SmartTime Constraint	Vectorless Estimation	Fixed Values	Total	
	1	Clocks	0 (0%)	0 (0%)	0 (0%)	0 (0%)	5 (100%)	5	
		Register outputs	0 (0%)	0 (0%)	0 (0%)	0 (0%)	18 (100%)	18	
		Combinational outputs	0 (0%)	0 (0%)	0 (0%)	0 (0%)	59 (100%)	59	
		Set/Reset nets	0 (0%)	0 (0%)	0 (0%)	0 (0%)	4 (100%)	4	
		Primary inputs	0 (0%)	0 (0%)	0 (0%)	0 (0%)	9 (100%)	9	
		Enable pins	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0	
	7	Other pins	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0	
- Op	era	ting Conditions : Typical							
			g Conditions			Value			
			n Temperature			25 C			
	2		/CC			1.2 V			
	3	VL	CI 1.5			1.5 V			
2	har	nge Operating Conditions							
Ba	tter	,							
E	Batti	ery capacity 1000.00	mA*Hrs	Set					
E	Batti	ery life 29940.12 H	lour(s)						

Figure 2 · SmartPower Summary Tab

Power Consumption

Displays the total power consumption and the static and dynamic power of the design. (Accurate only after you have entered your target clock and data frequencies.)

Breakdown

Displays a breakdown of power consumption in the design. You can specify whether to see the power breakdown by type of component, by voltage rail, or by clock domain from the drop-down list.

Show

Displays power usage as a chart or as a grid.

When you select **By Type** from the drop-down list, the **Summary** tab displays a breakdown of the design's power usage by the following types:

- Net
- Gate
- I/O
- Memory
- Core Static
- Banks Static
- Analog (for Fusion Designs)

Any static power used by instances of a component in a design will be included in the appropriate category. As a result, the sum of the power in breakdown by type will equal the total of the static and dynamic power consumption of the design. Percentages displayed are fractions of the total power. Global nets are included in the net power types. To obtain the power of a clock, select breakdown by clock domain.

When you select **By Rail** from the drop-down list, the Summary tab displays a breakdown of the power usage by the rail that the power is drawn from and a breakdown for the current usage. For each rail, the power, voltage, and current drawn are displayed.

When you select **By Clock Domain** from the drop-down list, the Summary tab displays a breakdown of the power usage by the clock domain that the power is drawn from. For each clock domain, the power and percentage of power drawn are displayed. Dynamic power is accounted for in breakdown by clock, but static power is not associated by any clock.

When you select **By Mode** — available only when a <u>scenario is selected</u> in the Modes and Scenarios toolbar — the Summary tab displays power consumption, duration and power duration weight by mode.

Whether you selected **By Type**, **By Rail**, **By Mode**, or **By Clock Domain**, you can customize which columns are displayed in the grid by right-clicking the column headers. To exclude a column, remove its checkmark from the right-click menu. Right-click a column header to set the column default size for the selected column or for all columns, sort the values in ascending or descending order, or customize columns.

To sort the contents of a column, double-click a column header.

To export the contents of the grid to a file, from the **File** menu, choose **Export Grid** or click its associated toolbar button.

To print the grid, from the File menu, choose Print Grid or click its associated toolbar button.

To copy the grid, from the Edit menu, choose Copy Grid or click its toolbar button.

To copy the chart, click the contents of the chart, and from the right-click menu, choose **Copy Chart to Clipboard**.

To export the chart, click the contents of the chart, and from the right-click menu, choose **Export Chart to File**.

To rotate the chart by 90 degrees, click the contents of the chart, and from the right-click menu, choose **Rotate Chart Clockwise** or **Rotate Chart Counter-Clockwise**.

Annotation Coverage

Displays the number and percentage of pins annotated by each source (VCD, manual annotation, SmartTime constraint, vectorless estimation, and fixed values) for all clocks, register outputs, combinational outputs, set/reset nets, primary inputs, enable pins, and other pins.

To hide/show the annotation coverage, click the **Hide annotation coverage** or **Show annotation coverage** link.

Use the **Annotation Coverage Summary** drop-down menu to view probability or frequency annotation statistics (frequency=0 shows statistics for pins that have a frequency of 0).

VCD: displays the number/percentage of pins with frequencies/probabilities imported from a VCD file.

Manual annotation: displays the percentage of pins with manually-annotated frequencies/probabilities.

SmartTime constraint: displays the percentage of pins initialized with SmartTime.

Fixed values: displays the percentage of pins with default frequency/probability.

Vectorless estimation: displays the percentage of pins that have been annotated with vectorless estimation.

Operating Conditions

Displays the temperature and voltage operating conditions for the selected mode or scenario as specified in the <u>Operating Conditions</u> dialog box. When you select a scenario, the temperature and voltage operating conditions for each mode in the scenario are displayed.

To change the operating conditions, click the **Change Operating Conditions** link or from the **Tools** menu, choose **Operating Conditions**.

Battery Life

Enables you to set the battery capacity in mA/hr and reports the battery life.

Domains Tab

The **Domains** tab displays a list of existing domains with their corresponding clock and data frequencies and probabilities.

When you start SmartPower for the first time, it will automatically initialize frequencies from SmartTime with a default data toggle rate of 10%. However, if you update your timing constraints in SmartTime, you can use the <u>Initialize Frequencies and Probabilities dialog box</u> to update SmartPower with new frequencies from SmartTime. If you don't have timing constraints in SmartTime, you can manually initialize clock and data frequencies by directly editing the Domains tab grid, or you can use the Initialize Frequencies and Probabilities dialog box.

If you import a VCD file, the Domains tab will display average clock and data frequencies for each clock domain and input set. This average is calculated using VCD information.

Note: If you change a clock or data frequency in the Domains tab, it will only impact nets using the default estimation source. Nets use the default estimation source when they have not been manually set to a specific frequency in the Frequencies tab, and when they have not been set by importing a VCD file. To see explicitly the list of nets using the default estimation source, refer to the Frequencies tab.

(🏷 Summary 👘	🛍 Domains	🔎 Analysis	Requencies	Probabilites				
	Show : 6	 Frequencies 	C Probab	vilities					
	Status		Nan	ne	Clock (MHz		Set/Reset nets	Primary inputs (MHz)	Combinational outputs (MHz)
	1 🗸	CLKIN			100	5 (10 %)	0 (0 %)	5 (10 %)	5 (10 %)
									Hide set of pins
L.	Set of pins —								The secor pins
	Status	Input to Out	tput		Nē	ime			Data (MHz) 0
						r nets that have not b e percentage of nets		v method (i.e. VCD or m	anual

Figure 3 · SmartPower Domains Tab

Note: Data and clock frequencies are automatically set to zero when in non-active modes.

The Domains tab displays frequencies or probability data for clock domains and sets of pins. In this tab, you can add, edit, or remove domains or sets of pins, and change the clock and/or data frequency of a selected domain.

To hide or display the grid for set of pins, click the Hide/Show set of pins link.

You can edit frequency or probability data directly from the grid.

To create a new clock domain or set of pins:

- 1. Right-click the clock domain or set of pins and choose to add a new create new clock domain or create new set of pins.
- 2. Enter a name and click **OK**. The new clock domain or set of pins appears in the Domains tab.
- 3. Modify the frequency and probability data as needed.

Clock domain frequencies can be initialized by right-clicking the clock domain name and selecting **Initialize Frequencies and Probabilities.** If there is no frequency constraint set for this clock domain in SmartTime, the clock frequency of the domain will not be changed.

The status of a clock frequency or probability is displayed in the first column by an icon. Mouse over the icon to identify the status:

	Table T · Clock Flequency/Flobability Status
lcon	Description
Δ	This clock has not been initialized
Δ	No constraints available for this clock from SmartTime
✓	Average frequencies/probabilities imported from VCD
✓	Clock constraints imported from SmartTime
√	This clock has been manually initialized

Table 1 · Clock Frequency/Probability Status

Note: This feature is only available when in active operating mode or when in a mode based on the Active mode.

The status of a set of pins is displayed in the first column by an icon. Mouse over the icon to identify the status:

Table 2 ·	Set of	Pins	Status
-----------	--------	------	--------

lcon	Description
Δ	This set has not been initialized
 ✓ 	Average frequencies/probabilities imported from VCD
 Image: A start of the start of	This set has been manually initialized

Note: This feature is only available when in active operating mode or when in a mode based on the Active mode.

To remove one or multiple clock domains, select the clock domain(s), and click Remove Selected Domains(s).

To edit a clock domain or a set of pins:

1. Select the clock domain and from the right-click menu, choose **Edit Domain**. The Clock Domain or Set-of-Pins window appears.

CLK/Clk1_reg:Q Pins (Clock Domain)	
Any pins that do not belong to a domain are listed in the "Unclassi pin from the 'Unclassified Pins' list box and add it to CLK/Clk1_reg: You may also want select a pin from CLK/Clk1_reg:Q and remove appear in the Unclassified Pins list box).	Q.
Unclassified Pins: CLK/U108:Y CREG/U36:Y CS_N CTRL/U10:Y CTRL/U10:Y CTRL/U12/U0:Y CTRL/U12:Y CTRL/U13:Y CTRL/U14:Y CTRL/U15/U0:Y	Clock Pins
× Set Select All	× Set Select All
Help	OK Cancel

Figure 4 · Clock Domain Window

Any pins that do not belong to a domain are listed in the **Unclassified Pins** list box. You can select a pin from the **Unclassified Pins** list box and add it to the current domain. You may also select a pin from the current domain and remove it from the domain (this pin will appear in the **Unclassified Pins** list box).

Clock Pins and Data Pins: Select **Clock Pins** from the pull-down list to display all clock pins for the selected domain, or select **Data Pins** to display registers, asynchronous signals, primary input, and combinational signals for the selected domain.

Use the filter boxes to narrow your search for a specific pin. The boxes are text filters; * is a wildcard.

2. Click **OK**.

To delete a clock domain or a set-of-pins, select the clock domain or set-of-pins and from the right-click menu, choose **Remove Domain**.

Analysis Tab

The **Analysis** tab enables you to inspect detailed hierarchical reports of the power consumption. The **Analysis** tab consists of two windows: the **Hierarchy of Instances** window and the **Analysis** window.

Figure 5 · SmartPower Analysis Tab

Hierarchy of Instances Window

SmartPower displays the hierarchy of instances in a list in the **Hierarchy of Instances** window. Sub-blocks of a block are shown in the tree when you click the plus sign (+) next to the block. Only hierarchical blocks are displayed in this list (no gates or nets).

When you select a block of the hierarchical tree, SmartPower displays its name and power consumption in the Analysis window.

Analysis Window

The Analysis window is divided into two sections: Power Consumption and Breakdown.

Power Consumption

Displays the name of the currently selected block from the hierarchy of instances window, as well as the static and dynamic power consumption of the selected block.

Show

Displays power usage as a chart (not available when breakdown by instance is selected) or as a grid.

Breakdown

Displays a breakdown of power usage of the currently selected block. Use the drop-down list to select whether to display the power breakdown by type of component, instance, or clock domain.

When you select **By Type** from the drop-down list, the Analysis tab displays a breakdown of the selected block's power usage by the following types:

- Net
- Gate
- I/O
- Memory
- Core Static
- Banks Static

Analog

Any static power used by instances of a component in a design will be included in the appropriate category. As a result, the sum of the power in breakdown by type will equal the total of the static and dynamic power consumption of the design. Percentages displayed are fractions of the total power. Global nets are included in the net power types. To obtain the power of a clock, select breakdown by clock domain.

When you select **By Clock Domain** from the drop-down list, the Analysis tab displays a breakdown of the power usage by the clock domain that the power is drawn from. For each clock domain, the power and percentage of power drawn are displayed. Dynamic power is accounted for in breakdown by clock, but static power is not associated by any clock.

Whether you selected **By Type**, **By Instance** or **By Clock Domain**, you can customize which columns are displayed in the grid by right-clicking the column headers. To exclude a column, remove its checkmark from the right-click menu. Right-click a column header to set the column default size for the selected column or for all columns, sort the values in ascending or descending order, or customize columns.

To sort the contents of a column, double-click a column header.

To export the contents of the grid to a file, from the **File** menu, choose **Export Grid** or click its associated toolbar button.

To print the grid, from the File menu, choose Print Grid or click its associated toolbar button.

To copy the grid, from the Edit menu, choose Copy Grid or click its toolbar button.

To copy the chart, click the contents of the chart, and from the right-click menu, choose **Copy Chart to Clipboard**.

To export the chart, click the contents of the chart, and from the right-click menu, choose **Export Chart to File**.

To rotate the chart by 90 degrees, click the contents of the chart, and from the right-click menu, choose **Rotate Chart Clockwise** or **Rotate Chart Counter-Clockwise**.

To view an instance properties, right-click any instance and select **Instance Properties.** This brings the **Instance Properties** window, which displays the instance name, type and power and other properties specific to each type of instance, see image below.

ance Properti	ies				
Property		Value			
Name Power Type		U141 OmW Gate			
Macro Pin List:		ADLIB:INV			
Pin	Net	Domain	Freq. (MHz)		
U141:A U141:Y	BusOutput DRAMData	CPUCIk (data) CPUCIk (data)	0.000		
Help			Close		

Figure 6 · Instance Properties: Gate

The **Instance Properties** allows you to access a list of pins of a gate and to check their domain and frequency.

See Also

Analyze results

Advanced Analysis of I/Os

Frequencies Tab

Use the **Frequencies** tab to attach switching frequency attributes to the interconnects of the design. The **Frequencies** tab is divided into **Switching Frequencies**, **Average Frequencies**, and **Annotation Statistics**.

iive	er: × Set	Domain: All	✓ Source: All		<u> </u>	
	Driver	Net	Domain	Frequency (MHz)	Source	^
L	PWM_out_pad/U0/U1:DOUT	PWM_out_pad/U0/NET1	un1_dataa_int	0	Fixed Values	E
2	PWM_out_pad/U0/U0:PAD	PWM_out	un1_dataa_int	0	Fixed Values	
3	nPWM_out_pad/U0/U1:DOU	nPWM_out_pad/U0/NET1	un1_dataa_int	0	Fixed Values	
1	nPWM_out_pad/U0/U0:PAD	nPWM_out	un1_dataa_int	0	Fixed Values	
5	un1_dataa_int_NE:Y	un1_dataa_int_NE	un1_dataa_int	0	Fixed Values	
5	PWM_out:Q	PWM_out_c	un1_dataa_int	0	Fixed Values	
7	nPWM_out:Q	nPWM_out_c	un1_dataa_int	0	Fixed Values	
3	Aclr_pad/U0/U0:Y	Aclr_pad/U0/NET1	PWM_clk (set/	0	Fixed Values	
9	PWM_clk	PWM_clk	PWM_clk (cloc	0	Fixed Values	
LO	PWM_clk_pad/U0/U0:Y	PWM_clk_pad/U0/NET1	PWM_clk (cloc	0	Fixed Values	
11	PWM_data_in<5>	PWM_data_in[5]	PWM_clk (prim		Fixed Values	_
12	PWM_data_in<3>	PWM_data_in[3]	PWM_clk (prim	0	Fixed Values	~
	Set Frequencies for selected pins	Reset Frequencies for select	ted pins		Select a	II
vera	age Frequencies:	A	unnotation Statistics:			
			VCD Import:		0%	
Pin:	: 0 MHz		Manual Annotation:		0%	

Figure 7 · SmartPower Frequencies Tab

Switching Frequencies

Displays the pins and lists the net, domain, frequency, and frequency source for each pin.

The **Driver** box enables you to filter the list of pins based on the criteria entered. Enter text in the filter box, and click **Set** to apply this text as a filter. Use the * character to display all pins or as a wildcard.

Use the **Domain** drop-down list to select a different domain (All, CLKIN, Default, or Input to Output).

Use the **Source** drop-down list to select a different source (All, Default, Manual Annotation, or VCD Import).

You can change the frequency by entering a new value in the **Frequency** column or by selecting multiple pins and pressing the **Set frequencies for selected pins** button and entering a new frequency. Use **Reset frequencies for selected pins** to revert to the default frequency.

To select all the pins, click Select All.

Average Frequencies

Displays the average frequency of all pins displayed in the grid.

Average Frequencies are useful when you import a VCD file or SAIF file. Since these files enable you to specify the frequency of each pin individually, it is often useful to know the average clock pin or data pin frequency for a particular clock domain.

If you did not specify a frequency annotation for any clock pin in this clock domain, the average value is equal to the default clock frequency of the clock domain. If you set one or several clock pins, SmartPower takes these specific annotations into account to compute an average value.

If you did not specify a frequency annotation for any data pin in this clock domain, the average value is equal to the default data frequency of the clock domain. If you set one or several data pins, SmartPower takes these specific annotations into account to compute an average value.

Annotation Statistics

VCD import: displays the percentage of pins with frequencies imported from the *.vcd file.

Manual annotation: displays the percentage of pins with manually-annotated frequencies.

Fixed values: displays the percentage of pins with default frequency.

Probabilities Tab

You can use the **Probabilities** tab to control the probabilities for all pins.

Bidirectional and Tristate I/Os: Controls the output probability of each tristate and bidirectional I/O. The probability is the percent of time that the I/O is used as an output. You can change the default value and set a specific value for each bidirectional or tristate I/O.

Memories: Controls the read cycle probability or the write cycle probability of a memory block. The probability is the percent of time that a memory block will be used either in a read cycle or a write cycle. You can change the default value as well as set a specific value for each enable pin of each memory block available in the design.

If an enable pin is active low, assign it a probability of 0% to completely enable the I/O or the memory block, or 100% to disable it completely.

In designs with a cascaded memory, all memory enable pins are shown in the Probabilities tab. To simulate real-world power consumption, selectively enable only some memory enable pins, as specified in the memory cascading structure. For purely vertical cascading, enable the pins belonging to one RAM block. For purely horizontal cascading, enable all pins belonging to all RAM blocks of the cascaded memory. You can find which RAM block corresponds to which pin by cross-probing with the MVN NetlistViewer.

Driver:	Set	Type: All 🗨	Polarity: All	•	Source: All	•
	Driver	Net	Туре	Polarity	Probability (%)	Source
1	rst_n	rst_n	Input to		99.9949	Manual A
2	rst_n_pad/U0/U0:Y	rst_n_pad/U0/NET1	Input to		99.9949	Manual A
3	rst_n_pad/U0/U1:Y	rst_n_c	Input to		99.9949	Manual A
4	fpu_op<0>	fpu_op[0]	Input to		0	Manual A
5	fpu_op_pad[0]/U0/U0:Y	fpu_op_pad[0]/U0/NET1	Input to		0	Manual A
6	fpu_op_pad[0]/U0/U1:Y	fpu_op_c[0]	Input to		0.000003	Manual A
7	UUT/un1_fpu_op_3_0_a2	UUT/N_1112	Input to		0.000003	Manual A
8	UUT/fracta_mul_w_0_a2	UUT/N_1111	Input to		0.000003	Manual A
9	fpu_op<1>	fpu_op[1]	Input to		0	Manual A
10	fpu_op_pad[1]/U0/U0:Y	fpu_op_pad[1]/U0/NET1	Input to		0	Manual A
11		fpu_op_c[1]	Input to		0.000003	Manual A
12	UUT/un1 fpu op 1 0 a2		Input to		0.000003	Manual A
13	fpu op<2>	fpu_op[2]	Input to		0	Manual A
14	fpu_op_pad[2]/U0/U0:Y	fpu_op_pad[2]/U0/NET1	Input to		0	Manual A
15		fpu_op_c[2]	Input to		0.000003	Manual A
16	UUT/fract_denorm[30]:Q		UUT/un3_out_		0.0125	Manual A
17	UUT/fract_denorm[32]:Q		UUT/un3_out_		0.0125	Manual A
18	UUT/fract_deports[31]+0	UUT/fract_deportm[31]	HUT/up3_out		0.0125	Manual 0

The Probabilities tab displays the drivers, nets, types, polarity, rates, and source for each pin.

Figure 8 · SmartPower Probabilities Tab

The **Driver** box enables you to filter the list of drivers based on the criteria entered. Enter text in the filter box, and click **Set** to apply this text as a filter. Use the * character as a wildcard.

Use the **Type** drop-down list to filter the pin list by different type (All, All enable, CLKIN, Default, or Input to Output).

Use the Polarity drop-down list to filter the pin list by polarity (Low, High, or All).

Use the **Source** drop-down list to filter the pin list by source (All, Default Estimation, Manual Annotation, Saif Import, or VCD Import).

You can change the rate by entering a new value in the **Rate** column or by selecting multiple pins, pressing the **Set Probabilities for selected pins** button, and entering a new frequency in the Set Default Probabilities dialog box.

Set probability for pin(s)	X
Probability:	
50.00	_
OK Cancel	

Figure 9 · Set Probability for Pins Dialog Box

Use Reset Probabilities for selected pins to revert to the default polarity.

You can change the default probability from the Domains tab.

To select all the drivers, click Select All.

You can set or reset the probabilities, set a default probability, copy, export, or print the grid by selecting one or multiple pins and choosing an option from the right-click menu.

See Also

Specify probabilities

Preferences Toolbar

The SmartPower Preferences toolbar gives you quick access to commonly used settings. Mouse over the toolbar button to view a description of the command. Use the drop-down list to select your settings.

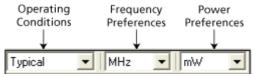


Figure 10 · SmartPower Preferences Toolbar

Operating Conditions: Enables you to set the operating conditions - Best, Typical, or Worst.

The actual voltage and temperature of a given operating condition is defined by the operating condition range selected for the current design (COM, IND, MIL, Auto, TGrade1, TGrade2, and Custom). For SmartPower, unlike SmartTime, the worst voltage is the upper bound of the range. That is, higher (worst-case) power comes from higher voltage, whereas higher voltage results in best-case speed.

Note: Worst-case and best-case calculations are available only for certain families and devices.

Frequency: Sets unit preferences for frequency – Hz, KHz, MHz.

Power Units: Sets unit preferences for power – W, mW, or uW.

See Also

SmartPower toolbar / menu commands

Modes and Scenarios Toolbar

The Modes and Scenarios toolbar displays all pre-defined modes, custom modes, pre-defined scenarios, and custom scenarios. The Modes and Scenarios toolbar is shown by default, but can be closed or undocked. To view the toolbar, from the **View** menu, choose **Modes and Scenarios toolbar**.

From this toolbar, you can:

- Select a pre-defined mode by clicking the mode name
- Select a custom mode by clicking the mode name
- Select a custom mode for power-driven layout by right-clicking the active-based mode and selecting Use for PDPR
- Re-import a VCD file from an Active mode or a custom mode by right-clicking the VCD file and selecting Re-import VCD File
- Remove a VCD file from an Active mode or a custom mode by right-clicking the VCD file and selecting Remove VCD File from <mode name> Mode; or from the Simulation menu, choose Remove VCD File > <file name>
- Generate a Cycle-Accurate Power report by right-clicking the VCD file and selecting Cycle-Accurate
 Power Report
- Generate an Activity and Hazards Power report by right-clicking the VCD file and selecting Activity and Hazards Power Report
- View the Cycle-Accurate Power analysis by right-clicking the VCD file and selecting Cycle-Accurate Power Analysis
- <u>Create</u> a new custom mode by clicking **Custom modes** and selecting **New Custom Mode**; or by clicking the **New Custom Mode** hyperlink
- Edit and delete a custom mode by right-clicking the mode name and selecting Edit custom mode or Delete custom mode
- <u>Copy</u> a custom or a pre-defined mode by right-clicking the mode name and selecting **Create a copy of** this mode
- Select a scenario by clicking the scenario name
- <u>Create</u> a new custom scenario by clicking Scenarios and selecting New custom scenario
- <u>Edit</u> and <u>delete</u> a custom scenario by right-clicking the scenario name and selecting Edit custom scenario or Delete custom scenario
- <u>Copy</u> a scenario by right-clicking the scenario name and selecting Create a copy of this scenario

Note: When a scenario is selected, only the Summary tab is available.

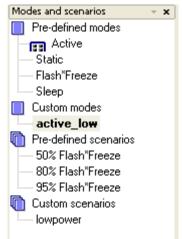


Figure 11 · Modes and Scenarios Toolbar

SmartPower Standard Toolbar and Menu Commands

The SmartPower standard toolbar contains commands for performing common SmartPower operations on your designs. Roll the mouse pointer over the toolbar button to view a description of the button. Click the button to access the command.

Toolbar Button	Description
8	Commit
0	Settings Summary
<u></u>	Operating Conditions
B	Options
	Export Path Grid
	Copy Path Grid
4	Print Grid
	Generate Power Report
(B)	Initialize Frequencies and Probabilities
8	Refreshes Vectorless Estimation

Table 3 · SmartPower Toolbar

The PC and UNIX workstation versions of SmartPower have the same menus. However, some dialog boxes may look slightly different on the two platforms due to the different window environments. The functionality is the same on both platforms, though the locations of the fields and buttons on the dialog boxes may vary. The names of some fields may also vary between the PC and workstation versions.

File Menu

Menu	Description
Commit	Commits power information to Designer. You must commit your changes if you wish to save your settings in SmartPower. If you commit your changes, the information is stored in the .adb file, and your settings are restored the next time you open your design in SmartPower
Export Grid	Exports the selected area of the Report window to a text (.txt) file
Print Grid	Prints the selected area of the Report window
Settings Summary	Displays a summary of the power settings for the current design
Close	Closes SmartPower

SmartPower User's Guide

Menu	Sub-Menu	Description
Domains	New Clock Domain	Adds a clock domain
	New Set of Pins	Adds a set of pins
	Delete Domain	Deletes a clock domain
	Edit Domain	Edits a clock domain
Modes and Scenarios	Use for Analysis > mode or scenario name	Sets the selected mode or scenario to be used for analysis
	Use for PDPR > mode or scenario name	Sets the selected mode or scenario to be used for <u>Power-Driven Layout</u>
	Custom Modes > New Custom Mode	Creates a new custom mode
	Custom Modes > Edit Custom Mode	Edits a custom mode
	Custom Modes > Delete Custom Mode	Deletes a custom mode
	Custom Scenarios > New Scenario	Creates a new custom scenario
	Custom Scenarios > Edit Scenario	Edits a custom scenario
	Custom Scenarios > Delete Scenario	Deletes a custom scenario
Copy Grid	—	Copies the selected cells of the dynamic grid onto the clipboard

View Menu

Menu	Description
Standard Toolbar	Displays or hides the SmartPower Standard toolbar
Preferences Toolbar	Displays or hides the <u>SmartPower Preferences</u> toolbar
Modes and Scenarios Toolbar	Displays or hides the Modes and Scenarios toolbar
Unprocessed Simulation Files Toolbar	Displays or hides the <u>Unprocessed Simulation Files</u> toolbar

» Microsemi.

SmartPower Standard Toolbar and Menu Commands

Edit Menu

Menu	Description
Customize Columns	Selects and orders the columns displayed in the user interface
Reset Window Layout	Resets the window layout to the default layout

Tools Menu

Menu	Sub-Menu	Description
Initialize Frequencies and Probabilities	_	Imports clock constraints from SmartTime and enables the user to input frequencies and probabilities for the design
Operating Conditions	—	Enables the user to customize the <u>operating</u> <u>conditions</u> used in SmartPower
Options	—	Invokes the <u>Options</u> dialog box, where you can set analysis and display preferences
Reports	Power Report	Generates a <u>power report</u>
	Scenario Power Report	Generates a <u>scenario power report</u>
	Cycle Accurate Power Report	Generates a cycle accurate power report
	Activity and Hazards Power Report	Generates an <u>activity and hazards power</u> report
Cycle Accurate Power Analysis	_	Generates a cycle-accurate power analysis

Simulation Menu

Menu	Description
Import VCD File	Invokes the Import VCD Options dialog box
Remove VCD file	Removes the selected CVD file from the design
Audit files	Audits simulation files within the project

Help Menu

Menu	Description
Help on <i>current tab</i>	Displays the help content for the current tab

Menu	Description
Help Topics	Opens the help files for SmartPower
SmartPower User's Guide	Displays the SmartPower User's Guide
Data Change History	Displays the data change history report

See Also

SmartPower preferences toolbar

Power - Settings Summary

The Power - Settings Summary dialog box displays a summary of the power settings for the current design.

To open the Power - Settings Summary dialog box, from the File menu, choose Settings Summary or

<

Attribute	Value
Design	SMALL_GATED
Family	ProASIC3
Die	A3P125
Package	144 FBGA
Temperature Range	COM
Voltage Range	COM
Operating Conditions	Typical
Operating Mode	Active

click the ¹ ico

Figure 12 · Power - Settings Summary Dialog Box

The Power - Settings Summary dialog box displays the following information:

- Design: Displays the name of the design. •
- Family: Displays the device family used in the design. .
- Die: Displays the die.
- Package: Displays the package.
- Temperature Range: Displays the temperature range.
- Voltage Range: Displays the core supply voltage.
- Operating Condition: Displays the operating conditions that SmartPower uses to calculate static and dynamic power contributions.
- Operating Mode: Displays the operating mode that SmartPower uses to calculate static and dynamic power contributions.

Note: The status bar also shows the ambient temperature, VCCA and speed grade.

Initializing Frequencies and Probabilities

The Initialize Frequencies and Probabilities dialog box enables you to initialize the frequencies and probabilities for your design.

To open the Initialize Frequencies and

Probabilities dialog box, from the Tools menu, choose Initialize Frequencies and

Probabilities, or click the ⁽¹⁾ icon in the SmartPower toolbar.

Note: This feature is only available in the Active operating mode or modes derived from the Active mode.

The dialog box is organized in the following panels: <u>General</u>, <u>Clocks</u>, <u>Register Outputs</u>, <u>Set/Reset Nets</u>, <u>Primary Inputs</u>, <u>Combinational Outputs</u>, <u>Enables Sets of Pins</u>, and <u>Other Sets of Pins</u>.

General

SmartPower - Initialize Frequenci	ies and Probabilities	×
Select a Category:	General	
 General Clocks Register outputs Set/Reset nets Primary inputs Combinational outputs Set of pins Enables Others 	Use this dialog box to initialize frequencies and probabilities for your design. Initialize mode: Active	
Help	OK Cancel	

Figure 13 ·

Figure 13 · Initialize Frequencies and Probabilities Dialog Box – General

Initialize mode – Select an active-based mode to initialize the frequencies and probabilities for.

For pins that have not been annotated, SmartPower can estimate their frequency and probability using <u>vectorless analysis</u> or fixed values:

Use vectorless analysis - SmartPower initializes frequencies and probabilities with vectorless analysis.

Use fixed values – SmartPower initializes frequencies and probabilities (%) of all registers with a default toggle rate (available only when using toggle rates), frequency, and probability.

Based on the selected mode, a warning appears with information on the annotated pins. If the selected mode contains any annotations, you can remove annotations by selecting one or both options below:

Remove simulation file (VCD) if any – Select this option to remove the simulation file for the selected mode.

Remove any manual annotations – Select this option to remove all manual pin annotations for the selected mode.

Clocks

SmartPower - Initialize Frequenci	es and Probabilities	×
Select a Category:	Clocks	
 General Clocks Register outputs Set/Reset nets Primary inputs Combinational outputs Set of pins Enables Others 	 ✓ Initialize clock frequencies and duty cycles ✓ with clock constraint if available in SmartTime ✓ else, with default frequency 10.00 MHz and duty cycle 50,00 %. 	
Help	OK Cancel	

Figure 14 · Frequencies and Probabilities Dialog Box – Clocks

Initialize clock frequencies and duty cycles – Select this option to initialize clock frequencies and duty cycles, with:

with clock constraint if available in SmartTime: When only this box is checked, SmartPower initializes all clock domains in SmartPower with clock constraints from SmartTime. If there is no frequency constraint set for this clock domain in SmartTime, the clock frequency of the domain will not be updated.

else, with default frequency (MHz) and duty cycle (%): When only this

box is checked, SmartPower initializes all clock domains in SmartPower with the specified default frequency and duty cycle.

Note: When both boxes (with clock constraint if available in SmartTime and with default frequency and duty cycle) are checked, SmartPower initializes all clock domains with clock constraints from SmartTime. If there is no frequency constraint set for a clock domain in SmartTime, it is initialized with the specified default frequency and duty cycle.

Register Outputs

SmartPower - Initialize Frequenci	ies and Probabilities	
Select a Category:	Register outputs	
General Clocks Set/Reset nets Set/Reset nets Ormary inputs Combinational outputs Set of pins Enables Others	 Initialize frequencies and probabilities with Vectorless analysis with fixed values toggle rate 10.00 % probability 50.00 % 	
Help	OK Cancel	

Figure 15 · Frequencies and Probabilities Dialog Box – Registers

Initialize frequencies and probabilities – Select this option to initialize frequencies and probabilities for register outputs in your design.

With vectorless analysis - SmartPower initializes frequencies and probabilities using vectorless analysis.

With fixed values: SmartPower initializes frequencies and probabilities (%) of all register outputs with a default toggle rate (available only when using toggle rates) or frequency (when not using toggle rates), and a default probability.

Set/Reset Nets

SmartPower - Initialize Frequenci	ies and Probabilities	
Select a Category:	Set/Reset nets	
General Clocks Clocks Set/Register outputs Set/Reset nets Primary inputs Combinational outputs Set of pins Enables Others	 ✓ Initialize frequencies and probabilities with fixed toggle rate 0.00 % with fixed probability 50.00 % 	
Help	OK Cancel	

Figure 16 · Frequencies and Probabilities Dialog Box – Asynchronous

Initialize frequencies and probabilities – Select this option to initialize frequencies and probabilities for set/reset nets in your design.

With default toggle rate (%): SmartPower initializes frequencies and probabilities of all set/reset nets with the specified default toggle rate. This option is available only when using toggle rates.

With default frequency (MHz): SmartPower initializes all set/reset nets in SmartPower with the specified default frequency. This option is available only when not using toggle rates.

With default probability (%): SmartPower initializes probabilities of all set/reset nets with the specified default probability.

Primary Inputs

SmartPower - Initialize Frequenci	ies and Probabilities	
Select a Category:	Primary inputs	
 General M Clocks Register outputs Set/Reset nets Primary inputs Combinational outputs Set of pins Enables Others 	✓ Initialize frequencies and probabilities with fixed toggle rate 10.00 % with fixed probability 50.00 %	
Help	OK Cancel	

Figure 17 · Frequencies and Probabilities Dialog Box - Primary Inputs

Initialize frequencies and probabilities – Select this option to initialize frequencies and probabilities for the primary inputs in your design.

With default toggle rate (%): SmartPower initializes frequencies and probabilities of all primary inputs with the specified default toggle rate. This option is available only when using toggle rates.

With default frequency (MHz): SmartPower initializes all primary inputs in SmartPower with the specified default frequency. This option is available only when not using toggle rates.

With default probability (%): SmartPower initializes probabilities of all primary inputs with the specified default probability.

Combinational Outputs

SmartPower - Initialize Frequenci	es and Probabilities	×
Select a Category: General Clocks Set/Reset nets Primary inputs Combinational outputs Set of pins Enables Others	Combinational outputs ✓ Initialize frequencies and probabilities with Vectorless analysis with fixed values toggle rate 10.00 % probability 50.00 %	
Help	OK Cancel	

Figure 18 · Frequencies and Probabilities Dialog Box – Combinational

Initialize frequencies and probabilities – Select this option to initialize frequencies and probabilities for the combinational outputs in your design.

With vectorless analysis – SmartPower initializes frequencies and probabilities with vectorless analysis.

With fixed values: SmartPower initializes frequencies and probabilities (%) of all combinational outputs with a default toggle rate (available only when using <u>toggle rates</u>) or frequency (when not using toggle rates), and a default probability.

Enables

SmartPower - Initialize Frequenci	es and Probabiliti	es			
Select a Category: General Clocks Set/Register outputs Set/Reset nets Primary inputs Combinational outputs Set of pins Enables Others	Enables	ize frequencies and probabil th Vectorless analysis th fixed values Domain IOsEnableSet MemoriesEnableSet		Probability % 12.50 12.50	
Help		ОК	Cance	el	

Figure 19 · Frequencies and Probabilities Dialog Box – Enables

Initialize frequencies and probabilities – Select this option to initialize frequencies and probabilities for the enable sets of pins in your design.

With vectorless analysis - SmartPower initializes frequencies and probabilities with vectorless analysis.

With fixed values: SmartPower initializes frequencies and probabilities of all enables sets of pins with the specified default probability and frequency.

Others

SmartPower - Initialize Frequenci	es and Probabilities	×
Select a Category:	Others	
General Clocks Set/Register outputs Set/Reset nets Primary inputs Combinational outputs Set of pins Enables Others	 ✓ Initialize frequencies and probabilities ☞ with Vectorless analysis primary inputs frequency 1.00 MHz primary inputs probability 50.00 % C with fixed values frequency 1.00 MHz probability 50.00 % 	
Help	OK Cancel	

Figure 20 · Frequencies and Probabilities Dialog Box – Others

Initialize frequencies and probabilities – Select this option to initialize frequencies and probabilities for the other sets of pins in your design with default values.

With vectorless analysis – SmartPower initializes frequencies and probabilities with vectorless analysis as specified in the primary inputs frequency and probability.

With fixed values: SmartPower initializes frequencies and probabilities (%) of all other sets of pins with a default frequency and probability.

See Also

Domains Tab

Vectorless Analysis

Power Options

Enables you to set options that affect the graphical and textual reports.

To open the SmartPower Power Options dialog box:

- From the File menu choose Options
- Select the **Options** panel in the **Power Report** dialog box.
- Click the licon in the SmartPower toolbar.

Power - Options	×
Units Power: mW Frequency MHz Use toggle rates	
Help OK	Cancel

Figure 21 · SmartPower Preferences Dialog Box

There are two sections: Units and Use Toggle Rates.

- Units: Sets unit preferences for power (W, mW, vW) and frequency (Hz, KHz, MHz).
- Use Toggle Rates: When toggle rates are active (Use Toggle Rates box is checked), the data frequency of all the clock domains is defined as a function of the clock frequency. This updates the data frequency automatically when you update the clock frequency. Toggle rates enable you to specify the data frequency as a percentage of clock frequency, but you can no longer specify the data frequency as a number, only as a percentage of the clock frequency. To specify data frequencies, clear the Use Toggle Rates option in the Preferences window.

You can set the data frequency percentage when you <u>create a new clock domain</u> with toggle rates active. In addition, when toggle rates are active you can set the data frequency percentage in the <u>Domain</u> and <u>Frequencies</u> tabs.

Create Clock Domain	X
Potential Clock Pin CLK_pad/IOTILE:Y0	Create
Clock Frequency 10 MHz	Cancel
Data Frequency 20 %	

Figure 22 · Create Clock Domain – Toggle Rates Enabled

Operating Conditions

The SmartPower Operating Conditions dialog box enables you to customize the operating conditions used in SmartPower for voltage and temperature.

Note: Changes will apply only to SmartPower and will not change the operating conditions set in Designer.

The General panel enables you to select the operating condition you want to apply to SmartPower: Best, Typical, or Worst.

SmartPower - Operating Condition	15	×
Select a Category:	General	
General Temperature settings Thermal resistance settings Voltage settings VCCA VCCI 2.5 VCCI 3.3 VCCI 1.8 VCCI 1.5	Use this dialog box to customize the operating conditions used in SmartPower. Changes will apply only to SmartPower and will not change the operating conditions set in Designer. Select an active operating condition for SmartPower from the options below:	
Help	OK Cancel	

Figure 23 · SmartPower Operating Conditions Dialog Box - General

You can customize temperature settings in the Temperature Settings panel, and the voltage settings in the Voltage Settings panels — each VCC voltage used in the design appears under Voltage settings.

SmartPower - Operating Condition	ıs 🔀
Select a Category: General Temperature settings Voltage settings VCCA VCCI 2.5 VCCI 3.3 VCCI 1.8 VCCI 1.5	Temperature settings Use: Design operating range (default) SmartPower uses the operating range specified in the Device Selection Wizard: This design uses "COM" settings. Junction Temperature (in degrees Celsius) Best: Typical: Worst: 0.00 25.00 70.00
Help	OK Cancel

Figure 24 · SmartPower Operating Conditions Dialog Box - Temperature Settings

Select one of three options to specify the temperature or voltage settings:

- Design operating range (default): sets the temperature or voltage operating range as specified in your <u>Project Settings</u>.
- **Custom operating range**: sets the temperature (junction or ambient) or voltage operating range for the current design in SmartPower only. You can enter temperature values in degrees Celsius and voltage values in volts for Best, Typical, and Worst.
- Mode by mode operating range: sets the temperature (junction or ambient) or voltage for each mode in SmartPower only. You can use the grid to enter temperature values in degrees Celsius and voltage values in volts for each mode, or select multiple modes in the grid, and click the Set values for selected modes button to enter the same values for all selected modes.

SmartPower Operating Condition Select a Category: General General Temperature settings Thermal resistance settings Voltage settings Voltage settings VCCA VCCI 2.5 VCCI 3.3 VCCI 1.8 VCCI 1.5	Temperature settings Use: Mode by mode operating ra SmartPower uses a different operating ranges for each mode c Operating ranges for each mode c Specify (in Celcius degrees):] Image: Specify (in Celcius degrees):] <	ating range for each mo		worst 70.00 50.00
Help	Set values for selected mode(s		Cancel	Select all

Figure 25 · SmartPower Operating Conditions Dialog Box - Mode-Specific Temperature Settings The junction temperature and static power are computed iteratively until they converge.

The formulas are:

$$T_{J} = T_{A} + \theta_{JA} \cdot (P_{dynamic} + P_{static})$$
$$P_{static} = f(T_{J}) = P_{0} + P_{1} \cdot T_{J}$$

If the computed junction temperature is outside the operating condition range (smaller than the best case value or greater than the worst case value), a violation warning will be reported.

Both T_J and P_{static} will be re-computed when any of the following parameters are changed:

- Ambient temperature
- Cooling style
- Custom thermal resistance,

or any parameters/options that affect the static or dynamic power values:

- Junction Temperature Display Mode
- Operating Condition (Affect dynamic power)
- Operating Mode (Affect dynamic power)
- Any of the clock domain frequencies (Affect dynamic power)

If you specified the Ambient temperature in the Temperature Settings panel, you can select the thermal characteristic for Theta_{JA} .

SmartPower - Operating Conditions						
Select a Category:	Thermal resistance settings					
General Temperature settings Thermal resistance settings Voltage settings VCCA VCCI 2.5 VCCI 3.3 VCCI 1.8 VCCI 1.5	Select the thermal characteristic for Θ_m					
Help	OK Cancel					

Figure 26 · SmartPower Operating Conditions Dialog Box - Thermal Resistance Settings

The thermal resistance is predefined for Still Air, 300 ft/min and Case Cooling. To enter a custom thermal resistance, select **Custom** from the **Cooling** field, and change the value.

SmartPower also reports the thermal resistance, Theta_{JA}.

See Also

SmartPower toolbar / menu commands SmartPower preferences toolbar

Custom Operating Modes

SmartPower enables you to use pre-defined and custom operating modes. A pre-defined operating mode is an inherent mode of a family of devices that comes with a number of hard availability constraints on the FPGA resources. Custom operating modes are user-defined modes based on one of the pre-defined modes available for the family, where parameters such as clock, data, and toggle rate frequencies have been customized. A custom mode can also be linked to a VCD.

Custom modes can be used:

- To define additional modes where the chip is in the active pre-defined mode, but where the clock frequencies or the toggle rates are scaled up or down.
- To import multiple VCD files that capture individual steps that take place in different modes.
- To define a sequence of modes with a duration for each mode and get an estimate of the overall
 power consumption, from which extrapolate the battery life for the application. The <u>Scenario Power</u>
 report enables you to define a sequence of modes and estimate the weighted average of the power
 consumption of the chip over the whole sequence.
- To define additional modes where the chip is in a pre-defined mode, but the junction/ambient temperature or the rails' voltage modes are different.

To set the current mode:

From the Edit menu in SmartPower, choose Modes and Scenarios > Use for Analysis > mode name; or select the mode in the Modes and Scenarios toolbar.

To create a new custom mode:

 From the Edit menu in SmartPower, choose Modes and Scenarios > Custom Modes > New Custom Mode; or click Custom Modes in the Modes and Scenarios toolbar, and select New custom mode. This brings up the New Custom Mode dialog box.

Power - New Custom	Mode 🛛 🔀
Name:	Mode3
Based on mode:	Active
Comment:	
Frequency 15 MHz	
Help	OK Cancel

Figure 27 · New Custom Mode Dialog Box

- 2. Enter the mode name, select the base mode, and enter comments that describe the mode. The base mode can be either a user-defined custom mode or the active mode. The new mode will inherit all clock and data frequencies and annotations of its base mode.
- 3. Click **OK**. The newly created operating mode is set as default in the Modes and Scenarios toolbar.

To edit a custom mode:

 From the Edit menu in SmartPower, choose Modes and Scenarios > Custom Modes > Edit Custom Mode; or right-click the mode in the Modes and Scenarios toolbar, and select Edit custom mode. This brings up the Edit Custom Mode dialog box.

Power - Edit Custom Mode [custom_mode]				
Name:	custom_mode			
Comment:				
Copied from "Sleep"				
This mode is derived from the "Sleep" low power mode.				
Help	OK Cancel			

Figure 28 · Edit Custom Mode Dialog Box

- 2. Edit the mode name and comments.
- 3. Click OK.

Note: You can only use the Edit Mode dialog box to edit the name and comment of the current mode. To edit the mode properties such as clock and data frequencies, use the SmartPower tabs.

To copy a custom mode:

1. Right-click the mode in the Modes and Scenarios toolbar, and select **Create a copy of this mode**. This brings up the New Custom Mode dialog box.

Power - New Custom Mode		
Name:	Copy of Active	
Based on mode:	Active	
Comment:		
Copied from "Active"		
Help	OK Cancel	

Figure 29 · New Custom Mode Dialog Box

- 2. Edit the mode name and comments.
- 3. Click OK.

To delete a custom mode:

 From the Edit menu in SmartPower, choose Modes and Scenarios > Custom Modes > Delete Custom Mode; or right-click the mode in the Modes and Scenarios toolbar, and select Delete Mode. This brings up the Delete Custom Mode dialog box.

Power - Delete Custom Mode		
Choose th	e custom mode to de	lete:
Mode3		•
Help	ОК	Cancel

Figure 30 · Delete Custom Mode Dialog Box

2. Select the mode from the pull down and click **OK**.

Note: You can only delete custom operating modes. Pre-defined modes cannot be deleted.

Scenarios

A scenario is a sequence of previously defined <u>operating modes</u> with a specific duration for each mode. When you create a new design, SmartPower will automatically create some pre-defined scenarios that can be used as is, or copied to create a new scenario based on the pre-defined one.

Note: Pre-defined scenarios cannot be deleted or edited.

To set the current scenario for analysis:

From the **Edit** menu in SmartPower, choose **Modes and Scenarios > Use for Analysis >** <*scenario name*>; or select the scenario in the <u>Modes and Scenarios toolbar</u>.

Note: When a scenario is selected, only the Summary tab is available.

To create a new custom scenario

- 1. From the Edit menu in SmartPower, choose Modes and Scenarios > Custom Scenarios > New Custom Scenario; or click Scenarios in the Modes and Scenarios toolbar, and select New custom scenario. This brings up the New Custom Scenario dialog box.
- 2. Enter the scenario name, enter a duration (total duration for the sequence must equal to 100%) and select previously defined <u>operating modes</u> for this sequence.
- 3. Click OK. The newly created scenario is set as default in the Modes and Scenarios toolbar.

To edit a custom scenario:

 From the Edit menu in SmartPower, choose Modes and Scenarios > Custom Scenarios > Edit Custom Scenario; or right-click the scenario in the Modes and Scenarios toolbar, and select Edit custom scenario. This brings up the Edit Custom Scenario dialog box.

Power - Edit Custom Scenario [Copy of 50% Flash*F 🔀							
I	Name: Copy of 50% Flash*Freeze						
		Duration (%)	Mode	^			
	1	50	Active				
	2	50 Flash*Freeze					
	3						
	4			-			
	5						
	6						
	7						
	8						
	3						
Total: 100 % Delete entry							
Comment:							
Copied from "50% Flash*Freeze"							
Help OK Cancel							

Figure 31 · Edit Custom Scenario Dialog Box

- 2. Edit the information.
- 3. Click OK.

To copy a scenario:

1. Right-click the scenario in the Modes and Scenarios toolbar, and select **Create a copy of this scenario**. This brings up the New Custom Scenario dialog box.

Power - New Custom Scenario						
I	Vame:	1	Copy of scenario1			
		Duration (%)	Mode	<u>^</u>		
	1	20	Active			
	2	80	Sleep			
	4					
	5					
	6					
	7					
	8					
	9			<u>×</u>		
Total: 100 % Delete entry						
	Comment:					
Copied from "scenario1"						
Help OK Cancel						

Figure 32 · New Custom Scenario Dialog Box

- 2. Edit the information.
- 3. Click OK.

To delete a custom scenario:

1. From the Edit menu in SmartPower, choose Modes and Scenarios > Custom Scenarios > Delete Custom Scenario; or right-click the scenario in the Modes and Scenarios toolbar, and select Delete Scenario. This brings up the Delete Custom Scenario dialog box.

Power - Delete Cu	stom Scenario	
Choose the cu	stom scenario to	delete:
scenario1		-
Help	ОК	Cancel

Figure 33 · Delete Custom Scenario Dialog Box

2. Select the scenario from the pull down and click **OK**.

Power Reports

The power report enables you to quickly determine if any power consumption problems exist in your design.

To generate a power report:

- 1. From the Designer **Tools** menu, choose **Reports > Power > Power**. The Power Report dialog box appears.
- 2. Select the options you want to include in the report, and then click **OK**. The power report appears in a separate window.

You can also generate the power report from within SmartPower. From the **Tools** menu, choose **Reports** > **Power Report**, or click the **Report** button to open the **Report** dialog box. By default, the report includes

global design information and a power summary. Specify which results you want to display by selecting the categories and their options.

The power report dialog box is organized in the following panels: <u>General</u>, <u>Operating Conditions</u>, <u>Options</u>, <u>Breakdown by Instance</u>, <u>Frequency Summary</u>, and <u>Probability Summary</u>.

General

The general panel enables you to select what to include in the report, the report format, and the mode that you want to generate the report for.

Power Report		×
Select a Category: General Operating Conditions Options Breakdown by instance Frequency summary Probability summary	Include in the report Power summary Breakdown by rail Breakdown by type Breakdown by clock domain Thermal summary Battery life Clock domain summary Operating condition summary Operating condition summary Mode: Active Active 1	
Help	OK Cancel	

Figure 34 · SmartPower Power Report Dialog Box - General Panel

Include in the Report

Select the option(s) that you want to include in the Power Report:

Power summary - This section reports the static, dynamic and total power consumption of the design.

Breakdown by rail – This section shows the power consumption of each rail.

Breakdown by type – This section enables reporting on the power consumption according to: gates, nets, clocks, core static, IOs and memories.

Breakdown by clock domain – This section enables reporting on the power consumption of each clock domain.

Thermal summary – This section includes a thermal report. The ambient temperature can be defined by the operating conditions or defined by the ambient temperature.

When the first option is selected, the following characteristics are reported:

- Operating conditions
- Temperature range
- Junction temperature

When the second option is selected, the following characteristics are reported:

- Ambient temperature
- Cooling style
- Package
- Thermal resistance Theta-JA
- Junction temperature
- Temperature range
- Junction temperature range limits specification

Battery Life - This section reports the battery life.

Clock Domain Summary – This section reports the clock and data frequencies for each clock domain.

Operating Condition Summary - This section reports the operating conditions.

Annotation Coverage - This section reports the number and percentage of pins annotated by each source (VCD, manual annotation, SmartTime constraint, vectorless estimation, and fixed values) for all clocks, register outputs, combinational outputs, set/reset nets, primary inputs, enable pins, and other pins

Report Format

Select Text or CSV (Comma Separated Value) as the desired export format.

Mode

Select a mode to generate the report for.

Operating Conditions

The Operating Conditions panel enables you to select the operating conditions for the current report.

Power Report	
Select a Category: General Operating Conditions Options Breakdown by instance Frequency summary Probability summary	Operating Conditions
Help	OK Cancel

Figure 35 · SmartPower Power Report Dialog Box - Operating Conditions Panel

Options

The Options panel enables you to select power and frequency units and to use toggle rates.

Power Report	
Select a Category: General Operating Conditions Difference Breakdown by instance Frequency summary Probability summary	Options Units Power: mW • Frequency: MHz •
Help	OK Cancel

Figure 36 · SmartPower Power Report Dialog Box - Options Panel

Units

Frequency: Sets unit preferences for frequency - Hz, KHz, MHz.

Power Units: Sets unit preferences for power - W, mW, or uW.

Use Toggle Rates

When toggle rates are active (**Use Toggle Rates** box is checked), the data frequency of all the clock domains is defined as a function of the clock frequency. This updates the data frequency automatically when you update the clock frequency. Toggle rates enable you to specify the data frequency as a percentage of clock frequency, but you can no longer specify the data frequency as a number, only as a percentage of the clock frequency. To set the data frequency again, clear the **Use Toggle Rates** option.

Breakdown by Instance

From this panel you can include the breakdown by instance in the report and set specific options.

Power Report		×
Select a Category: General Operating Conditions Options Breakdown by instance Frequency summary Probability summary	Include breakdown by instance Limit the number of reported instances to Report only instances with power greater than Sort by: Power Values Sort order: Descending	
Help	OK Cancel	

Figure 37 · SmartPower Power Report Dialog Box - Breakdown By Instance Panel

Include breakdown by instance – This section shows the power consumption of each element that has been instantiated in the design: gates, nets, memories, and IOs.

The breakdown by instance can be filtered by:

- Limit the number of reported instances to: will limit the number of instances reported to the specified number.
- **Report only instances with power greater than:** any instance with power consumption below the selected value will not be reported.

This section can be sorted by selecting the preferred method:

- Sort by: Name (alphabetical) or Power Values
- Sort Order: Ascending or Descending

Note: The filter reduces the number of lines in the report, one per instance.

Frequency Summary

From this panel you can include the frequency summary in the report and set specific options.

Power Report		×
Select a Category: General Operating Conditions Options Breakdown by instance Frequency summary Probability summary	Include frequency summary Limit the number of reported pins to Report only pins with frequencies greater than Sort by: Frequency Sort order: Descending	
Help	OK Cancel	

Figure 38 · SmartPower Power Report Dialog Box - Frequency Summary Panel

Include frequency summary – This section shows the frequency summary and reports the pin, net, domain, frequency, and frequency source for each pin.

The frequency summary can be filtered by:

- Limit the number of reported pins to: will limit the number of pins reported to the specified number.
- **Report only pins with frequencies greater than:** any pin with a frequency below the selected value will not be reported.

This section can be sorted by selecting the preferred method:

- Sort by: Pin Name, Net Name, Domain, Frequency, or Source
- Sort Order: Ascending or Descending

Probability Summary

From this panel you can include the probability summary in the report and set specific options.

Power Report		×
Select a Category: General Operating Conditions Options Breakdown by instance Frequency summary Probability summary	Include probability summary Sort by: Pin Name Sort order: Descending	
Help	OK Cancel	

Figure 39 · SmartPower Power Report Dialog Box - Probability Summary Panel

Include probability summary – This section shows the probability summary and reports the driver, net, rate, source, and type for each pin.

This section can be sorted by selecting the preferred method:

- Sort by: Pin Name, Net Name, Rate, Source, or Type
- Sort Order: Ascending or Descending

e Actions Help						
	da			4-11		
ower Report for	design i	:pga_ig	100 With the	IOLLOWING SETTI	ings:	
Vordor, lato	l Cornora	tion				
Vendor: Acte Program: Acte	-		wara Delessa	8 4 Convright	(C) 1989-2008	
Date: Thu				o.i, copyright	. (0) 1909-2000	
Version: 3.0	,					
Design:		fpga_i	gloo			
Family:		IGLOO				
Die:		AGL600				
Package:		484 FB	GA			
Temperature Ran Veltege Denge						
Voltage Range: Operating Condi		COM	1			
Operating Condi Operating Mode:		Active				
Data Source:		Advanc				
paca poaroc.		navano	ca			
ower Summary						
	Power	(mW)	Percentage			
	Power +	(mW) +-	Percentage +			
Total Power	Power + 21.	(mW) +-	Percentage + 100.0%			
Total Power Static Power	Power + 21. 0.	(mW) +- 733 156	Percentage + 100.0% 0.7%			
Total Power Static Power Dynamic Power	Power + 21. 0. 21.	(mW) +- 733 156 577	Percentage + 100.0% 0.7% 99.3%			
Total Power Static Power Dynamic Power	Power + 21. 0. 21.	(mW) +- 733 156 577	Percentage + 100.0% 0.7% 99.3%			
Total Power Static Power Dynamic Power	Power + 21. 0. 21. +	(mW) +- 733 156 577	Percentage + 100.0% 0.7% 99.3%			
Total Power Static Power Dynamic Power 	Power 21. 0. 21. +	(mW) +- 733 156 577 +- Type	Percentage + 100.0% 0.7% 99.3% + Power (mW)	Macro	Ì	
Total Power Static Power Dynamic Power reakdown by Ins	Power 21. 0. 21. +	(mW) -733 156 577 +- Type	Percentage + 100.0% 0.7% 99.3% + Power (mW) +	Macro +	Ì	
Total Power Static Power Dynamic Power reakdown by Ins n445	Power 21. 0. 21. +	(mW) +- 733 156 577 +- Type	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110	Macro +	Ì	
Total Power Static Power Dynamic Power reakdown by Ins n445 U44	Power 21. 0. 21. +	mW) 733 156 577 Type Net	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110 0.638	Macro +	Ì	
Total Power Static Power Dynamic Power reakdown by Ins n445 U44 U52	Power 21. 0. 21. +	(mW) 733 156 577 Type Net I/O	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110 0.638 0.638	Macro + ADLIB:CLKBUF ADLIB:CLKBUF	Ì	
Total Power Static Power Dynamic Power reakdown by Ins n445 U44 U52 n453	Power 21. 0. 21. +	(mW) 733 156 577 Type Net I/O I/O	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110 1 0.638 0.638 0.447	Macro + ADLIB:CLKBUF ADLIB:CLKBUF	Ì	
Total Power Static Power Dynamic Power meakdown by Ins n445 U44 U52 n453 U53	Power 21. 0. 21. +	(mW) 733 156 577 	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110 0.638 0.447 0.325	Macro + ADLIB:CLKBUF ADLIB:CLKBUF ADLIB:INBUF	Ì	
Total Power Static Power Dynamic Power 	Power 21. 0. 21. +	(mW) 733 156 577 577 7ype Net I/0 Net I/0 Net Net Net	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110 0.638 0.447 0.325 0.300 0.278	Macro + ADLIB:CLKBUF ADLIB:CLKBUF ADLIB:INBUF 	Ì	
Total Power Static Power Dynamic Power 	Power 21. 0. 21. +	(mW) 733 156 577 577 7ype Net I/O Net I/O Net I/O Net I/O	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110 0.638 0.638 0.447 0.325 0.300 0.278 0.209	Macro ADLIB:CLKBUF ADLIB:CLKBUF ADLIB:INBUF ADLIB:OUTBUF	Ì	
Total Power Static Power Dynamic Power 	Power 21. 0. 21. +	(mW) 733 156 577 577 7ype Net I/O Net I/O Net I/O Net I/O I/O	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110 0.638 0.638 0.447 0.325 0.300 0.278 0.209 0.209	Macro ADLIB:CLKBUF ADLIB:CLKBUF ADLIB:INBUF ADLIB:OUTBUF ADLIB:OUTBUF	Ì	
Total Power Static Power Dynamic Power meakdown by Inst n445 U44 U52 n453 U53 LMDotIByteCtrL PL/n_6 U100 U101 U104	Power 21. 0. 21. +	(mW) 733 156 577 577 7ype Net I/O Net I/O Net I/O Net I/O I/O I/O	Percentage + 100.0% 0.7% 99.3% + Power (mW) + 4.110 0.638 0.447 0.325 0.325 0.209 0.209 0.209 0.209	Macro ADLIB:CLKBUF ADLIB:CLKBUF ADLIB:INBUF ADLIB:OUTBUF ADLIB:OUTBUF ADLIB:OUTBUF	Ì	
	Power 21. 0. 21. +	(mW) 733 156 577 577 7ype Net I/O Net I/O Net I/O Net I/O I/O	Percentage + 100.0% 0.7% 99.3% + Power (mW) + Power (mW) + 1 0.638 0.629 0.209 0.209 0.209	Macro ADLIB:CLKBUF ADLIB:CLKBUF ADLIB:INBUF ADLIB:OUTBUF ADLIB:OUTBUF	Ì	

Figure 40 · SmartPower Report

In addition to the information selected on the **Power Reports** dialog box, the report contains global design information.

Global design information: This section shows the target family, the package and the die. It also shows information about the operating conditions, speed grade, and power mode. This option is set by default.

See Also

Report (Power)

Scenario Power Report

The scenario power report enables you to select a previously defined <u>scenario</u> and calculate the average power consumption and the battery life for this scenario.

To generate a scenario power report:

Note: In order to generate a scenario power report, your design must contain one or more scenarios.

- 1. From the Designer **Tools** menu, choose **Reports > Power > Power Scenario**. The Scenario Power Report dialog box appears.
- 2. Select the options you want to include in the report, and then click **OK**. The scenario power report appears in a separate window.

You can also generate the scenario power report from within SmartPower. From the **Tools** menu, choose **Reports > Scenario Power Report**, or click the **Scenario Power Report** button to open the Power Scenarios dialog box. By default, the report includes global design information and power sequencer summary. Specify which results you want to display by checking the boxes to be included in the report.

The power report dialog box is organized in the following panels: <u>General</u>, <u>Operating Conditions</u>, <u>Options</u>, and <u>Battery Life</u>.

General

The general panel enables you to select what to include in the report, the report format, and the scenario you want to generate the report for.

Scenario Power Report		
Select a Category: General Operating Conditions Options Battery life	Include in the report Breakdown by rail Breakdown by type Breakdown by mode Operating condition summary Report format: Text Scenario: scenario2	
Help	OK Cancel	

Figure 41 · SmartPower Scenario Power Report Dialog Box – General Panel

Include in the Report

Breakdown by Rail - This section shows the power consumption of each rail.

Breakdown by Type – This section enables reporting on the power consumption according to: gates, nets, clocks, core static, IOs, and memories.

Breakdown by Mode – This section enables reporting on the power consumption by mode.

Operating Condition Summary - This section reports the operating conditions.

Report Format

Select **Text** or **CSV** (Comma Separated Value) as the desired export format.

Scenario

Select a previously defined scenario to generate the report from.

Operating Conditions

The Operating Conditions panel enables you to select the operating conditions case for the current design.

Scenario Power Report	
Select a Category: General Operating Conditions Dotions Battery life	Operating Conditions
Help	OK Cancel

Figure 42 · SmartPower Scenario Power Report Dialog Box - Operating Conditions Panel

Options

The Options panel enables you to select power and frequency units and to use toggle rates.

Scenario Power Report		×
Select a Category: General Operating Conditions Diptions Battery life	Options Units Power: mW Frequency: MHz Use toggle rates	
Help	OK Cancel	

Figure 43 · SmartPower Scenario Power Report Dialog Box – Options Panel

Units

Frequency: Sets unit preferences for frequency – Hz, KHz, MHz. **Power Units:** Sets unit preferences for power – W, mW, or υ W.

Use Toggle Rates

When toggle rates are active (**Use Toggle Rates** box is checked), the data frequency of all the clock domains is defined as a function of the clock frequency. This updates the data frequency automatically when you update the clock frequency. Toggle rates enable you to specify the data frequency as a percentage of clock frequency, but you can no longer specify the data frequency as a number, only as a percentage of the clock frequency. To set the data frequency again, clear the **Use Toggle Rates** option.

Battery Life

The Battery Life panel enables reporting of the battery capacity and the battery life. Enter a battery capacity in MA/Hrs.

Scenario Power Report	
Select a Category: General Operating Conditions Options Battery life	Include battery life Battery capacity: 1000.00 mA * Hrs
Help	OK Cancel

Figure 44 · SmartPower Scenario Power Report Dialog Box – Battery Life Panel

The SmartPower scenario power report returns the average power consumption and battery life for this sequence.

fpga_igloo - Power File Actions Help	_scenario Report					
rile Accions help						
Scenario Power	Report for de	sign fpga_i	gloo with t	the following se	ttings:	-
Vendor: Acte Program: Acte Date: Thu Version: 3.0	l Designer So	ftware, Rele	ease 8.4, (Copyright (C) 19	989-2008	
Design: Family: Die: Package: Temperature Ran Voltage Range: Operating Condi Data Source: Scenario Name:	IGLO AGL6 484 ge: COM COM tions: Typi Adva	OOV5 FBGA cal				
Scenario Average	Power					
+		+	+			
	Power (mW)					
+ Total Power Static Power Dynamic Power	10.926 0.138 10.788	100.04 1.34 98.74	\$ \$ \$			
+ Battery Life + Battery Capaci	+		+			-
+						
Battery Life +			•			
Breakdown by mod ++-				+	4	
Mode	Power in the 3	Mode (mW)	Duration	Power*Duration	Weight	
++- Mode Active Mode Static Mode Sleep ++-		21.733 0.156 0.033	50.0% 35.0% 15.0%	 	99.5% 0.5% 0.0%	

Figure 45 · SmartPower Scenario Power Report

In addition to the information selected on the **Scenario Power Reports** dialog box, the report contains global design information, a mode summary and the sequence average power.

Global design information: This section shows the target family, the package and the die. It also shows information about the operating conditions, speed grade and power mode. This option is set by default.

Power Summary: This section reports the power consumption of the sequence by mode. This option is set by default.

Sequence Average Power: This section reports the average power consumption of the sequence. This option is set by default.

See Also

Report (Sequencer)

Cycle-Accurate Power Reports

Traditional power analysis based on a VCD simulation file reports an average power for the entire simulation time. Based on a VCD simulation file, the cycle-accurate power analysis will report one power value per clock period (or half-period) instead of an average power for the whole simulation. This feature allows to easily identify the worst cycle in terms of power performance; and helps to understand and further minimize power consumption by facilitating the analysis of data-dependent power variations, as well as dynamic power variations due to clock-gating, or even clock frequency variations.

To generate a cycle-accurate power report:

- 1. From the Designer **Tools** menu, choose **Reports > Power > Power Cycle Accurate**. The Cycle Accurate Power Report dialog box appears.
- 2. Select the options you want to include in the report, and then click **OK**. The cycle accurate power report appears in a separate window.

You can also generate the cycle accurate power report from within SmartPower. From the **Tools** menu, choose **Reports > Cycle Accurate Power Report** to open the cycle accurate power report dialog box; or select a vcd file from the Modes and Scenarios toolbar, and from the right-click menu, select **Tools > Power Cycle Accurate**.

The cycle-accurate power report dialog box is organized in the following panels: <u>General</u>, <u>Sampling Period</u>, <u>Partial Parsing</u>, <u>Top-Level Name</u>, <u>Glitch Filtering</u>, and <u>History Size Reduction</u>.

General

Cycle Accurate Power Report		×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering History size reduction	General VCD file: D:\work\code\design_vcd\BMotor.vcd Report format: Text Use operating conditions from: Active	
Help	OK Cancel	

Figure 46 · SmartPower Cycle Accurate Power Report Dialog Box – General **VCD file** - Select the VCD file you want to import.

Report format – Select **Text** or **CSV** (Comma Separated Value) as the desired export format. **Use operating conditions from** – Select the mode from which the operating conditions will be used.

Sampling Period

Partial Parsing

Cycle Accurate Power Report		×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering History size reduction	Sampling period Automatic detection from clock: PWM_clk	
Help	OK Cancel	

Figure 47 · SmartPower Cycle Accurate Power Report Dialog Box - Sampling Period

Automatic detection from clock - This option automatically detects the sampling period from the fastest clock. You can also select any other clock in your design. You can specify whether the average value is computed per period or half-period.

Specify – Select this option to specify the period and offset used to calculate the sampling period.

Select a Category:	Partial parsing	
General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering History size reduction	Partially parse VCD Start time: End time:	0.00 ns 10000.00 ns
Help		OK Cancel

Figure 48 · SmartPower Cycle Accurate Power Report Dialog Box - Partial Parsing Partially parse VCD file - Specify the Start and End times to partially parse the VCD file. This option can be used for large VCD files.

Top-Level Name

Cycle Accurate Power Report		×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering History size reduction	Top level name Automatic detection Specify:	
Help	OK Cancel	

Figure 49 · SmartPower Cycle Accurate Power Report Dialog Box – Top-Level Name

This option enables you to select how the top-level name is specified. Select **Automatic Detection** to let the VCD reader automatically detect the top-level name of the design, or select **Specify** to manually specify the top-level name.

Glitch Filtering

Cycle Accurate Power Report	×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering History size reduction	Off Automatic glitch filtering Specify filtering threshold: 100
Help	OK Cancel

Figure 50 · SmartPower Cycle Accurate Power Report Advanced Options Dialog Box – Glitch Filtering

This panel enables you to filter out pulses of short durations by selecting **Automatic Glitch Filtering** or by entering a value in the **Specify Filtering Threshold** field. The default glitch filtering option is **Automatic Glitch Filtering**.

History Size Reduction

Cycle Accurate Power Report		
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering History size reduction	History size reduction Keep only local extrema Set power threshold: 0.00 mW	
Help	OK Cancel	

Figure 51 · SmartPower Cycle Accurate Power Report Advanced Options Dialog Box – History Size Reduction This panel enables you to limit the history size by keeping only local extrema or setting a power threshold. The results are displayed in the cycle accurate power report below.

🔁 simple_P	WM_8 - Power_cycle_a	ccurate Report			
File Actions	Help				
Copyright	poration - Actel I : (c) 1989-2008 : May 29 13:53:58 2	-	re Release 8	.4 (Version 8.4.0.0)	^
Family : Die : AGI Package : Temperatu Voltage F Operating Operating Data Sour			zed		
Max Power		-			
Cycle	Start Time (ps)	End Time(ps)	Power(mW)	I	
21	2000000	2100000	0.508	l	
++	sed Power Report Start Time (ps)				
	+				
			0.101	I	
			0.161	1	
			0.161 0.207	1	
			0.182	1	
			0.203	I	
	1700000		0.180	I	
			0.508		
			0.180 0.188		
			0.182	1	
I = - I			0.199		
26	2500000	2600000	0.180	l	
29	2800000	2900000	0.238	I	
			0.180	1	
			0.188		
32 	3100000	3200000	0.182	I	× .
					<u> </u>

Figure 52 · SmartPower Cycle Accurate Power Report

Activity and Hazards Reports

Traditional Power Analysis based on a VCD simulation file reports an average power value that will account for all nets switching in the design. This switching includes functional transitions and spurious transitions. Due to the delay of each gate, paths arriving at one internal gate may have different propagation delays. Therefore, a gate may exhibit multiple spurious transitions before settling to the correct logic level. The Activity and Hazards Power Report allows to quickly identify gates and nets of the design that consume power because of spurious transitions. This is helpful to understand and further minimize power consumption. The activity and hazards report reads a VCD file and reports transitions and hazards for each clock cycle of the VCD file.

To generate an activity and hazards power report:

1. From the Designer **Tools** menu, choose **Reports > Power > Power Activity and Hazards**. The Activity and Hazards Power Report dialog box appears.

2. Select the options you want to include in the report, and then click **OK**. The activity and hazards report appears in a separate window.

You can also generate the activity and hazards report from within SmartPower. From the **Tools** menu, choose **Reports > Activity and Hazards Report**; or select a vcd file from the Modes and Scenarios toolbar, and from the right-click menu, select **Tools > Power Activity and Hazards**

The activity and hazards report dialog box is organized in the following panels: <u>General</u>, <u>Partial Parsing</u>, <u>Top-Level Name</u>, <u>Glitch Filtering</u>, and <u>Clock Domains</u>.

General

Activity And Hazards Power Repo	rt	×
Select a Category:	General	
General VCD parsing options Partial parsing Top level name Glitch filtering Clock domains	VCD file: D:\work\code\design_vcd\BMotor.vcd Report format: Text Use operating conditions from: Active Report type: Report by Net - summary For each net, report activity and power; sort by total power; sort order descending; Limit the number of reported nets to <u>40</u> .	
Help	OK Cancel	

Figure 53 · SmartPower Activity and Hazards Report Dialog Box – General **VCD file** – Select the VCD file you want to import.

Report format – Select **Text** or **CSV** (Comma Separated Value) as the desired export format.

Use operating conditions from – Select the mode from which the operating conditions will be used. **Report type** – Select the report type:

- Report by net summary: summary report by net
- Report by net detailed: detailed report by cycle
- Report by cycle summary: summary report by net
- Report by cycle detailed: detailed report by cycle

The selected report type reports activity and power for each net sorted by power in descending order and limits the number of reported nets to 20 by default. To change these options, click each option and from the pop-up menu, select the desired option:

- Report: Select the query report type: activity, power, or activity and power.
- Sort by: Select the query sort by functional power, functional transitions, spurious power, spurious transitions, or total power.
- Sort order: Select the query sort order: ascending or descending.
- Limit the number of reported nets: Enter the query filter limit.

Partial Parsing

Activity And Hazards Power Repo	rt	×
Select a Category: General VCD parsing options Partial parsing Top level name Glitch filtering Clock domains	✓ Partially parse VCD Start time: 0.00 ns End time: 10000.00 ns	
Help	OK Cancel	

Figure 54 · SmartPower Activity and Hazards Report Dialog Box - Partial Parsing

Partially parse VCD file – Specify the Start and End times to partially parse the VCD file. This option can be used for large VCD files.

Top-Level Name

Activity And Hazards Power Repo	t	×
Select a Category: General VCD parsing options Partial parsing <u>Top level name</u> Glitch filtering Clock domains	Top level name Automatic detection Specify:	
Help	OK Cancel	

Figure 55 · SmartPower Activity and Hazards Report Dialog Box – Top-Level Name

This option enables you to select how the top-level name is specified. Select **Automatic Detection** to let the VCD reader automatically detect the top-level name of the design, or select **Specify** to manually specify the top-level name.

Glitch Filtering

Activity And Hazards Power Repor	t	×
Select a Category: General VCD parsing options Partial parsing Top level name Glitch filtering Clock domains	Glitch filtering Off Automatic glitch filtering Specify filtering threshold: 100 ps	
Help	OK Cancel	

Figure 56 · SmartPower Activity and Hazards Report Advanced Options Dialog Box – Glitch Filtering

This option enables you to filter out pulses of short durations by selecting **Automatic Glitch Filtering** or by entering a value in the **Specify Filtering Threshold** field. The default glitch filtering option is **Automatic Glitch Filtering**.

Clock Domains

Activity And Hazards Power Repor	t 🔀
Select a Category:	Clock domains
General VCD parsing options Partial parsing	Clock domain Automatic construction
Top level name Glitch filtering Clock domains	C Specify: Period: 10000.00 ps First edge: 0.00 ps
	Clock domain Active clock Active edge 1 PWM_clk true rising 2 un1_dataa_int_NE true rising
Help	OK Cancel

Figure 57 · SmartPower Activity and Hazards Report Advanced Options Dialog Box – Clock Domains The clock domain can be automatically constructed or it can be specified by the user.

Automatic construction – This option automatically constructs the clock domain. SmartPower automatically analyzes your design to assess if a clock is active and what is the active edge. **Specify** – Select this option to specify the period and first edge.

Use the clock domain table to set the active edge (rising, falling or both) and to set a clock as transparent. The results are displayed in the activity and hazards power report below.

simple_PWM_8								
Actions Help								
ctivity map n	report							
opyright (c)		signer Software Release 108	8.4 (Ve:	rsion 8.4.0.0)				
esign : simp!								
amily : IGLO								
ie : AGL600V2								
ackage : 256								
emperature Ra								
oltage Range		- 1						
perating Cond perating Mode	ditions : Typic	ai						
ata Source :								
ed file: D:/v	work/code/desig	m_vcd/BMotor.vcd						
ctivity Map								
		Dynamic Power (mW)						
		+						
Total	44194	0.155						
Functional	32364	0.128						
Functional	32364 11820	0.128						
Functional Spurious ctivity Map:	32364 11820 ++ Net Summary	0.128	Type	Functional		Functional		
Functional Spurious 	32364 11820 ++ Net Summary	0.128 0.027	Type 	Functional Transitions	Spurious	Functional Power	Spurious	
Functional Spurious ctivity Map: Net	32364 11820 ++ Net Summary	0.128 0.027 Clock Domain FWM clk	Type +	Functional Transitions +	Spurious Transitions +	Functional Power (mW) +	Spurious Power	
Functional Spurious ctivity Map: Net PWM_clk_c PWM_clk_c_0	32364 11820 	0.128 0.027 Clock Domain FWM clk	Type +	Functional Transitions +	Spurious Transitions +	Functional Power (mW) + 0.090 0.019	Spurious Power (mW) + 0.000 0.000	
Functional Spurious ctivity Map: Net PWM_clk_c PWM_clk_c0 Qaux[0]	32364 11820 	0.128 0.027 Clock Domain FWM clk	Type +	Functional Transitions +	Spurious Transitions +	Functional Power (mW) +	Spurious Power (mW) + 0.000 0.000 0.013	
Functional Spurious ctivity Map: Net PWM_clk_c PWM_clk_c Qaux[0] PWM_clk_pad,	32364 11820 	0.128 0.027 Clock Domain PWM_clk FWM_clk FWM_clk FWM_clk] wnl_dataa_int_NE:Y FWM_clk	Type + Clock Clock Data Clock	Functional Transitions 5999 5999 1 5999	Spurious Transitions 	Functional Power (mW) +	Spurious Power (mW) +	
Functional Spurious Stivity Map: Net PWM_clk_c_0 Qaux[0] PWM_clk_pad, Qaux[1]	32364 11820 	0.128 0.027 Clock Domain PWM_clk PWM_clk uni_dataa_int_NE:Y PWM_clk uni_dataa_int_NE:Y	Type Clock Clock Data Clock Data	Functional Transitions 	Spurious Transitions 	Functional Power (mW) 0.090 0.019 0.000 0.010 0.000	Spurious Power (mW) +	
Functional Spurious ctivity Map: Net PWM_clk_c PWM_clk_c0 Qaux[0] PWM_clk_pad, Qaux[1] un3_qaux_U1	32364 11820 	0.128 0.027 Clock Domain Clock Domain PWM_clk PWM_clk PWM_clk Unidataa_int_NE:Y PWM_clk Unidataa_int_NE:Y PWM_clk	Type Clock Clock Data Clock Data Data	Functional Transitions 5999 5999 1 5999 1 1	Spurious Transitions +	Functional Power (mW) +	Spurious Power (mW) 0.000 0.000 0.013 0.000 0.005 0.000	
Functional Spurious Calibrian Strain	32364 11820 	0.128 0.027 Clock Domain PUM_clk FUM_clk FUM_clk un1_dataa_int_NE:Y] FUM_clk un1_dataa_int_NE:Y] FUM_clk un1_dataa_int_NE:Y	Type Clock Data Data Data Data	Functional Transitions 	Spurious Transitions 	Functional Power (mW) +	Spurious Power (mW) +	
Functional Spurious ctivity Map: Net PWM_clk_c PWM_clk_c0 Qaux[1] un3_gaux_U1 Qaux[2] Qaux[3]	32364 11820 	0.128 0.027 Clock Domain U VUM_clk VUM_clk VUM_clk Unidataa_int_NE:Y VUM_clk Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y	Type Clock Clock Data Data Data Data	Functional Transitions 5999 5999 1 5999 1 746 0 23	Spurious Transitions 0 2986 0 1492 0 746 350	Functional Power (mW) +	Spurious Power (mW) 0.000 0.000 0.013 0.000 0.005 0.000	
Functional Spurious Calibrian Strain	32364 11820 	0.128 0.027 Clock Domain U VUM_clk VUM_clk VUM_clk Unidataa_int_NE:Y VUM_clk Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y Unidataa_int_NE:Y	Type Clock Clock Data Clock Data Data Data Data	Functional Transitions 5999 5999 1 1 5999 1 746 0 23 1	Spurious Transitions 0 0 2986 0 1492 0 746 350 2986	Functional Power (mW) 0.090 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Spurious Power (mW) 0.000 0.000 0.003 0.005 0.003 0.002	
Functional Spurious ctivity Map: Net PWM_clk_c PWM_clk_c Qaux[0] PWM_clk_pad, Qaux[1] un3_qaux[2] Qaux[3] un1_dataa_in un1_dataa_in	32364 11820 	0.128 0.027 Clock Domain PUM_clk PUM_clk PUM_clk uni_dataa_int_NE:Y PUM_clk uni_dataa_int_NE:Y Uuni_dataa_int_NE:Y uni_dataa_int_NE:Y uni_dataa_int_NE:Y uni_dataa_int_NE:Y Uuni_dataa_int_NE:Y Uuni_dataa_int_NE:Y Uuni_dataa_int_NE:Y Uuni_dataa_int_NE:Y Uuni_dataa_int_NE:Y	Type Clock Clock Data Data Data Data Data Data	Functional Transitions 5999 5999 1 5999 1 5999 1 1 746 0 23 1 23 1 2987 1494	Spurious Transitions 0 2986 0 1492 0 746 350 2986 0 0	Functional Power (mW) 0.090 0.019 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000	Spurious Power (mW) 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001	
Functional Spurious Stivity Map: Net PWM_clk_c PWM_clk_c_ Qaux[0] Qaux[1] Qaux[1] Qaux[2] Qaux[2] Qaux[3] un1_dataa_i1 I_5 PWM_cot_pad,	32364 11820 	0.128 0.027 Clock Domain U VUM_clk VUM_clk VUM_clk Uni_dataa_int_NE:Y VUM_clk Uni_dataa_int_NE:Y Uni_dataa_int_NE:Y Uni_dataa_int_NE:Y Uni_dataa_int_NE:Y VUM_clk	Type Clock Clock Data Data Data Data Data Data Data Data Data	Functional Transitions 5999 5999 1 5999 1 1 5999 1 1 746 0 23 1 1 2987 1494 21	Spurious Transitions 0 0 2986 0 1492 0 746 350 2986 0 2986 0 0	Functional Power (mW) 0.090 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001	Spurious Power (mW) 0.000 0.0013 0.000 0.005 0.000 0.002 0.001 0.000 0.000 0.000	
Functional Spurious Stivity Map: Net PWM_clk_c PWM_clk_c_0 Qaux[0] PWM_clk_pad, Qaux[1] un3_qaux_U1 Qaux[2] Qaux[3] un1_dataa_in I_4 I_5 PWM_out_pad, un1_dataa_in	32364 11820 	0.128 0.027 Clock Domain PUM_clk PUM_clk PUM_clk unl_dataa_int_NE:Y PUM_clk unl_dataa_int_NE:Y Unl_dataa_int_NE:Y unl_dataa_int_NE:Y unl_dataa_int_NE:Y PUM_clk	Type Clock Data Data Data Data Data Data Data Data	Functional Transitions 5999 5999 1 5999 1 5999 1 1 746 0 23 1 23 1 23 23 1 23 1 2987 1494 21 1	Spurious Transitions 0 0 2986 0 1492 0 746 350 2986 0 0 0 0 1492	Functional Power (mW) 0.090 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000	Spurious Power (mW) 0.000 0.000 0.013 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000	
Functional Spurious Cetivity Map: Net PWM_clk_cO Qaux[0] PWM_clk_pad, Qaux[1] un3_qaux_U1 Qaux[2] Qaux[3] un1_dataa_in I_4 I_5 PWM_out_pad, un1_dataa_in I_9	32364 11820 	0.128 0.027 Clock Domain PWM_clk PWM_clk PWM_clk Unl_dataa_int_NE:Y PWM_clk Unl_dataa_int_NE:Y Unl_dataa_int_NE:Y Unl_dataa_int_NE:Y Unl_dataa_int_NE:Y PWM_clk Unl_dataa_int_NE:Y PWM_clk Unl_dataa_int_NE:Y PWM_clk Unl_dataa_int_NE:Y PWM_clk	Type Clock Clock Data Data Data Data Data Data Data Data Data Data	Functional Transitions 5999 5999 1 5999 1 5999 1 1 5999 1 1 5999 1 2 3 2 3 1 2 2 3 1 2 2 3 1 2 2 9 8 7 1 4 9 4 2 1 1 2 2 9 8 7 1 1 2 7 4 6 9 9 1 1 1 7 4 6 9 9 9 1 1 1 1 5999 1 1 1 5999 1 5999 1 1 1 5999 1 1 1 1	Spurious Transitions 0 2986 0 1492 0 746 350 2986 0 0 0 1492 0	Functional Power (mW) +	Spurious Power (mW) 0.000 0.013 0.000 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.001	
Functional Spurious Stivity Map: Net PWM_clk_c - PWM_clk_c - Qaux[0] Qaux[1] Qaux[2] Qaux[2] Qaux[3] un1_dataa_in I_5 PWM_cout_pad, un1_dataa_in I_9 PWM_cout_pad, un1_dataa_in I_9 Qaux[4]	32364 11820 	0.128 0.027 Clock Domain 1 PWM_clk PWM_clk PWM_clk uni_dataa_int_NE:Y PWM_clk uni_dataa_int_NE:Y uni_dataa_int_NE:Y uni_dataa_int_NE:Y Uni_dataa_int_NE:Y PWM_clk PWM_clk PWM_clk PWM_clk PWM_clk PWM_clk Uni_dataa_int_NE:Y VM_clk Uni_dataa_int_NE:Y VM_clk Uni_dataa_int_NE:Y VM_clk VM_cl	Type Clock Data Data	Functional Transitions 5999 5999 1 5999 1 746 0 2 1 2987 1494 21 1 747 2	Spurious Transitions 0 0 2986 0 1492 0 746 350 2986 0 0 0 0 1492 0 1492 0 1492	Functional Power (mW) 0.090 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000	Spurious Power (mW) 0.000 0.013 0.000 0.003 0.003 0.000 0.003 0.000 0.001 0.000 0.000	
Functional Spurious ctivity Map: Net PWM_clk_c-O Qaux[0] PWM_clk_pad Qaux[1] un3_qaux_U1 Qaux[2] Qaux[3] un1_dataa_in I_4 I_5 PWM_cot_pad, un1_dataa_in I_9 Qaux[4] I_13	32364 11920 Net Summery /UO/NET1 _DWACT_FINC_E[0 nt_0_1 /UO/NET1 nt_1_1	0.128 0.027 Clock Domain FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y Uni_dataa_int_NE:Y Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk	Type Clock Clock Data Data	Functional Transitions 5999 5999 1 5999 1 746 0 23 1 2987 1494 21 1 747 2 373	Spurious Transitions 0 0 2986 0 1492 0 746 350 2986 0 0 0 0 1492 0 1492 0 1492 374	<pre>Functional Power (mW)</pre>	Spurious Power (mW) 0.000 0.000 0.005 0.000 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	
Functional Spurious Stivity Map: Net PWM_clk_c - PWM_clk_c - Qaux[0] Qaux[1] Qaux[2] Qaux[2] Qaux[3] un1_dataa_in I_5 PWM_cout_pad, un1_dataa_in I_9 Qaux[4]	32364 11920 Net Summery /UO/NET1 _DWACT_FINC_E[0 nt_0_1 /UO/NET1 nt_1_1	0.128 0.027 Clock Domain FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y Uni_dataa_int_NE:Y Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk Uni_dataa_int_NE:Y FWM_clk	Type Clock Data Data	Functional Transitions 5999 1 5999 1 5999 1 23 1 23 1 23 1 2987 1494 21 1494 21 1494 21 1 747 2 747 2 746	Spurious Transitions 0 2986 0 2986 0 1492 0 746 350 2986 0 0 1492 0 1492 0 184 374 0	Functional Power (mW) 0.090 0.019 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000	Spurious Power (mW) 0.000 0.013 0.000 0.003 0.003 0.000 0.003 0.000 0.001 0.000 0.000	

Figure 58 · SmartPower Activity and Hazards Report

Cycle-Accurate Power Analysis

The Cycle-Accurate Power Analysis reports cycle-accurate power data in a graphical form. In the analysis window, you can specify ranges and compute averages for each range, define a list of watched blocks, obtain power usage of a single block or cycle, or obtain power usage of multiple blocks over several cycles.

To generate a cycle-accurate power analysis:

- 1. From the SmartPower **Tools** menu, choose **cycle-accurate Power Analysis**; or select a vcd file from the Modes and Scenarios toolbar, and from the right-click menu, select **Tools > cycle-accurate Power Analysis**. The cycle-accurate Power Analysis dialog box appears.
- 2. Select the options you want to include in the report, and then click **OK**. The cycle-accurate power report appears in a separate window.

The cycle-accurate power analysis dialog box is organized in the following panels: <u>General</u>, <u>Sampling</u> <u>Period</u>, <u>Partial Parsing</u>, <u>Top-Level Name</u>, and <u>Glitch Filtering</u>.

General

Cycle Accurate Power Analysis		×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering	General VCD file: de\for SmartPower\vishal_fpu_A3P1000.vcd Use operating conditions from: Active	
Help	OK Cancel	

Figure 59 \cdot SmartPower cycle-accurate Power Analysis Dialog Box – General **VCD file** – Select the VCD file you want to import.

Use operating conditions from - Select the mode from which the operating conditions will be used.

Sampling Period

Cycle Accurate Power Analysis		×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering	Sampling period • Automatic detection from clock: • Compute an average value per clock period • Compute an average value per half clock period • Compute an average value per half clock period • Specify: Period: 0.00 ps 	
Help	OK Cancel	

Figure 60 · SmartPower cycle-accurate Power Analysis Dialog Box – Sampling Period

Automatic detection from clock – This option automatically detects the sampling period from the fastest clock. You can also select any other clock in your design. You can specify whether the average value is computed per period or half-period.

Specify – Select this option to specify the period and offset used to calculate the sampling period.

Partial Parsing

Cycle Accurate Power Analysis		×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering	Partial parsing ✓ Partially parse VCD Start time: 0.00 End time: 10000.00	
Help	OK Cancel	

Figure 61 · SmartPower cycle-accurate Power Analysis Dialog Box – Partial Parsing

Partially parse VCD file – Specify the Start and End times to partially parse the VCD file. This option can be used for large VCD files.

Top-Level Name

Cycle Accurate Power Analysis		×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering	Automatic detection Specify:	
Help	OK Cancel	

Figure 62 · SmartPower cycle-accurate Power Analysis Dialog Box – Top-Level Name

This option enables you to select how the top-level name is specified. Select **Automatic Detection** to let the VCD reader automatically detect the top-level name of the design, or select **Specify** to manually specify the top-level name.

Glitch Filtering

Cycle Accurate Power Analysis		×
Select a Category: General Sampling period VCD parsing options Partial parsing Top level name Glitch filtering	 Glitch filtering ○ Off ○ Automatic glitch filtering ○ Specify filtering threshold: 100 ps 	
Help	OK Cancel	

Figure 63 · SmartPower cycle-accurate Power Analysis Advanced Options Dialog Box – Glitch Filtering

This option enables you to filter out pulses of short durations by selecting **Automatic Glitch Filtering** or by entering a value in the **Specify Filtering Threshold** field. The default glitch filtering option is **Automatic Glitch Filtering**.

Cycle-Accurate Power Analysis Window

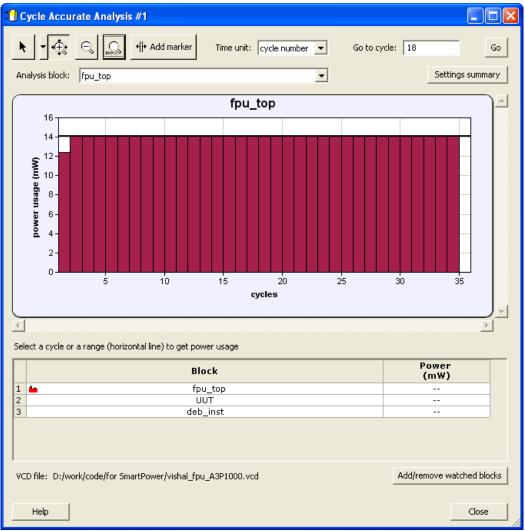


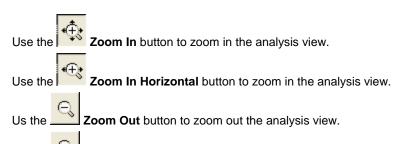
Figure 64 · cycle-accurate Power Analysis

Mouse over a cycle to obtain the cycle number, the start and end times, and the power usage for the selected cycle.

Use the **Select** button to select a cycle in the analysis, the grid displays the block name and power usage for the watched blocks.

Us the Add Marker button to create cycle ranges - intervals between markers and/or the simulation ends.

To select a range, mouse over the average power usage horizontal line. This will display the average power usage for the range.


To move to the beginning or end of a range, right-click the average power usage of the range and select **Go** to **Beginning of Range** or **Go to End of Range**.

To move the marker to another cycle, click and drag the marker to another cycle; or from the right-click menu, select **Move marker**, and enter a time value.

To delete the marker, right-click the marker, and select Delete marker.

To move to the previous or next markers, right-click the marker, and select **Go to previous marker** or **Go to previous marker**.

Us the **Zoom to Full View** button to zoom into full view.

To view the most power-consuming blocks for a cycle, right-click the cycle, and select **Show Most Consuming Blocks for this Cycle**. This opens the Biggest Power Contributors for Cycle window.

		Block	Power (mW)	1
1	-	fpu_top	14.083	
2		UUT	0.257	
3		UUT/u6/II_0/U1	0.129	-
4		UUT/u6/II_0	0.129	
5		UUT/u6	0.129	
6		UUT/u4	0.033	
7		UUT/05	0.023	1

Figure 65 · Biggest Power Contributors for a Cycle Window

To view the analysis for a specific time, enter a time value in the **Go to time** box, select the time unit, and press the **Go** button.

To view the analysis for a specific block, select the block from the Analysis Block pull-down.

To export the cycle-accurate power analysis chart, right-click the chart, and select Export Chart to File.

You can modify the blocks you want to watch during analysis, by pressing the **Add/Remove Watched Blocks** button.

If the operating conditions in SmartPower have been modified, a warning appears to indicate that the settings have been changed. Click the hyperlink to regenerate the Cycle-Accurate analysis view.

Click the View Settings Summary button to display the cycle-accurate settings.

Cycle Accurate Settings S	Summary 🔀
Setting VCD file Operating conditions from mod Sampling period Clock name Compute average per Autodetect top level name Partial parsing Start time Stop time Glitch filtering Glitch filtering threshold	Value D:/work/code/for SmartPower/vish le Active autodetected from clock clk period true 0.000 ns 10000.000 ns auto 300 ps
	Close

Figure 66 · Cycle-Accurate Settings Summary

Click the **Add/Remove Watched Blocks** button to display a list of watched blocks . You can add or remove watched blocks by checking or unchecking the **Watch** checkbox for that particular block(s) or by selecting blocks in the grid and using the **Check** or **Uncheck Selected Blocks** buttons. You can use the filter options to hide or display the list of blocks based on the criteria entered.

Wate	:h blocks	×
	ck below the block(s) you want to watch during cycle accurate analysis:	All Blocks
Γ	Block	Watch 🔷
1	fpu_top	
2	UUT	V
3	deb_inst	
4	UUT/u3	
5	UUT/u2	
6	UUT/u0	
7	UUT/u4	
8	UUT/u6	
9	UUT/u1	
10		
11	UUT/u6/II_0	V
Ch	eck selected blocks	Select All
	Help OK	Cancel

Figure 67 · Watched Blocks

Importing a VCD File

The Value Change Dump (VCD) file is a simulation file. The format of this file is specified in the IEEE 1364 standard.

You can configure the Project Manager to automatically generate VCD files using Model Sim.

You can also generate a VCD file with a ModelSim simulator using the following commands:

```
vcd file example.vcd
vcd add -r /testbench/<top>_0/*
run 1 us
vcd flush
```

This example creates a VCD file example.vcd, adds all signals recursively, runs the simulation for one micro second, and quits. You must quit Model *Sim* in order to get an accurate result from SmartPower.

If you have not yet completed the layout of the design, the design software guides you through place-androute so that you can import the VCD file. In order to successfully annotate your VCD values to the design, Designer must complete place-and-route even if you generated your VCD file using timing simulation (prelayout).

Note: SmartPower has been validated with VCD files generated by Model*Sim*. However, you may use any Verilog/VHDL simulator that offers a VCD dump feature.

Refer to the user manual of your simulation tool for more information on how to generate a VCD file.

To import a VCD file:

1. From the Simulation menu, select Import VCD File. This opens the Import VCD Options dialog box.

Import VCD Options		×
Select a Category: General VCD parsing options Partial parsing Top level name Glitch filtering Remaining signals	General VCD file: D:\work\code\sub.vcd Import in: Existing mode: New mode:	
Help	OK Cancel	

Figure 68 · Import VCD File Dialog Box

- 2. Select the VCD file you want to import and select a mode to import it in, or click **New Mode** and enter a mode name.
- 3. Select the options you want to specify:

Partial Parsing — Specify the **Start** and **End Times** to partially parse the VCD file. This option can be used for large VCD files.

Import VCD Options		×
Select a Category: General VCD parsing options Partial parsing Top level name Glitch filtering Remaining signals	Partial parsing Partially parse VCD Start time: End time: 10000.00 ns	
Help	OK Cancel	

Figure 69 · Import VCD File Dialog Box — Partial Parsing

Top-Level Name — This option enables you to select how the top-level name is specified. The **Top Level Name** is the instance name of your design instantiated in the simulation testbench.

Select **Automatic Detection** to let the VCD reader automatically detect the top-level name of the design, or select **Specify** to manually specify the top-level name.

Import VCD Options	
Select a Category: General VCD parsing options Partial parsing Top level name Glitch filtering Remaining signals	Image: Specify:
Help	OK Cancel

Figure 70 · Import VCD File Dialog Box — Top-Level Name

Glitch Filtering — This option enables you to filter out pulses of short durations by selecting **Automatic Glitch Filtering** or by entering a value in the **Specify Filtering Threshold** field. The default option is **Automatic Glitch Filtering**.

Import VCD Options		×
Select a Category: General VCD parsing options Partial parsing Top level name Glitch filtering Remaining signals	C Off Automatic glitch filtering Specify filtering threshold: 100 ps	
Help	OK Cancel	

Figure 71 · Import VCD File Dialog Box — Glitch Filtering

Remaining Signals — Some signals may not be annotated by the VCD reader. This generally happens with VCD files created from a behavioral or a post-synthesis simulation. For those signals, you can either complete the annotation with the <u>vectorless analysis</u> or with the average values computed from the VCD file.

Import VCD Options	
Select a Category: General VCD parsing options Partial parsing Top level name Glitch filtering Remaining signals	Remaining signals Ise Vectorless analysis Use Average values computed from VCD
Help	OK Cancel

Figure 72 · Import VCD File Dialog Box — Remaining Signals

- 4. Click OK.
- 5. When the vcd file is successfully imported, the file appears in the Modes and Scenarios toolbar, under the imported mode. The following messages appear in the Designer Log window:

Info:

VCD:34 glitch(es) filtered with 1000 ps threshold

The message above reports the number of glitches that have been filtered by the VCD reader.

```
Info:
VCD: Annotation Statistics
Percentage of Annotated Pins:100.00 %
Percentage of Unannotated Pins:0.00 %
Percentage of Annotated Pins with Zero Frequency: 25.99 %
```


If the percentage of annotated pins is less than 50.00%, a warning message will be generated.

If the percentage of annotated pins is low, you may want to verify that signals at all levels of hierarchy were added recursively (for example using vcd add -r in ModelSim).

If you simulate a pre-synthesis netlist or a post-synthesis RTL netlist, it is possible to get a low percentage of annotated pins. This happens because not all logic elements are in the pre-synthesis netlist and the post-synthesis RTL netlist. For accurate power estimation, it is best to run post-layout simulation with a back-annotated netlist.

If you want to see exactly which pins are not annotated, open the SmartPower Frequencies tab. If your file was imported successfully, you will see a list of pins with annotated individual frequencies displayed with VCD Import as a source. The unannotated pins are displayed with Default Estimation as source. If your design has enable pins, open the SmartPower Probabilities tab.

After finishing the import VCD process, you can now create a <u>custom mode</u> based on the active mode. This custom mode will inherit all the clock and toggle frequencies of the active mode that have just been set through the VCD import. This final step is optional. It gives you the flexibility to modify the active mode frequencies while saving the VCD scenario in SmartPower. Refer to <u>Custom operating modes</u> for more details.

Note: If you generated the VCD file from Project Manager and if you are using Designer from Libero IDE, the list of generated VCD files appear in the unprocessed VCD file list. To import the VCD file, right-click and select Import VCD File.

Figure 73 · Unprocessed Simulation Files

Importing a SAIF File in Designer

Use the following instructions to import a SAIF file.

To import a SAIF file:

1. From the **File** menu in **Designer**, select **Import Auxiliary Files**. Click **Add** to browse to your SAIF file and select it. When you have selected a SAIF file, click **OK** to continue.

If you have not yet completed the layout of the design, the design software guides you through placeand-route so that you can import the SAIF file. In order to successfully annotate your SAIF values to the design, Designer must complete place-and-route even if you generated your SAIF file using timing simulation (post-layout).

You may wish to import multiple SAIF files. If these files conflict (attempt to set a different frequency for the same net of your design, for example), the latest imported value takes precedence.

2. Specify your SAIF import options. Use the SAIF **Import Options** window to specify the instance name of your design in the simulation testbench (the instance name is the instance name of your design instantiated in the simulation testbench). You must include the hierarchy with the instance name. The example below shows how to identify the instance name of your design in the SAIF file. For example, the instance name of the design in the following SAIF file is "TEST_BENCH/UUT".

```
(SAIFILE
(SAIFVERSION "1.1")
(DESIGN 2ff)
(DATE "Fri May 10 14:48:46 2002")
```


(TIMESCALE lns) (DURATION 50000) (INSTANCE TEST_BENCH/UUT (PORT (OUT_PORT (TC 26) (IG 0) (T1 25994) (T0 22000) (TX 2006)))) (INSTANCE TEST_BENCH/UUT/\outpad/U0/U1\ (PORT (Y (TC 26) (IG 0) (T1 25995) (T0 22000) (TX 2005)))) (INSTANCE TEST_BENCH/UUT/\ff1/U0\ (PORT (Q (TC 27) (IG 0) (T1 26000) (T0 22997) (TX 1003))) (INSTANCE TEST_BENCH/UUT/\clkpad/U0/U0\ (PORT (Y (TC 99) (IG 0) (T1 25000) (T0 24999) (TX 1))))

Click **OK** to continue.

- 3. Check the **Log** window for notification that you successfully imported the SAIF file ("The Import command succeeded..."). Even if the Import command succeeds, use SmartPower to verify which pins have been affected after you import the file.
- 4. Verify results of the imported file in the Frequencies tab screen in SmartPower. To view the results of your imported SAIF file, launch SmartPower and navigate to the Frequencies tab screen to view pins with annotated switching activities. If your file was imported successfully, you will see a list of pins with annotated switching frequencies and specific individual frequencies.

It may be that some pins of your design are not annotated by a SAIF import command. This sometimes happens if you simulate a pre-synthesis netlist. It is normal; not all logic elements are in the pre-synthesis netlist. Thus it is better to do a post-layout simulation with a back-annotated netlist for the most accurate power estimation.

Removing a VCD File

The Value Change Dump (VCD) file is a simulation file. The format of this file is specified in the IEEE 1364 standard.

To remove a VCD file:

- Select the VCD file from Active mode or a custom mode, right-click the VCD file, and select Remove VCD File from <mode name> Mode; or
- From the Simulation menu, choose Remove VCD File > <file name>

Note: Any annotation will be removed when you remove the VCD file.

See Also

Importing a VCD File Modes and Scenarios Toolbar

Auditing Files

SmartPower checks the time stamps of the VCD file and reports any missing or out-of-date files.

Audit is performed automatically when SmartPower is launched. You can trigger file audit at any time from the **Simulation** menu, by choosing **Audit Files**. An icon displaying the file status appears in the <u>Modes and</u> <u>Scenarios toolbar</u> next to the VCD file. Mouse over the icon to obtain more information.

NOTE: Links and cross-references in this PDF file may point to external files and generate an error when clicked. **View the online help included with software to enable all linked content.**

Figure 74 · Audit Files Results

Table 4 · Audit Files Icons and Descriptions

lcon	Description
Δ	Indicates that the VCD file has been modified
8	Indicates that the VCD file is missing

To re-import the VCD file, right-click the VCD file and select **Re-import VCD File**, this will open the <u>Import VCD Options</u> dialog box.

Calculating Power

Steps to Calculate Power

Use the steps below to calculate the power consumption of your design. The list of screens and steps appear in the order in which you should view them to analyze your power accurately.

- 1. <u>Summary tab</u> <u>View global power</u> at the design level and view its impact on junction temperature.
- 2. <u>Domains tab</u> <u>Define clock domains</u> and specify a clock frequency and a data frequency for each clock domain.
- <u>Analysis tab</u> <u>View detailed hierarchical analysis</u> of your power consumption. This step is optional. But if your power consumption exceeds your budget, this step will help you to understand where there is room for improvement.
- 4. <u>Frequencies tab</u> <u>Specify individual pin frequencies</u>, this step is optional, but gives you pin-by-pin control of the frequency.
- 5. <u>Probabilities tab</u> <u>Specify probabilities</u>, this step is optional. You can use the default probabilities or set your own.

Extracting Power Consumption of a Specific Clock Domain

To calculate the power consumption of a single clock domain (clock tree and data path) in a design:

- 1. Set SmartPower in toggle-rate mode. This is the default setting. To confirm that SmartPower is in toggle-rate mode, choose **Preferences** from **File** menu. Select the **Use Toggle Rates** check box
- 2. In the <u>Domains</u> tab, set all the **Clock Frequencies** to zero except for the clock domain for which you are calculating the power consumption.

The total power consumption of this clock domain is displayed in the <u>Summary</u> tab. This includes the contribution of the clock buffer, clock tree, and all clock input of the registers of this specific clock domain.

Note: In case you need to determine the power of the clock tree only, set the toggle rate of data on that clock domain to zero. The total power displayed is the power of that clock tree.

Advanced Analysis of I/Os

SmartPower provides an easy way of estimating the power consumption related to I/Os. You can then analyze power consumption in detail.

To display I/O power consumption:

- In the Summary tab, select By Type from the Breakdown drop-down list. The grid displays the total power consumption of all I/Os in the design, as well as all other components. If you use different I/O standards, and different Vcci power rails, you can also display the power consumption for each rail by selecting By Rail from the Breakdown drop-down list. Breakdown By Rail shows the power consumption and current for each Vcci rail in the design.
- 2. In the Analysis tab, select the highest hierarchy level in the Hierarchy tree in the left pane. Select **By** Instance from the Breakdown drop-down list.
- 3. In the **Analysis** tab, unselect all categories under **Instances Contributions** except I/Os, and then click **Apply**. The table then displays a list of all I/Os in the design, along with the power contribution of each individual I/O. The columns display important I/O attributes: external port name, load, standard, drive-strength, slew, and macro.
- 4. In the **Probabilities** tab, you can control the output probability of each tri-state and bidirectional I/O. The probability is the percentage of time that the I/O is used as an output. The default value can be changed and a specific value can also be set for each bidirectional or tri-state I/O.

See Also

Analyze results

Analysis tab

Define Clock Domains and Set of Pins

When you run SmartPower, it researches your existing clock domains and partitions your design automatically. You may wish to review the list of clock domains in the <u>Domains tab</u> to ensure that all the clocks of your design are included in the list. Add or remove clocks as necessary.

To add a new clock domain:

1. Click the **Domains** tab, and click the **Add Domain** button. Select **Clock Domain** from the drop-down list. This opens the **Create Clock Domain** dialog box.

Create Clock Domain	×
Potential Clock Pin CLK_pad/IOTILE:Y0	Create
Clock Frequency 10 MHz Data Frequency 1 MHz	Cancel

Figure 75 · Create Clock Domain Dialog Box – Toggle Rates Disabled

2. To create a new clock, select a **Potential Clock Pin**, specify a clock and data frequency, and click **Create**. The new clock domain appears in the **Domains** window. If you select an existing clock pin from the drop-down list, the lists of clock pins and data pins of this new clock domain are computed automatically based on the netlist topology.

Note: Select Use Toggle Rates in the <u>SmartPower Preferences</u> to define your data frequency as a percentage of your clock frequency. If your data frequency is 20% of your clock frequency, type "20" in the Data Frequency text box.

Create Clock Domain	×
Potential Clock Pin CLK_pad/IOTILE:Y0 💌	Create
Clock Frequency 10 MHz	Cancel
Data Frequency 20 %	

Figure 76 · Create Clock Domain Dialog Box – Toggle Rates Enabled

You may wish to create an empty clock domain and fill the lists of clock-pins and data pins manually. If so, do not select a clock pin, just type a new name for your clock domain.

Beyond the verification of the list of clock domains, you may also wish to verify that the lists of clock pins and data pins computed for each clock domain are correct.

To verify the lists of clock pins and data pins of a clock domain:

- 1. Click the **Domains** tab and select a specific **Domain** in the list.
- 2. **Display the list of clock pins or data pins of this Domain.** A drop-down list in the **Domains** tab enables you to select clock pins or data pins. SmartPower displays the list of pins corresponding to your selection below the drop-down list. You can add or remove clock pins and data pins as necessary.

- 3. **Remove a pin from a clock domain.** Highlight the selected pin and click the **Remove** button. The pin is removed from the clock domain and is made available in the list of pins that you can add in another clock domain.
- 4. Highlight the selected pin in the list of pins that are not yet in a domain and click the **Add** button to add a pin in a clock domain. This pin is added to the clock domain. It is a clock pin or a data pin, depending on the specification of the drop-down list when you click the **Add** button.
- Note: You cannot add a pin that exists in another domain until you free it from its existing domain. The pin is unavailable until you remove it from that domain.

After you have verified that all the clocks of your designs are correctly identified and constructed, you must specify the correct clock and data frequency for each clock domain.

To add a new set of pins:

1. Open the **Create Clock Domain** dialog box. Click the **Domains** tab, and click the **Add Domain** button. Select **Set of Pins** from the drop-down list.

Create Set of Pi	ns		×	:
Set Name	Output	_	Create	
Frequency	1	MHz	Cancel	

Figure 77 · Create Set of Pins Dialog Box

2. **Create a Set of Pins.** Name your new set of pins, specify a data frequency, and click **Create**. The new set of pins appears in the **Domains** window.

Specify Clock and Data Frequencies in SmartPower

To specify a clock and data frequency:

- 1. Click the Domains tab
- 2. select the Clock/Data frequency cell and type in a new value

SmartPower defaults to 0 MHz for the clock frequency. Import your clock frequency from SmartTime by using the <u>Initialize Frequencies dialog box</u> in SmartPower or input your target for each clock frequency in the **Domains** tab. You must also specify a data frequency (5% of your clock frequency is a typical guideline for your data frequency – this corresponds to a toggle rate of 10 %.)

Not all the pins/gates/nets of your design are associated with a specific clock. For example, the frequency of a design input port is not always correlated to a clock frequency. By extension, all pins that are upstream of the first level of sequential elements are not associated with any clock. SmartPower creates an InputSet by default that it uses to group all the pins that are controlled by design inputs (instead of sequential elements). You may wish to view and verify the InputSet to further evaluate your design.

Viewing and Verifying the InputSet in SmartPower

To verify the InputSet:

- 1. Click the **Domains** tab and select the domain named **InputSet** in the list.
- 2. Verify the list of pins of this domain. All the input ports of your design (except the clocks) belong in the **InputSet**. Also, all the pins that are between these input ports and the first level of sequential elements belong in the **InputSet**. You can add or remove pins as necessary.
- 3. Specify an average input frequency. SmartPower uses the same frequency for all pins of the InputSet. The default InputSet frequency is 1 MHz. Type in a new value to change it.

You may wish to split the InputSet into several sets in order to specify different frequencies. A classic example is to create a ResetSet, a reset tree with a very low frequency.

To split the InputSet into several sets:

- 1. Create a new set of pins: In the **Domains** tab, click the **New** button, and select **Set of Pins** from the drop-down menu. In the **Create Set Of Pins** dialog box, type a name and a frequency for the new set and click **Create**. The new set of pins appears in the **Domains** window. You can only create an empty set of pins, but it is possible to add pins to this domain later.
- 2. Remove a group of pins from the **InputSet**. Click the **Domains** tab and select the domain named **InputSet** in the list. Select the pins that you want to remove and click the **Remove** button.
- 3. Add this group of pins to the new set of pins. Click the **Domains** tab and select the newly created set of pins in the list. Highlight the pins in the list of pins that are not yet in a domain, and click the **Add** button. Repeat these three steps as necessary to create multiple input sets.

Specifying Individual Pin Frequencies

The <u>Frequencies</u> tab enables you to specify an average clock and data frequency for each clock domain, and also an average frequency for each set of pins. This gives you an initial estimate of the power consumption of your design. However, if this estimate is not accurate enough, you may refine it with a pinby-pin annotation of the frequency.

To specify a frequency annotation for an individual pin:

- 1. Locate the pin in the **Frequencies** tab. You may need to select different clock domains from the dropdown list on the **Frequencies** tab. You can use filters to facilitate this search.
- 2. Select the pin(s) in the grid and click the **Set frequencies for selected pins** button, enter a new frequency value, and click **OK**. This specifies a new frequency for the selected pin(s).
- Note: This annotation procedure enables you to set the frequency of an individual pin, but this does not mean that the pin is removed from its clock domain. A frequency annotation just overrides the domain level frequency.

You may wish to change or remove a frequency annotation of an individual pin. This may be useful when you import a VCD (value change-dump) file or a SAIF (Switching Activity Interchange Format) file.

To change the frequency annotation of an individual pin:

- 1. Locate the pin in the **Frequencies** tab. You may need to select different clock domains from the dropdown list on the **Frequencies** tab. You can use filters to facilitate the search.
- 2. Select the pin(s) in the grid and click the **Set frequency for selected pins** button, enter a new frequency value, and click **OK**. This specifies a new frequency for the selected pin(s).

To remove the frequency annotation of an individual pin:

- 1. Locate the pin in the **Frequencies** tab. You may need to select different clock domains from the dropdown menu on the **Frequencies** tab. You can use filters to facilitate the search.
- 2. Select the pin(s) in the grid and click the **Reset frequencies for selected pins** button. This removes the specified frequency from the selected pins.

Specifying Individual Pin Probabilities

The **Probabilities** tab enables you to specify the default output probability value for memory blocks, and tristate and bidirectional I/Os. In addition, you can increase the accuracy of the power estimation by annotating the probability of specific pins.

To specify or change the probability for one or multiple pins:

- 1. Locate the pin(s) in the **Probabilities** tab. You can use filters to facilitate this search.
- 2. Select the pin(s) and press the Set probabilities for selected pins button.
- 3. Enter a new probability value and press OK.

To reset the probability for one or multiple pins:

1. Locate the pin(s) in the **Probabilities** tab. You can use filters to facilitate this search.

2. Select the pin(s) and press the **Reset Probabilities for selected pins** button. This will reset the probability value.

Vectorless Estimation

The Vectorless estimation method is an accurate method of annotating individual pins with frequencies and probabilities. It uses primary inputs, clock frequencies, and nets annotated with other methods as a starting point, and uses a Monte Carlo simulation to annotate all nets in the design with frequencies and probabilities.

Vectorless estimation is available and enabled by default for SmartFusion, IGLOO, ProASIC3 and Fusion families of devices.

Vectorless estimation can be enabled from the <u>Initialize Frequencies and Probabilities</u> dialog box or from the <u>VCD Import</u> dialog box.

Changes to probabilities or frequencies in the Probabilities, Frequencies, or Domains tabs result in an out-

of-date vectorless estimation. To update vectorless estimation, press the refresh vectorless 🔽 button.

Viewing Results (Design Level)

Click the <u>Summary</u> tab to view global power consumption at the design level. The **Summary** tab shows your design's estimated power consumption and temperature information.

The power estimation reported in the **Summary** tab is the total static and dynamic power consumption of your design. For a more detailed view of this power consumption, click the <u>Analysis</u> tab.

To estimate the junction temperature:

- 1. Verify your package. You cannot change your package directly in SmartPower, because it may render your place-and-route information (and thus it may severely impact the total power consumption). If you wish to choose another package, you have to do it in **Designer > Tools > Device Selection**.
- 2. Click the **Summary** tab, and select a **Cooling** style in the list. Thermal resistance changes automatically when you update the cooling style.
- 3. Specify an ambient temperature. Enter an **ambient temperature** (default value is 25°C), and click the **Set** button.
- Note: The junction temperature value changes according to the package, cooling style, and ambient temperature values you choose.

Analyzing Results

The **Analysis** tab displays the estimated power consumption of individual blocks, gates, nets, I/Os, and memory and enables you to make a hierarchical analysis of your power consumption. The **Analysis** tab may also help you to improve your power consumption by identifying the components that consume a significant amount of power.

To identify the components consuming the most power:

1. Use the **Analysis** tab to expand the design hierarchy. The **Analysis** tab enables you to expand your design hierarchy and view a complete list of the blocks in your design. In the hierarchy window, click the **+** next to your design to view the items in the hierarchy. Click the **+** next to a sub-block to view its sub-elements.

🖹 Summary 🛛 🛍 Domains 🖇	🔊 Analysis 🛛 👘 Act	ivity 🗌 🕸 Enable F	Rates		
	Sta Dynan	ck Name: WGT tic Power: 0 mW nic Power: 0.014 By Type	/ ! mW	Show O Chart 🕫 Grid	
□ ⊕ ;]; PL □ ⊕ ;]; CTRL □ ⊕ ;]; IBC	1 Net	Туре	Power (m₩) 0.003	20.3%	
CLK	2 Gate		0.011	79.7%	
J	<				>

Figure 78 · Analysis Tab Dialog Box

- 2. Click to select a block. By default, SmartPower selects the design-level block, but you can always select another block in the hierarchical tree. The **Report** window displays the list of sub-elements of the selected block. Initially, this list includes all sub-elements. The grid in the **Analysis** window displays a breakdown of the power of the selected block by type. This breakdown provides you a good overview of which areas of your design you should optimize for power.
- 3. To find the components that use a significant amount of power, choose **By Instance** from the **Breakdown** drop-down list.
- 4. Sort and filter the sub-elements to find the component that is using the most power. The Analysis window displays the list of sub-elements of the selected block. By default, this list includes all sub-elements. The grid contains columns for name, type, power, driver, fanout, macro, I/O standard, output load, output drive, slew, port, domain and frequency. You may limit the list of sub-elements to a list of sub-blocks, nets, gates, I/Os, memories, or any combination of these five classes of sub-elements. You can sort the list according to any column by double-clicking the column header.

See Also

Advanced Analysis of I/Os Analysis tab

Cross-Probing in SmartPower

SmartPower supports cross probing with the other Designer tools. You must calculate your design's power consumption before you can cross probe effectively. See the <u>Calculating Power</u> section for more information.

To cross probe with the SmartPower tool:

- 1. View the detailed results of your power analysis in the Analysis tab of the SmartPower tool.
- 2. Select By Instance from the Breakdown drop-down list.
- 3. Open MultiView Navigator in Designer.
- 4. Select your component.
- 5. Click a sub-component in the grid to highlight the corresponding component in the **ChipPlanner** or **PinEditor** tool.



Figure 79 · Cross-Probing with SmartPower: SmartPower Analysis View

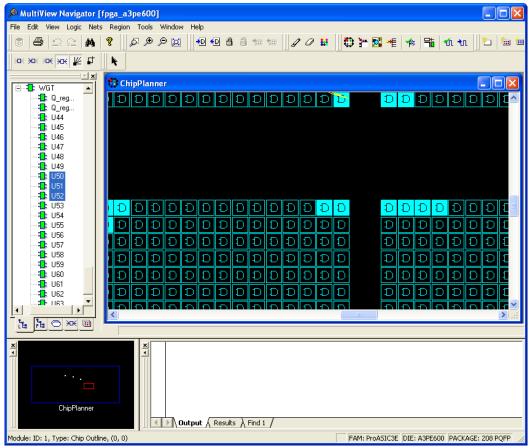


Figure 80 · Cross-Probing with SmartPower: ChipPlanner View

SmartPower Calculation Equations

SmartPower calculates the static power and the dynamic power of your design, for given operating conditions and operating modes:

Static Power: This value is a summation of the static power consumed by each element of the design. SmartPower provides a static power consumption of the array. This value is die-dependent. This value is also a function of the operating mode. For some families, SmartPower also considers a static power contribution per I/O bank. For specific I/O technologies like voltage referenced I/Os or differential I/Os, SmartPower also considers a static power contribution per I/O.

Dynamic Power: This value is a summation of the dynamic power consumed by each element of the design (nets, modules, I/Os, RAMs, FIFOs, PLLs, etc.).

Operating Conditions: SmartPower calculates power consumption in Worst, Typical, or Best operating conditions. SmartPower uses the following as general guidelines:

- It applies a voltage derating to dynamic power contributions. Higher voltage typically leads to higher power consumption.
- It applies a temperature derating to static power contributions. Higher temperature typically leads to higher power consumption.
- It applies no radiation derating.

Operating Modes: SmartPower calculates power consumption in Active, Static, Flash*Freeze, Sleep, and Shutdown operating modes, when applicable for your design.

Sample Equations:

The examples below are for general evaluation purposes only. They are not a precise representation of the actual calculations, since each calculation takes into account family-specific information.

• For a net,

 $P = C \cdot V^2 \cdot F$

where C is the total capacitive loading of the net (extracted from the routing topology), V is the net's voltage swing, and F is the average switching frequency.

- Note: For the ProASIC^{PLUS} family, SmartPower extracts the capacitive loading of a net from a Wire Load model.
- For a **module**, the power is computed using a characterized library (by family and die-size) describing a specific power model for each type of module. For example, the power model of a flip-flop is given by

 $P = P_{CK} \cdot F_{CK} + P_{DOUT} \cdot F_{DOUT} + P_{Din} \cdot F_{Din}$ where F_{CK} is the average clock-input frequency for this flip-flop, F_{DOUT} is its average data-output

frequency, and P_{CK} , $P_{DOUT, PDin}$ are three constants estimated by electrical simulation and silicon characterization for this flip-flop module, and FDin is its average data-input frequency.

• For an **I/O**, the formula used for computing the power consumption depends on the I/O technology and the family. For example, for a TTL output, the dynamic power is given by $P = P_{INT} \cdot F + C \cdot V^2 \cdot F$

where C is the output load (derived from what you have set in the I/O Attribute Editor GUI, typically 35 pF for TTL), V is the output's voltage swing (3.3 V for TTL), and P_{INT} represents an internal power contribution dissipated in the pad, and F is the average switching frequency of the I/O.

• For a **complex block**, like a RAM, a FIFO, or a PLL, SmartPower uses a high-level power model that integrates design parameters.

SmartPower automatically computes all the constant parameters of these equations. However, the frequencies depend on the target frequencies of your design. Since it is impractical to enter each frequency manually, SmartPower has several flows that help you to estimate the frequencies and calculate the power consumption.

SmartPower Tcl Commands

SmartPower supports the following Tcl scripting commands:

- battery settings
- report (Activity and Hazards Power Report)
- report (Cycle Accurate Power Report)
- <u>Report (Data History)</u>
- report (Power)
- <u>Report (Power Scenario)</u>
- <u>set_mode_for_pdpr</u>
- set pin enable rate
- set pin probability
- <u>smartpower_add_new_custom_mode</u>
- smartpower add new scenario
- <u>smartpower add pin in domain</u>
- smartpower change clock statistics
- <u>smartpower_change_setofpin_statistics</u>
- smartpower_commit
- smartpower create domain
- smartpower edit custom mode
- smartpower edit scenario
- <u>smartpower_initialize_clock_with_constraints</u>
- <u>smartpower_init_do</u>
- smartpower init set clocks options
- <u>smartpower_init_set_combinational_options</u>
- <u>smartpower init set enables options</u>
- smartpower init set othersets options
- smartpower init set primaryinputs options
- smartpower init set registers options
- smartpower init set set reset options
- <u>smartpower_init_setofpins_values</u>
- smartpower_remove_all_annotations
- <u>smartpower_remove_custom_mode</u>
- smartpower remove domain
- smartpower_remove_file
- <u>smartpower_remove_pin_enable_rate</u>
- <u>smartpower_remove_pin_frequency</u>
- smartpower remove pin of domain
- <u>smartpower remove pin probability</u>
- <u>smartpower_remove_scenario</u>
- <u>smartpower_remove_vcd</u>
- smartpower report power
- <u>smartpower report power activity map</u>

- <u>smartpower report power peak analyzer</u>
- smartpower report power sequencer
- <u>smartpower_restore</u>
- smartpower set battery capacity
- <u>smartpower_set_cooling</u>
- <u>smartpower_set_mode_for_analysis</u>
- <u>smartpower_set_operating_condition</u>
- <u>smartpower_set_pin_probability</u>
- <u>smartpower set pin frequency</u>
- <u>smartpower_set_preferences</u>
- <u>smartpower_set_scenario_for_analysis</u>
- <u>smartpower_set_temperature_opcond</u>
- smartpower set thermalmode
- <u>smartpower set voltage opcond</u>
- <u>smartpower_temperature_opcond_set_design_wide</u>
- smartpower temperature opcond set mode specific
- smartpower voltage opcond set design wide
- smartpower voltage opcond set mode specific

battery_settings

Tcl command; changes your battery settings.

```
battery_settings [-capacity "decimal_value"]
```

Arguments

-capacity {decimal_value}

Sets the battery capacity for your SmartPower design. The decimal value must be a positive decimal.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example sets the decimal value to 1.5V: battery_settings [-capacity "1.5"]

See Also

Tcl documentation conventions

report (Activity and Hazards Power Report)

Tcl command; the activity and hazards report reads a VCD file and reports transitions and hazards for each clock cycle of the VCD file.

```
report -type power_activity_map \
[-vcd_file {path}] \
[-style {value}] \
[-partial_parse {value}] \
```



```
[-start_time {value}] \
[-end_time {value}] \
[-auto_detect_top_level_name {value}] \
[-top_level_name {name}] \
[-report_type {value}] \
[-report_query {value}] \
[-sortby {value }] \setminus
[-sortorder {value }] \
[-max_net {value}] \
[-max_cycle {value}] \
[-clock_settings {value}] \
[-glitch_filtering {value}] \
[-glitch_threshold {value}] \
[-auto_construct_clock_domain {value}] \
[-clock_period {value}] \
[-clock_offset {value}] \
[-opmode {value}] \
{filename}
```

Arguments

type -power_activity_map

Specifies the type of report to generate is an activity and hazards power report.

-vcd_file {path}

Specifies the path to the *.vcd file that you want to import.

-style {value}

Specifies the format in which the report will be exported. The following table shows the acceptable values for this argument:

Value	Description
Text	The report will be exported as Text file
CSV	The report will be exported as CSV file

-partial_parse {value}

Specifies whether to partially parse the *.vcd file. The following table shows the acceptable values for this argument:

Value	Description
true	Partially parses the *.vcd file
false	Does not partially parse the *.vcd file

-start_time $\{value\}$

This option is available only if -partially_parse is set to *true*. Specifies the start time (in ns) to partially parse the *.vcd file.

-end_time {value}

This option is available only if $-partially_parse$ is set to true. Specifies the end time (in ns) to partially parse the *.vcd file.

-auto_detect_top_level_name {value}

Specifies whether to automatically detect the top-level name. The following table shows the acceptable values for this argument:

Value	Description
true	Automatically detects the top-level name
false	Does not automatically detect the top-level name

-top_level_name {name}

Specifies the top-level name.

-report_type {value}

Specifies the report query type. The following table shows the acceptable values for this argument:

Value	Description
activity	Includes activity information for each net
power	Includes power information for each net
activity and power	Includes activity and power information for each net

-report_query {value}

Specifies the report type. The following table shows the acceptable values for this argument:

Value	Description
Report by Net - summary	Provides a summary report for each net
Report by Net - detailed	Provides a detailed report for each net
Report by Cycle - summary	Provides a summary report for each cycle
Report by cycle - detailed	Provides a detailed report for each cycle

-sortby $\{value\}$

Specifies how to sort the values in the report. The following table shows the acceptable values for this argument:

Value	Description
total power	Sorts based on the power values
spurious power	Sorts based on the spurious power
functional power	Sorts based on the functional power
spurious transitions	Sorts based on the spurious transitions
functional transitions	Sorts based on the functional transitions

-sortorder {value}

Specifies the sort order of the values in the report. This could be descending or ascending. -max_net $\{value\}$

Specifies the maximum number of nets to report. In a net summary or net details report, this argument limits the total number of entries. In a cycle details report, this argument limits the number of nets reported for each cycle.

-max_cycle {value}

Specifies the maximum number of cycles to report. In a cycle summary or cycle details report, this argument limits the total number of entries. In a net details report, this argument limits the number of cycles reported for each net

-clock_settings {value}

Specifies the settings for the clock. The format is "< clock name >:< active edge { value } >". The following table shows the acceptable values for the active edge:

Value	Description
rising	Sets the clock to a rising active edge
falling	Sets the clock to a falling active edge
both	Sets the clock to both rising and falling active edge
not_active	Does not use the signal as a clock

-glitch_filtering {value}

Specifies whether to use glitch filtering. The following table shows the acceptable values for this argument:

Value	Description
true	Glitch filtering is on
auto	Enables automatic glitch filtering. This option will ignore any value specified in -glitch_threshold
false	Glitch filtering is off

-glitch_threshold {value}

This option is only available when <code>-glitch_filtering</code> is set to <code>true</code>. Specifies the glitch filtering value in ps.

-auto_construct_clock_domain {value}

Specifies whether to automatically construct the clock domain. The following table shows the acceptable values for this argument:

Value	Description
true	Automatically constructs the clock domain
false	Does not automatically construct the clock domain

```
-clock_period {value}
```

Use this option to specify a virtual clock period (in ps). This should be used if -

auto_construct_clock_domain is set to false.

-clock_offset {value}

Use this option to specify the time of the first active edge of the virtual clock (in ps). This should be used if -auto_construct_clock_domain is set to *false*.

```
-opmode {value}
```


Use this option to specify the mode from which the operating conditions are extracted to generate the report.

Value	Description
Active	The operating mode is set to Active
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

{filename}

Specifies the name of the report.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example generates an activity and hazards power report named report_power_activity_map.txt.

```
report -type "power_activity_map" -vcd_file "D:/FPU/mul.vcd" -style "Text" -
partial_parse "TRUE" -start_time "0.05" -end_time "1.00" -auto_detect_top_level_name
"TRUE" -report_query "Report by Net - Summary" -clock_settings
"UUT/un3_out_3:Y:not_active" -clock_settings "clk:rising" -glitch_filtering "FALSE" -
glitch_threshold "100" -auto_construct_virtual_clock "TRUE" -virtual_clock_period
"10000.00" -virtual_clock_first_edge "0.00" -opmode "Active"\
{D:/FPU/report_power_activity_map.txt}
```

See Also

Designer Tcl Command Reference

report (Cycle Accurate Power Report)

Tcl command; creates a cycle accurate power report, which reports a power waveform with one power value per clock period or half-period instead of an average power for the whole simulation.

```
report -type power_cycle_accurate\
[-vcd_file {path}] \
[-style {value}] \
[-partial_parse {value}] \
[-start_time {value}] \
[-end_time {value}] \
[-auto_detect_top_level_name {value}] \
[-top_level_name { name } ] \
[-glitch_filtering {value}] \
[-glitch_threshold {value}] \
[-auto_detect_sampling_period {value}] \
[-sampling_clock { }] \
[-sampling_rate_per_period {value}] \
[-sampling_offset {value}] \
[-sampling_period {value}] \
[-use_only_local_extrema {value}] \
[-use_power_threshold {value}] \
[-power_threshold {value}] \
[-opmode {value}] \
{filename}
```


Arguments

-type power_cycle_accurate

Specifies the type of report to generate is a cycle accurate power report.

-vcd_file {path}

Specifies the path to the *.vcd file that you want to import.

-style {value}

Specifies the format in which the report will be exported. The following table shows the acceptable values for this argument:

Value	Description
Text	The report will be exported as Text file
CSV	The report will be exported as CSV file

-partial_parse {value}

Specifies whether to partially parse the *.vcd file. The following table shows the acceptable values for this argument:

Value	Description
true	Partially parses the *.vcd file
false	Does not partially parse the *.vcd file

```
-start_time {value}
```

This option is available only if <code>-partially_parse</code> is set to *true*. Specifies the start time (in ns) to partially parse the *.vcd file.

-end_time {value}

This option is available only if $-partially_parse$ is set to *true*. Specifies the end time (in ns) to partially parse the *.vcd file.

```
-auto_detect_top_level_name {value}
```

Specifies whether to automatically detect the top-level name. The following table shows the acceptable values for this argument:

Value	Description
true	Automatically detects the top-level name
false	Does not automatically detect the top-level name

-top_level_name {name}

Specifies the top-level name.

-glitch_filtering {value}

Specifies whether to use glitch filtering. The following table shows the acceptable values for this argument:

Value	Description
true	Glitch filtering is on
auto	Enables automatic glitch filtering. This option will ignore any value specified in -glitch_threshold

Value	Description
false	Glitch filtering is off

-glitch_threshold $\{value\}$

This option is only available when <code>-glitch_filtering</code> is set to *true*. Specifies the glitch filtering value (in ps).

-power_summary {value}

Specifies whether to include the power summary, which shows the static and dynamic values in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the power summary in the report
false	Does not include the power summary in the report

-auto_detect_sampling_period {value}

Specifies whether to automatically detect the sampling period. The following table shows the acceptable values for this argument:

Value	Description
true	Automatically detects the sampling period
false	Does not automatically detect the sampling period

-sampling_clock {}

Specifies the sampling clock.

-sampling_rate_per_period {value}

Specifies whether to set the sampling rate per period. The following table shows the acceptable values for this argument:

Value	Description
true	Specifies the sampling rate per period
false	Specifies the sampling rate per half period

-sampling_offset {value}

Specifies the offset used to calculate the sampling offset (in ps).

```
-sampling_period \{value\}
```

Specifies the offset used to calculate the sampling period (in ps).

```
-use_only_local_extrema {value}
```

Specifies whether to limit the history size by keeping only local extrema. The following table shows the acceptable values for this argument:

Value	Description
true	Limits the history size by keeping only local extrema
false	Does not limit the history size by keeping only local

Value	Description
	extrema

-use_power_threshold $\{value\}$

Specifies whether to limit the history size by setting a power threshold. The following table shows the acceptable values for this argument:

Value	Description
true	Limits the history size by setting a power threshold
false	Does not limit the history size by setting a power threshold

-power_threshold {value}

Sets the power threshold value.

-opmode {value}

Use this option to specify the mode from which the operating conditions are extracted to generate the report.

Value	Description
Active	The operating mode is set to Active
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

{filename}

Specifies the name of the report.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example generates a cycle accurate power report named report_power_cycle_based.txt.

```
report -type "power_cycle_accurate" -vcd_file "D:/FPU/mul.vcd" -style "Text" -
partial_parse "TRUE" -start_time "0.05" -end_time "1.00" -auto_detect_top_level_name
"TRUE" -glitch_filtering "FALSE" -glitch_threshold "100" -auto_detect_sampling_period
"TRUE" -sampling_clock "clk" -sampling_rate_per_period "TRUE" -sampling_offset "0.00" -
sampling_period "10000.00" -use_only_local_extrema "TRUE" -use_power_threshold "TRUE" -
power_threshold "0.00" -opmode "Active" \ {D:/FPU/report_power_cycle_based.txt}
```

See Also

Tcl documentation conventions

Designer Tcl Command Reference

report (Data Change History)

Tcl command; creates a Data Change History report, which lists new features and enhancements, bug fixes and known issues for the current release that may impact the power consumption of the design.

report -type power_history \
{report.txt}

Arguments

-type power_history
Specifies the type of report to generate is a data change history report.
{report.txt}
Specifies the name of the report. You must use .txt as the filename extension.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example generates a data change history report named report.txt.
report -type "power_history" \
{report.txt}

See Also

<u>Tcl documentation conventions</u> <u>Designer Tcl Command Reference</u>

report (Power)

Tcl command; creates a Power report, which enables you to determine if you have any power consumption problems in your design. It includes information about the global device and SmartPower preferences selection, and hierarchical detail (including gates, blocks, and nets), with a block-by-block, gate-by-gate, and net-by-net power summary SmartPower results.

```
report -type power \
[-powerunit {value}] \
[-frequnit {value}] \
[-opcond {value}] \
[-opmode {value}] \
[-toggle {value}] \
[-power_summary {value}] \
[-rail_breakdown{value}] \
[-type_breakdown{ value}] \
[-clock_breakdown{value}] \
[-thermal_summary {value}] \
[-battery_life {value}] \
[-opcond_summary {value}] \
[-clock_summary {value}] \
[-style {value}] \
[-sortorder {value}] \
[-sortby {value}] \
[-instance_breakdown {value}] \
[-power_threshold {value}] \
[-filter_instance {value}] \
[-min_power {number}] \
[-max_instance { integer >= 0 }] \
[-activity_sortorder {value}] \
[-activity_sortby {value}] \
[-activity_summary {value}] \
```



```
[-frequency_threshold {value}] \
[-filter_pin {value}] \
[-min_frequency {value}] \
[-max_pin {value}] \
[-enablerates_sortorder {value}] \
[-enablerates_sortby {value}] \
[-enablerates_summary {value}] \
[-with_annotation_coverage {value}] \
{filename}
```

Arguments

-type power

Specifies the type of report to generate is a Power report.

-powerunit {value}

Specifies the unit in which power is set. The following table shows the acceptable values for this argument:

Value	Description
W	The power unit is set to watts
mW	The power unit is set to milliwatts
uW	The power unit is set to microwatts

-frequnit $\{value\}$

Specifies the unit in which frequency is set. The following table shows the acceptable values for this argument:

Value	Description
Hz	The frequency unit is set to hertz
kHz	The frequency unit is set to kilohertz
MHz	The frequency unit is set to megahertz

-opcond {value}

Specifies the operating condition. The following table shows the acceptable values for this argument:

Value	Description
worst	The operating condition is set to worst case
typical	The operating condition is set to typical case
best	The operating condition is set to best case

-opmode $\{value\}$

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value	Description
Active	The operating mode is set to Active

Value	Description
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

-toggle $\{value\}$

Specifies the toggle. The following table shows the acceptable values for this argument:

Value	Description
true	The toggle is set to true
false	The toggle is set to false

-power_summary {value}

Specifies whether to include the power summary, which shows the static and dynamic values in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the power summary in the report
false	Does not include the power summary in the report

-rail_breakdown {value}

Specifies whether to include the breakdown by rail summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by rail summary in the report
false	Does not include the breakdown by rail summary in the report

-type_breakdown {value}

Specifies whether to include the breakdown by type summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by type summary in the report
false	Does not include the breakdown by type summary in the report

-clock_breakdown {value}

Specifies whether to include the breakdown by clock domain in the report. The following table shows the acceptable values for this argument:

Value	Description
-------	-------------

Value	Description
true	Includes the breakdown by clock domain summary in the report
false	Does not include the breakdown by clock domain summary in the report

-thermal_summary {value}

Specifies whether to include the thermal summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the thermal summary in the report
false	Does not include the thermal summary in the report

-battery_life {value}

Specifies whether to include the battery life summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the battery life summary in the report
false	Does not include the battery life summary in the report

-opcond_summary {value}

Specifies whether to include the operating conditions summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the operating conditions summary in the report
false	Does not include the operating conditions summary in the report

-clock_summary {value}

Specifies whether to include the clock domains summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the clock summary in the report
false	Does not include the clock summary in the report

-style $\{value\}$

Specifies the format in which the report will be exported. The following table shows the acceptable values for this argument:

Value	Description
Text	The report will be exported as Text file
CSV	The report will be exported as CSV file

-sortby $\{value\}$

Specifies how to sort the values in the report. The following table shows the acceptable values for this argument:

Value	Description
power values	Sorts based on the power values
alphabetical	Sorts in an alphabetical order

-sortorder $\{value\}$

Specifies the sort order of the values in the report. The following table shows the acceptable values for this argument:

Value	Description
ascending	Sorts the values in ascending order
descending	Sorts the values in descending order

-instance_breakdown $\{value\}$

Specifies whether to include the breakdown by instance in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by instance in the report
false	Does not include the breakdown by instance in the report

-power_threshold {value}

This specifies whether to include only the instances that consume power above a certain minimum value. When this command is set to true, the <code>-min_power</code> argument must also be used to specify that only the instances that consume power above this minimum power value are the ones that are included in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the power threshold in the report
false	Does not include the power threshold in the report

-filter_instance {value}

This specifies whether to have a limit on the number of instances to include in the Power report. When this command is set to true, the <code>-max_instance</code> argument must also be used to specify the maximum number of instances to be included into the Power report. The following table shows the acceptable values for this argument:

Value	Description
true	Indicates that you want to have a limit on the number of instances to include in the Power report
false	Indicates that you do not want to have a limit on the number of instances to include in the Power report

-min_power {number}

Specifies which block to expand based on the minimum power value of a block.

-max_instance {integer >= 0}

Sets the maximum number of instances to a specified integer greater than or equal to 0 (zero). This will limit the maximum number of instances to be included in the Power report.

-activity_sortorder {value}

Specifies the sort order for the activity summary. The following table shows the acceptable values for this argument:

Value	Description
ascending	Sorts the values in ascending order
descending	Sorts the values in descending order

-activity_sortby {value}

Specifies how to sort the values for the activity summary. The following table shows the acceptable values for this argument:

Value	Description
pin name	Sorts based on the pin name
net name	Sorts based on thepnet name
domain	Sorts based on the clock domain
frequency	Sorts based on the clock frequency
source	Sorts based on the clock frequency source

-activity_summary {value}

Specifies whether to include the activity summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the activity summary in the report
false	Does not include the activity summary in the report

-frequency_threshold $\{value\}$

Specifies whether to add a frequency threshold. The following table shows the acceptable values for this argument:

Value	Description
true	Adds a frequency threshold
false	Does not add a frequency threshold

-filter_pin {value}

Specifies whether to filter by maximum number of pins. The following table shows the acceptable values for this argument:

Value	Description
true	Filters by maximum number of pins
false	Des not filter by maximum number of pins

-min_frequency {value}

Sets the minimum frequency to {decimal value [unit { Hz | KHz | MHz}]}.

-max_pin {value}

Sets the maximum number of pins.

-enablerates_sortorder {value}

Specifies the sort order for the probabilities summary. The following table shows the acceptable values for this argument:

Value	Description
ascending	Sorts the values in ascending order
descending	Sorts the values in descending order

-enablerates_sortby $\{value\}$

Specifies how to sort the values for the probabilities summary. The following table shows the acceptable values for this argument:

Value	Description
pin name	Sorts based on the pin name
net name	Sorts based on the net name
domain	Sorts based on the clock domain
frequency	Sorts based on the clock frequency
source	Sorts based on the clock frequency source

-enablerates_summary {value}

Specifies whether to include the probabilities summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the activity summary in the report

Value	Description
false	Does not include the activity summary in the report

-with_annotation_coverage {value}

Specifies whether to include the annotation coverage summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the annotation coverage summary in the report
false	Does not include the annotation coverage summary in the report

{filename}

Specifies the name of the report.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

• The following arguments have been removed. Running the script will trigger a warning message: Warning: Invalid argument: -argname "argvalue" Ignored. Ignore the warning.

```
-annotated_pins {value}
-stat_pow {value}
```

-dyn_pow {value}

- Flash*Freeze, Sleep, and Shutdown are available only for certain families and devices.
- Worst and Best are available only for certain families and devices.

Examples

This example generates a Power report named report.rpt.

```
report -type "power" \
 "Power Values" \setminus
 "Descending" \
"TRUE" \
 "FALSE" \
 "FALSE" \setminus
 "Typical" \
 -min_power "2 mW" \
 "ACTIVE" \
 "TRUE" \
 "TRUE" \
 "TRUE" \
 "TRUE" \
 "5" \
 "TRUE" \
 {e:\SmartPower\report.rpt}
```


See Also

Designer Tcl Command Reference

report (Power Scenario)

Tcl command; creates a scenario power report for a previously defined scenario. It includes information about the global device and SmartPower preferences selection, and the average power consumption and the excepted battery life for this sequence.

```
report -type power_scenario \
[-powerunit {value}] \
[-frequnit {value}] \
[-opcond {value}] \
[-toggle {value}] \
[-scenario {value}] \
[-style {value}] \
[-battery_life {value}] \
[-battery_capacity {value}] \
[-rail_breakdown {value}] \
[-mode_breakdown {value}] \
[-opcond_summary {value}] \
{filename}
```

Arguments

-type power_scenario

Specifies the type of report to generate is a scenario power report.

-powerunit {value}

Specifies the unit in which power is set. The following table shows the acceptable values for this argument:

Value	Description
w	The power unit is set to watts
mW	The power unit is set to milliwatts
uW	The power unit is set to microwatts

-frequnit $\{value\}$

Specifies the unit in which frequency is set. The following table shows the acceptable values for this argument:

Value	Description
Hz	The frequency unit is set to hertz
kHz	The frequency unit is set to kilohertz
MHz	The frequency unit is set to megahertz

-toggle $\{value\}$

Specifies the toggle. The following table shows the acceptable values for this argument:

Value	Description
true	The toggle is set to true
false	The toggle is set to false

$-scenario\{value\}$

Specifies a scenario that the report is generated from.

-style {value}

Specifies the format in which the report will be exported. The following table shows the acceptable values for this argument:

Value	Description
Text	The report will be exported as Text file
CSV	The report will be exported as CSV file

-battery_life {value}

Specifies whether to include the battery life summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the battery life summary in the report
false	Does not include the battery life summary in the report

-battery_capacity {value}

Specifies the battery capacity in A*H.

```
-rail_breakdown {value}
```

Specifies whether to include the breakdown by rail summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by rail summary in the report
false	Does not include the breakdown by rail summary in the report. This is the default value.

-type_breakdown $\{value\}$

Specifies whether to include the breakdown by type summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by type summary in the report
false	Does not include the breakdown by type summary in the report. This is the default value.

-mode_breakdown $\{value\}$

Specifies whether to include a breakdown by mode in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by mode in the report
false	Does not include the breakdown by mode in the report. This is the default value.

-opcond_summary {value}

Specifies whether to include the operating conditions summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the operating conditions summary in the report
false	Does not include the operating conditions summary in the report

{filename.rpt}

Specifies the name of the report.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

- Flash*Freeze, Sleep, and Shutdown are available only for certain families and devices.
- Worst and Best are available only for certain families and devices.

Examples

This example generates a scenario power report named report.txt for my_scenario

report -type power_scenario -scenario my_scenario -rail_breakdown true -type_breakdown true -mode_breakdown true -style text -battery_capacity 10 report.txt

See Also

Scenario Power Report

set_mode_for_pdpr

Tcl command; sets your mode for power-driven place-and-route.

set_mode_for_pdpr -opmode "Active | Flash*Freeze"

Arguments

-opmode Active | Flash*Freeze"

Sets the operating mode for your power driven place and route.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example sets the operating mode for power-driven place-and-route to Active. set_mode_for_pdpr -opmode "Active"

See Also

Tcl documentation conventions

set_pin_enable_rate

Tcl command; sets your pin enable rate.

set_pin_enable_rate [-pin_name "name of pin"] -pin_enable_rate "decimal value"

Arguments

-pin_name "name of pin"

Specifies the pin name on which you want to set your enable rate. "name of pin" must be a string; you can repeat this argument multiple times within one command.

-pin_enable_rate "decimal value"

Sets the pin enable rate. Must be a positive decimal value less than or equal to 100.0.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example sets the pin enable rate on pin C36 to 80. set_pin_enable_rate [-pin_name "C36"] -pin_enable_rate "80"

See Also

Tcl documentation conventions

set_pin_probability

Tcl command; sets your pin probability.

set_pin_probability [-pin_name "name of pin"] -pin_proba "decimal value"

Arguments

-pin_name "name of pin"

Specifies the pin name on which you want to set your pin probability. "name of pin" must be a string; you can repeat this argument multiple times within one command.

-pin_proba "decimal value"

Sets the pin probability. Must be a positive decimal value less than or equal to 100.0.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example sets the pin probability on pin C36 to 58.

set_pin_probability [-pin_name "C36"] -pin_proba "58"

See Also

Tcl documentation conventions

smartpower_add_new_custom_mode

Tcl command; creates a new custom mode.

```
smartpower_add_new_custom_mode -name {mode_name} -base_mode {base_mode} -description
{mode_description}
```

Arguments

-name {mode_name}

Specifies the name of the new custom mode.

-base_mode {base_mode}

Specifies the name of the base mode used to create the new custom mode. It must be one of the following: Active, Standby, or Flash*Freeze. -description {mode_description}

Specifies the description of the new custom mode.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example creates a new custom mode "Cust_1" based on the Active mode:

smartpower_add_new_custom_mode -name {Cust_1} -base_mode {Active} -description {frequency 10 MHz}

See Also

smartpower_remove_custom_mode
Designer Tcl Command Reference

smartpower_add_new_scenario

Tcl command; creates a new scenario.

smartpower_add_new_scenario -name {value} -description {value} -mode {value}

Arguments

-name {value}

Specifies the name of the new scenario.
-description {value}
Specifies the description of the new scenario.
-mode {<operating mode>:<duration>}+
Specifies the mode(s) and duration(s) for the specified scenario.

Supported Families

See the Tcl Commands and Supported Families table for a list of supported families.

Examples

This example creates a new scenario called myscenario:

smartpower_add_new_scenario -name "MyScenario" -mode "Custom_1:50.00"
"Custom_2:25.00" -mode "Active:25.00"

See Also

<u>Tcl documentation conventions</u> <u>Designer Tcl Command Reference</u>

smartpower_add_pin_in_domain

Tcl command; adds a pin into a clock or set domain.

```
smartpower_add_pin_in_domain -pin_name {pin_name} -pin_type {value} -domain_name
{domain_name} -domain_type {value}
```

Arguments

-pin_name {pin_name}

Specifies the name of the pin to add to the domain.

-pin_type {value}

Specifies the type of the pin to add. The following table shows the acceptable values for this argument:

Value	Description
clock	The pin to add is a clock pin
data	The pin to add is a data pin

-domain_name {domain_name}

Specifies the name of the domain in which to add the specified pin.

-domain_type {value}

Specifies the type of domain in which to add the specified pin. The following table shows the acceptable values for this argument:

Value	Description
clock	The domain is a clock domain
set	The domain is a set domain

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for a list of supported families.

Notes

- The domain_name must be a name of an existing domain.
- The pin_name must be a name of a pin that exists in the design.

Examples

The following example adds a clock pin to an existing Clock domain:

```
smartpower_add_pin_in_domain -pin_name { XCMP3/U0/U1:Y } -pin_type {clock} -domain_name
{clk1} -domain_type {clock}
```

The following example adds a data pin to an existing Set domain:

smartpower_add_pin_in_domain -pin_name {XCMP3/U0/U1:Y} -pin_type {data} -domain_name
{myset} -domain_type {set}

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_remove_pin_of_domain

smartpower_change_clock_statistics

Tcl command; changes the default frequencies and probabilities for a specific domain.

```
smartpower_change_clock_statistics -domain_name {value} -clocks_freq {value} -
clocks_proba {value} -registers_freq {value} -registers_proba {value} -set_reset_freq
{value} -set_reset_proba {value} -primaryinputs_freq {value} -primaryinputs_proba {value} -
combinational_freq {value} -combinational_proba {value}
```

Arguments

-domain_name{value}

Specifies the domain name in which to initialize frequencies and probabilities.

-clocks_freq {value}

Specifies the user input frequency in Hz, KHz, or MHz for all clocks.

-clocks_proba {value}

Specifies the user input probability in % for all clocks.

-registers_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is handled as a frequency.

-registers_proba {value}

Specifies the user input probability in % for all registers.

-set_reset_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is handled as a frequency.

```
-set_reset_proba {value}
```

Specifies the user input probability in % for all set/reset nets.

-primaryinputs_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is handled as a frequency.

```
-primaryinputs_proba {value}
```

Specifies the user input probability in % for all primary inputs.

-combinational_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is handled as a frequency.

-combinational_proba {value}

Specifies the user input probability in % for all combinational combinational output.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all clocks with:

```
smartpower_change_clock_statistics -domain_name {my_domain} -clocks_freq {10 MHz} -
clocks_proba {20} -registers_freq {10 MHz} -registers_proba {20} -set_reset_freq {10
MHz} -set_reset_proba {20} -primaryinputs_freq {10 MHz} -primaryinputs_proba {20} -
combinational_freq {10 MHz} -combinational_proba {20}
```

See Also

<u>Tcl documentation conventions</u>

Designer Tcl Command Reference

smartpower_change_setofpin_statistics

Tcl command; changes the default frequencies and probabilities for a specific set.

```
smartpower_change_setofpin_statistics -domain_name {value} -data_freq {value} -
data_proba {value}
```

Arguments

-domain_name{value}

Specifies the domain name in which to initialize data frequencies and probabilities. -data_freq {value} Specifies the user input data frequency in Hz, KHz, or MHz for all sets of pins. -data_proba {value} Specifies the user input data probability in % for all sets of pins.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all clocks with:

<code>smartpower_change_setofpin_statistics -domain_name {my_domain} -data_freq {10 MHz} - data_proba {20}</code>

See Also

<u>Tcl documentation conventions</u> <u>Designer Tcl Command Reference</u>

smartpower_commit

Tcl command; saves the changes to the design (.adb) file.

smartpower_commit

Arguments

None

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

smartpower_commit

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_restore

smartpower_create_domain

Tcl command; creates a new clock or set domain.

smartpower_create_domain -domain_type {value} -domain_name {domain_name}

Arguments

-domain_type {value}

Specifies the type of domain to create. The following table shows the acceptable values for this argument:

Value	Description
clock	The domain is a clock domain
set	The domain is a set domain

-domain_name {domain_name}

Specifies the name of the new domain.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

The domain name cannot be the name of an existing domain. The domain type must be either clock or set.

Examples

The following example creates a new clock domain named "clk2": smartpower_create_domain -domain_type {clock} -domain_name {clk2}
The following example creates a new set domain named "myset":
smartpower_create_domain -domain_type {set} -domain_name {myset}

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_remove_domain

smartpower_edit_custom_mode

Tcl command; edits a custom mode.

smartpower_edit_custom_mode -name {old_mode_name} new_name {new_mode_name} -description
{mode_description}

Arguments

-name {old_mode_name}
Specifies the name of the custom mode you want to edit.
-new_name {new_mode_name}
Specifies the new name of the custom mode.
-description {mode_description}
Specifies the description of the new custom mode.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example edits custom mode "Cust_1" and renames it "Cust_2": smartpower_edit_custom_mode -name {Cust_1} -new_name {Cust_2} -description {frequency 10 MHz}

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_remove_custom_mode smartpower_add_custom_mode

smartpower_edit_scenario

Tcl command; edits a scenario.

smartpower_edit_scenario -name {value} -description {value} -mode {value} -new_name {value}

Arguments

-name {value}
Specifies the name of the scenario.
-description {value}
Specifies the description of the scenario.
-mode {<operating mode>:<duration>}
Specifies the mode(s) and duration(s) for the specified scenario.
-new_name {value}
Specifies the new name for the scenario

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example edits the name of myscenario to finalscenario:

smartpower_edit_scenario -name myscenario -new_name finalscenario

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_initialize_clock_with_constraints

Initializes the clock frequency and the data frequency of a single clock domain with a specified clock name and the initialization options.

smartpower_initialize_clock_with_constraints -clock_name {value}

Arguments

```
-clock_name {value}
```

Specifies the name of the clock that will be initialized.

Supported Families

See the Tcl Commands and Supported Families table for a list of supported families.

Notes

- This command is associated with the functionality of Initialize frequencies and probabilities_ dialog box.
- This command is associated with the right-click menu <u>Synchronize Domain with SmartTime</u> on a single clock domain in the <u>Domains tab</u>.

Examples

The following example initializes "my_clock" with clock constraints from SmartTime:

smartpower_initialize_clock_with_constraints -clock_name {my_clock}

smartpower_init_do

Tcl command; initializes the frequencies and probabilities for clocks, registers, set/reset nets, primary inputs, combinational outputs, enables and other sets of pins, and selects a mode for initialization.

```
smartpower_init_do -with {value} -opmode {value} -clocks {value} -registers {value} -
set_reset {value} -primaryinputs {value} -combinational {value} -enables {value} -othersets
{value}
```

Arguments

-with $\{value\}$

This sets the option of initializing frequencies and probabilities with vectorless analysis or with fixed values. The following table shows the acceptable values for this argument:

Value	Description
vectorless	Initializes frequencies and probabilities with vectorless analysis
fixed	Initializes frequencies and probabilities with fixed values

-opmode {value}

Optional; specifies the mode in which to initialize frequencies and probabilities. The value must be Active or Flash*Freeze.

-clocks {value}

This sets the option of initializing frequencies and probabilities for all clocks. The following table shows the acceptable values for this argument:

Value	Description
true	Initializes frequencies and probabilities for all clocks
false	Does not initialize frequencies and probabilities for all clocks

-registers {value}

This sets the option of initializing frequencies and probabilities for all registers. The following table shows the acceptable values for this argument:

Value	Description
true	Initializes frequencies and probabilities for all registers
false	Does not initialize frequencies and probabilities for all registers

-set_reset {value}

This sets the option of initializing frequencies and probabilities for all set/reset nets. The following table shows the acceptable values for this argument:

Value	Description
true	Initializes frequencies and probabilities for all set/reset nets
false	Does not initialize frequencies and probabilities for all set/reset nets

-primaryinputs{value}

This sets the option of initializing frequencies and probabilities for all primary inputs. The following table shows the acceptable values for this argument:

Value	Description
true	Initializes frequencies and probabilities for all primary inputs
false	Does not initialize frequencies and probabilities for all primary inputs

-combinational $\{value\}$

This sets the option of initializing frequencies and probabilities for all combinational outputs. The following table shows the acceptable values for this argument:

Value	Description
true	Initializes frequencies and probabilities for all combinational outputs
false	Does not initialize frequencies and probabilities for all combinational outputs

-enables $\{value\}$

This sets the option of initializing frequencies and probabilities for all enable sets of pins. The following table shows the acceptable values for this argument:

Value	Description
true	Initializes frequencies and probabilities for all enable sets of pins
false	Does not initialize frequencies and probabilities for all enable sets of pins

-othersets {value}

This sets the option of initializing frequencies and probabilities for all other sets of pins. The following table shows the acceptable values for this argument:

Value	Description
true	Initializes frequencies and probabilities for all other sets of pins
false	Does not initialize frequencies and probabilities for all other sets of pins

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all clocks with:

```
smartpower_init_do -with {vectorless} -opmode {my_mode} -clocks {true} -registers {true}
-asynchronous {true} -primaryinputs {true} -combinational {true} -enables {true} -
othersets {true}
```

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_init_set_clocks_options

Tcl command; initializes the clock frequency options of all clock domains.

```
smartpower_init_set_clocks_options -with_clock_constraints {value} -
with_default_values {value} -freq {value} -duty_cycle {value}
```

Arguments

-with_clock_constraints {value}

This sets the option of initializing the clock frequencies with frequency constraints from SmartTime. The following table shows the acceptable values for this argument:

Value	Description
true	Sets initialize clock frequencies with clock constraints ON

Value	Description
false	Sets initialize clock frequencies with clock constraints OFF

-with_default_values {value}

This sets the option of initializing the clock frequencies with a user input default value. The following table shows the acceptable values for this argument:

Value	Description
true	Sets initialize clock frequencies with default values ON
false	Sets initialize clock frequencies with default values OFF

-freq {value}

Specifies the user input frequency in Hz, KHz, or MHz. -duty_cycle {value} Specifies the user input duty cycles in %.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all clocks after executing <u>smartpower_init_do</u> with -clocks {true}: smartpower_init_set_clocks_options -with_clock_constraints {true} -with_default_values {true} -freq {10 MHz} -duty_cycle {20}

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_init_set_combinational_options

Tcl commands; initializes the frequency and probability of all combinational outputs.

smartpower_init_set_combinational_options -freq {value} -proba {value}

Arguments

-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is handled as a frequency.

-proba {value}

Specifies the user input probability in %.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all combinational signals after executing smartpower_init_do with - combinational {true}:

```
smartpower_init_set_combinational_options -freq {10 MHz} -proba {20}
```

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_init_set_enables_options

Tcl command; initializes the clock frequency of all enable clocks with the initialization options.

smartpower_init_set_enables_options -freq {value} -proba {value}

Arguments

-freq {value}
Specifies the user input frequency (in Hz, KHz, or MHz).
-proba {value}
Specifies the user input probability in %.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of <u>Initialize frequencies and probabilities</u> dialog box.

Examples

The following example initializes all clocks after executing <u>smartpower_init_do</u> with -enables {true}:

smartpower_init_set_enables_options -freq {10 MHz} -proba {20}

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_init_set_othersets_options

Tcl command; initializes the frequency and probability of all other sets.

```
smartpower_init_set_othersets_options [-freq "decimal value [ unit { Hz | KHz | MHz } ]"]
[-proba "decimal value"]
[-with "vectorless | default"]
[-input_freq "decimal value [ unit { Hz | KHz | MHz } ]"]
[-input_proba "decimal value"]
```


Arguments

-freq "decimal value [unit {Hz | KHz| MHz}"
Specifies the default frequency and units.
-proba {decimal value}
Specifies the default probability.
-with "vectorless | default"
Specifies vectorless or default analysis.
-input_freq "decimal value [unit {Hz | KHz| MHz}"
Specifies the input frequency and units.
-input_proba {decimal value}
Specifies the input probability.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize Frequencies and Probabilities dialog box.

Examples

The following example initializes all other sets after executing $\underline{\tt smartpower_init_do}$ with <code>-othersets {true}:</code>

smartpower_init_set_othersets_options -freq {10 MHz} -proba {20} [-with default]

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_init_set_primaryinputs_options

Tcl command; initializes the frequency and probability of all primary inputs.

```
smartpower_init_set_primaryinputs_options -freq {value} -proba {value}
```

Arguments

-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is handled as a frequency.

-proba {value}

Specifies the user input probability in %.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of <u>Initialize frequencies and probabilities</u> dialog box.

Examples

The following example initializes all primary inputs after executing smartpower_init_do with primary inputs {true}:
smartpower_init_set_primary inputs_options -freq {10 MHz} -proba {20}

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_init_set_registers_options

Tcl command; initializes the frequency and probability of all register outputs.

smartpower_init_set_registers_options -freq {value} -proba {value}

Arguments

-freq $\{value\}$

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is handled as a frequency.

-proba {value}

Specifies the user input probability in %.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities_ dialog box.

Exceptions

None

Examples

The following example initializes all register outputs after executing smartpower_init_do with registers {true}:

smartpower_init_set_registers_options -freq {10 MHz} -proba {20}

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_init_set_set_reset_options

Tcl command; initializes the frequency and probability of all set and reset nets.

smartpower_init_set_set_reset_options -freq {value} -proba {value}

Arguments

-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is handled as a frequency.

-proba {value}

Specifies the user input probability in %.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all set/reset nets after executing <u>smartpower_init_do</u> with set_reset {true}:
smartpower_init_set_set_reset_options -freq {10 MHz} -proba {20}

Smartpower_inite_set_set_reset_operons freq (10 Miz) pro

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_init_setofpins_values

Tcl command; initializes the frequency and probability of all sets of pins.

smartpower_init_setofpins_values -domain_name {name} -freq {value} -proba {value}

Arguments

-domain_name{name}

Specifies the set of pins that will be initialized. The following table shows the acceptable values for this argument:

Value	Description
IOsEnableSet	Specifies that the IOsEnableSet set of pins will be initialized
MemoriesEnableSet	Specifies that the MemoriesEnableSet set of pins will be initialized

-freq $\{value\}$

Specifies the user input frequency in Hz, MHz, or KHz.

-proba {value}

Specifies the user input probability in %.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all primary inputs after executing smartpower_init_do with othersets {true}:
smartpower_init_setofpins_values -domain_name {IOsEnableSet} -freq {10 MHz} -proba {20}

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_remove_all_annotations

Tcl command; removes all initialization annotations for the specified mode.

smartpower_remove_all_annotations -opmode {value}

Arguments

-opmode $\{value\}$

Removes all initialization annotations for the specified mode, where value must be Active or Flash*Freeze.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities_ dialog box.

Examples

The following example initializes all clocks with opmode Acitve: smartpower_remove_all_annotations -opmode {Active}

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_remove_custom_mode

Tcl command; removes a custom mode.

smartpower_remove_custom_mode -name {deleted_mode_name}

Arguments

-name {deleted_mode_name}

Specifies the name of the custom mode you want to delete.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example delets custom mode "Cust_1":

smartpower_delete_custom_mode -name {Cust_1}

See Also

Tcl documentation conventions Designer Tcl Command Reference sp_add_custom_mode sp_edit_custom_mode

smartpower_remove_domain

Tcl command; removes an existing clock or set domain.

smartpower_remove_domain -domain_type {value} -domain_name {domain_name}

Arguments

-domain_type {value}

This specifies the type of domain to remove. The following table shows the acceptable values for this argument:

Value	Description
clock	The domain is a clock domain
set	The domain is a set domain

-domain_name {domain_name}

This specifies the name of the domain to remove

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

The domain name must be the name of an existing domain. The domain type must be either clock or set.

Examples

The following example removes the clock domain named "clk2": smartpower_remove_domain -domain_type {clock} -domain_name {clk2}
The following example removes the set domain named "myset":
smartpower_remove_domain -domain_type {set} -domain_name {myset}

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_create_domain

smartpower_remove_file

Tcl command; removes a VCD file from the specified mode.


```
remove_file
[-file {value}] \
[-format {value}] \
[-opmode {value}] \
```

Arguments

-file {value}
Specifies the file to be removed.
-format VCD
Specifies that the type to be removed is a VCD file.
-opmode {value}

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value	Description
Active	The operating mode is set to active
Standby	The operating mode is set to static
Flash*Freeze	The operating mode is set to Flash*Freeze

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example removes the file test.vcd from the active mode.

smartpower_remove_file -file test -format -vcd opmode -active

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_remove_pin_probability

Tcl command; removes the probability value associated with a specific pin. This pin will have a default probability based on the domain set it belongs to.

smartpower_remove_pin_probability -pin_name {pin_name}

Arguments

-pin_name {pin_name}

Specifies the name of the pin with the probability to remove. This pin must be the direct driver of an enable pin.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

The following example removes the probability of the pin driving the enable pin of a bidirectional I/O:

Smartpower_remove_pin_probability -pin_name mybibuf/U0/U1:EOUT

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_set_pin_probability

smartpower_remove_pin_frequency

Tcl command; removes the frequency associated with a specific pin. This pin will have a default frequency based on its domain.

smartpower_remove_pin_frequency -pin_name {pin_name}

Arguments

-pin_name {pin_name}
Specifies the name of the pin for which the frequency will be removed.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

The pin_name must be the name of a pin that already exists in the design and already belongs to a domain.

Examples

The following example removes the frequency from the pin named "count8_clock": smartpower_remove_pin_frequency -pin_name {count8_clock}

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_set_pin_frequency

smartpower_remove_pin_of_domain

Tcl command; removes a clock pin or a data pin from a clock or set domain, respectively.

```
smartpower_remove_pin_of_domain -pin_name {pin_name} -pin_type {value} -domain_name
{domain_name} -domain_type {value}
```

Arguments

-pin_name {*pin_name*}

Specifies the name of the pin to remove from the domain.

-pin_type {value}

Specifies the type of the pin to remove. The following table shows the acceptable values for this argument:

Value	Description
clock	The pin to remove is a clock pin

Value	Description
data	The pinto remove is a data pin

-domain_name {domain_name}

Specifies the name of the domain from which to remove the pin.

-domain_type {value}

Specifies the type of domain from which the pin is being removed. The following table shows the acceptable values for this argument:

Value	Description
clock	The domain is a clock domain
set	The domain is a set domain

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

The domain name must be the name of an existing domain. The pin name must be the name of an existing pin.

Examples

The following example removes the clock pin named "XCMP3/UO/U1:Y" from the clock domain named "clockh":

smartpower_remove_pin_of_domain -pin_name {XCMP3/U0/U1:Y}
-pin_type {clock} -domain_name {clockh} -domain_type {clock}
The following example removes the data pin named "count2_en" from the set domain named "InputSet":
smartpower_remove_pin_of_domain -pin_name {count2_en} -pin_type
{data} -domain_name {InputSet} -domain_type {set}

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_add_pin_in_domain

smartpower_remove_scenario

Tcl command; removes a scenario from the current design.

smartpower_remove_scenario -name {value}

Arguments

-name {value}

Specifies the name of the scenario.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example removes a scenario from the current design:

smartpower_remove_scenario -name myscenario

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_remove_vcd

Tcl command; removes an existing VCD file from a mode or entire design.

smartpower_remove_vcd -from {value} -mode {value} -file

Arguments

-from $\{value\}$

This specifies the if the VCD is removed for a specific mode or for the entire project. The following table shows the acceptable values for this argument:

Value	Description
mode	The VCD file is removed for a mode
project	The VCD file is removed from the project

-mode {value}

This specifies the name of the mode for which the VCD will be removed

-filename

This specifies the name of the VCD file to be removed

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

The following example removes the VCD file named *my_vcd.vcd* from the active mode smartpower_remove_vcd -from {mode} -mode {active} -my_vcd.vcd

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_create_domain

smartpower_report_power

Tcl command; creates a Power report, which enables you to determine if you have any power consumption problems in your design. It includes information about the global device and SmartPower preferences selection, and hierarchical detail (including gates, blocks, and nets), with a block-by-block, gate-by-gate, and net-by-net power summary SmartPower results.

```
smartpower_report_power\
[-powerunit {value}] \
[-frequnit {value}] \
```



```
[-opcond {value}] \
[-opmode {value}] \
[-toggle {value}] \
[-power_summary {value}] \
[-rail_breakdown{value}] \
[-type_breakdown{ value}] \
[-clock_breakdown{value}] \
[-thermal_summary {value}] \
[-battery_life {value}] \
[-opcond_summary {value}] \
[-clock_summary {value}] \
[-style {value}] \
[-sortorder {value}] \
[-sortby {value}] \
[-instance_breakdown {value}] \
[-power_threshold {value}] \
[-filter_instance {value}] \
[-min_power {number}] \
[-max_instance {integer >= 0}] \
[-activity_sortorder {value}] \
[-activity_sortby {value}] \
[-activity_summary {value}] \
[-frequency_threshold {value}] \
[-filter_pin {value}] \
[-min_frequency {value}] \
[-max_pin {value}] \
[-enablerates_sortorder {value}] \
[-enablerates_sortby {value}] \
[-enablerates_summary {value}] \
[-with_annotation_coverage {value}] \
{filename}
```

Arguments

-powerunit {value}

Specifies the unit in which power is set. The following table shows the acceptable values for this argument:

Value	Description
w	The power unit is set to watts
mW	The power unit is set to milliwatts
uW	The power unit is set to microwatts

-frequnit $\{value\}$

Specifies the unit in which frequency is set. The following table shows the acceptable values for this argument:

Value	Description
Hz	The frequency unit is set to hertz
kHz	The frequency unit is set to kilohertz
MHz	The frequency unit is set to megahertz

-opcond {value}

Specifies the operating condition. The following table shows the acceptable values for this argument:

Value	Description
worst	The operating condition is set to worst case
typical	The operating condition is set to typical case
best	The operating condition is set to best case

-opmode {value}

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value	Description
Active	The operating mode is set to Active
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

-toggle {value}

Specifies the toggle. The following table shows the acceptable values for this argument:

Value	Description
true	The toggle is set to true
false	The toggle is set to false

-power_summary {value}

Specifies whether to include the power summary, which shows the static and dynamic values in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the power summary in the report
false	Does not include the power summary in the report

-rail_breakdown $\{value\}$

Specifies whether to include the breakdown by rail summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by rail summary in the report
false	Does not include the breakdown by rail summary in the report

-type_breakdown {value}

Specifies whether to include the breakdown by type summary in the report. The following table shows the acceptable values for this argument:

 Value
 Description

Value	Description
true	Includes the breakdown by type summary in the report
false	Does not include the breakdown by type summary in the report

-clock_breakdown $\{value\}$

Specifies whether to include the breakdown by clock domain in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by clock domain summary in the report
false	Does not include the breakdown by clock domain summary in the report

-thermal_summary {value}

Specifies whether to include the thermal summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the thermal summary in the report
false	Does not include the thermal summary in the report

-battery_life {value}

Specifies whether to include the battery life summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the battery life summary in the report
false	Does not include the battery life summary in the report

-opcond_summary {value}

Specifies whether to include the operating conditions summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the operating conditions summary in the report
false	Does not include the operating conditions summary in the report

-clock_summary {value}

Specifies whether to include the clock domains summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the clock summary in the report
false	Does not include the clock summary in the report

-style {value}

Specifies the format in which the report will be exported. The following table shows the acceptable values for this argument:

Value	Description
Text	The report will be exported as Text file
CSV	The report will be exported as CSV file

-sortby $\{value\}$

Specifies how to sort the values in the report. The following table shows the acceptable values for this argument:

Value	Description
power values	Sorts based on the power values
alphabetical	Sorts in an alphabetical order

-sortorder {value}

Specifies the sort order of the values in the report. The following table shows the acceptable values for this argument:

Value	Description
ascending	Sorts the values in ascending order
descending	Sorts the values in descending order

-instance_breakdown $\{value\}$

Specifies whether to include the breakdown by instance in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by instance in the report
false	Does not include the breakdown by instance in the report

-power_threshold $\{value\}$

This specifies whether to include only the instances that consume power above a certain minimum value. When this command is set to true, the <code>-min_power</code> argument must also be used to specify that only the instances that consume power above this minimum power value are the ones that are included in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the power threshold in the report
false	Does not include the power threshold in the report

-filter_instance {value}

This specifies whether to have a limit on the number of instances to include in the Power report. When this command is set to true, the <code>-max_instance</code> argument must also be used to specify the maximum number of instances to be included into the Power report. The following table shows the acceptable values for this argument:

Value	Description
true	Indicates that you want to have a limit on the number of instances to include in the Power report
false	Indicates that you do not want to have a limit on the number of instances to include in the Power report

```
-min_power {number}
```

Specifies which block to expand based on the minimum power value of a block.

```
-max_instance {integer >= 0}
```

Sets the maximum number of instances to a specified integer greater than or equal to 0 (zero). This will limit the maximum number of instances to be included in the Power report.

```
-activity_sortorder {value}
```

Specifies the sort order for the activity summary. The following table shows the acceptable values for this argument:

Value	Description
ascending	Sorts the values in ascending order
descending	Sorts the values in descending order

-activity_sortby {value}

Specifies how to sort the values for the activity summary. The following table shows the acceptable values for this argument:

Value	Description
pin name	Sorts based on the pin name
net name	Sorts based on thepnet name
domain	Sorts based on the clock domain
frequency	Sorts based on the clock frequency
source	Sorts based on the clock frequency source

-activity_summary {value}

Specifies whether to include the activity summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the activity summary in the report
false	Does not include the activity summary in the report

-frequency_threshold $\{value\}$

Specifies whether to add a frequency threshold. The following table shows the acceptable values for this argument:

Value	Description
true	Adds a frequency threshold
false	Does not add a frequency threshold

-filter_pin {value}

Specifies whether to filter by maximum number of pins. The following table shows the acceptable values for this argument:

Value	Description
true	Filters by maximum number of pins
false	Des not filter by maximum number of pins

-min_frequency {value}

Sets the minimum frequency to {decimal value [unit { Hz | KHz | MHz}]].

```
-max_pin {value}
```

```
Sets the maximum number of pins.
```

```
-enablerates_sortorder {value}
```

Specifies the sort order for the probabilities summary. The following table shows the acceptable values for this argument:

Value	Description
ascending	Sorts the values in ascending order
descending	Sorts the values in descending order

-enablerates_sortby {value}

Specifies how to sort the values for the probabilities summary. The following table shows the acceptable values for this argument:

Value	Description
pin name	Sorts based on the pin name
net name	Sorts based on the net name
domain	Sorts based on the clock domain

Value	Description
frequency	Sorts based on the clock frequency
source	Sorts based on the clock frequency source

-enablerates_summary {value}

Specifies whether to include the probabilities summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the activity summary in the report
false	Does not include the activity summary in the report

-with_annotation_coverage {value}

Specifies whether to include the annotation coverage summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the annotation coverage summary in the report
false	Does not include the annotation coverage summary in the report

{filename}

Specifies the name of the report.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

• The following arguments have been removed. Running the script will trigger a warning message: Warning: Invalid argument: -argname "argvalue" Ignored. Ignore the warning.

```
-annotated_pins {value}
```

```
-stat_pow {value}
```

-dyn_pow {value}

- Flash*Freeze, Sleep, and Shutdown are available only for certain families and devices.
- Worst and Best are available only for certain families and devices.

Examples

This example generates a Power report named report.rpt.

```
smartpower_report_power -powerunit "uW" -frequnit "MHz" -opcond "Typical" -opmode
"Active" -toggle "TRUE" -rail_breakdown "TRUE" -battery_life "TRUE" -style "Text" -
power_summary "TRUE" -activity_sortby "Source" text_report.txt
```


smartpower_report_power_activity_map

Tcl command; the activity and hazards report reads a VCD file and reports transitions and hazards for each clock cycle of the VCD file.

```
smartpower_report_power_activity_map \
[-vcd_file {path}] \
[-style {value}] \
[-partial_parse {value}] \
[-start_time {value}] \
[-end_time {value}] \
[-auto_detect_top_level_name {value}] \
[-top_level_name {name}] \
[-report_type {value}] \
[-report_query {value}] \
[-sortby {value }] \
[-sortorder {value }] \
[-max_net {value}] \
[-max_cycle {value}] \
[-clock_settings {value}] \
[-glitch_filtering {value}] \
[-glitch_threshold {value}] \
[-auto_construct_clock_domain {value}] \
[-clock_period {value}] \
[-clock_offset {value}] \
[-opmode {value}] \
{filename}
```

Arguments

-vcd_file {path}

Specifies the path to the *.vcd file that you want to import.

-style $\{value\}$

Specifies the format in which the report will be exported. The following table shows the acceptable values for this argument:

Value	Description
Text	The report will be exported as Text file
CSV	The report will be exported as CSV file

-partial_parse {value}

Specifies whether to partially parse the *.vcd file. The following table shows the acceptable values for this argument:

Value	Description
true	Partially parses the *.vcd file
false	Does not partially parse the *.vcd file

```
-start_time \{value\}
```

This option is available only if $-partially_parse$ is set to true. Specifies the start time (in ns) to partially parse the *.vcd file.

-end_time {value}

This option is available only if $-partially_parse$ is set to true. Specifies the end time (in ns) to partially parse the *.vcd file.

-auto_detect_top_level_name {value}

Specifies whether to automatically detect the top-level name. The following table shows the acceptable values for this argument:

Value	Description
true	Automatically detects the top-level name
false	Does not automatically detect the top-level name

-top_level_name {name}

Specifies the top-level name.

-report_type {value}

Specifies the report query type. The following table shows the acceptable values for this argument:

Value	Description
activity	Includes activity information for each net
power	Includes power information for each net
activity and power	Includes activity and power information for each net

-report_query {value}

Specifies the report type. The following table shows the acceptable values for this argument:

Value	Description
Report by Net - summary	Provides a summary report for each net
Report by Net - detailed	Provides a detailed report for each net
Report by Cycle - summary	Provides a summary report for each cycle
Report by cycle - detailed	Provides a detailed report for each cycle

-sortby $\{value\}$

Specifies how to sort the values in the report. The following table shows the acceptable values for this argument:

Value	Description
total power	Sorts based on the power values
spurious power	Sorts based on the spurious power
functional power	Sorts based on the functional power
spurious transitions	Sorts based on the spurious transitions
functional transitions	Sorts based on the functional transitions

-sortorder {value}

Specifies the sort order of the values in the report. This could be descending or ascending.

-max_net {value}

Specifies the maximum number of nets to report. In a net summary or net details report, this argument limits the total number of entries. In a cycle details report, this argument limits the number of nets reported for each cycle.

-max_cycle {value}

Specifies the maximum number of cycles to report. In a cycle summary or cycle details report, this argument limits the total number of entries. In a net details report, this argument limits the number of cycles reported for each net

-clock_settings {value}

Specifies the settings for the clock. The format is "< clock name >:< active edge { value } >". The following table shows the acceptable values for the active edge:

Value	Description
rising	Sets the clock to a rising active edge
falling	Sets the clock to a falling active edge
both	Sets the clock to both rising and falling active edge
not_active	Does not use the signal as a clock

-glitch_filtering {value}

Specifies whether to use glitch filtering. The following table shows the acceptable values for this argument:

Value	Description
true	Glitch filtering is on
auto	Enables automatic glitch filtering. This option will ignore any value specified in -glitch_threshold
false	Glitch filtering is off

-glitch_threshold {value}

This option is only available when <code>-glitch_filtering</code> is set to *true*. Specifies the glitch filtering value in ps.

-auto_construct_clock_domain {value}

Specifies whether to automatically construct the clock domain. The following table shows the acceptable values for this argument:

Value	Description
true	Automatically constructs the clock domain
false	Does not automatically construct the clock domain

-clock_period {value}

Use this option to specify a virtual clock period (in ps). This should be used if - auto_construct_clock_domain is set to *false*.

-clock_offset {value}

Use this option to specify the time of the first active edge of the virtual clock (in ps). This should be used if -auto_construct_clock_domain is set to *false*.

-opmode {value}

Use this option to specify the mode from which the operating conditions are extracted to generate the report.

Value	Description
Active	The operating mode is set to Active
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

{filename}

Specifies the name of the report.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example generates an activity and hazards power report named report_power_activity_map.txt.

```
smartpower_report_power_activity_map -partial_parse "TRUE" -start_time "1.0" -end_time
"3.0" -auto_detect_top_level_name "TRUE" -top_level_name "mytopmodule" -glitch_filtering
"auto" -style "Text" -opmode "Active"
-vcd_file power.vcd -report_query "Report by Net - summary" -clock_period "2000.0" -
clock_offset "10.0" "report_power_activity_map_partial.txt"
```

smartpower_report_power_peak_analyzer

Tcl command; creates a cycle accurate power report, which reports a power waveform with one power value per clock period or half-period instead of an average power for the whole simulation.

```
smartpower_report_power_peak_analyzer\
[-vcd_file {path}] \
[-style {value}] \
[-partial_parse {value}] \
[-start_time {value}] \
[-end_time {value}] \
[-auto_detect_top_level_name {value}] \
[-top_level_name { name } ] \
[-glitch_filtering {value}] \
[-glitch_threshold {value}] \
[-auto_detect_sampling_period {value}] \
[-sampling_clock { }] \
[-sampling_rate_per_period {value}] \
[-sampling_offset {value}] \
[-sampling_period {value}] \
[-use_only_local_extrema {value}] \
[-use_power_threshold {value}] \
[-power_threshold {value}] \
```


[-opmode {value}] \
{filename}

Arguments

-type power_cycle_accurate

Specifies the type of report to generate is a cycle accurate power report.

-vcd_file {path}

Specifies the path to the *.vcd file that you want to import.

-style $\{value\}$

Specifies the format in which the report will be exported. The following table shows the acceptable values for this argument:

Value	Description
Text	The report will be exported as Text file
CSV	The report will be exported as CSV file

-partial_parse {value}

Specifies whether to partially parse the *.vcd file. The following table shows the acceptable values for this argument:

Value	Description
true	Partially parses the *.vcd file
false	Does not partially parse the *.vcd file

-start_time $\{value\}$

This option is available only if -partially_parse is set to *true*. Specifies the start time (in ns) to partially parse the *.vcd file.

-end_time {value}

This option is available only if -partially_parse is set to *true*. Specifies the end time (in ns) to partially parse the *.vcd file.

-auto_detect_top_level_name {value}

Specifies whether to automatically detect the top-level name. The following table shows the acceptable values for this argument:

Value	Description
true	Automatically detects the top-level name
false	Does not automatically detect the top-level name

-top_level_name { name }

Specifies the top-level name.

```
-glitch_filtering {value}
```

Specifies whether to use glitch filtering. The following table shows the acceptable values for this argument:

Value	Description
-------	-------------

Value	Description
true	Glitch filtering is on
auto	Enables automatic glitch filtering. This option will ignore any value specified in -glitch_threshold
false	Glitch filtering is off

-glitch_threshold {value}

This option is only available when <code>-glitch_filtering</code> is set to <code>true</code>. Specifies the glitch filtering value (in ps).

-power_summary {value}

Specifies whether to include the power summary, which shows the static and dynamic values in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the power summary in the report
false	Does not include the power summary in the report

-auto_detect_sampling_period {value}

Specifies whether to automatically detect the sampling period. The following table shows the acceptable values for this argument:

Value	Description
true	Automatically detects the sampling period
false	Does not automatically detect the sampling period

-sampling_clock {}

Specifies the sampling clock.

```
-sampling_rate_per_period {value}
```

Specifies whether to set the sampling rate per period. The following table shows the acceptable values for this argument:

Value	Description
true	Specifies the sampling rate per period
false	Specifies the sampling rate per half period

```
-sampling_offset {value}
```

Specifies the offset used to calculate the sampling offset (in ps).

```
-sampling_period {value}
```

Specifies the offset used to calculate the sampling period (in ps).

-use_only_local_extrema {value}

Specifies whether to limit the history size by keeping only local extrema. The following table shows the acceptable values for this argument:

Value	Description
true	Limits the history size by keeping only local extrema
false	Does not limit the history size by keeping only local extrema

-use_power_threshold $\{value\}$

Specifies whether to limit the history size by setting a power threshold. The following table shows the acceptable values for this argument:

Value	Description
true	Limits the history size by setting a power threshold
false	Does not limit the history size by setting a power threshold

-power_threshold {value}

Sets the power threshold value.

-opmode {value}

Use this option to specify the mode from which the operating conditions are extracted to generate the report.

Value	Description
Active	The operating mode is set to Active
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

 ${filename}$

Specifies the name of the report.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example generates a cycle accurate power report named report_power_cycle_based.txt.

```
smartpower_report_power_peak_analyzer -partial_parse "TRUE" -vcd_file "power.vcd" -style
"Text" -start_time "0.05" -end_time "1.00" -auto_detect_top_level_name "TRUE" -
glitch_filtering "FALSE" -glitch_threshold "100" -auto_detect_sampling_period "TRUE" -
sampling_clock "clk" -sampling_rate_per_period "TRUE" -sampling_offset "0.00" -
sampling_period "10000.00" -use_only_local_extrema "TRUE" -use_power_threshold "TRUE" -
power_threshold "0.00" -opmode "Active" "report_power_cycle_based.txt"
```

See Also

Tcl documentation conventions

smartpower_report_power_sequencer

Tcl command; creates a scenario power report for a previously defined scenario. It includes information about the global device and SmartPower preferences selection, and the average power consumption and the excepted battery life for this sequence.

```
smartpower_report_power_sequencer\
[-powerunit {value}] \
[-frequnit {value}] \
[-opcond {value}] \
[-toggle {value}] \
[-scenario {value}] \
[-sttery_life {value}] \
[-battery_capacity {value}] \
[-rail_breakdown {value}] \
[-type_breakdown {value}] \
[-mode_breakdown {value}] \
[-opcond_summary {value}] \
{filename}
```

Arguments

-powerunit $\{value\}$

Specifies the unit in which power is set. The following table shows the acceptable values for this argument:

Value	Description
w	The power unit is set to watts
mW	The power unit is set to milliwatts
uW	The power unit is set to microwatts

-frequnit $\{value\}$

Specifies the unit in which frequency is set. The following table shows the acceptable values for this argument:

Value	Description
Hz	The frequency unit is set to hertz
kHz	The frequency unit is set to kilohertz
MHz	The frequency unit is set to megahertz

-toggle $\{value\}$

Specifies the toggle. The following table shows the acceptable values for this argument:

Value	Description
true	The toggle is set to true
false	The toggle is set to false

-scenario{value}

Specifies a scenario that the report is generated from.

-style {value}

Specifies the format in which the report will be exported. The following table shows the acceptable values for this argument:

Value	Description
Text	The report will be exported as Text file
CSV	The report will be exported as CSV file

-battery_life {value}

Specifies whether to include the battery life summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the battery life summary in the report
false	Does not include the battery life summary in the report

-battery_capacity {value}

Specifies the battery capacity in A*H.

```
-rail_breakdown {value}
```

Specifies whether to include the breakdown by rail summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by rail summary in the report
false	Does not include the breakdown by rail summary in the report. This is the default value.

-type_breakdown $\{value\}$

Specifies whether to include the breakdown by type summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by type summary in the report
false	Does not include the breakdown by type summary in the report. This is the default value.

-mode_breakdown $\{value\}$

Specifies whether to include a breakdown by mode in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the breakdown by mode in the report

Value	Description
false	Does not include the breakdown by mode in the report. This is the default value.

-opcond_summary {value}

Specifies whether to include the operating conditions summary in the report. The following table shows the acceptable values for this argument:

Value	Description
true	Includes the operating conditions summary in the report
false	Does not include the operating conditions summary in the report

{filename.rpt}

Specifies the name of the report.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

- Flash*Freeze, Sleep, and Shutdown are available only for certain families and devices.
- Worst and Best are available only for certain families and devices.

Examples

The following example generates a scenario power report named report.txt for my_scenario:

smartpower_report_power_sequencer -scenario my_scenario -rail_breakdown true type_breakdown true -mode_breakdown true -style text -battery_capacity 10 report.txt

See Also

Scenario Power Report

smartpower_restore

Tcl command; restores all power information previously committed in SmartPower.

smartpower_restore

Arguments

None

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

smartpower_restore

See Also

Tcl documentation conventions Designer Tcl Command Reference smartpower_commit

smartpower_set_battery_capacity

Tcl command; sets the battery capacity.

```
smartpower_set_battery_capacity {value}
```

Arguments

value

Sets the battery capacity to a value in mA/h.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

The following example sets the battery capacity to 40 A/h: smartpower_set_battery_capacity {40}

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_set_cooling

Tcl command; sets the cooling style to one of the predefined types, or a custom value.

smartpower_set_cooling -style {value} -teta {value}

Arguments

-style $\{value\}$

Specifies the cooling style to custom value or to one of the predefined types with a default thermal resistance value. The following table shows the acceptable values for this argument:

Value	Description
300_lfm	Predefined cooling style
case_cooling	Predefined cooling style
still_air	Predefined cooling style
custom	Cooling style defined by user input

-teta {*value*}

Specifies the thermal resistance in °C/W. This argument is only available when style is set to Custom.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Notes

To compute the junction temperature, set the following three commands: <u>smartpower_set_thermalmode</u>, <u>smartpower_set_tambient</u> and <u>smartpower_set_cooling</u>. The junction temperature will be updated when an output command is executed, such as report(Power).

Examples

The following example sets the cooling style to still air: smartpower_set_cooling -style {still_air}

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_set_mode_for_analysis

Tcl command; sets the mode for cycle-accurate power analysis.

smartpower_set_mode_for_analysis -mode {value}

Arguments

-mode {value}

Specifies the mode for cycle-accurate power analysis.

Value	Description
Active	The operating mode is set to Active
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

The following example sets the mode for analysis to active: smartpower_set_mode_for_analysis -mode {active}

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_set_operating_condition

Tcl command; sets the operating conditions used in SmartPower to one of the pre-defined types.

smartpower_set_operating_condition -opcond {value}

Arguments

-opcond $\{value\}$

Specifies the value of the operating condition. The following table shows the acceptable values for this argument:

Value	Description
best	Sets the operating conditions to best
typical	Sets the operating conditions to typical
worst	Sets the operating conditions to worst

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example sets the operating conditions to best:

smartpower_set_operating_condition -opcond {best}

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_set_operating_conditions

Tcl command; sets the operating conditions used in SmartPower.

```
smartpower_set_operating_conditions "still_air | 1.0_mps | 2.5_mps | custom" -heatsink
"None | custom | 10mm_Low_Profile | 15mm_Medium_Profile | 20mm_High_Profile" -boardmodel
"None_Conservative | JEDEC_2s2p" [-teta_ja "decimal value"] [-teta_sa "decimal value"]
```

Arguments

-still_air {value}

Specifies the value for the still air operating condition. The following table shows the acceptable values for this argument:

Value	Description
1.0_mps	Sets the operating conditions to best
2.5_mps	Sets the operating conditions to typical
custom	Sets the operating conditions to worst

-heatsink $\{value\}$

Specifies the value of the operating condition. The following table shows the acceptable values for this argument:

Value	Description
none	No heat sink

Value	Description
custom	Sets a custom heat sink size
10mm_Low_Profile	10 mm heat sink
15mm_Low_Profile	15 mm heat sink
20mm_High_Profile	20 mm heat sink

-boardmodel $\{value\}$

Specifies your board model. The following table shows the acceptable values for this argument:

Value	Description
None_Conservative	No board model, conservative routing
JEDEC_2s2p	JEDEC 2s2p board model

-teta_ja {decimal_value}

Optional; sets your teta ja value; must be a positive decimal

-teta_sa {decimal_value}

Optional; sets your teta sa value; must be a positive decimal.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example sets the operating conditions to best:

```
set_operating_conditions -airflow "still_air" -heatsink "None" -boardmodel
"None_Conservative "
```

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_set_pin_frequency

Tcl command; sets the frequency of a pin in megahertz (MHz). If you do not use this command, each pin will have default frequency based on its domain.

smartpower_set_pin_frequency -pin_name {pin_name} -pin_freq {value}

Arguments

-pin_name {pin_name}

Specifies the name of the pin for which the frequency will be set.

-pin_freq {value}

Specifies the value of the frequency in MHz, which can be any positive decimal number.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Notes

The *pin_name* must be the name of a pin that already exists in the design and already belongs to a domain. When specifying the unit, a space must be between the frequency value and the unit.

Examples

This example sets the frequency of the pin named "count8_clock" to 100 MHz: smartpower_set_pin_frequency -pin_name {count8_clock} -pin_freq {100}

See Also

<u>Tcl documentation conventions</u> <u>Designer Tcl Command Reference</u> smartpower_remove_pin_frequency

smartpower_set_pin_probability

Enables you to set the probability value of a pin driving an enable pin. For I/Os, if you do not use this command, the probability of the IOEnableSet is used. For memories, if you do not use this command, the probability of the MemoriesEnableSet is used.

smartpower_set_pin_probability -pin_name {pin_name} -pin_enable_rate {value}

Arguments

-pin_name {pin_name}

Specifies the name of a pin for which the probability will be set. This pin must be the direct driver of an enable pin.

-pin_proba {value}

Specifies the value of the pin probability as a percentage, which can be any positive decimal between 0 and 100, inclusive.

Supported Families

SmartFusion, IGLOO, ProASIC3, Fusion

Notes

None

Exceptions

None

Examples

The following example sets the probability of the pin driving the enable pin of a bidirectional I/O smartpower_set_pin_probability -pin_name mybibuf/U0/U1:EOUT \
-pin_proba 50.4

See Also

smartpower_remove_pin_probability

smartpower_set_preference

Tcl command; sets the following preferences: power unit, frequency unit, operating mode, operating conditions, and toggle. These preferences can also be set from the <u>preferences dialog box</u>.

smartpower_set_preference -powerunit {value} -frequnit {value} -opmode {value} -opcond
{value} -toggle {value}

Arguments

-powerunit $\{value\}$

Specifies the unit in which power is set. The following table shows the acceptable values for this argument:

Value	Description
W	The power unit is set to watts
mW	The power unit is set to milliwatts
uW	The power unit is set to microwatts

-frequnit {value}

Specifies the unit in which frequency is set. The following table shows the acceptable values for this argument:

Value	Description
Hz	The frequency unit is set to hertz
kHz	The frequency unit is set to kilohertz
MHz	The frequency unit is set to megahertz

-opmode $\{value\}$

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value	Description
active	The operating mode is set to active
static	The operating mode is set to static
sleep	The operating mode is set to sleep
Flash*Freeze	The operating mode is set to Flash*Freeze
shutdown	The operating mode is set to shutdown

-opcond $\{value\}$

Specifies the operating condition. The following table shows the acceptable values for this argument:

Value	Description
worst	The operating condition is set to worst case
typical	The operating condition is set to typical case
best	The operating condition is set to best case

-toggle {value}

Specifies the toggle. The following table shows the acceptable values for this argument:

Value	Description
true	The toggle is set to true
false	The toggle is set to false

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Notes

• The following arguments have been removed. Running the script will trigger a warning message: Warning: Invalid argument: -argname "argvalue" Ignored. Ignore the warning.

-maxblocks {integer > 0}

-maxpins [{integer > 0}

-sortorder {ascending, descending}

-sortby {powervalues, alphabetical}

- Flash*Freeze, Sleep, and Shutdown are available only for certain families and devices.
- Worst and Best operating conditions are available only for certain families and devices.

Examples

This example sets the frequency of the power unit to "watts", the frequency unit to "Hz", the operating mode to "active", the operating condition to "typical", and the toggle to "true":

smartpower_set_setpreferences -powerunit $\{w\}$ -frequnit $\{hz\}$ -opmode $\{active\}$ -opcond $\{typical\}$ -toggle $\{true\}$

See Also

Tcl documentation conventions Designer Tcl Command Reference SmartPower Preferences

smartpower_set_process

Tcl command; sets the process used in SmartPower to one of the pre-defined types.

```
smartpower_set_process -process {value}
```

Arguments

-process {value}

Specifies the value of the operating condition. The following table shows the acceptable values for this argument:

Value	Description
Typical	Sets the process for SmartPower to typical
Maximum	Sets the process for SmartPower to maximum

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example sets the operating conditions to typical: smartpower_set_process -process {Typical}

See Also

Tcl documentation conventions

smartpower_set_scenario_for_analysis

Tcl command; sets the scenario for cycle-accurate power analysis.

 $\verb|smartpower_set_scenario_for_analysis -scenario\{value\}|$

Arguments

-scenario {value}

Specifies the mode for cycle-accurate power analysis.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

The following example sets the scenario for analysis to my_scenario: smartpower_set_scenario_for_analysis -scenario {my_scenario}

See Also

<u>Tcl documentation conventions</u> <u>Designer Tcl Command Reference</u>

smartpower_set_temperature_opcond

Tcl command; sets the temperature in the operating conditions to one of the pre-defined types.

smartpower_set_temperature_opcond -use{value}

Arguments

$-use\{value\}$

Specifies the temperature in the operating conditions. The following table shows the acceptable values for this argument:

Value	Description
oprange	Sets the temperature in the operating conditions as specified in your Project Settings.
design	Sets the temperature in the operating conditions as specified in the SmartPower design-wide operating range.

Value	Description
	Applies to SmartPower only.
mode	Sets the temperature in the operating conditions as specified in the SmartPower mode-specific operating range. Applies to SmartPower only.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example sets the temperature in the operating conditions as specified in the custom mode-settings: $martpower_set_temperature_opcond -use\{mode\}$

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_set_thermalmode

Tcl command; sets the mode of computing junction temperature.

smartpower_set_thermalmode -mode {value}

Arguments

-mode {value}

Specifies the mode in which the junction temperature is computed. The following table shows the acceptable values for this argument:

Value	Description
ambient	The junction temperature will be iteratively computed with total static power
opcond	The junction temperature will be given as one of the operating condition range values specified in the device selection

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Notes

To compute the junction temperature, set the following three commands: <u>smartpower set thermalmode</u>, <u>smartpower set tambient</u> and <u>smartpower set cooling</u>. The junction temperature will be updated when an output command is executed, such as <u>report(Power)</u>.

Examples

The following example sets the computing of the junction temperature to ambient mode:

smartpower_set_thermalmode -mode {ambient}

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_set_voltage_opcond

Tcl command; sets the voltage in the operating conditions.

 $\verb|smartpower_set_voltage_opcond -voltage{value} - use{value}|$

Arguments

$-voltage{value}$

Specifies the voltage supply in the operating conditions. The following table shows the acceptable values for this argument:

Value	Description
VDD	Sets the voltage operating conditions for VDD
VDDI 2.5	Sets the voltage operating conditions fo r VDDI 2.5
VPP	Sets the voltage operating conditions for VPP

$-use\{value\}$

Specifies the voltage in the operating conditions for each voltage supply. The following table shows the acceptable values for this argument:

Value	Description
oprange	Sets the voltage in the operating conditions as specified in your <u>Project Settings</u> .
design	Sets the voltage in the operating conditions as specified in the SmartPower design-wide operating range. Applies to SmartPower only.
mode	Sets the voltage in the operating conditions as specified in the SmartPower mode-specific operating range. Applies to SmartPower only.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example sets the VCCA as specified in the SmartPower mode-specific settings: smartpower_set_voltage_opcond -voltage{vcca} -use{mode}

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_temperature_opcond_set_design_wide

smartpower_temperature_opcond_set_design_wide

Tcl command; sets the temperature for SmartPower design-wide operating conditions.

```
smartpower_temperature_opcond_set_design_wide -best{value} -typical{value} -worst{value} -
thermal_mode{value}
```

Arguments

-best{value}

Specifies the best temperature (in degrees Celsius) used for design-wide operating conditions.

-typical{value}

Specifies the typical temperature (in degrees Celsius) used for design-wide operating conditions. -worst{value}

Specifies the worst temperature (in degrees Celsius) used for design-wide operating conditions. -thermal_mode{value}

Specifies the mode in which the junction temperature is computed. The following table shows the acceptable values for this argument:

Value	Description
ambient	The junction temperature will be iteratively computed with total static power
opcond	The junction temperature will be given as one of the operating condition range values specified in the device selection

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example sets the temperature for design-wide operating conditions to Best 20, Typical 30, and Worst 60:

smartpower_temperature_opcond_set_design_wide -best{20} -typical{30} -worst{60}

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_temperature_opcond_set_mode_specific

Tcl command; sets the temperature for SmartPower mode-specific operating conditions.

```
smartpower_temperature_opcond_set_mode_specific -opmode{value} - thermal_mode{value} - best{value} -typical{value} -worst{value} -thermal_mode{value}
```

Arguments

-opmode {value}

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value

Description

Value	Description
Active	The operating mode is set to Active
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

-thermal_mode{value}

Specifies the mode in which the junction temperature is computed. The following table shows the acceptable values for this argument:

Value	Description
ambient	The junction temperature will be iteratively computed with total static power
opcond	The junction temperature will be given as one of the operating condition range values specified in the device selection

-best{value}

Specifies the best temperature (in degrees Celsius) for the selected mode.

 $-typical\{value\}$

Specifies the typical temperature (in degrees Celsius) for the selected mode.

-worst{value}

Specifies the worst temperature (in degrees Celsius) for the selected mode.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example sets the temperature for mode-specific operating conditions for mode1:

```
smartpower_temperature_opcond_set_mode_specific -mode\{mode1\} -best\{20\} -typical\{30\} -worst\{60\}
```

See Also

<u>Tcl documentation conventions</u> Designer Tcl Command Reference

smartpower_voltage_opcond_set_design_wide

Tcl command; sets the voltage settings for SmartPower design-wide operating conditions.

```
smartpower_voltage_opcond_set_design_wide -voltage{value} -best{value} -typical{value} -
worst{value}
```

Arguments

 $-voltage{value}$

Specifies the voltage supply in the operating conditions. The following table shows the acceptable values for this argument:

smartpower_voltage_opcond_set_mode_specific

Value	Description
VDD	Sets the voltage operating conditions for VDD
VDDI 2.5	Sets the voltage operating conditions for VDDI 2.5
VPP	Sets the voltage operating conditions for VPP
VCCA	Sets the voltage operating conditions for VCCA
VCCI 3.3	Sets the voltage operating conditions for VCCI 3.3
VCCI 2.5	Sets the voltage operating conditions for VCCI 2.5
VCCI 1.8	Sets the voltage operating conditions for VCCI 1.8
VCCI 1.5	Sets the voltage operating conditions for VCCI 1.5
VCC33A	Sets the voltage operating conditions for VCC33A
VCCDA	Sets the voltage operating conditions for VCCDA

-best{value}

Specifies the best voltage used for design-wide operating conditions.

-typical{value}

Specifies the typical voltage used for design-wide operating conditions.

-worst{value}

Specifies the worst voltage used for design-wide operating conditions.

Supported Families

See the Tcl Commands and Supported Families table for the list of families that support this command.

Examples

This example sets VCCA for design-wide to best 20, typical 30 and worst 40: smartpower_voltage_opcond_set_design_wide -voltage{VCCA} -best{20} -typical{30} worst{40}

See Also

Tcl documentation conventions Designer Tcl Command Reference

smartpower_voltage_opcond_set_mode_specific

Tcl command; sets the voltage settings for SmartPower mode-specific use operating conditions.

```
smartpower_voltage_opcond_set_mode_specific -opmode{value} -voltage{value} -best{value} -
typical{value} -worst{value}
```

Arguments

-opmode $\{value\}$

Use this option to specify the mode from which the operating conditions are extracted to generate the report.

Value	Description
Active	The operating mode is set to Active
Standby	The operating mode is set to Standby
Flash*Freeze	The operating mode is set to Flash*Freeze

-voltage{value}

Specifies the voltage in the operating conditions. The following table shows the acceptable values for this argument:

Value	Description
VDD	Sets the voltage operating conditions for VDD
VDDI 2.5	Sets the voltage operating conditions for VDDI 2.5
VPP	Sets the voltage operating conditions for VPP
VCCA	Sets the voltage operating conditions for VCCA
VCCI 3.3	Sets the voltage operating conditions for VCCI 3.3
VCCI 2.5	Sets the voltage operating conditions for VCCI 2.5
VCCI 1.8	Sets the voltage operating conditions for VCCI 1.8
VCCI 1.5	Sets the voltage operating conditions for VCCI 1.5
VCC33A	Sets the voltage operating conditions for VCC33A
VCCDA	Sets the voltage operating conditions for VCCDA

 $-best{value}$

Specifies the best voltage used for mode-specific operating conditions.
-typical{value}
Specifies the typical voltage used for mode-specific operating conditions.
-worst{value}
Specifies the worst voltage used for mode-specific operating conditions.

Supported Families

See the <u>Tcl Commands and Supported Families</u> table for the list of families that support this command.

Examples

This example sets the voltage for the static mode and sets best to 20, typical to 30 and worst to 40: smartpower_voltage_opcond_set_mode_specific -opmode{active} -voltage{VCCA} -best{20} - typical{30} -worst{40}

See Also

Tcl documentation conventions Designer Tcl Command Reference

SmartPower Obsolete TCL Commands

smartpower_initialize_allclocks

This command was obsoleted in SmartPower v8.5. Update your script to use:

smartpower init set clocks options to initialize the clock frequency options of all clock domains.
smartpower init set registers options to initialize the frequency and probability of all register outputs.
smartpower_init_set_set_reset_options to initialize the frequency and probability of all set/reset nets.
smartpower_init_set_primaryinputs_options to initialize the frequency and probability of all primary inputs.
smartpower_init_set_combinational_options to initialize the frequency and probability of all primary inputs.
smartpower_init_set_combinational_options to initialize the frequency and probability of all combinational outputs.

<u>smartpower init do</u> to initialize the frequencies and probabilities for clocks, register outputs, set/reset nets, primary inputs, combinational outputs, enables and other sets of pins, and selects a mode for initialization.

Note: The information below is obsolete and should only be used as reference. Update your scripts to use the TCL commands above.

Initializes the clock frequency and the data frequency of all clock domains with the initialization options.

smartpower_initialize_allclocks -with_clock_constraints {value} -with_clock_freq {value} clock_freq {value} -with_data_freq {value} -data_freq {value}

Arguments

-with_clock_constraints {value}

This sets the option of initializing the clock frequencies of all clock domains with frequency constraints from SmartTime. The following table shows the acceptable values for this argument:

Value	Description
true	Sets initialize clock frequencies with clock constraints ON
false	Sets initialize clock frequencies with clock constraints OFF

-with_clock_freq {value}

This sets the option of initializing the clock frequencies with a user input frequency. The following table shows the acceptable values for this argument:

Value	Description
true	Sets initialize clock frequencies with fixed frequency ON
false	Sets initialize clock frequencies with fixed frequency OFF

-clock_freq {value}

Specifies the user input clock frequency in MHz.

```
-with_data_freq {value}
```

Sets the option of initializing the data frequencies of all clock domains with a user input toggle rate or a user input frequency. The following table shows the acceptable values for this argument:

Value	Description
true	Sets initialize data frequencies with fixed frequency ON

Value	Description
false	Sets initialize data frequencies with fixed frequency OFF

-data_freq {value}

Specifies the user input toggle rate or data frequency. If the value is a percentage number such as 20.0 %, it will be interpreted as a toggle rate. If the value is a decimal number in MHz such as 100.0 MHz, it will be interpreted as a fixed frequency value.

Supported Families

SmartFusion, IGLOO, ProASIC3, Fusion

Notes

• This command is associated with the functionality of Initialize with SmartTime dialog box.

Exceptions

None

Examples

The following example initializes all clocks with clock constraints from SmartTime:

smartpower_initialize_allclocks -with_clock_constraints {true}

smartpower_remove_pin_enable_rate

This command was obsoleted in SmartPower v8.5. Update your script to use

smartpower_remove_pin_probability to remove the pin probability.

Note: The information below is obsolete and should only be used as reference when executing previouslycreated scripts. Update your scripts to use smartpower_remove_pin_probability.

Removes the probability value associated with a specific pin. This pin will have a default probability based on the domain set it belongs to.

smartpower_remove_pin_enable_rate -pin_name {pin_name}

Arguments

-pin_name {pin_name}

Specifies the name of the pin with the probability to remove. This pin must be the direct driver of an enable pin.

Supported Families

SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions

None

Examples

The following example removes the probability of the pin driving the enable pin of a bidirectional I/O: Smartpower_remove_pin_enable_rate -pin_name mybibuf/U0/U1:EOUT

smartpower_set_default_enable_rate

This command was obsoleted in SmartPower v8.5. Update your script to use

smartpower_change_setofpin_statistics to set the frequency and probability of the specified domain.

Note: The information below is obsolete and should only be used as reference when executing previouslycreated scripts. Update your scripts to use smartpower_change_setofpin_statistics.

Sets the enable-rate of one of the enable set domains: IOEnableSet or MemoriesEnableSet.

smartpower_set_default_enable_rate -domain_name {name} pin_enable_rate {value}

Arguments

-domain_name { name }

Specifies the name of the domain value of which you want to apply the enable rate value. The domain_name can be IOsEnableSet or MemoriesEnableSet.

-pin_enable_rate {value}

Specifies the value of the pin enable rate as a percentage, which can be any positive decimal between 0 and 100, inclusive.

Supported Families

SmartFusion, IGLOO, ProASIC3 and Fusion

Notes

None

Exceptions

None

Examples

The following example sets the enable rate for all the pins belonging to the domain set IOsEnableSet: smartpower_set_default_enable_rate -domain_name IOsEnableSet -pin_enable_rate 52.2

smartpower_set_domain_frequency

This command was obsoleted in SmartPower v8.5. Update your script to use:

smartpower change setofpin statistics to change the frequencies and probabilities for all sets of pins in a specific domain

smartpower change clock statistics to change the frequencies and probabilities for all clocks in a specific domain

Note: The information below is obsolete and should only be used as reference when executing previouslycreated scripts. Update your scripts to use the TCL commands above.

Sets the frequency of a domain in megahertz (MHz).

```
smartpower_set_domain_frequency -domain_type {value} -domain_name {domain_name} -clock_freq
{value} -data_freq {value} -pin_freq {value}
```

Arguments

-domain_type {value}

Specifies the type of domain to set. The following table shows the acceptable values for this argument:

Value

Description

Value	Description
clock	The domain is a clock domain
set	The domain is a set domain

-domain_name {domain_name}

Specifies the name of the domain for which the frequency will be set.

```
-clock_freq {value}
```

Specifies the clock frequency in megahertz (MHz), which can be any positive decimal number. This argument is available only for a clock domain.

-data_freq {value}

Specifies the data frequency in megahertz (MHz), which can be any positive decimal number. This argument is available only for a clock domain.

-pin_freq {value}

Specifies the value of the pin frequency in megahertz (MHz), which can be any positive decimal number, which can be any positive decimal number. This argument is available only for a set domain.

Supported Families

SmartFusion, IGLOO, ProASIC3, Fusion

Notes

- The domain type must be either clock or set.
- The domain name must be the name of an existing domain.
- The clock frequency must be a positive decimal number. Specifying the unit as part of the frequency value is optional. You must enter a space between the frequency value and the unit. You set the clock frequency only for clock domains.
- The data frequency must be a positive decimal number. Specifying the unit as part of the data frequency value is optional. You must enter a space between the data frequency value and the unit.

Exceptions

None

Examples

The following example sets the clock and data frequency of a clock domain:

 $\label{eq:smartpower_set_domain_frequency -domain_type {clock} -domain_name {clk1} -clock_freq {32} or {30 MHz} -data_freq {3} or {3 MHz}$

The following example sets the data frequency of a set domain:

smartpower_set_domain_frequency -domain_type {set} -domain_name {set1} -data_freq {10}

smartpower_set_pin_enable_rate

This command was obsoleted in SmartPower v8.5. Update your script to use smartpower_set_pin_probability

to set the pin probability.

Note: The information below is obsolete and should only be used as reference when executing previouslycreated scripts. Update your scripts to use smartpower_set_pin_probability.

Enables you to set the probability value of a pin driving an enable pin. For I/Os, if you do not use this command, the probability of the IOEnableSet is used. For memories, if you do not use this command, the probability of the MemoriesEnableSet is used.

smartpower_set_pin_enable_rate -pin_name {pin_name} -pin_enable_rate {value}

Arguments

-pin_name {pin_name}

Specifies the name of a pin for which the probability will be set. This pin must be the direct driver of an enable pin.

-pin_enable_rate {value}

Specifies the value of the pin probability as a percentage, which can be any positive decimal between 0 and 100, inclusive.

Supported Families

SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions

None

Examples

The following example sets the probability of the pin driving the enable pin of a bidirectional I/O smartpower_set_pin_enable_rate -pin_name mybibuf/U0/U1:EOUT \
-pin_enable_rate 50.4

Data Change History - SmartPower

The data change history report lists power data updates up to the current release that may impact the power consumption of the design.

To generate a data change history report, from the **Help** menu, choose **Data Change History**. This opens a data change history report in text format.

Product Support

The Microsemi SoC Products Group backs its products with various support services including a Customer Technical Support Center and Non-Technical Customer Service. This appendix contains information about contacting the SoC Products Group and using these support services.

Contacting the Customer Technical Support Center

Microsemi staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions. The Customer Technical Support Center spends a great deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

Microsemi customers can receive technical support on Microsemi SoC products by calling Technical Support Hotline anytime Monday through Friday. Customers also have the option to interactively submit and track cases online at My Cases or submit questions through email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.800.262.1060

Phone (International): +1 650.318.4460

Email: soc_tech@microsemi.com

ITAR Technical Support

Microsemi customers can receive ITAR technical support on Microsemi SoC products by calling ITAR Technical Support Hotline: Monday through Friday, from 9 AM to 6 PM Pacific Time. Customers also have the option to interactively submit and track cases online at My Cases or submit questions through email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.888.988.ITAR

Phone (International): +1 650.318.4900

Email: soc_tech_itar@microsemi.com

Non-Technical Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

Microsemi's customer service representatives are available Monday through Friday, from 8 AM to 5 PM Pacific Time, to answer non-technical questions.

Phone: +1 650.318.2470

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at **www.microsemi.com**.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.