
Synopsys FPGA Synthesis
Synplify Pro for Microsemi
Edition
Reference Manual

May 2015

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
2 May 2015

Copyright Notice and Proprietary Information

Copyright © 2015 Synopsys, Inc. All rights reserved. This software and
documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance
with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the
license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the
documentation for its internal use only.

Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any. Licensee must assign sequential numbers
to all copies. These copies shall contain the following legend on the cover
page:

“This document is duplicated with the permission of Synopsys, Inc., for the
exclusive use of __ and its
employees. This is copy number __________.”

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 3

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology,
Cadabra, CATS, Certify, CHIPit, CoMET, CODE V, Design Compiler,
DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda,
LightTools, MAST, METeor, ModelTools, NanoSim, NOVeA, OpenVera, ORA,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are regis-
tered trademarks of Synopsys, Inc.

Trademarks (™)

AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves,
BEST, Columbia, Columbia-CE, Cosmos, CosmosLE, CosmosScope, CRITIC,
CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon
Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler,
Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem,
Intelli, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty,
Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail,
Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengi-
neering, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT,
Star-SimXT, StarRC, System Compiler, System Designer, Taurus, Total-
Recall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
4 May 2015

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is
used under license.

All other product or company names may be trademarks of their respective
owners.

Printed in the U.S.A
May 2015

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 5

Contents

Chapter 1: Product Overview

Synopsys FPGA and Prototyping Products . 20
FPGA Implementation Tools . 20
Identify Tool Set . 22
Synphony Model Compiler . 22
Rapid Prototyping . 23

Overview of the Synthesis Tools . 24
Common Features . 24
BEST Algorithms . 25
Graphic User Interface . 25
Projects and Implementations . 28

Starting the Synthesis Tool . 29

Logic Synthesis Overview . 30
Synthesizing Your Design . 31

Getting Help . 34

Chapter 2: User Interface Overview

The Project View . 36
Project Management View . 38

The Project Results View . 40
Project Status Tab . 40
Implementation Directory . 44
Process View . 46

Other Windows and Views . 49
Dockable GUI Entities . 50
Watch Window . 50
Tcl Script and Messages Windows . 53
Tcl Script Window . 54
Message Viewer . 54

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
6 May 2015

Output Windows (Tcl Script and Watch Windows) . 58
RTL View . 59
Technology View . 60
Hierarchy Browser . 62
FSM Viewer Window . 64
Text Editor View . 66
Context Help Editor Window . 68
Interactive Attribute Examples . 70
Search SolvNet . 72

FSM Compiler . 73
When to Use FSM Compiler . 74
Where to Use FSM Compiler (Global and Local Use) . 74

FSM Explorer . 75

Using the Mouse . 75
Mouse Operation Terminology . 75
Using Mouse Strokes . 76
Using the Mouse Buttons . 78
Using the Mouse Wheel . 80

User Interface Preferences . 80
Managing Views . 81

Toolbars . 82
Project Toolbar . 82
Analyst Toolbar . 84
Text Editor Toolbar . 86
FSM Viewer Toolbar . 87
Tools Toolbar . 88

Keyboard Shortcuts . 90

Buttons and Options . 98

Chapter 3: HDL Analyst Tool

HDL Analyst Views and Commands . 102
Filtered and Unfiltered Schematic Views . 102
Accessing HDL Analyst Commands . 103

Schematic Objects and Their Display . 104
Object Information . 104
Sheet Connectors . 105
Primitive and Hierarchical Instances . 106
Transparent and Opaque Display of Hierarchical Instances 107

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 7

Hidden Hierarchical Instances . 108
Schematic Display . 109

Basic Operations on Schematic Objects . 113
Finding Schematic Objects . 113
Selecting and Unselecting Schematic Objects . 114
Crossprobing Objects . 115
Dragging and Dropping Objects . 117

Multiple-sheet Schematics . 118
Controlling the Amount of Logic on a Sheet . 118
Navigating Among Schematic Sheets . 118
Multiple Sheets for Transparent Instance Details . 120

Exploring Design Hierarchy . 121
Pushing and Popping Hierarchical Levels . 121
Navigating With a Hierarchy Browser . 124
Looking Inside Hierarchical Instances . 126

Filtering and Flattening Schematics . 128
Commands That Result in Filtered Schematics . 128
Combined Filtering Operations . 129
Returning to The Unfiltered Schematic . 129
Commands That Flatten Schematics . 130
Selective Flattening . 131
Filtering Compared to Flattening . 132

Timing Information and Critical Paths . 134
Timing Reports . 134
Critical Paths and the Slack Margin Parameter . 135
Examining Critical Path Schematics . 136

Chapter 4: Constraints

Constraint Types . 140

Constraint Files . 141

Timing Constraints . 143

FDC Constraints . 146

Methods for Creating Constraints . 147

Constraint Translation . 149
sdc2fdc Conversion . 149

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
8 May 2015

Constraint Checking . 154

Database Object Search . 156

Forward Annotation . 157

Auto Constraints . 157

Chapter 5: SCOPE Constraints Editor

SCOPE User Interface . 160

SCOPE Tabs . 161
Clocks . 161
Generated Clocks . 167
Collections . 169
Inputs/Outputs . 171
Registers . 174
Delay Paths . 176
Attributes . 178
I/O Standards . 179
Compile Points . 181
TCL View . 184

Industry I/O Standards . 186
Industry I/O Standards . 187

Delay Path Timing Exceptions . 190
Multicycle Paths . 190
False Paths . 193

Specifying From, To, and Through Points . 196
Timing Exceptions Object Types . 196
From/To Points . 196
Through Points . 198
Product of Sums Interface . 199
Clocks as From/To Points . 201

Conflict Resolution for Timing Exceptions . 203

SCOPE User Interface (Legacy) . 207

Chapter 6: Constraint Syntax

FPGA Timing Constraints . 210
create_clock . 212
create_generated_clock . 214
reset_path . 217

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 9

set_clock_groups . 219
set_clock_latency . 223
set_clock_route_delay . 225
set_clock_uncertainty . 226
set_false_path . 228
set_input_delay . 230
set_max_delay . 232
set_multicycle_path . 235
set_output_delay . 238
set_reg_input_delay . 241
set_reg_output_delay . 242
Naming Rule Syntax Commands . 242

Design Constraints . 245
define_compile_point . 246
define_current_design . 247
define_io_standard . 248

Chapter 7: Input and Result Files

Input Files . 250
HDL Source Files . 251

Libraries . 254
The Generic Technology Library . 255

Output Files . 256

Log File . 261

Timing Reports . 267
Timing Report Header . 268
Performance Summary . 268
Clock Relationships . 270
Interface Information . 271
Detailed Clock Report . 272
Asynchronous Clock Report . 274

Constraint Checking Report . 275

Chapter 8: Verilog Language Support

Support for Verilog Language Constructs . 284
Data Types . 285
Built-in Gate Primitives . 287
Port Definitions . 288
Statements . 288

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
10 May 2015

Blocks . 290
Compiler Directives . 291
Operators . 292
Procedural Assignments . 297

Verilog 2001 Support . 298
Combined Data, Port Types (ANSI C-style Modules) 299
Comma-separated Sensitivity List . 300
Wildcards (*) in Sensitivity List . 300
Signed Signals . 301
Inline Parameter Assignment by Name . 301
Constant Function . 302
Localparam . 302
Configuration Blocks . 303
Localparams . 312
$signed and $unsigned Built-in Functions . 312
$clog2 Constant Math Function . 312
Generate Statement . 314
Automatic Task Declaration . 315
Multidimensional Arrays . 316
Variable Partial Select . 317
Cross-Module Referencing . 318
ifndef and elsif Compiler Directives . 328

Verilog Synthesis Guidelines . 329
General Synthesis Guidelines . 329
Library Support in Verilog . 330
Constant Function Syntax Restrictions . 334
Multi-dimensional Array Syntax Restrictions . 334
Signed Multipliers in Verilog . 336
Verilog Language Guidelines: always Blocks . 337
Initial Values in Verilog . 338
Cross-language Parameter Passing in Mixed HDL . 341
Library Directory Specification for the Verilog Compiler 341

Verilog Module Template . 342

Scalable Modules . 343
Creating a Scalable Module . 343
Using Scalable Modules . 344
Using Hierarchical defparam . 346

Combinational Logic . 348
Combinational Logic Examples . 348
always Blocks for Combinational Logic . 349

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 11

Continuous Assignments for Combinational Logic . 351
Signed Multipliers . 352

Sequential Logic . 353
Sequential Logic Examples . 353
Flip-flops Using always Blocks . 354
Level-sensitive Latches . 355
Sets and Resets . 357
SRL Inference . 362

Verilog State Machines . 363
State Machine Guidelines . 363
State Values . 365
Asynchronous State Machines . 366

Instantiating Black Boxes in Verilog . 368

PREP Verilog Benchmarks . 369

Hierarchical or Structural Verilog Designs . 370
Using Hierarchical Verilog Designs . 370
Creating a Hierarchical Verilog Design . 370
synthesis Macro . 372
text Macro . 373

Verilog Attribute and Directive Syntax . 377
Attribute Examples Using Verilog 2001 Parenthetical Comments 379

Chapter 9: SystemVerilog Language Support

Feature Summary . 382
SystemVerilog Limitations . 385

Unsized Literals . 387

Data Types . 387
Typedefs . 388
Enumerated Types . 388
Struct Construct . 392
Union Construct . 394
Static Casting . 395

Arrays . 397
Arrays . 397
Arrays of Structures . 399
Array Querying Functions . 400

Data Declarations . 400

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
12 May 2015

Constants . 401
Variables . 401
Nets . 402
Data Types in Parameters . 403
Type Parameters . 403

Operators and Expressions . 407
Operators . 407
Aggregate Expressions . 408
Streaming Operator . 411
Set Membership Operator . 412
Set Membership Case Inside Operator . 412
Type Operator . 416
$typeof Operator . 418

Procedural Statements and Control Flow . 420
Do-While Loops . 420
For Loops . 421
Unnamed Blocks . 421
Block Name on end Keyword . 421
Unique and Priority Modifiers . 422

Processes . 423
always_comb . 424
always_latch . 426
always_ff . 427

Tasks and Functions . 428
Implicit Statement Group . 428
Formal Arguments . 428
endtask/endfunction Names . 431

Hierarchy . 432
Compilation Units . 432
Packages . 434
Port Connection Constructs . 436
Extern Module . 439

Interface . 440
Interface Construct . 440
Modports . 446
Limitations and Non-Supported Features . 447

System Tasks and System Functions . 448
$bits System Function . 448
Array Querying Functions . 449

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 13

Generate Statement . 450
Conditional Generate Constructs . 452

Assertions . 455
SVA System Functions . 456

Keyword Support . 459

Chapter 10: VHDL Language Support

Language Constructs . 462
Supported VHDL Language Constructs . 462
Unsupported VHDL Language Constructs . 463
Partially-supported VHDL Language Constructs . 464
Ignored VHDL Language Constructs . 464

VHDL Language Constructs . 464
Data Types . 465
Physical Types . 468
Arrays . 468
Declaring and Assigning Objects in VHDL . 469
Ranges . 470
Dynamic Range Assignments . 470
Null Ranges . 471
Signals and Ports . 472
Variables . 474
VHDL Constants . 475
Aliases . 475
Libraries and Packages . 475
Literals . 480
Operators . 482
Large Time Resolution . 484
VHDL Process . 486
Common Sequential Statements . 488
Concurrent Signal Assignments . 495
Resource Sharing . 497
Combinational Logic . 498
Sequential Logic . 498
Component Instantiation in VHDL . 498
VHDL Selected Name Support . 500
User-defined Function Support . 504
Demand Loading . 506

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
14 May 2015

VHDL Implicit Data-type Defaults . 507

VHDL Synthesis Guidelines . 512
General Synthesis Guidelines . 512
VHDL Language Guidelines . 513
Model Template . 514
Constraint Files for VHDL Designs . 515
Creating Flip-flops and Registers Using VHDL Processes 516
Clock Edges . 517
Defining an Event Outside a Process . 518
Using a WAIT Statement Inside a Process . 519
Level-sensitive Latches Using Concurrent Signal Assignments 520
Level-sensitive Latches Using VHDL Processes . 521
Signed mod Support for Constant Operands . 524

Sets and Resets . 526
Asynchronous Sets and Resets . 526
Synchronous Sets and Resets . 527

VHDL State Machines . 530
State Machine Guidelines . 530
Using Enumerated Types for State Values . 534
Simulation Tips When Using Enumerated Types . 535
Asynchronous State Machines in VHDL . 536

Hierarchical Design Creation in VHDL . 538

Configuration Specification and Declaration . 542
Configuration Specification . 542
Configuration Declaration . 546
VHDL Configuration Statement Enhancement . 552

Scalable Designs . 566
Creating a Scalable Design Using Unconstrained Vector Ports 566
Creating a Scalable Design Using VHDL Generics . 567
Using a Scalable Architecture with VHDL Generics . 568
Creating a Scalable Design Using Generate Statements 570

Instantiating Black Boxes in VHDL . 572
Black-Box Timing Constraints . 573

VHDL Attribute and Directive Syntax . 574

VHDL Synthesis Examples . 576
Combinational Logic Examples . 576
Sequential Logic Examples . 577

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 15

PREP VHDL Benchmarks . 578

Chapter 11: VHDL 2008 Language Support

Operators and Expressions . 580
Logical Reduction Operators . 580
Condition Operator . 581
Matching Relational Operators . 582
Bit-string Literals . 582
Array Aggregates . 583

Unconstrained Data Types . 585

Unconstrained Record Elements . 587

Predefined Functions . 588
Generic Types . 589

Packages . 590
New Packages . 591
Modified Packages . 591
Supported Package Functions . 591
Unsupported Packages/Functions . 592
Using the Packages . 592

Generics in Packages . 593

Context Declarations . 593

Case-generate Statements . 594

Matching case and select Statements . 596

Else/elsif Clauses . 597

Sequential Signal Assignments . 598
Using When-Else and With-Select Assignments . 598
Using Output Ports in a Sensitivity List . 599

Syntax Conventions . 599
All Keyword . 600
Comment Delimiters . 600
Extended Character Set . 600

Chapter 12: RAM and ROM Inference

Guidelines and Support for RAM Inference . 602

Block RAM Examples . 603
Block RAM Mode Examples . 603

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
16 May 2015

Single-Port Block RAM Examples . 607
Single-Port RAM with Read Address Registered Example 607
Single-Port RAM with RAM Output Registered Examples 608
Dual-Port Block RAM Examples . 609
True Dual-Port RAM Examples . 612

Initial Values for RAMs . 615
Example 1: RAM Initialization . 616
Example 2: Cross-Module Referencing for RAM Initialization 617
Initialization Data File . 618
Forward Annotation of Initial Values . 620

RAM Instantiation with SYNCORE . 620

ROM Inference . 621

Chapter 13: IP and Encryption Tools

SYNCore FIFO Compiler . 628
Synchronous FIFOs . 628
FIFO Read and Write Operations . 629
FIFO Ports . 631
FIFO Parameters . 633
FIFO Status Flags . 635
FIFO Programmable Flags . 638

SYNCore RAM Compiler . 645
Single-Port Memories . 645
Dual-Port Memories . 647
Read/Write Timing Sequences . 652

SYNCore Byte-Enable RAM Compiler . 655
Functional Overview . 655
Read/Write Timing Sequences . 656
Parameter List . 659

SYNCore ROM Compiler . 660
Functional Overview . 660
Single-Port Read Operation . 661
Dual-Port Read Operation . 662
Parameter List . 663
Clock Latency . 664

SYNCore Adder/Subtractor Compiler . 666
Functional Description . 666
Adder . 667
Subtractor . 670

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 17

Dynamic Adder/Subtractor . 673

SYNCore Counter Compiler . 678
Functional Overview . 678
UP Counter Operation . 679
Down Counter Operation . 679
Dynamic Counter Operation . 680

Encryption Scripts . 683
Encryption and Decryption Methodologies . 683
The encryptP1735 Script . 684
The encryptIP Script . 688

Chapter 14: Scripts

synhooks File Syntax . 694

Tcl Script Examples . 696
Using Target Technologies . 696
Different Clock Frequency Goals . 696
Setting Options and Timing Constraints . 697

Appendix A: Designing with Microsemi

Basic Support for Microsemi Designs . 702
Microsemi Device-specific Support . 702
Microsemi Features . 702
Synthesis Constraints and Attributes for Microsemi . 703

Microsemi Components . 705
Macros and Black Boxes in Microsemi Designs . 705
DSP Block Inference . 707
Microsemi RAM Implementations . 710
Instantiating RAMs with SYNCORE . 720

Output Files and Forward-annotation for Microsemi . 721
VM Flow Support . 721
Forward-annotating Constraints for Placement and Routing 722
Synthesis Reports . 723

Optimizations for Microsemi Designs . 724
The syn_maxfan Attribute in Microsemi Designs . 724
Promote Global Buffer Threshold . 725
I/O Insertion . 726
Number of Critical Paths . 726
Retiming . 727
Update Compile Point Timing Data Option . 727

LO

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
18 May 2015

Operating Condition Device Option . 729
Radiation-tolerant Applications . 731

Integration with Microsemi Tools and Flows . 733
Compile Point Synthesis . 733
Incremental Synthesis Flow . 734
Microsemi Place-and-Route Tools . 734

Microsemi Device Mapping Options . 735

Microsemi Tcl set_option Command Options . 737

Microsemi Attribute and Directive Summary . 740

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015

C H A P T E R 1

Product Overview

This document is part of a set that includes reference and procedural infor-
mation for the Synplify Pro® synthesis tool. The reference manual details the
synthesis tool user interface, commands, and features. The user guide
contains “how-to” information, emphasizing user tasks, procedures, design
flows, and results analysis.

The following provide an introduction to the synthesis tools.

• Synopsys FPGA and Prototyping Products, on page 20

• Overview of the Synthesis Tools, on page 24

• Starting the Synthesis Tool, on page 29

• Logic Synthesis Overview, on page 30

• Getting Help, on page 34

LO

 Product Overview Synopsys FPGA and Prototyping Products

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
20 May 2015

Synopsys FPGA and Prototyping Products

The following figure displays the Synopsys FPGA and Prototyping family of
products.

FPGA Implementation Tools

The Synplify Pro and Synplify Premier products are RTL synthesis tools
especially designed for FPGAs (field programmable gate arrays) and CPLDs
(complex programmable logic devices).

Synopsys FPGA and Prototyping Products Product Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 21

Synplify Pro Product

The Synplify Pro FPGA synthesis software is the de facto industry standard
for producing high-performance, cost-effective FPGA designs. Its unique
Behavior Extracting Synthesis Technology® (B.E.S.T.) algorithms, perform
high-level optimizations before synthesizing the RTL code into specific FPGA
logic. This approach allows for superior optimizations across the FPGA, fast
runtimes, and the ability to handle very large designs. The Synplify Pro
software supports the latest VHDL and Verilog language constructs including
SystemVerilog and VHDL 2008. The tool is technology independent allowing
quick and easy retargeting between FPGA devices and vendors from a single
design project.

Synplify Premier Product

The Synplify Premier solution is a superset of the Synplify Pro product
functionality and is the ultimate FPGA implementation and debug environ-
ment. It provides a comprehensive suite of tools and technologies for
advanced FPGA designers, as well as ASIC prototypers targeting single FPGA-
based prototypes. The Synplify Premier software is a technology independent
solution that addresses the most challenging aspects of FPGA design
including timing closure, logic verification, IP usage, ASIC compatibility, DSP
implementation, debug, and tight integration with FPGA vendor back-end
tools.

The Synplify Premier product offers FPGA designers and ASIC prototypers,
targeting single FPGA-based prototypes, with the most efficient method of
design implementation and debug. The Synplify Premier software provides in-
system verification of FPGAs, dramatically accelerates the debug process, and
provides a rapid and incremental method for finding elusive design problems.
Features exclusively supported in the Synplify Premier tool are the following:

• Fast and Enhanced Synthesis Modes

• Design Planning (Optional)

• DesignWare Support

• Integrated RTL Debug (Identify Tool Set)

• Power Switching Activity (SAIF Generation)

LO

 Product Overview Synopsys FPGA and Prototyping Products

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
22 May 2015

Identify Tool Set

The Identify® tool set allows you to instrument and debug an operating FPGA
directly in the source RTL code. The Identify software is used to verify your
design in hardware as you would in simulation, however much faster and
with in-system stimulus. Designers and verification engineers are able to
navigate the design graphically and instrument signals directly in RTL with
which they are familiar, as probes or sample triggers. After synthesis, results
are viewed embedded in the RTL source code or in a waveform. Design itera-
tions are rapidly performed using incremental place and route. Identify
software is closely integrated with synthesis and routing tools to create a
seamless development environment.

Synphony Model Compiler

Synphony Model Compiler is a language and model-based high-level
synthesis technology that provides an efficient path from algorithm concept
to silicon. Designers can construct high-level algorithm models from math
languages and IP model libraries, then use the Synphony Model Compiler
engine to synthesize optimized RTL implementations for FPGA and ASIC
architectural exploration and rapid prototyping. In addition, Synphony Model
Compiler generates high performance C-models for system validation and
early software development in virtual platforms. Key features for this product
include:

• MATLAB Language Synthesis

• Automated Fixed-point Conversion Tools

• Synthesizable Fixed-point High Level IP Model Library

• High Level Synthesis Optimizations and Transformations

• Integrated FPGA and ASIC Design Flows

• RTL Testbench Generation

• C-model Generation for Software Development and System Validation

Synopsys FPGA and Prototyping Products Product Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 23

Rapid Prototyping

The Certify® and Identify products are tightly integrated with the HAPS and
ChipIT® hardware tools.

Certify Product

The Certify software is the leading implementation and partitioning tool for
ASIC designers using FPGA-based prototypes to verify their designs. The tool
provides a quick and easy method for partitioning large ASIC designs into
multi-FPGA prototyping boards. Powerful features allow the tool to adapt
easily to existing device flows, therefore, speeding up the verification process
and helping with the time-to-market challenges. Key features include the
following:

• Graphical User Interface (GUI) Flow Guide

• Automatic/Manual Partitioning

• Synopsys Design Constraints Support for Timing Management

• Multi-core Parallel Processing Support for Faster Runtimes

• Support for Most Current FPGA Devices

• Industry Standard Synplify Premier Synthesis Support

• Compatible with HAPS-5x and HAPS-6x Boards Including HSTDM

LO

 Product Overview Overview of the Synthesis Tools

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
24 May 2015

Overview of the Synthesis Tools

This section introduces the technology, main features, and user interface of
the FPGA Synplify Pro synthesis tool. See the following for details:

• Common Features, on page 24

• BEST Algorithms, on page 25

• Graphic User Interface, on page 25

• Projects and Implementations, on page 28

Common Features

The Synopsys FPGA synthesis tools have the following built-in features:

• The HDL Analyst® RTL analysis and debugging environment, a graphical
tool for analysis and crossprobing. See RTL View, on page 59,
Technology View, on page 60, and Analyzing With the HDL Analyst Tool,
on page 255 in the User Guide.

• The Text Editor window, with a language-sensitive editor for writing and
editing HDL code. See Text Editor View, on page 66.

• The SCOPE® (Synthesis Constraint Optimization Environment®) tool,
which provides a spreadsheet-like interface for managing timing
constraints and design attributes. See SCOPE User Interface, on
page 160.

• FSM Compiler, a symbolic compiler that performs advanced finite state
machine (FSM) optimizations. See FSM Compiler, on page 73.

• Integration with the Identify RTL Debugger.

• FSM Explorer, which tries different state machine optimizations before
picking the best implementation. See FSM Explorer, on page 75.

• The FSM Viewer, for viewing state transitions in detail. See FSM Viewer
Window, on page 64.

• The Tcl window, a command line interface for running TCL scripts. See
Tcl Script Window, on page 54.

Overview of the Synthesis Tools Product Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 25

• The Timing Analyst window, which allows you to generate timing
schematics and reports for specified paths for point-to-point timing
analysis.

• Place-and-Route implementation(s) to automatically run placement and
routing after synthesis. You can run place-and-route from within the
tool or in batch mode. This feature is supported for the latest Microsemi
technologies (see Running P&R Automatically after Synthesis, on
page 504 in the User Guide).

• Other special windows, or views, for analyzing your design, including
the Watch Window and Message Viewer (see The Project View, on
page 36).

• Certain optimizations, like retiming is only available with this tool.

• Advanced analysis features like crossprobing and probe point insertion.

BEST Algorithms

The Behavior Extracting Synthesis Technology (BEST) feature is the under-
lying proprietary technology that the synthesis tools use to extract and imple-
ment your design structures.

During synthesis, the BEST algorithms recognize high-level abstract struc-
tures like RAMs, ROMs, finite state machines (FSMs), and arithmetic opera-
tors, and maintain them, instead of converting the design entirely to the gate
level. The BEST algorithms automatically map these high-level structures to
technology-specific resources using module generators. For example, the
algorithms map RAMs to target-specific RAMs, and adders to carry chains.
The BEST algorithms also optimize hierarchy automatically.

Graphic User Interface

The Synopsys FPGA family of products share a common graphical user inter-
face (GUI), in order to ensure a cohesive look and feel across the different
products. The following figures show the graphical user interfaces for the
Synplify Pro tool.

LO

 Product Overview Overview of the Synthesis Tools

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
26 May 2015

Implementation
Results view

StatusProject Tree
view

Project view
Menus

Toolbars

Buttons

Tabs to
access
main views

Tabs to access Tcl
Script and Messages Output Window Watch Window

Overview of the Synthesis Tools Product Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 27

The following table shows where you can find information about different
parts of the GUI, some of which are not shown in the above figure. For more
information, see the User Guide.

For information about ... See ...

Project window The Project View, on page 36

RTL view RTL View, on page 59

Technology view Technology View, on page 60

Text Editor view Text Editor View, on page 66

FSM Viewer window FSM Viewer Window, on page 64

Tcl window Tcl Script Window, on page 54

Watch Window Watch Window, on page 50

SCOPE spreadsheet SCOPE User Interface, on page 160

Other views and windows The Project View, on page 36

Menu commands
and their dialog boxes

Chapter 4, User Interface Commands

Toolbars Toolbars, on page 82

Buttons Buttons and Options, on page 98

Context-sensitive popup menus
and their dialog boxes

Chapter 5, GUI Popup Menu Commands

Online help Use the F1 keyboard shortcut or click the Help
button in a dialog box. See Help Menu, on
page 318, for more information.

LO

 Product Overview Overview of the Synthesis Tools

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
28 May 2015

Projects and Implementations

Projects and implementations are available for all synthesis tools.

Projects contain information about the synthesis run, including the names of
design files, constraint files (if used), and other options you have set. A project
file (prj) is in Tcl format. It points to all the files you need for synthesis and
contains the necessary optimization settings. In the Project view, a project
appears as a folder.

An implementation is one version (also called a revision) of a project, run with
certain parameter or option settings. You can synthesize again, with a
different set of options, to get a different implementation. In the Project view,
an implementation is shown in the folder of its project; the active implemen-
tation is highlighted. You can display multiple implementations in the same
Project view. The output files generated for the active implementation are
displayed in the Implementation Results view on the right.

A Place and Route implementation, located in the project implementation
hierarchy, is created automatically for supported technologies. To view the
P&R implementation, select the plus sign to expand the project implementa-
tion hierarchy. To add, remove, or set options, right-click on the P&R imple-
mentation. You can create multiple P&R implementations for each project
implementation. Select a P&R implementation to activate it.

Starting the Synthesis Tool Product Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 29

Starting the Synthesis Tool

Before you can start the synthesis tool, you must install it and set up the
software license appropriately. You can then start the tool interactively or in
batch mode. How you start the tool depends on your environment. For
details, see the installation instructions for the tool.

Starting the Synthesis Tool in Interactive Mode

You can start interactive use of the synthesis tool in any of the following
ways:

• To start the synthesis tool from the Microsoft® Windows® operating
system, choose

– Start->Programs->Synopsys->Synplify Pro version

• To start the tool from a DOS command line, specify the executable:

– installDirectory\bin\synplify_pro.exe

The executable name is the name of the product followed by an exe file
extension.

• To start the synthesis tool from a Linux platform, type the appropriate
command at the system prompt:

– synplify_pro

For information about using the synthesis tool in batch mode, see Starting
the Tool in Batch Mode, on page 29.

Starting the Tool in Batch Mode

The command to start the synthesis tool from the command line includes a
number of command line options. These options control tool action on
startup and, in many cases, can be combined on the same command line. To
start the synthesis tool, use the following syntax:

toolName [-option ...] [projectFile]

In the syntax statement, toolName can be any of the synthesis tools:

• synplify_pro

LO

 Product Overview Logic Synthesis Overview

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
30 May 2015

For complete syntax details, refer to synplify_pro, on page 85 in the
Command Reference.

Logic Synthesis Overview

When you run the synthesis tool, it performs logic synthesis. This consists of
two stages:

• Logic compilation (HDL language synthesis) and optimization

• Technology mapping

Logic Compilation

The synthesis tool first compiles input HDL source code, which describes the
design at a high level of abstraction, to known structural elements. Next, it
optimizes the design in two phases, making it as small as possible to
improving circuit performance. These optimizations are technology indepen-
dent. The final result is an srs database, which can be graphically represented
in the RTL schematic view.

HDL Design Entry

Placement and Routing

FPGA Configuration

Logic Synthesis

Logic Compilation and Optimization

Technology Mapping

Logic Synthesis Overview Product Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 31

The following figure summarizes the stages of the standard compiler flow:

You can also run the compiler incrementally.

Technology Mapping

During this stage, the tool optimizes the logic for the target technology, by
mapping it to technology-specific components. It uses architecture-specific
techniques to perform additional optimizations. Finally, it generates a design
netlist for placement and routing.

Synthesizing Your Design

The synthesis tool accepts high-level designs written in industry-standard
hardware description languages (Verilog and VHDL) and uses Behavior
Extracting Synthesis Technology® (BEST) algorithms to keep the design at
a high level of abstraction for better optimization. The tool can also write
VHDL and Verilog netlists after synthesis, which you can simulate to verify
functionality.

You perform the following actions to synthesize your design. For detailed
information, see the Tutorial.

LO

 Product Overview Logic Synthesis Overview

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
32 May 2015

1. Access your design project: open an existing project or create a new one.

2. Specify the input source files to use. Right-click the project name in the
Project view, then choose Add Source Files.

– Select the desired Verilog, VHDL, or IP files in formats such as EDIF,
then click OK. (See the examples in the directory
installation_dir/examples, where installation_dir is the directory where the
product is installed.)

– You can also add source files in the Project view by dragging and
dropping them there from a Windows® Explorer folder (Microsoft®
Windows® operating system only).

– Top-level file: The last file compiled is the top-level file. You can
designate a new top-level file by moving the desired file to the bottom
of the source files list in the Project view, or by using the Implementation
Options dialog box.

3. Add design constraints. Use the SCOPE spreadsheet to assign system-
level and circuit-path timing constraints that can be forward-annotated.

See SCOPE Tabs, on page 161, for details on the SCOPE spreadsheet.

4. Choose Project->Implementation Options, then define the following:

– Target architecture and technology specifications

– Optimization options and design constraints

– Outputs

For an initial run, use the default options settings for the technology,
and no timing goal (Frequency = 0 MHz).

5. Synthesize the design by clicking the Run button.

This step performs logic synthesis. While synthesizing, the synthesis
tool displays the status (Compiling... or Mapping...). You can monitor
messages by checking the log file (View->View Log File) or the Tcl window
(View->Tcl Window). The log file contains reports with information on
timing, usage, and net buffering.

If synthesis is successful, you see the message Done! or Done (warnings). If
processing stops because of syntax errors or other design problems, you
see the message Errors! displayed, along with the error status in the log
file and the Tcl window. If the tool displays Done (warnings), there might
be potential design problems to investigate.

Logic Synthesis Overview Product Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 33

6. After synthesis, do one of the following:

– If there were no synthesis warnings or error messages (Done!), analyze
your results in the RTL and Technology views. You can then
resynthesize with different implementation options, or use the
synthesis results to simulate or place-and-route your design.

– If there were synthesis warnings (Done (warnings)) or error messages
(Errors!), check them in the log file. From the log file, you can jump to
the corresponding source code or display information on the specific
error or warning. Correct all errors and any relevant warnings and
then rerun synthesis.

LO

 Product Overview Getting Help

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
34 May 2015

Getting Help

Before calling Synopsys SolvNet Support, look through the documentation for
information. You can access the information online from the Help menu, or
refer to the corresponding manual. The following table shows you how the
information is organized.

Finding Information

For help with ... Refer to the ...

How to... User Guide and various application notes available on the
Synplicity support website

Flow information User Guide and various application notes available on the
Synopsys SolvNet support website

FPGA Implementation
Tools

Synopsys Web Page (Web->FPGA Implementation Tools menu
command from within the software)

Synthesis features User Guide and Reference Manual

Language and syntax Reference Manual

Attributes and
directives

Attribute Reference Manual

Tcl language Online help (Help->Tcl Help)

Synthesis Tcl
commands

Command Reference Manual or type help followed by the
command name in the Tcl window

Using tool-specific
features and attributes

User Guide

Error and warning
messages

Click on the message ID code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 35

C H A P T E R 2

User Interface Overview

This chapter presents tools and technologies that are built into the Synopsys
FPGA synthesis software to enhance your productivity.

This chapter describes the following aspects of the graphical user interface
(GUI):

• The Project View, on page 36

• The Project Results View, on page 40

• Other Windows and Views, on page 49

• FSM Compiler, on page 73

• FSM Explorer, on page 75

• Using the Mouse, on page 75

• User Interface Preferences, on page 80

• Toolbars, on page 82

• Keyboard Shortcuts, on page 90

• Buttons and Options, on page 98

LO

 User Interface Overview The Project View

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
36 May 2015

The Project View

The Project View is the main interface to the tool. The Project view consists of
a Project Management View on the left and a Project Results View on the
right. See Multiple Pane Project View, on page 36 for an overview.

Multiple Pane Project View

The Project Management view is on the left side of the window, and is used to
create or open projects, create new implementations, set device options, and
initiate design synthesis. You can use it to manage and synthesize hierar-
chical designs. The Project Results view is on the right.

The following figure shows the main parts of the interface. Additional details
about the project view are described here:

• Project Management View, on page 38

• The Project Results View

Project Management view Projet Results view
Buttons

User
Options

The Project View User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 37

The Project view has the following main parts:

Project View Interface Description

Status Displays the tool name or the current status of the
synthesis job that is running. Clicking in this area
displays additional information about the current job.

Buttons and options Allow immediate access to some of the more common
commands. See Buttons and Options, on page 98 for
details.

Hierarchical Project
Management view

Lists the projects and implementations, and their
associated HDL source files and constraint files. There are
two tabs with different views to facilitate working with
hierarchical designs; Project Files tab and Design Hierarchy
tab.

Implementation
Results view

Lists the result of the synthesis runs for the
implementations of your design. You can only view one set
of implementation results at a time. Click an
implementation in the Project view to make it active and
view its result files.
The Project Results view includes the following:
• Project Status Tab—provides an overview of the project

settings and at-a-glance summary of synthesis
messages and reports.

• Implementation Directory—lists the names and types of
the result files, and the dates they were last modified.

• Process View—gives you instant visibility to the
synthesis and place-and-route job flows.

See The Project Results View, on page 40 for more
information.

LO

 User Interface Overview The Project View

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
38 May 2015

The Project view has the following main parts:

To customize the Project view display, use the Options->Project View Options
command (Project View Options Command, on page 295).

Project Management View

The Project Management view is on the left side of the window, and is used to
create or open projects, create new implementations, set device options, and
initiate design synthesis. The graphical user interface (GUI) lets you manage
hierarchical designs that can be synthesized independently and imported
back to the top-level project in a team design flow. The following figure shows
the Project view as it appears in the interface.

Project View Interface Description

Status Displays the current status of the synthesis job that is
running. Clicking in this area displays additional
information about the current job (see Job Status
Command, on page 226).

Buttons and options Allow immediate access to some of the more common
commands. See Buttons and Options, on page 98 for
details.

Project Management
view

Lists the projects and implementations, and their
associated HDL source files and constraint files. See
Projects and Implementations, on page 28 for details.

Implementation
Results view

Lists the result of the synthesis runs for the
implementations of your design.

Project Management Views Project Results View

The Project View User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 39

The tool provides hierarchical management support for large designs. The
tool lets you manage hierarchical projects in a team design flow, where you
have independent hierarchical subprojects. The Project view contains two
tabs with different views of the design that help you manage hierarchical
projects:

• Project Files Tab

• Design Hierarchy Tab

However, the Hierarchical Project Management flow is not supported for
Microsemi designs.

LO

 User Interface Overview The Project Results View

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
40 May 2015

The Project Results View

The Project Results view appears on the right side of the Project view and
contains the results of the synthesis runs for the implementations of your
design. The Project Results view includes the following:

• Project Status Tab

• Implementation Directory

• Process View

Project Status Tab

The Project Status view provides an overview of the project settings and
at-a-glance summary of synthesis messages and reports such as an area or
optimization summary for the active implementation. You can track the
status and settings for your design and easily navigate to reports and
messages in the Project view.

To display this window, click on the Project Status tab in the Project view. An
overview for the project is displayed in a spreadsheet format for each of the
following sections:

• Project Settings

• Run Status

• Reports

For details about how to access synthesis results, see Accessing Specific
Reports Quickly, on page 187.

The Project Results View User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 41

You can expand or collapse each section of the Project Status view by clicking
on the + or - icon in the upper left-corner of each section.

LO

 User Interface Overview The Project Results View

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
42 May 2015

Project Settings

Project Settings is populated with the project settings from the run_options.txt file
after a synthesis run. This section displays information, like the following:

• Project name, top-level module, and implementation name

• Project options currently specified, such as Retiming, Resource Sharing,
Fanout Guide, and Disable I/O Insertion.

Run Status

The Run Status table gets updated during and after a synthesis run. This
section displays job status information for the compiler, premap job, mapper,
and place-and-route runs, as needed. This section displays information
about the synthesis run:

• Job name - Jobs include Compiler Input, Premap, and Map & Optimize. The job
might have a Detailed Report link. When you click on this link, it takes you
to the corresponding report in the log file.

The Project Results View User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 43

• Status - Reports whether the job is running or completed.

• Notes, Warnings, and Errors – These columns are headed by the respective
icons and display the number of messages. The messages themselves
are displayed in the Messages tab, beside the TCL Script tab. Links are
available to the error message and the log location.

The message numbers may not match for designs with compile points.
The numbers reflect the top-level design.

• Real and CPU times, peak memory, and a timestamp

Reports

The mapper summary table generates various reports such as an Area
Summary, Compile Point Summary, Optimization Summary, and High
Reliability Summary. Click the Detailed Report link when applicable, to go to
the log file and information about the selected report. These reports are
written to the synlog folder for the active implementation.

Area Summary
For example, the Area Summary contains a resource usage count for compo-
nents such as registers, LUTs, and I/O ports in the design. Click the Detailed
report link to display the usage count information in the design for this report.

LO

 User Interface Overview The Project Results View

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
44 May 2015

Implementation Directory

An implementation is one version of a project, run with certain parameter or
option settings. You can synthesize again, with a different set of options, to
get a different implementation. In the Project view, an implementation is
shown in the folder of its project; the active implementation is highlighted.
You can display multiple implementations in the same Project view. The
output files generated for the active implementation are displayed in the
Implementation Directory.

The Project Results View User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 45

LO

 User Interface Overview The Project Results View

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
46 May 2015

Process View

As process flow jobs become more complex, the benefits of exposing the
underlying job flow is extremely valuable. The Process View gives you this
visibility to track the design progress for the synthesis and place-and-route
job flows.

Click the Process View tab on the right side of the Project Results view. This
displays the job flow hierarchy run on the active implementation and is a
function of this current implementation and its project settings.

The Project Results View User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 47

Process View Displays and Controls

The Process View shows the current state of a job and allows you to control
the run. You can see various aspects of the synthesis process flow, such as
logical synthesis, premap, map, and placement. If you run place and route,
you can see its job processes as well.

Appropriate jobs of the process flow contains the following information:

• Job Input and Output Files

• Completion State

Displays if the job generated an error, warning, or was canceled.

• Job State

– Out-of-date – Job needs to be run.

– Running – Job is active.

– Complete – Job has completed and is up-to-date.

– Complete * – Job is up-to-date, so the job is skipped.

• Run/File Time – Job process flow runtime in real time or file creation
date timestamp.

• Job TCL Command – Job process name.

Each job has the following control commands that allows you to run jobs at
any stage of the design process, for example map. Right-click on any job icon
and select one of the following commands from the popup menu:

• Cancel jobProcess that is running

• Disable jobProcess that you do not want to run

• Run this jobProcess only

• Run to this jobProcess from the beginning of run

• Run from this jobProcess to the end of run

LO

 User Interface Overview The Project Results View

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
48 May 2015

Hierarchical Job Flows

A hierarchical job flow runs two or more subordinate jobs. Primitive jobs
launch an executable, but have no subordinate jobs. The Logical Synthesis
flow is a hierarchical job that runs the Compile and Map flows.

The state of a hierarchical job depends on the state of its subordinate jobs.

• If a subordinate job is out-of-date, then its parent job is out-of-date.

• If a subordinate job has an error, then its parent job terminates with
this error.

• If a subordinate job has been canceled, then its parent job is canceled as
well.

• If a subordinate job is running, then its parent job is also running.

The Process View is a hierarchical tree view. To collapse or expand the main
hierarchical tree, enable or disable the Show Hierarchy option. Use the plus or
minus icon to expand or collapse each process flow to show the details of the
jobs. The icons below are used to show the information for the state of each
process:

• Red arrow () – Job is out-of-date and needs to be rerun.

• Green arrow () – Job is up-to-date.

• Red Circle with! () - Job encountered an error.

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 49

Other Windows and Views

Besides the Project view, the Synopsys FPGA synthesis tools provide other
windows and views that help you manage input and output files, direct the
synthesis process, and analyze your design and its results. The following
windows and views are described here:

• Dockable GUI Entities, on page 50

• Watch Window, on page 50

• Tcl Script and Messages Windows, on page 53

• Tcl Script Window, on page 54

• Message Viewer, on page 54

• Output Windows (Tcl Script and Watch Windows), on page 58

• RTL View, on page 59

• Technology View, on page 60

• Hierarchy Browser, on page 62

• FSM Viewer Window, on page 64

• Text Editor View, on page 66

• Context Help Editor Window, on page 68

• Interactive Attribute Examples, on page 70

• Search SolvNet, on page 72

See the following for descriptions of other views and windows that are not
covered here:

Project view The Project View, on page 36

SCOPE SCOPE Tabs, on page 161

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
50 May 2015

Dockable GUI Entities

Some of the main GUI entities can appear as either independent windows or
docked elements of the main application window. These entities include the
menu bar, Watch window, Tcl window, and various toolbars (see the descrip-
tion of each entity for details). Docked elements function effectively as panes
of the application window; you can drag the border between two such panes
to adjust their relative areas.

Watch Window

The Watch window displays selected information from the log file (see Log
File, on page 261) as a spreadsheet of parameters that you select to monitor.
The values are updated when synthesis finishes.

Watch Window Display

Display of the Watch window is controlled by the View ->Watch Window
command. By default, the Watch window is below the Project view in the
lower right corner of the main application window.

To access the Watch window configuration menu, right-click in any cell.
Select Configure Watch to display the Log Watch Configuration dialog box.

In the Watch window, indicate which implementations to watch under Watch
Selection. The selected implementation(s) will display in the Watch window.

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 51

You can move the Watch window anywhere on the screen; you can make it
float in its own window (named Watch Window) or dock it at a docking area (an
edge) of the application window. Double-click in the banner to toggle between
docked and floating.

The Watch window has a special positioning popup menu that you access by
right-clicking the window border. The following commands are in the menu:

Right-clicking the window title bar when the Watch window is floating
displays an alternative popup menu with commands Hide and Move; Move lets
you position the window using either the arrow keys or the mouse.

Using the Watch Window

You can view and compare the results of multiple implementations in the
Watch window.

Command Description

Allow Docking A toggle: when enabled, the window can be docked.

Hide Hides the window; use View ->Watch Window to show it again.

Float in Main Window A toggle: when enabled, the window is floated (undocked).

Watch WindowLog Parameters

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
52 May 2015

To choose log parameters from a pull-down menu, click in the Log Parameter
section of the window. Click the pull-down arrow that appears to display the
parameter list choices:

The Watch window creates an entry for each implementation of a project:

To choose the implementations to watch, use the Log Watch Configuration dialog
box. To display this box, right-click in the Watch window, then choose
Configure Watch in the popup menu. Enable Watch Selected Implementations, then
choose the implementations you want to watch in the list Selected Implementa-
tions to watch. The other buttons let you watch only the active implementation
or all implementations.

Click pull-down arrow

to

display list of choices

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 53

Tcl Script and Messages Windows

The Tcl window has tabs for the Tcl Script and Messages windows. By default,
the Tcl windows are located below the Project Tree view in the lower left corner
of the main application window.

You can float the Tcl windows by clicking on a window edge while holding the
Ctrl or Shift key. You can then drag the window to float it anywhere on the
screen or dock it at an edge of the application window. Double-click in the
banner to toggle between docked and floating.

Tcl Script panel to display and

Messages panel displays errors,
warnings, and notes

input Tcl commands

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
54 May 2015

Right-clicking the Tcl windows title bar when the window is floating displays a
popup menu with commands Hide and Move. Hide removes the window (use
View ->Tcl Window to redisplay the window). Move lets you position the window
using either the arrow keys or the mouse.

For more information about the Tcl windows, see Tcl Script Window, on
page 54 and Message Viewer, on page 54.

Tcl Script Window

The Tcl Script window is an interactive command shell that implements the
Tcl command-line interface. You can type or paste Tcl commands at the
prompt (“% ”). For a list of the available commands, type “help *” (without the
quotes) at the prompt. For general information about Tcl syntax, choose Help
->TCL.

The Tcl script window also displays each command executed in the course of
running the synthesis tool, regardless of whether it was initiated from a
menu, button, or keyboard shortcut. Right-clicking inside the Tcl window
displays a popup menu with the Copy, Paste, Hide, and Help commands.

See also

• Synthesis Commands, on page 88, for information about the Tcl
synthesis commands.

• Generating a Job Script, on page 475 in the User Guide.

Message Viewer

To display errors, warnings, and notes after running the synthesis tool, click
the Messages tab in the Tcl Window. A spreadsheet-style interactive interface
appears.

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 55

Interactive tasks in the Messages panel include:

• Drag the pane divider with the mouse to change the relative column size.

• Click on the ID entry to open online help for the error, warning, or note.

• Click on a Source Location entry to go to the section of code in the source
HDL file that is causing the message.

• Click on a Log Location entry to go to its location in the log file.

The following table describes the contents of the Messages panel. You can sort
the messages by clicking the column headers. For further sorting, use Find
and Filter. For details about using this window, see Checking Results in the
Message Viewer, on page 197 in the User Guide.

Item Description

Find Type into this field to find errors, warnings, or notes.

Filter Opens the Warning Filter dialog box. See Messages Filter, on
page 57.

Apply Filter Enable/disable the last saved filter.

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
56 May 2015

Group Common
ID’s

Enable/disable grouping of repeated messages. Groups are
indicated by a number next to the type icon. There are two types
of groups:
• The same warning or note ID appears in multiple source files

indicated by a dash in the source files column.
• Multiple warnings or notes in the same line of source code

indicated by a bracketed number.

Type The icons indicate the type of message:
 Error
Warning
Note
Advisory

A plus sign next to an icon indicates that repeated messages are
grouped together. Click the plus sign to expand and view the
various occurrences of the message.

ID This is the message ID. You can select an underlined ID to
launch help on the message.

Message The error, warning, or note message text.

Source Location The HDL source file that generated the error, warning, or note
message.

Log Location The location of the error, warning, or note message in the log
file.

Time The time that the error, warning, or note message was recorded
in the log file for the various stages of synthesis (for example:
compiler, premap, and map). If you rerun synthesis, only new
messages generate a new timestamp for this session.
Note: Once synthesis has run to completion, all the srr files for
the different stages of synthesis are merged into one unified srr
file. If you exit the GUI, these timestamps remain the same
when you re-open the same project in the GUI again.

Report Indicates which section of the Log File report the error appears,
for example Compiler or Mapper.

Item Description

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 57

Messages Filter

You filter which errors, warnings, and notes appear in the Messages panel of
the Tcl Window using match criteria for each field. The selections are combined
to produce the result. You can elect to hide or show the warnings that match
the criteria you set. See Checking Results in the Message Viewer, on
page 197 in the User Guide.

The following is a filtering example.

Item Description

Hide Filter Matches Hides matched criteria in the Messages Panel.

Show Filter Matches Shows matched criteria in the Messages Panel.

Syntax Help Gives quick syntax descriptions.

Apply Applies the filter criteria to the Messages Panel report,
without closing the window.

Type, ID, Message,
Source Location, Log
Location, Time, Report

Log file report criteria to use when filtering.

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
58 May 2015

Output Windows (Tcl Script and Watch Windows)

The Output windows are the Tcl Script and Log Watch windows. To display or
hide them, use View->Output Windows from the main menu. Refer to Watch
Window, on page 50 and Tcl Script and Messages Windows, on page 53 for
more information.

Hide Filter
Matches

Show Filter
Matches

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 59

RTL View

The RTL view provides a high-level, technology-independent, graphic repre-
sentation of your design after compilation, using technology-independent
components like variable-width adders, registers, large multiplexers, and
state machines. RTL views correspond to the srs netlist files generated during
compilation. RTL views are only available after your design has been success-
fully compiled. For information about the other HDL Analyst view (the
Technology view generated after mapping), see Technology View, on page 60.

To display an RTL view, first compile or synthesize your design, then select
HDL Analyst->RTL and choose Hierarchical View or Flattened View, or click the
RTL icon ().

An RTL view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 62. Your design is drawn as a set of
schematics. The schematic for a design module (or the top level) consists of
one or more sheets, only one of which is visible in a given view at any time.
The title bar of the window indicates the current hierarchical schematic level,
the current sheet, and the total number of sheets for that level.

Hierarchy Browser Schematic

Sheet # of total # Current schematic level Movable pane divider

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
60 May 2015

The design in the RTL schematic can be hierarchical or flattened. Further, the
view can consist of the entire design or part of it. Different commands apply,
depending on the kind of RTL view.

The following table lists where to find further information about the RTL view:

Technology View

A Technology view provides a low-level, technology-specific view of your
design after mapping, using components such as look-up tables, cascade and
carry chains, multiplexers, and flip-flops. Technology views are only available
after your design has been synthesized (compiled and mapped). For informa-
tion about the other HDL Analyst view (the RTL view generated after compila-
tion), see RTL View, on page 59.

To display a Technology view, first synthesize your design, and then either
select a view from the HDL Analyst->Technology menu (Hierarchical View, Flattened
View, Flattened to Gates View, Hierarchical Critical Path, or Flattened Critical Path) or
select the Technology view icon ().

For information about ... See ...

Hierarchy Browser Hierarchy Browser, on page 62

Procedures for RTL view
operations like
crossprobing, searching,
pushing/popping,
filtering, flattening, etc.

Working in the Schematic Views, on page 212 of the
User Guide.

Explanations or
descriptions of features
like object display,
filtering, flattening, etc.

HDL Analyst Tool, on page 101

Commands for RTL view
operations like filtering,
flattening, etc.

Accessing HDL Analyst Commands, on page 103
HDL Analyst Menu, on page 279

Viewing commands like
zooming, panning, etc.

View Menu: RTL and Technology Views Commands, on
page 173

History commands: Back
and Forward

View Menu: RTL and Technology Views Commands, on
page 173

Search command Find Command (HDL Analyst), on page 164

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 61

A Technology view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 62. Your design is drawn as a set of
schematics at different design levels. The schematic for a design module (or
the top level) consists of one or more sheets, only one of which is visible in a
given view at any time. The title bar of the window indicates the current
schematic level, the current sheet, and the total number of sheets for that
level.

The schematic design can be hierarchical or flattened. Further, the view can
consist of the entire design or a part of it. Different commands apply,
depending on the kind of view. In addition to all the features available in RTL
views, Technology views have two additional features: critical path filtering
and flattening to gates.

The following table lists where to find further information about the
Technology view:

Hierarchy Browser Schematic

Sheet # of total # Current schematic level Movable pane divider

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
62 May 2015

Hierarchy Browser

The Hierarchy Browser is the left pane in the RTL and Technology views. (See
RTL View, on page 59 and Technology View, on page 60.) The Hierarchy
Browser categorizes the design objects in a series of trees, and lets you
browse the design hierarchy or select objects. Selecting an object in the
Browser selects that object in the schematic. The objects are organized as
shown in the following table, with a symbol that indicates the object type. See
Hierarchy Browser Symbols, on page 63 for common symbols.

For information about ... See ...

Hierarchy Browser Hierarchy Browser, on page 62

Procedures for
Technology view
operations like
crossprobing, searching,
pushing/popping,
filtering, flattening, etc.

Working in the Schematic Views, on page 212 of the
User Guide

Explanations or
descriptions of features
like object display,
filtering, flattening, etc.

HDL Analyst Tool, on page 101

Commands for
Technology view
operations like filtering,
flattening, etc.

Accessing HDL Analyst Commands, on page 103
HDL Analyst Menu, on page 279

Viewing commands like
zooming, panning, etc.

View Menu: RTL and Technology Views Commands, on
page 173

History commands: Back
and Forward

View Menu: RTL and Technology Views Commands, on
page 173

Search command Find Command (HDL Analyst), on page 164

Instances Lists all the instances and primitives in the design. In a Technology
view, it includes all technology-specific primitives.

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 63

A tree node can be expanded or collapsed by clicking the associated icons:
the square plus () or minus () icons, respectively. You can also expand
or collapse all trees at the same time by right-clicking in the Hierarchy
Browser and choosing Expand All or Collapse All.

You can use the keyboard arrow keys (left, right, up, down) to move between
objects in the Hierarchy Browser, or you can use the scroll bar. Use the Shift
or Ctrl keys to select multiple objects. See Navigating With a Hierarchy
Browser, on page 124 for more information about using the Hierarchy
Browser for navigation and crossprobing.

Hierarchy Browser Symbols

Common symbols used in Hierarchy Browsers are listed in the following
table.

Ports Lists all the ports in the design.

Nets Lists all the nets in the design.

Clock Tree Lists all the instances and ports that drive clock pins in an RTL view. If
you select everything listed under Clock Tree and then use the Filter
Schematic command, you see a filtered view of all clock pin drivers in
your design. Registers are not shown in the resulting schematic,
unless they drive clocks. This view can help you determine what to
define as clocks.

Symbol Description Symbol Description

Folder Buffer

Input port AND gate

Output port NAND gate

Bidirectional port OR gate

Net NOR gate

Other primitive instance XOR gate

Hierarchical instance XNOR gate

Technology-specific primitive
or inferred ROM

Adder

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
64 May 2015

FSM Viewer Window

Pushing down into a state machine primitive in the RTL view displays the
FSM Viewer and enables the FSM toolbar. The FSM Viewer contains graphical
information about the finite state machines (FSMs) in your design. The
window has a state-transition diagram and tables of transitions and state
encodings.

For the FSM Viewer to display state machine names for a Verilog design, you
must use the Verilog parameter keyword. If you specify state machine names
using the define keyword, the FSM Viewer displays the binary values for the
state machines, rather than their names.

Register
or inferred state machine

Multiplier

Multiplexer Equal comparator

Tristate Less-than comparator

Inverter Less-than-or-equal comparator

Symbol Description Symbol Description

State-
Transition
Diagram

Transitions
and
Encodings
Tables

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 65

You can toggle display of the FSM tables on and off with the Toggle FSM Table
icon () on the FSM toolbar. The FSM tables are in the following panels:

• The Transitions panel describes, for each transition, the From State, To State,
and Condition of transition.

• The RTL Encodings panel describes the correlation, in the RTL view,
between the states (State) and the outputs (Register) of the FSM cell.

• The Mapped Encodings panel describes the correlation, in the Technology
view, between the states (State) and their encodings into technology-
specific registers. The information in this panel is available only after the
design has been synthesized.

The following table describes FSM Viewer operations.

See also:

• Pushing and Popping Hierarchical Levels, on page 121, for information
on the operation of pushing into a state machine.

• FSM Viewer Toolbar, on page 87, for information on the FSM icons.

To accomplish this ... Do this ...

Open the FSM Viewer Run the FSM Compiler or the FSM Explorer. Use the
push/pop mode in the RTL view to push down into
the FSM and open the FSM Viewer window.

Hide/display the table Use the FSM icons.

Filter selected states and
their transitions

Select the states. Right-click and choose the filter
criteria from the popup, or use the FSM icons.

Display the encoding
properties of a state

Select a state. Right-click to display its encoding
properties (RTL or Mapped).

Display properties for the
state machine

Right-click the window, outside the state-transition
diagram. The property sheet shows the selected
encoding method, the number of states, and the total
number of transitions among states.

Crossprobe Double-click a register in an RTL or Technology view
to see the corresponding code. Select a state in the
FSM view to highlight the corresponding code or
register in other open views.

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
66 May 2015

• See Using the FSM Viewer, on page 272 of the User Guide for more infor-
mation on using the FSM viewer.

Text Editor View

The Text Editor view displays text files. These can be constraint files, source
code files, or other informational or report files. You can enter and edit text in
the window. You use this window to update source code and fix syntax or
synthesis errors. You can also use it to crossprobe the design. For informa-
tion about using the Text Editor, see Editing HDL Source Files with the Built-
in Text Editor, on page 34 in the User Guide.

Opening the Text Editor

To open the Text Editor to edit an existing file, do one of the following:

• Double-click a source code file (v or vhd) in the Project view.

• Choose File ->Open. In the dialog box displayed, double-click a file to
open it.

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 67

With the Microsoft® Windows® operating system, you can instead drag
and drop a source file from a Windows folder into the gray background
area of the GUI (not into any particular view).

To open the Text Editor on a new file, do one of the following:

• Choose File ->New, then specify the kind of text file you want to create.

• Click the HDL icon () to create and edit an HDL source file.

The Text Editor colors HDL source code keywords such as module and output
blue and comments green.

Text Editor Features

The Text Editor has the features listed in the following table.

Feature Description

Color coding Keywords are blue, comments green, and strings red. All
other text is black.

Editing text You can use the Edit menu or keyboard shortcuts for
basic editing operations like Cut, Copy, Paste, Find, Replace,
and Goto.

Completing keywords To complete a keyword, type enough characters to make
the string unique and then press the Esc key.

Indenting a block of text The Tab key indents a selected block of text to the right.
Shift-Tab indents text to the left.

Inserting a bookmark Click the line you want to bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon
() on the Edit toolbar.
The line number is highlighted to indicate that there is a
bookmark at the beginning of the line.

Deleting a bookmark Click the line with the bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon
() on the Edit toolbar.

Deleting all bookmarks Choose Edit ->Delete all Bookmarks, type Ctrl-Shift-F2, or click
the Clear All Bookmarks icon () on the Edit toolbar.

Editing columns Press and hold Alt, then drag the mouse down a column of
text to select it.

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
68 May 2015

See also:

• Editor Options Command, on page 300, for information on setting Text
Editor preferences.

• File Menu, on page 154, for information on printing setup operations.

• Edit Menu Commands for the Text Editor, on page 160, for information
on Text Editor editing commands.

• Text Editor Popup Menu, on page 323, for information on the Text
Editor popup menu.

• Text Editor Toolbar, on page 86, for information on bookmark icons of
the Edit toolbar.

• Keyboard Shortcuts, on page 90, for information on keyboard shortcuts
that can be used in the Text Editor.

Context Help Editor Window

Use the Context Help button to copy Verilog, SystemVerilog, or VHDL
constructs into your source file or Tcl constraint commands into your Tcl file.
When you load a Verilog/SystemVerilog/VHDL file or Tcl file into the UI, the
Context Help button displays at the bottom of the window. Click on this button
to display the Context Help Editor.

Commenting out code Choose Edit ->Advanced ->Comment Code. The rest of the
current line is commented out: the appropriate comment
prefix is inserted at the current text cursor position.

Checking syntax Use Run ->Syntax Check to highlight syntax errors, such as
incorrect keywords and punctuation, in source code. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

Checking synthesis Use Run ->Synthesis Check to highlight hardware-related
errors in source code, like incorrectly coded flip-flops. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

Feature Description

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 69

When you select a construct in the left-side of the window, the online help
description for the construct is displayed. If the selected construct has this
feature enabled, the online help topic is displayed on the top of the window
and a generic code or command template for that construct is displayed at
the bottom. The Insert Template button is also enabled. When you click the
Insert Template button, the code or command shown in the template window is
inserted into your file at the location of the cursor. This allows you to easily
insert the code or constraint command and modify it for the design that you
are going to synthesize. If you want to copy only parts of the template, select
the code or constraint command you want to insert and click Copy. You can
then paste it into your file.

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
70 May 2015

Interactive Attribute Examples

The Interactive Attribute Examples wizard lets you select pre-defined attri-
butes to run in a project. To use this tool:

1. Click Help. Then click on Interactive Attribute Examples and the Launch
Interactive Attributes Wizard links.

Field/Option Description

Top Takes you to the top of the context help page for the selected
construct.

Back Takes you back to the last context help page previously
viewed.

Forward Once you have gone back to a context help page, use Forward
to return to the original context help page from where you
started.

Online Help Brings up the interactive online help for the synthesis tool.

Copy Allows you to copy selected code from the Template file and
paste it into the editor file.

Insert Template Automatically copies the code description in its entirety from
the Template file to the editor file.

Other Windows and Views User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 71

2. Double-click on an attribute to start the wizard.

3. Specify the Working Directory location to write your project.

4. Click Generate to generate a project for your attribute.

A project will be created with an implementation for each attribute value
selected.

5. Click Generate Run to run synthesis for all the implementations. When
synthesis completes:

– The Technology view opens to show how the selected attribute
impacts synthesis.

– You can compare resource utilization and timing information
between implementations in the Log Watch window.

Double-click on attribute to bring up the Interactive Attribute wizard

LO

 User Interface Overview Other Windows and Views

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
72 May 2015

Search SolvNet

The Synopsys FPGA synthesis tools provide an easy way to access SolvNet
from within the Project view. Click on the Search SolvNet button in the GUI,
then a Search SolvNet dialog box appears.

You can search the SolvNet database for Articles and Application Notes using
the following methods:

• Specify a topic in the Search application notes and articles field, then click the
Go button—takes you to Application Notes and Articles on SolvNet
related to the topic.

• Click on the Browse all application notes link—takes you to a SolvNet page
that links to all the Synopsys FPGA products Application Notes.

• Click on the Browse all articles link—takes you to the Browse Articles by
Product SolvNet page.

• Click on the Go to tutorial link—takes you to the tutorial page for the
Synopsys FPGA product you are using (same as Help->Tutorial).

Click

FSM Compiler User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 73

FSM Compiler

The FSM Compiler performs proprietary, state-machine optimization
techniques (other synthesis tools treat state machines as regular logic). You
enable the FSM compiler to take advantage of these techniques; you do not
need special directives or attributes to locate the state machines in your
design. You can also, however, enable the FSM compiler selectively for
individual state machines, using synthesis directives in the HDL description.

The FSM compiler examines your design for state machines. It looks for regis-
ters with feedback that is controlled by the current value of the register, such
as case or if-then-else statements that test the current value of a state register.
It converts state machines to a symbolic form that provides a better starting
point for logic optimization. Several proprietary optimizations are performed
on each symbolic state machine.

Converting from an encoded state machine to a one-hot state machine often
produces better results. However, one-hot implementations are not always
the best choice for FPGAs or, with the synthesis tools for CPLDs. For
example, one-hot state machines might result in higher speeds in CPLDs, but
cause fitting problems because of the larger number of global signals. An
example where the one-hot implementation can be detrimental in an FPGA is
a state machine that drives a large decoder, generating many output signals.
For example, in a 16-state state machine the output decoder logic might
reference eight signals in a one-hot implementation, but only four signals in
an encoded representation.

During synthesis, a state encoding for an FSM is determined based on certain
predefined characteristics of the state machine. The optional FSM Explorer
feature enhances this capability by automatically determining and using the
best encoding styles for the state machines based on the design constraints
and the area/delay requirements. You can force the use of a particular
encoding style for a state machine by including the appropriate directive in
the HDL description.

The log file contains a description of each state machine extracted, including
a list of the reachable states and the state encoding method used.

LO

 User Interface Overview FSM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
74 May 2015

When to Use FSM Compiler

Use the symbolic FSM compiler to generate better results for state machines
or to debug state machines. If you do not want to use the symbolic FSM
compiler on the final circuit, you can use it only during initial synthesis to
check that the state machines are described correctly. Many common state
machine description errors result in unreachable states, which are optimized
away during synthesis, resulting in a smaller number of states than you
expect. Reachable states are reported in the log file.

To view a textual description of a state machine in terms of inputs, states,
and transitions, select the state machine in the RTL view, right-click, then
choose View FSM Info File in the popup menu. You can view the same informa-
tion graphically with the FSM viewer. The graphical description of a state
machine makes it easier to verify behavior. For information on the FSM
Viewer, see FSM Viewer Window, on page 64.

See also:

• Log File, on page 261, for information on the log file.

• RTL and Technology Views Popup Menus, on page 347, for information
on the command View FSM Info File.

Where to Use FSM Compiler (Global and Local Use)

Enable the FSM Compiler check box in the Project view to turn on FSM
synthesis. This allows the tool to recognize, extract, and optimize the state
machines in the design.

The following table summarizes the operations you can perform. For more
information, see Deciding when to Optimize State Machines, on page 358 of
the User Guide.

To ... Do this ...

Globally enable (disable)
the FSM Compiler

Enable (disable) the FSM Compiler check box in the
Project view.

Enable (disable) the FSM
compiler for a specific
register

Disable (enable) the FSM Compiler check box and set
the Verilog syn_state_machine directive to 1 (0), or the
VHDL syn_state_machine directive to true (false), for
that instance of the state register.

FSM Explorer User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 75

FSM Explorer

The FSM Explorer automatically explores different encoding styles for state
machines and picks the style best suited to your design. The FSM explorer
runs the FSM viewer to identify the finite state machines in a design, then
analyzes the FSMs to select the optimum encoding style for each.

To enable the FSM Explorer, do one of the following:

• Turn on the FSM Explorer check box in the Project view

• Display the Implementation Options dialog box (Project ->Implementation
Options) and enable the FSM Explorer option on the Options/Constraints
panel.

The FSM Explorer runs during synthesis. The cost of running analysis is
significant, so when analysis finishes, the encoding information is saved to a
file. The synthesis tool reuses the file in subsequent synthesis iterations,
which reduces overhead and saves runtime by not reanalyzing the design
when you recompile. However, if you make changes to your design or your
state machine, you must rerun the FSM Explorer (Run ->FSM Explorer or the
F10 key) to reanalyze the encoding.

For more information about using the FSM Explorer, see Running the FSM
Explorer, on page 363 in the User Guide.

Using the Mouse

The mouse button operations in Synopsys FPGA products are standard; refer
to Mouse Operation Terminology for a summary of supported functions. The
Synopsys FPGA tools also provide support for:

• Using Mouse Strokes, on page 76

• Using the Mouse Buttons, on page 78

• Using the Mouse Wheel, on page 80

Mouse Operation Terminology

The following terminology is used to refer to mouse operations:

LO

 User Interface Overview Using the Mouse

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
76 May 2015

Using Mouse Strokes

Mouse strokes are used to quickly perform simple repetitive commands.
Mouse strokes are drawn by pressing and holding the right mouse button as
you draw the pattern. The stroke must be at least 16 pixels in width or height
to be recognized. You will see a green mouse trail as you draw the stroke (the
actual color depends on the window background color).

Some strokes are context sensitive. That is, the interpretation of the stroke
depends upon the window in which the stroke is started. For example, in an
Analyst view, the right stroke means “Next Sheet.” In a dialog box, the right
stroke means “OK.”

Term Meaning

Click Click with the left mouse button: press then release it without
moving the mouse.

Double-click Click the left mouse button twice rapidly, without moving the mouse.

Right-click Click with the right mouse button.

Drag Press the left mouse button, hold it down while moving the mouse,
then release it. Dragging an object moves the object to where the
mouse is released; then, releasing is sometimes called “dropping”.
Dragging initiated when the mouse is not over an object often traces
a selection rectangle, whose diagonal corners are at the press and
release positions.

Press Depress a mouse button; unless otherwise indicated, the left button
is implied. It is sometimes used as an abbreviation for “press
and hold”.

Hold Keep a mouse button depressed. It is sometimes used as an
abbreviation for “press and hold”.

Release Stop holding a mouse button depressed.

Using the Mouse User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 77

For information on each of the available mouse strokes, consult the Mouse
Stroke Tutor.

The strokes you draw are interpreted on a grid of one to three rows. Some
strokes are similar, differing only in the number of columns or rows, so it may
take a little practice to draw them correctly. For example, the strokes for Redo
and Back differ in that the Redo stroke is back and forth horizontally, within a
single-row grid, while the Back stroke involves vertical movement as well.

The Mouse Stroke Tutor

Do one of the following to access the Mouse Stroke Tutor:

• Help->Stroke Tutor

• Draw a question mark stroke ("?")

• Scribble (Show tutor when scribbling must be enabled on the Stroke Help
dialog box)

Operating System Mouse Button + Keyboard Key(s)

Microsoft® Windows® left mouse button with Alt keyboard key

Linux with UNIX-style keyboard left mouse button with Meta or diamond
keyboard key

Linux with PC-style keyboard left mouse button with both Ctrl and Alt
keyboard keys

Redo Last Operation Back to Previous View

LO

 User Interface Overview Using the Mouse

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
78 May 2015

The tutor displays the available strokes along with a description and a
diagram of the stroke. You can draw strokes while the tutor is displayed.

Mouse strokes are context sensitive. When viewing the Stroke Tutor, you can
choose All Strokes or Current Context to view just the strokes that apply to the
context of where you invoked the tutor. For example, if you draw the "?"
stroke in an Analyst window, the Current Context option in the tutor shows only
those strokes recognized in the Analyst window.

You can display the tutor while working in a window such as the Analyst RTL
view. However you cannot display the tutor while a modal dialog is displayed,
as input is restricted to the modal dialog.

Using the Mouse Buttons

The operations you can perform using mouse buttons include the following:

• You select an object by clicking it. You deselect a selected object by
clicking it. Selecting an object by clicking it deselects all previously
selected objects.

• You can select and deselect multiple objects by pressing and holding the
Control key (Ctrl) while clicking each of the objects.

Using the Mouse User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 79

• You can select a range of objects in a Hierarchy Browser, as follows:

– select the first object in the range

– scroll the tree of objects, if necessary, to display the last object in the
range

– press and hold the Shift key while clicking the last object in the range

Selecting a range of objects in a Hierarchy Browser crossprobes to the
corresponding schematic, where the same objects are automatically
selected.

• You can select all of the objects in a region by tracing a selection
rectangle around them (lassoing).

• You can select text by dragging the mouse over it. You can alternatively
select text containing no white space (such as spaces) by double-
clicking it.

• Double-clicking sometimes selects an object and immediately initiates a
default action associated with it. For example, double-clicking a source
file in the Project view opens the file in a Text Editor window.

• You can access a contextual popup menu by clicking the right mouse
button. The menu displayed is specific to the current context, including
the object or window under the mouse.

For example, right-clicking a project name in the Project view displays a
popup menu with operations appropriate to the project file. Right-
clicking a source (HDL) file in the Project view displays a popup menu
with operations applicable to source files.

Right-clicking a selectable object in an HDL Analyst schematic also
selects it, and deselects anything that was selected. The resulting popup
menu applies only to the selected object. See RTL View, on page 59, and
Technology View, on page 60, for information on HDL Analyst views.

Most of the mouse button operations involve selecting and deselecting
objects. To use the mouse in this way in an HDL Analyst schematic, the
mouse pointer must be the cross-hairs symbol: . If the cross-hairs pointer
is not displayed, right-click the schematic background to display it.

LO

 User Interface Overview User Interface Preferences

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
80 May 2015

Using the Mouse Wheel

If your mouse has a wheel and you are using a Microsoft Windows platform,
you can use the wheel to scroll and zoom, as follows:

• Whenever only a horizontal scroll bar is visible, rotating the wheel
scrolls the window horizontally.

• Whenever a vertical scroll bar is visible, rotating the wheel scrolls the
window vertically.

• Whenever both horizontal and vertical scroll bars are visible, rotating
the wheel while pressing and holding the Shift key scrolls the window
horizontally.

• In a window that can be zoomed, such as a graphics window, rotating
the wheel while pressing and holding the Ctrl key zooms the window.

User Interface Preferences

The following table lists the commands with which you can set preferences
and customize the user interface. For detailed procedures, see the User
Guide.

Preferences Description For option descriptions, see ...

Text Editor Fonts and colors Editor Options Command

HDL Analyst tool
(RTL/Technology views)

HDL Analyst options HDL Analyst Menu

Project view Organization and
display of project files

Project View Options
Command

User Interface Preferences User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 81

Managing Views

As you work on a project, you move between different views of the design. The
following guidelines can help you manage the different views you have open.

1. Enable the option View ->Workbook Mode.

Below the Project view are tabs, one for each open view. The icon accom-
panying the view name on a tab indicates the type of view. This example,
shows tabs for four views: the Project view, an RTL view, a Technology
view, and a Verilog Text Editor view.

2. To bring an open view to the front and make it the current (active) view,
click any visible part of the window, or click the tab of the view.

If you previously minimized the view, it will be activated but will remain
minimized. To display it, double-click the minimized view.

3. To activate the next view and bring it to the front, type Ctrl-F6. Repeating
this keyboard shortcut cycles through all open views. If the next view
was minimized it remains minimized, but it is brought to the front so
that you can restore it.

4. To close a view, type Ctrl-F4 in the view, or choose File ->Close.

5. You can rearrange open windows using the Window menu: you can
cascade them (stack them, slightly offset), or tile them horizontally or
vertically.

LO

 User Interface Overview Toolbars

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
82 May 2015

Toolbars

Toolbars provide a quick way to access common menu commands by clicking
their icons. The following standard toolbars are available:

• Project Toolbar — Project control and file manipulation.

• Analyst Toolbar — Manipulation of RTL and Technology views.

• Text Editor Toolbar — Text Editor bookmark commands.

• FSM Viewer Toolbar — Display of finite state machine (FSM) informa-
tion.

• Tools Toolbar — Opens supporting tools.

You can enable or disable the display of individual toolbars – see Toolbar
Command, on page 175.

By dragging a toolbar, you can move it anywhere on the screen: you can
make it float in its own window or dock it at a docking area (an edge) of the
application window. To move the menu bar to a docking area without docking
it there (that is, to leave it floating), press and hold the Ctrl or Shift key while
dragging it.

Right-clicking the window title bar when a toolbar is floating displays a popup
menu with commands Hide and Move. Hide removes the window. Move lets you
position the window using either the arrow keys or the mouse.

Project Toolbar

The Project toolbar provides the following icons, by default:

Open
Project

New
Constraint
File

Open Save
All

Copy Undo Find

New
HDL
File

New
Design
File

Save Cut Paste Redo

Toolbars User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 83

The following table describes the default Project icons. Each is equivalent to a
File or Edit menu command; for more information, see the following:

• File Menu, on page 154

• Edit Menu, on page 159

Icon Description

Open Project Displays the Open Project dialog box to create a
new project or to open an existing project.
Same as File ->Open Project.

 New HDL file Opens the Text Editor window with a new, empty
source file.
Same as File ->New, Verilog File or VHDL File.

New Constraint File (SCOPE) Opens the SCOPE spreadsheet with a new,
empty constraint file.
Same as File ->New, Constraint File (SCOPE).

Open Displays the Open dialog box, to open a file.
Same as File ->Open.

Save Saves the current file. If the file has not yet been
saved, this displays the Save As dialog box, where
you specify the filename. The kind of file depends
on the active view.
Same as File ->Save.

Save All Saves all files associated with the current design.
Same as File ->Save All.

Cut Cuts text or graphics from the active view,
making it available to Paste.
Same as Edit ->Cut.

Paste Pastes previously cut or copied text or graphics
to the active view.
Same as Edit ->Paste.

LO

 User Interface Overview Toolbars

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
84 May 2015

Analyst Toolbar

The Analyst toolbar becomes active after a design has been compiled. The
toolbar provides the following icons, by default:

The following table describes the default Analyst icons. Each is equivalent to
an HDL Analyst menu command – see HDL Analyst Menu, on page 279, for more
information.

Undo Undoes the last action taken.
Same as Edit ->Undo.

Redo Performs the action undone by Undo.
Same as Edit ->Redo.

Find Finds text in the Text Editor or objects in an RTL
view or Technology view.
Same as Edit ->Find.

Icon Description

RTL
View

Timing
Report

Critical
Paths

VCD
Control
Panel

Forward Zoom
In

Zoom
Full

Fit

Push In
Or
Pop Out

Next
Sheet

Technology
View

Filter on
Selected
Gates

Run
Timing
Report

Back Zoom
Normal

Zoom
Out

Zoom
To
Fit

Previous
Sheet

Enable
Selection
Tool

Toolbars User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 85

Icon Description

RTL View Opens a new, hierarchical RTL view: a register
transfer-level schematic of the compiled design,
together with the associated Hierarchy Browser.
Same as HDL Analyst ->RTL ->Hierarchical View.

Technology View Opens a new, hierarchical Technology view: a
technology-level schematic of the mapped
(synthesized) design, together with the associated
Hierarchy Browser.
Same as HDL Analyst ->Technology ->Hierarchical View.

 Timing Report View Not available for Microsemi designs.

Filter Schematic Filters your entire design to show only the selected
objects. The result is a filtered schematic.
Same as HDL Analyst ->Filter Schematic.

Show Critical Path Filters your design to show only the instances (and
their paths) whose slack times are within the slack
margin of the worst slack time of the design (see HDL
Analyst ->Set Slack Margin). The result is flat if the entire
design was already flat. Icon Show Critical Path also
enables HDL Analyst ->Show Timing Information.
Available only in a Technology view. Not available in a
Timing view.
Same as HDL Analyst ->Show Critical Path.

 Timing Analyst Generates and displays a custom timing report and
view. The timing report provides more information
than the default report (specific paths or more than
five paths) or one that provides timing based on
additional analysis constraint files. See Analysis
Menu, on page 267.
Only available for certain device technologies.
Same as Analysis ->Timing Analyst.

 VCD Panel Not available for Microsemi designs.

Back Goes backward in the history of displayed sheets of the
current HDL Analyst view.
Same as View ->Back.

LO

 User Interface Overview Toolbars

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
86 May 2015

Text Editor Toolbar

The Edit toolbar is active whenever the Text Editor is active. You use it to edit
bookmarks in the file. (Other editing operations are located on the Project
toolbar – see Project Toolbar, on page 82.) The Edit toolbar provides the
following icons, by default:

Forward Goes forward in the history of displayed sheets of the
current HDL Analyst view.
Same as View ->Forward.

Zoom 100% Zooms in at a 1:1 ratio and centers the active view
where you click. If the view is already normal size, it
re-centers the view at the new click location.
Same as View ->Normal View.a

Zoom In

Zoom Out

Zooms the view in or out. Buttons stay active until
deselected.
Same as View ->Zoom In or View ->Zoom Out.a

Zoom Full Zoom that reduces the active view to display the entire
design.
Same as View ->Full View.b

Zoom Selected When selected, zooms in on only the selected objects to
the full window size.

Push/Pop Hierarchy Toggles traversing the hierarchy using the push/pop
mode.
Same as View ->Push/Pop Hierarchy.

Previous Sheet Displays the previous sheet of a multiple-sheet
schematic.
Same as View ->Previous Sheet.

Next Sheet Displays the next sheet of a multiple-sheet schematic.
Same as View ->Previous Sheet.

Select Tool Switches from zoom to the selection tool.

a. Available only in the SCOPE spreadsheet, FSM Viewer, RTL views, and Technology views.
b. Available only in the FSM Viewer, RTL views, and Technology views.

Icon Description

Toolbars User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 87

The following table describes the default Edit icons. Each is available in the
Text Editor, and each is equivalent to an Edit menu command there – see Edit
Menu Commands for the Text Editor, on page 160, for more information.

FSM Viewer Toolbar

When you push down into a state machine primitive in an RTL view, the FSM
Viewer displays and enables the FSM toolbar. The FSM Viewer graphically
displays the states and transitions. It also lists them in table form. By default,
the FSM toolbar provides the following icons, providing access to common
FSM Viewer commands.

Icon Description

Toggle Bookmark Alternately inserts and removes a bookmark at the line
that contains the text cursor.
Same as Edit ->Toggle bookmark.

Next Bookmark Takes you to the next bookmark.
Same as Edit ->Next bookmark.

Previous Bookmark Takes you to the previous bookmark.
Same as Edit ->Previous bookmark.

Clear All Bookmarks Removes all bookmarks from the Text Editor window.
Same as Edit ->Delete all bookmarks.

Toggle Bookmark

Next Bookmark

Previous Bookmark

Clear All Bookmarks

Toggle FSM Table

Unfilter FSM

Filter by outputs

LO

 User Interface Overview Toolbars

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
88 May 2015

The following table describes the default FSM icons. Each is available in the
FSM viewer, and each is equivalent to a View menu command available there
– see View Menu, on page 172, for more information.

Tools Toolbar

The Tools Toolbar opens supporting tools.

Icon Description

Toggle FSM Table Toggles the display of state-and-transition tables.
Same as View->FSM Table.

Unfilter FSM Restores a filtered FSM diagram so that all the states and
transitions are showing.
Same as View->Unfilter.

Filter by outputs Hides all but the selected state(s), their output
transitions, and the destination states of those
transitions.
Same as View->Filter->By output transitions.

Icon Description

Constraint Check Checks the syntax and applicability of the
timing constraints in the constraint file for your
project and generates a report
(project_name_cck.rpt).
Same as Run->Constraint Check.

Launch Identify Instrumentor Launches the Synopsys Identify Instrumentor
product. For more information, see Working
with the Identify Tools, on page 506 of the
User Guide.

Launch Identify Debugger Launches the Synopsys Identify Debugger
product. For more information, see Working
with the Identify Tools, on page 506 of the
User Guide.

Toolbars User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 89

 Launch SYNCore Launches the SYNCore IP wizard. This tool
helps you build IP blocks such as memory
models for your design.
For more information, see Launch SYNCore
Command, on page 228.

 Launch SystemDesigner Not applicable for Microsemi technologies.

 VCS Simulator Configures and launches the VCS simulator.

Icon Description

LO

 User Interface Overview Keyboard Shortcuts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
90 May 2015

Keyboard Shortcuts

Keyboard shortcuts are key sequences that you type in order to run a
command. Menus list keyboard shortcuts next to the corresponding
commands.

For example, to check syntax, you can press and hold the Shift key while you
type the F7 key, instead of using the menu command Run ->Syntax Check.

The following table describes the keyboard shortcuts.

Keyboard Shortcuts User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 91

Keyboard
Shortcut

Description

b In an RTL or Technology view, shows all logic between two or
more selected objects (instances, pins, ports). The result is a
filtered schematic. Limited to the current schematic.
Same as HDL Analyst ->Current Level ->Expand Paths (see HDL
Analyst Menu: Filtering and Flattening Commands, on
page 282).

Ctrl-++
(number pad)

In the FSM Viewer, hides all but the selected state(s), their
output transitions, and the destination states of those
transitions.
Same as View ->Filter ->By output transitions.

Ctrl-+-
(number pad)

In the FSM Viewer, hides all but the selected state(s), their input
transitions, and the origin states of those transitions.
Same as View ->Filter ->By input transitions.

Ctrl-+*
(number pad)

In the FSM Viewer, hides all but the selected state(s), their input
and output transitions, and their predecessor and successor
states.
Same as View ->Filter ->By any transition.

Ctrl-1 In an RTL or Technology view, zooms the active view, when you
click, to full (normal) size. Same as View ->Normal View.

Ctrl-a Centers the window on the design. Same as View ->Pan Center.

Ctrl-b In an RTL or Technology view, shows all logic between two or
more selected objects (instances, pins, ports). The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.
Same as HDL Analyst ->Hierarchical ->Expand Paths (see HDL Analyst
Menu: Hierarchical and Current Level Submenus, on
page 280).

Ctrl-c Copies the selected object. Same as Edit ->Copy. This shortcut is
sometimes available even when Edit ->Copy is not. See, for
instance, Find Command (HDL Analyst), on page 164.)

Ctrl-d In an RTL or Technology view, selects the driver for the selected
net. Operates hierarchically, on lower levels as well as the
current schematic.
Same as HDL Analyst->Hierarchical ->Select Net Driver (see HDL
Analyst Menu: Hierarchical and Current Level Submenus, on
page 280).

LO

 User Interface Overview Keyboard Shortcuts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
92 May 2015

Ctrl-e In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). The result is a filtered schematic.
Operates hierarchically, on lower levels as well as the current
schematic.
Same as HDL Analyst->Hierarchical ->Expand (see HDL Analyst
Menu: Hierarchical and Current Level Submenus, on
page 280).

Ctrl-Enter (Return) In the FSM Viewer, hides all but the selected state(s).
Same as View->Filter->Selected (see View Menu, on page 172).

Ctrl-f Finds the selected object. Same as Edit->Find.

Ctrl-F2 Alternately inserts and removes a bookmark to the line that
contains the text cursor.
Same as Edit->Toggle bookmark (see Edit Menu Commands for the
Text Editor, on page 160).

Ctrl-F4 Closes the current window. Same as File ->Close.

Ctrl-F6 Toggles between active windows.

Ctrl-g In the Text Editor, jumps to the specified line. Same as Edit->Goto
(see Edit Menu Commands for the Text Editor, on page 160).
In an RTL or Technology view, selects the sheet number in a
multiple-page schematic. Same as View->View Sheets (see View
Menu: RTL and Technology Views Commands, on page 173).

Ctrl-h In the Text Editor, replaces text. Same as Edit->Replace (see Edit
Menu Commands for the Text Editor, on page 160).

Ctrl-i In an RTL or Technology view, selects instances connected to the
selected net. Operates hierarchically, on lower levels as well as
the current schematic. Same as HDL Analyst->Hierarchical->Select
Net Instances (see HDL Analyst Menu: Hierarchical and Current
Level Submenus, on page 280).

Ctrl-j In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net. Operates
hierarchically, on lower levels as well as the current schematic.
Same as HDL Analyst->Hierarchical->Goto Net Driver (see HDL
Analyst Menu: Hierarchical and Current Level Submenus, on
page 280).

Keyboard
Shortcut

Description

Keyboard Shortcuts User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 93

Ctrl-l In the FSM Viewer, or an RTL or Technology view, toggles zoom
locking. When locking is enabled, if you resize the window the
displayed schematic is resized proportionately, so that it
occupies the same portion of the window.
Same as View->Zoom Lock (see View Menu Commands: All Views,
on page 172).

Ctrl-m In an RTL or Technology view, expands inside the subdesign,
from the lower-level port that corresponds to the selected pin, to
the nearest objects (no farther). Same as HDL
Analyst->Hierarchical->Expand Inwards (see HDL Analyst Menu:
Hierarchical and Current Level Submenus, on page 280).

Ctrl-n Creates a new file or project. Same as File->New.

Ctrl-o Opens an existing file or project. Same as File->Open.

Ctrl-p Prints the current view. Same as File->Print.

Ctrl-q In an RTL or Technology view, toggles the display of visual
properties of instances, pins, nets, and ports in a design.

Ctrl-r In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.
Same as HDL Analyst->Hierarchical->Expand to Register/Port (see HDL
Analyst Menu: Hierarchical and Current Level Submenus, on
page 280).

Ctrl-s In the Project View, saves the file. Same as File ->Save.

Ctrl-t Toggles display of the Tcl window.
Same as View ->Tcl Window (see View Menu, on page 172).

Ctrl-u In the Text Editor, changes the selected text to lower case. Same
as Edit->Advanced->Lowercase (see Edit Menu Commands for the
Text Editor, on page 160).
In the FSM Viewer, restores a filtered FSM diagram so that all
the states and transitions are showing. Same as View->Unfilter
(see View Menu: FSM Viewer Commands, on page 174).

Ctrl-v Pastes the last object copied or cut. Same as Edit ->Paste.

Keyboard
Shortcut

Description

LO

 User Interface Overview Keyboard Shortcuts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
94 May 2015

Ctrl-x Cuts the selected object(s), making it available to Paste. Same as
Edit ->Cut.

Ctrl-y In an RTL or Technology view, goes forward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Forward (see View Menu: RTL and Technology Views
Commands, on page 173).
In other contexts, performs the action undone by Undo. Same as
Edit->Redo.

Ctrl-z In an RTL or Technology view, goes backward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Back (see View Menu: RTL and Technology Views
Commands, on page 173).
In other contexts, undoes the last action. Same as Edit ->Undo.

Ctrl-Shift-F2 Removes all bookmarks from the Text Editor window. Same as
Edit ->Delete all bookmarks (see Edit Menu Commands for the Text
Editor, on page 160).

Ctrl-Shift-h In an RTL or Technology view, shows all pins on selected
transparent hierarchical (non-primitive) instances. Pins on
primitives are always shown. Available only in a filtered
schematic.
Same as HDL Analyst ->Show All Hier Pins (see HDL Analyst Menu:
Analysis Commands, on page 286).

Ctrl-Shift-i In an RTL or Technology view, selects all instances on the
current schematic level (all sheets). This does not select
instances on other levels.
Same as HDL Analyst->Select All Schematic->Instances (see HDL
Analyst Menu, on page 279).

Ctrl-Shift-p In an RTL or Technology view, selects all ports on the current
schematic level (all sheets). This does not select ports on other
levels.
Same as HDL Analyst->Select All Schematic->Ports (see HDL Analyst
Menu, on page 279).

Ctrl-Shift-u In the Text Editor, changes the selected text to lower case.
Same as Edit->Advanced->Uppercase (see Edit Menu Commands
for the Text Editor, on page 160).

Keyboard
Shortcut

Description

Keyboard Shortcuts User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 95

d In an RTL or Technology view, selects the driver for the selected
net. Limited to the current schematic.
Same as HDL Analyst ->Current Level ->Select Net Driver (see HDL
Analyst Menu, on page 279).

Delete (DEL) Removes the selected files from the project. Same as
Project->Remove Files From Project.

e In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). Limited to the current schematic.
Same as HDL Analyst->Current Level->Expand (see HDL Analyst
Menu, on page 279).

F1 Provides context-sensitive help. Same as Help->Help.

F2 In an RTL or Technology view, toggles traversing the hierarchy
using the push/pop mode. Same as View->Push/Pop Hierarchy (see
View Menu: RTL and Technology Views Commands, on
page 173).
In the Text Editor, takes you to the next bookmark. Same as
Edit->Next bookmark (see Edit Menu Commands for the Text
Editor, on page 160).

F4 In the Project view, adds a file to the project. Same as
Project->Add Source File (see Build Project Command, on
page 158).
In an RTL or Technology view, zooms the view so that it shows
the entire design. Same as View->Full View (see View Menu: RTL
and Technology Views Commands, on page 173).

F5 Displays the next source file error.
Same as Run->Next Error/Warning (see Run Menu, on page 220).

F7 Compiles your design, without mapping it.
Same as Run->Compile Only (see Run Menu, on page 220).

F8 Synthesizes (compiles and maps) your design.
Same as Run->Synthesize (see Run Menu, on page 220).

Keyboard
Shortcut

Description

LO

 User Interface Overview Keyboard Shortcuts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
96 May 2015

F10 In the Project view, runs the FSM Explorer to determine
optimum encoding styles for finite state machines. Same as Run
->FSM Explorer (see Run Menu, on page 220).
In an RTL or Technology view, lets you pan (scroll) the schematic
by dragging it with the mouse. Same as View ->Pan (see View
Menu: RTL and Technology Views Commands, on page 173).

F11 Toggles zooming in.
Same as View->Zoom In (see View Menu: RTL and Technology
Views Commands, on page 173).

F12 In an RTL or Technology view, filters your entire design to show
only the selected objects.
Same as HDL Analyst->Filter Schematic – see HDL Analyst Menu:
Filtering and Flattening Commands, on page 282.

i In an RTL or Technology view, selects instances connected to the
selected net. Limited to the current schematic.
Same as HDL Analyst->Current Level->Select Net Instances (see HDL
Analyst Menu, on page 279).

j In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net.
Same as HDL Analyst->Current Level->Goto Net Driver (see HDL
Analyst Menu, on page 279).

r In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Limited to the current schematic.
Same as HDL Analyst ->Current Level->Expand to Register/Port (see
HDL Analyst Menu, on page 279).

Shift-F2 In the Text Editor, takes you to the previous bookmark.

Shift-F4 Allows you to add source files to your project (Project->Add Source
Files).

Shift-F5 Displays the previous source file error.
Same as Run->Previous Error/Warning (see Run Menu, on
page 220).

Shift-F7 Checks source file syntax.
Same as Run->Syntax Check (see Run Menu, on page 220).

Keyboard
Shortcut

Description

Keyboard Shortcuts User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 97

Shift-F8 Checks synthesis.
Same as Run->Synthesis Check (see Run Menu, on page 220).

Shift-F10 Checks the timing constraints in the constraint files in your
project and generates a report (project_name_cck.rpt).
Same as Run->Constraint Check (see Run Menu, on page 220).

Shift-F11 Toggles zooming out.
Same as View->Zoom Out (see View Menu, on page 172).

Shift-Left Arrow Displays the previous sheet of a multiple-sheet schematic.

Shift-Right Arrow Displays the next sheet of a multiple-sheet schematic.

Shift-s Dissolves the selected instances, showing their lower-level
details. Dissolving an instance one level replaces it, in the
current sheet, by what you would see if you pushed into it using
the push/pop mode. The rest of the sheet (not selected) remains
unchanged.
The number of levels dissolved is the Dissolve Levels value in the
Schematic Options dialog box. The type (filtered or unfiltered) of the
resulting schematic is unchanged from that of the current
schematic. However, the effect of the command is different in
filtered and unfiltered schematics.
Same as HDL Analyst ->Dissolve Instances – see Dissolve Instances,
on page 288.

Keyboard
Shortcut

Description

LO

 User Interface Overview Buttons and Options

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
98 May 2015

Buttons and Options

The Project view contains several buttons and a few additional features that
give you immediate access to some of the more common commands and user
options.

The following table describes the Project View buttons and options.

Button/Option Action

Open Project... Opens a new or existing project.
Same as File->Open Project (see Open Project Command, on
page 158).

Close Project Closes the current project.
Same as File->Close Project (see Run Menu, on page 220).

Add File... Adds a source file to the project.
Same as Project->Add Source File (see Build Project
Command, on page 158).

Buttons and Options User Interface Overview

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 99

Change File... Replaces one source file with another.
Same as Project ->Change File (see Change File Command,
on page 183).

Add Implementation Creates a new implementation.

Implementation Options/ Displays the Implementation Options dialog box, where you
can set various options for synthesis.

Add P&R
Implementation

Creates a place-and-route implementation to control and
run place and route from within the synthesis tool. See
Add P&R Implementation Popup Menu Command, on
page 343 for a description of the dialog box, and
Running P&R Automatically after Synthesis, on
page 504in the User Guide for information about using
this feature.

View Log Displays the log file.
Same as View ->View Log File (see View Menu, on page 172).

Frequency (MHz) Sets the global frequency, which you can override locally
with attributes.
Same as enabling the Frequency (MHz) option on the
Constraints panel of the Implementation Options dialog box.

Auto Constrain When Auto Constrain is enabled and no clocks are
defined, the software automatically constrains the design
to achieve best possible timing by reducing periods of
individual clock and the timing of any timed I/O paths in
successive steps.
See Using Auto Constraints, on page 295 in the User
Guide for detailed information about using this option.
You can also set this option on the Constraints panel of the
Implementation Options dialog box.

Continue on Error When enabled for compile-point synthesis, allows the
operation to continue on error and synthesize the
remaining compile points.

FSM Compiler Turning on this option enables special FSM optimizations.
Same as enabling the FSM Compiler option on the Options
panel of the Implementation Options dialog box (see FSM
Compiler, on page 73 and Optimizing State Machines, on
page 358 in the User Guide).

Button/Option Action

LO

 User Interface Overview Buttons and Options

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
100 May 2015

FSM Explorer When enabled, the FSM Explorer selects an encoding style
for the finite state machines in your design.
Same as enabling the FSM Explorer option on the Options
panel of the Implementation Options dialog box. For more
information, see FSM Explorer, on page 75 and Running
the FSM Compiler, on page 359 in the User Guide.

Resource Sharing When enabled, makes the compiler use resource sharing
techniques. This option does not affect resource sharing
by the mapper.
The option is the same as the Resource Sharing option on
the Options panel of the Implementation Options dialog box.
See Sharing Resources, on page 356 in the User Guide for
usage details.

Retiming When enabled, improves the timing performance of
sequential circuits. The retiming process moves storage
devices (flip-flops) across computational elements with no
memory (gates/LUTs) to improve the performance of the
circuit. This option also adds a retiming report to the log
file.
Same as enabling the Retiming option on the Options panel
of the Implementation Options dialog box. Use the
syn_allow_retiming attribute to enable or disable retiming for
individual flip-flops. See syn_allow_retiming, on page 43
for syntax details.
Note: Pipelining is automatically enabled when retiming is
enabled.

Run Runs synthesis (compilation and mapping).
Same as the Run->Synthesize command (see Run Menu, on
page 220).

Technical Resource
Center

Goes to the web page for the Synopsys Technical Resource
Center, which contains product messages.

Button/Option Action

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 101

C H A P T E R 3

HDL Analyst Tool

The HDL Analyst tool helps you examine your design and synthesis results,
and analyze how you can improve design performance and area.

The following describe the HDL Analyst tool and the operations you can
perform with it.

• HDL Analyst Views and Commands, on page 102

• Schematic Objects and Their Display, on page 104

• Basic Operations on Schematic Objects, on page 113

• Multiple-sheet Schematics, on page 118

• Exploring Design Hierarchy, on page 121

• Filtering and Flattening Schematics, on page 128

• Timing Information and Critical Paths, on page 134

For additional information, see the following:

• Descriptions of the HDL Analyst commands in Chapter 4, User Interface
Commands:

• Chapter 13, Optimizing Processes for Productivity in the User Guide

LO

 HDL Analyst Tool HDL Analyst Views and Commands

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
102 May 2015

HDL Analyst Views and Commands

The HDL Analyst tool graphically displays information in two schematic
views: the RTL and Technology views (see RTL View, on page 59 and
Technology View, on page 60 for information). The graphic representation is
useful for analyzing and debugging your design, because you can visualize
where coding changes or timing constraints might reduce area or increase
performance.

This section gives you information about the following:

• Filtered and Unfiltered Schematic Views, on page 102

• Accessing HDL Analyst Commands, on page 103

Filtered and Unfiltered Schematic Views

HDL Analyst views (RTL View, on page 59 and Technology View, on page 60)
consist of schematics that let you analyze your design graphically. The
schematics can be filtered or unfiltered. The distinction is important because
the kind of view determines how objects are displayed for certain commands.

• Unfiltered schematics display all the objects in your design, at appro-
priate hierarchical levels.

• Filtered schematics show only a subset of the objects in your design,
because the other objects have been filtered out by some operation. The
Hierarchy Browser in the filtered view always list all the objects in the
design, not just the filtered objects. Some commands, such as HDL
Analyst -> Show Context, are only available in filtered schematics. Views
with a filtered schematic have the word Filtered in the title bar.

Indicates a filtered schematic

HDL Analyst Views and Commands HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 103

Filtering commands affect only the displayed schematic, not the under-
lying design. See the following topics:

• For a detailed description of filtering, see Filtering and Flattening
Schematics, on page 128.

• For procedures on using filtering, see Filtering Schematics, on page 259
in the User Guide.

Accessing HDL Analyst Commands

You can access HDL Analyst commands in many ways, depending on the
active view, the currently selected objects, and other design context factors.
The software offers these alternatives to access the commands:

• HDL Analyst and View menus

• HDL Analyst popup menus appear when you right-click in an HDL
Analyst view. The popup menu is context-sensitive, and includes
commonly used commands from the HDL Analyst and View menus, as well
as some additional commands.

• HDL Analyst toolbar icons provide shortcuts to commonly used
commands

For brevity, this document primarily refers to the menu method of accessing
the commands and does not list alternative access methods.

See also:

• HDL Analyst Menu, on page 279

• View Menu, on page 172

• RTL and Technology Views Popup Menus, on page 347

• Analyst Toolbar, on page 84

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
104 May 2015

Schematic Objects and Their Display

Schematic objects are the objects that you manipulate in an HDL Analyst
schematic: instances, ports, and nets. Instances can be categorized in
different ways, depending on the operation: hidden/unhidden, trans-
parent/opaque, or primitive/hierarchical. The following topics describe
schematic objects and the display of associated information in more detail:

• Object Information, on page 104

• Sheet Connectors, on page 105

• Primitive and Hierarchical Instances, on page 106

• Hidden Hierarchical Instances, on page 108

• Transparent and Opaque Display of Hierarchical Instances, on page 107

• Schematic Display, on page 109

For most objects, you select them to perform an operation. For some objects
like sheet connectors, you do not select them but right-click on them and
select from the popup menu commands.

Object Information

To obtain information about specific objects, you can view object properties
with the Properties command from the right-click popup menu, or place the
pointer over the object and view the object information displayed. With the
latter method, information about the object displays in these two places until
you move the pointer away:

• The status bar at the bottom of the synthesis window displays the name
of the instance, net, port, or sheet connector and other relevant informa-
tion. If HDL Analyst->Show Timing Information is enabled, the status bar also
displays timing information for the object. Here is an example of the
status bar information for a net:

Net clock (local net clock) Fanout=4

You can enable and disable the display of status bar information by
toggling the command View -> Status Bar.

Schematic Objects and Their Display HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 105

• In a tooltip at the mouse pointer
Displays the name of the object and any attached attributes. The
following figure shows tooltip information for a state machine:

To disable tooltip display, select View -> Toolbars and disable the Show
Tooltips option. Do this if you want to reduce clutter.

See also

• Pin and Pin Name Display for Opaque Objects, on page 110

• HDL Analyst Options Command, on page 305

Sheet Connectors

When the HDL Analyst tool divides a schematic into multiple sheets, sheet
connector symbols indicate how sheets are related. A sheet connector symbol
is like a port symbol, but it has an empty diamond with sheet numbers at one
end. Use the Options->HDL Analyst Options command (see Sheet Size Panel, on
page 310) to control how the schematic is divided into multiple sheets.

If you enable the Show Sheet Connector Index option in the (Options->HDL Analyst
Options), the empty diamond becomes a hexagon with a list of the connected
sheets. You go to a connecting sheet by right-clicking a sheet connector and
choosing the sheet number from the popup menu. The menu has as many
sheet numbers as there are sheets connected to the net at that point.

Tooltip

Mouse pointer

Diamond indicates sheet connector
Ports

Show Sheet Connector Index disabled Show Sheet Connector Index enabled

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
106 May 2015

See also

• Multiple-sheet Schematics, on page 118

• HDL Analyst Options Command, on page 305

• RTL and Technology Views Popup Menus, on page 347

Primitive and Hierarchical Instances

HDL Analyst instances are either primitive or hierarchical, and sorted into
these categories in the Hierarchy Browser. Under Instances, the browser first
lists hierarchical instances, and then lists primitive instances under
Instances->Primitives.

Primitive Instances

Although some primitive objects have hierarchy, the term is used here to
distinguish these objects from user-defined hierarchies. Primitive instances
include the following:

In a schematic, logic gate primitives are represented with standard schematic
symbols, and technology-specific primitives with various symbols (see
Hierarchy Browser Symbols, on page 63). You can push into primitives like
technology-specific primitives, inferred ROMs, and inferred state machines to
view internal details. You cannot push into logic primitives.

RTL View Technology View

High-level logic primitives, like XOR gates
or priority-encoded multiplexers

Black boxes

Inferred ROMs, RAMs, and state
machines

Technology-specific primitives, like
LUTs or FPGA block RAMs

Black boxes

Technology-specific primitives, like LUTs
or FPGA block RAMs

Schematic Objects and Their Display HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 107

Hierarchical Instances

Hierarchical instances are user-defined hierarchies; all other instances are
considered to be primitives. Hierarchical instances correspond to Verilog
modules and VHDL entities.

The Hierarchy Browser lists hierarchical instances under Instances, and uses
this symbol: . In a schematic, the display of hierarchical instances
depends on the combination of the following:

• Whether the instance is transparent or opaque. Transparent instances
show their internal details nested inside them; opaque instances do not.
You cannot directly control whether an object is transparent or opaque;
the views are automatically generated by certain commands. See Trans-
parent and Opaque Display of Hierarchical Instances, on page 107 for
details.

• Whether the instance is hidden or not. This is user-controlled, and you
can hide instances so that they are ignored by certain commands. See
Hidden Hierarchical Instances, on page 108 for more information.

Transparent and Opaque Display of Hierarchical Instances

A hierarchical instance can be displayed transparently or opaquely. You
cannot directly control the display; certain commands cause instances to be
transparent. The distinction between transparent and opaque is important
because some commands operate differently on transparent and opaque
instances. For example, in a filtered schematic Flatten Current Schematic flattens
only transparent hierarchical instances.

• Opaque instances are pale yellow boxes, and do not display their
internal hierarchy. This is the default display.

No nested logic

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
108 May 2015

• Transparent instances display some or all their lower-level hierarchy
nested inside a hollow box with a pale yellow border. Transparent
instances are only displayed in filtered schematics, and are a result of
certain commands. See Looking Inside Hierarchical Instances, on
page 126 for information about commands that generate transparent
instances.

A transparent instance can contain other opaque or transparent
instances nested inside. The details inside a transparent instance are
independent schematic objects and you can operate on them indepen-
dently: select, push into, hide, and so on. Performing an operation on a
transparent object does not automatically perform it on any of the
objects nested inside it, and conversely.

See also

• Looking Inside Hierarchical Instances, on page 126

• Multiple Sheets for Transparent Instance Details, on page 120

• Filtered and Unfiltered Schematic Views, on page 102

Hidden Hierarchical Instances

Certain commands do not operate on the lower-level hierarchy of hidden
instances, so you can hide instances to focus the operation of a command
and improve performance. You hide opaque or transparent hierarchical
instances with the Hide Instances command (described in RTL and Technology
Views Popup Menus, on page 347). Hiding and unhiding only affects the
current HDL Analyst view, and does not affect the Hierarchy Browser. You
can hide and unhide instances as needed. The hierarchical logic of a hidden
instance is not removed from the design; it is only excluded from certain
operations.

Nested opaque instance

Nested transparent instance

Transparent instance

Schematic Objects and Their Display HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 109

The schematics indicate hidden hierarchical instances with a small H in the
lower left corner. When the mouse pointer is over a hidden instance, the
status bar and the tooltip indicate that the instance is hidden.

Schematic Display

The HDL Analyst Options dialog box controls general properties for all HDL
Analyst views, and can determine the display of schematic object informa-
tion. Setting a display option affects all objects of the given type in all views.
Some schematic options only take effect in schematic windows opened after
the setting change; others affect existing schematic windows as well.

The following are some commonly used settings that affect the display of
schematic objects. See HDL Analyst Options Command, on page 305 for a
complete list of display options.

Option Controls the display of ...

Show Cell Interior Internal logic of technology-specific primitives

Compress Buses Buses as bundles

Dissolve Levels Hierarchical levels in a view flattened with HDL Analyst
-> Dissolve Instances or Dissolve to Gates, by setting the
number of levels to dissolve.

“H” indicates a
hidden instance Tooltip mentions

instance is hidden

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
110 May 2015

Pin and Pin Name Display for Opaque Objects

Although it always displays the pins, the software does not automatically
display pin names for opaque hierarchical instances, technology-specific
primitives, RAMS, ROMs, and state machines. To display pin names for these
objects, enable Options-> HDL Analyst Options->Text->Show Pin Name. The following
figures illustrate this display. The first figure shows pins and pin names of an
opaque hierarchical instance, and the second figure shows the pins of a
technology-specific primitive with its cell contents not displayed.

Instances

Filtered Instances

Instances added for
expansion

Instances on a schematic by setting limits to the
number of instances displayed

Instance Name

Show Conn Name

Show Symbol Name

Show Port Name

Object labels

Show Pin Name

HDL Analyst->Show All Hier
Pins

Pin names. See Pin and Pin Name Display for Opaque
Objects, on page 110 and Pin and Pin Name Display
for Transparent Objects, on page 111 for details.

Option Controls the display of ...

Pin names

Tooltip with pin

Mouse pointer pin symbol

Pins

Schematic Objects and Their Display HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 111

Pin and Pin Name Display for Transparent Objects

This section discusses pin name display for transparent hierarchical
instances in filtered views and technology-specific primitives.

Transparent Hierarchical Instances
In a filtered schematic, some of the pins on a transparent hierarchical
instance might not be displayed because of filtering. To display all the pins,
select the instance and select HDL Analyst -> Show All Hier Pins.

To display pin names for the instance, enable Options->HDL Analyst Options->Text
->Show Pin Name. The software temporarily displays the pin name when you
move the cursor over a pin. To keep the pin name displayed even after you
move the cursor away, select the pin. The name remains until you select
something else.

Primitives
To display pin names for technology primitives in the Technology view, enable
Options-> HDL Analyst Options->Text->Show Pin Name. The software displays the pin
names until the option is disabled. If Show Pin Name is enabled when Options->
HDL Analyst Options->General->Show Cell Interior is also enabled, the primitive is
treated like a transparent hierarchical instance, and primitive pin names are
only displayed when the cursor moves over the pins. To keep a pin name
displayed even after you move the cursor away, select the pin. The name
remains until you select something else.

Pins and names

Mouse pointer
(pin symbol)

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
112 May 2015

See also:

• HDL Analyst Options Command, on page 305

• Controlling the Amount of Logic on a Sheet, on page 118

• Analyzing Timing in Schematic Views, on page 278 in the User Guide

Pin selected,
showing name

Basic Operations on Schematic Objects HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 113

Basic Operations on Schematic Objects

Basic operations on schematic objects include the following:

• Finding Schematic Objects, on page 113

• Selecting and Unselecting Schematic Objects, on page 114

• Crossprobing Objects, on page 115

• Dragging and Dropping Objects, on page 117

For information about other operations on schematics and schematic objects,
see the following:

• Filtering and Flattening Schematics, on page 128

• Timing Information and Critical Paths, on page 134

• Multiple-sheet Schematics, on page 118

• Exploring Design Hierarchy, on page 121

Finding Schematic Objects

You can use the following techniques to find objects in the schematic. For
step-by-step procedures using these techniques, see Finding Objects, on
page 234 in the User Guide.

• Zooming and panning

• HDL Analyst Hierarchy Browser

You can use the Hierarchy Browser to browse and find schematic
objects. This can be a quick way to locate an object by name if you are
familiar with the design hierarchy. See Browsing With the Hierarchy
Browser, on page 234 in the User Guide for details.

• Edit -> Find command

The Edit -> Find command is described in Find Command (HDL Analyst),
on page 164. It displays the Object Query dialog box, which lists
schematic objects by type (Instances, Symbols, Nets, or Ports) and lets you
use wildcards to find objects by name. You can also fine-tune your
search by setting a range for the search.

LO

 HDL Analyst Tool Basic Operations on Schematic Objects

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
114 May 2015

This command selects all found objects, whether or not they are
displayed in the current schematic. Although you can search for hidden
instances, you cannot find objects that are inside hidden instances at a
lower level. Temporarily hiding an instance thus further refines the
search range by excluding the internals of a a given instance. This can
be very useful when working with transparent instances, because the
lower-level details appear at the current level, and cannot be excluded
by choosing Current Level Only. See Using Find for Hierarchical and
Restricted Searches, on page 236 in the User Guide.

• Edit -> Find command combined with filtering

Edit->Find enhances filtering. Use Find to select by name and hierarchical
level, and then filter the design to limit the display to the current selec-
tion. Unselected objects are removed. Because Find only adds to the
current selection (it never deselects anything already selected), you can
use successive searches to build up exactly the selection you need,
before filtering.

• Filtering before searching with Edit->Find

Filtering helps you to fine-tune the range of a search. You can search for
objects just within a filtered schematic by limiting the search range to
the Current Level Only.

Filtering adds to the expressive power of displaying search results. You
can find objects on different sheets and filter them to see them all
together at once. Filtering collapses the hierarchy visually, showing
lower-level details nested inside transparent higher-level instances. The
resulting display combines the advantage of a high-level, abstract view
with detail-rich information from lower levels.

See Filtering and Flattening Schematics, on page 128 for further infor-
mation.

Selecting and Unselecting Schematic Objects

Whenever an object is selected in one place it is selected and highlighted
everywhere else in the synthesis tool, including all Hierarchy Browsers, all
schematics, and the Text Editor. Many commands operate on the currently
selected objects, whether or not those objects are visible.

Basic Operations on Schematic Objects HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 115

The following briefly list selection methods; for a concise table of selection
procedures, see Selecting Objects in the RTL/Technology Views, on page 220
in the User Guide.

Using the Mouse to Select a Range of Schematic Objects

In a Hierarchy Browser, you can select a range of schematic objects by
clicking the name of an object at one end of the range, then holding the Shift
key while clicking the name of an object at the other end of the range.To use
the mouse for selecting and unselecting objects in a schematic, the cross-
hairs symbol () must appear as the mouse pointer. If this is not currently
the case, right-click the schematic background.

Using Commands to Select Schematic Objects

You can select and deselect schematic objects using the commands in the
HDL Analyst menu, or use Edit->Find to find and select objects by name.

The HDL Analyst menu commands that affect selection include the following:

• Expansion commands like Expand, Expand to Register/Port, Expand Paths,
and Expand Inwards select the objects that result from the expansion. This
means that (except for Expand to Register/Port) you can perform successive
expansions and expand the set of objects selected.

• The Select All Schematic and Select All Sheet commands select all instances
or ports on the current schematic or sheet, respectively.

• The Select Net Driver and Select Net Instances commands select the appro-
priate objects according to the hierarchical level you have chosen.

• Deselect All deselects all objects in all HDL Analyst views.

See also

• Finding Schematic Objects, on page 113

• HDL Analyst Menu, on page 279

Crossprobing Objects

Crossprobing helps you diagnose where coding changes or timing constraints
might reduce area or increase performance. When you crossprobe, you select
an object in one place and it or its equivalent is automatically selected and

LO

 HDL Analyst Tool Basic Operations on Schematic Objects

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
116 May 2015

highlighted in other places. For example, selecting text in the Text Editor
automatically selects the corresponding logic in all HDL Analyst views.
Whenever a net is selected, it is highlighted through all the hierarchical
instances it traverses, at all schematic levels.

Crossprobing Between Different Views

You can crossprobe objects (including logic inside hidden instances) between
RTL views, Technology views, the FSM Viewer, HDL source code files, and
other text files. Some RTL and source code objects are optimized away during
synthesis, so they cannot be crossprobed to certain views.

The following table summarizes crossprobing to and from HDL Analyst (RTL
and Technology) views. For information about crossprobing procedures, see
Crossprobing, on page 247 in the User Guide.

From ... To ... Do this ...

Text Editor: log
file

Text Editor:
HDL source
file

Double-click a log file note, error, or warning.
The corresponding HDL source code appears in
the Text Editor.

Text Editor: HDL
code

Analyst view

FSM Viewer

The RTL view or Technology view must be open.
Select the code in the Text Editor that
corresponds to the object(s) you want to
crossprobe.
The object corresponding to the selected code is
automatically selected in the target view, if an
HDL source file is in the Text Editor. Otherwise,
right-click and choose the Select in Analyst
command.
To cross-probe from text other than source
code, first select Options->HDL Analyst Options and
then enable Enhanced Text Crossprobing.

FSM Viewer Analyst view The target view must be open. The state
machine must be encoded with the onehot style
to crossprobe from the transition table.
Select a state anywhere in the FSM Viewer
(bubble diagram or transition table). The
corresponding object is automatically selected
in the HDL Analyst view.

Basic Operations on Schematic Objects HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 117

Dragging and Dropping Objects

You can drag and drop objects like instances, nets and pins from the HDL
Analyst schematic views to other windows to help you analyze your design or
set constraints. You can drag and drop objects from an RTL or Technology
views to the following other windows:

• SCOPE editor

• Text editor window

• Tcl window

Analyst view

FSM Viewer

Text Editor Double-click an object. The source code
corresponding to the object is automatically
selected in the Text Editor, which is opened to
show the selection.
If you just select an object, without double-
clicking it, the corresponding source code is
still selected and displayed in the editor
(provided it is open), but the editor window is
not raised to the front.

Analyst view Another open
view

Select an object in an HDL Analyst view. The
object is automatically selected in all open
views.
If the target view is the FSM Viewer, then the
state machine must be encoded as onehot.

Tcl window Text Editor Double-click an error or warning message
(available in the Tcl window errors or warnings
panel, respectively). The corresponding source
code is automatically selected in the Text
Editor, which is opened to show the selection.

Text Editor: any
text containing
instance names,
like a timing
report

Corresponding
instance

Highlight the text, then right-click & choose
Select or Filter. Use this to filter critical paths
reported in a text file by the FPGA timing
analysis tool.

From ... To ... Do this ...

LO

 HDL Analyst Tool Multiple-sheet Schematics

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
118 May 2015

Multiple-sheet Schematics

When there is too much logic to display on a single sheet, the HDL Analyst
tool uses additional schematic sheets. Large designs can take several sheets.
In a hierarchical schematic, each module consists of one or more sheets.
Sheet connector symbols (Sheet Connectors, on page 105) mark logic connec-
tions from one sheet to the next.

For more information, see

• Controlling the Amount of Logic on a Sheet, on page 118

• Navigating Among Schematic Sheets, on page 118

• Multiple Sheets for Transparent Instance Details, on page 120

Controlling the Amount of Logic on a Sheet

You can control the amount of logic on a schematic sheet using the options in
Options->HDL Analyst Options->Sheet Size. The Maximum Instances option sets the
maximum number of instances on an unfiltered schematic sheet. The
Maximum Filtered Instances option sets the maximum number of instances
displayed at any given hierarchical level on a filtered schematic sheet.

See also:

• HDL Analyst Options Command, on page 305

• Setting Schematic View Preferences, on page 223 of the User Guide.

Navigating Among Schematic Sheets

This section describes how to navigate among the sheets in a given
schematic. The window title bar lets you know where you are at any time.

Multisheet Orientation in the Title Bar

The window title bar of an RTL view or Technology view indicates the current
context. For example, uc_alu (of module alu) in the title indicates that the
current schematic level displays the instance uc_alu (which is of module alu).
The objects shown are those comprising that instance.

Multiple-sheet Schematics HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 119

The title bar also indicates, for the current schematic, the number of the
displayed sheet, and the total number of sheets — for example, sheet 2 of 4. A
schematic is initially opened to its first sheet.

Navigating Among Sheets

You can navigate among different sheets of a schematic in these ways:

• Follow a sheet connector, by right-clicking it and choosing a connecting
sheet from the popup menu

• Use the sheet navigation commands of the View menu: Next Sheet,
Previous Sheet, and View Sheets, or their keyboard shortcut or icon equiva-
lents

• Use the history navigation commands of the View menu (Back and
Forward), or their keyboard shortcuts or icon equivalents to navigate to
sheets stored in the display history

For details, see Working with Multisheet Schematics, on page 221 in the User
Guide.

Sheet # of total # Context (level) of current sheet: instance name and module

LO

 HDL Analyst Tool Multiple-sheet Schematics

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
120 May 2015

You can navigate among different design levels by pushing and popping the
design hierarchy. Doing so adds to the display history of the View menu, so
you can retrace your push/pop steps using View -> Back and View->Forward.
After pushing down, you can either pop back up or use View->Back.

See also:

• Filtering and Flattening Schematics, on page 128

• View Menu: RTL and Technology Views Commands, on page 173

• Pushing and Popping Hierarchical Levels, on page 121

Multiple Sheets for Transparent Instance Details

The details of a transparent instance in a filtered view are drawn in two ways:

• Generally, these interior details are spread out over multiple sheets at
the same schematic level (module) as the instance that contains them.
You navigate these sheets as usual, using the methods described in
Navigating Among Schematic Sheets, on page 118.

• If the number of nested contents exceeds the limit set with the Filtered
Instances option (Options->HDL Analyst Options), the nested contents are
drawn on separate sheets. The parent hierarchical instance is empty,
with a notation (for example, Go to sheets 4-16) inside it, indicating which
sheets contain its lower-level details. You access the sheets containing
the lower-level details using the sheet navigation commands of the View
menu, such as Next Sheet.

See also:

• Controlling the Amount of Logic on a Sheet, on page 118

• View Menu: RTL and Technology Views Commands, on page 173

Exploring Design Hierarchy HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 121

Exploring Design Hierarchy

The hierarchy in your design can be explored in different ways. The following
sections explain how to move between hierarchical levels:

• Pushing and Popping Hierarchical Levels, on page 121

• Navigating With a Hierarchy Browser, on page 124

• Looking Inside Hierarchical Instances, on page 126

Pushing and Popping Hierarchical Levels

You can navigate your design hierarchy by pushing down into a high-level
schematic object or popping back up. Pushing down into an object takes you
to a lower-level schematic that shows the internal logic of the object. Popping
up from a lower level brings you back to the parent higher-level object.

Pushing and popping is best suited for traversing the hierarchy of a specific
object. If you want a more general view of your design hierarchy, use the
Hierarchy Browser instead. See Navigating With a Hierarchy Browser, on
page 124 and Looking Inside Hierarchical Instances, on page 126 for other
ways of viewing design hierarchy.

Pushable Schematic Objects

To push into an instance, it must have hierarchy. You can push into the
object regardless of its position in the design hierarchy; for example, you can
push into the object if it is shown nested inside a transparent instance. You
can push down into the following kinds of schematic objects:

• Non-hidden hierarchical instances. To push into a hidden instance,
unhide it first.

• Technology-specific primitives (not logic primitives)

• Inferred ROMs and state machines in RTL views. Inferred ROMs, RAMs,
and state machines do not appear in Technology views, because they are
resolved into technology-specific primitives.

LO

 HDL Analyst Tool Exploring Design Hierarchy

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
122 May 2015

When you push/pop, the HDL Analyst window displays the appropriate level
of design hierarchy, except in the following cases:

• When you push into an inferred state machine in an RTL view, the FSM
Viewer opens, with graphical information about the FSM. See the FSM
Viewer Window, on page 64, for more information.

• When you push into an inferred ROM in an RTL view, the Text Editor
window opens and displays the ROM data table (rom.info file).

You can use the following indicators to determine whether you can push into
an object:

• The mouse pointer shape when Push/Pop mode is enabled. See How to
Push and Pop Hierarchical Levels, on page 122 for details.

• A small H symbol () in the lower left corner indicates a hidden
instance, and you cannot push into it.

• The Hierarchy Browser symbols indicates the type of instance and you
can use that to determine whether you can push into an object. For
example, hierarchical instance (), technology-specific primitive
(), logic primitive such as XOR (), or other primitive instance
(). The browser symbol does not indicate whether or not an instance
is hidden.

• The status bar at the bottom of the main synthesis tool window reports
information about the object under the pointer, including whether or not
it is a hidden instance or a primitive.

How to Push and Pop Hierarchical Levels

You push/pop design levels with the HDL Analyst Push/Pop mode. To enable
or disable this mode, toggle View->Push/Pop Hierarchy, use the icon, or use the
appropriate mouse strokes.

Exploring Design Hierarchy HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 123

Once Push/Pop mode is enabled, you push or pop as follows:

• To pop, place the pointer in an empty area of the schematic background,
then click or use the appropriate mouse stroke. The background area
inside a transparent instance acts just like the background area outside
the instance.

• To push into an object, place the mouse pointer over the object and click
or use the appropriate mouse stroke. To push into a transparent
instance, place the pointer over its pale yellow border, not its hollow
(white) interior. Pushing into an object nested inside a transparent
hierarchical instance descends to a lower level than pushing into the
enclosing transparent instance. In the following figure, pushing into
transparent instance inst2 descends one level; pushing into nested
instance inst2.II_3 descends two levels.

The following arrow mouse pointers indicate status in Push/Pop mode. For
other indicators, see Pushable Schematic Objects, on page 121.

Down (push) or up (pop)
arrow mouse pointer

Pop

Push

Push into transparent
instance along its border

Push into nested
pushable object

Pop from background
(interior or exterior),
unless at top level

OutsideInside

LO

 HDL Analyst Tool Exploring Design Hierarchy

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
124 May 2015

See also:

• Hidden Hierarchical Instances, on page 108

• Transparent and Opaque Display of Hierarchical Instances, on page 107

• Using Mouse Strokes, on page 76

• Navigating With a Hierarchy Browser, on page 124

Navigating With a Hierarchy Browser

Hierarchy Browsers are designed for locating objects by browsing your
design. To move between design levels of a particular object, use Push/Pop
mode (see Pushing and Popping Hierarchical Levels, on page 121 and
Looking Inside Hierarchical Instances, on page 126 for other ways of viewing
design hierarchy).

The browser in the RTL view displays the hierarchy specified in the RTL
design description. The browser in the Technology view displays the
hierarchy of your design after technology mapping.

Selecting an object in the browser displays it in the schematic, because the
two are linked. Use the Hierarchy Browser to traverse your hierarchy and
select ports, nets, components, and submodules. The browser categorizes the
objects, and accompanies each with a symbol that indicates the object type.
The following figure shows crossprobing between a schematic and the
hierarchy browser.

A down arrow Indicates that you can push (descend) into the object under
the pointer and view its details at the next lower level.

An up arrow Indicates that there is a hierarchical level above the current
sheet.

A crossed-out
double arrow

Indicates that there is no accessible hierarchy above or below
the current pointer position. If the pointer is over the
schematic background it indicates that the current level is the
top and you cannot pop higher. If the pointer is over an object,
the object is an object you cannot push into: a non-
hierarchical instance, a hidden hierarchical instance, or a
black box.

Exploring Design Hierarchy HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 125

Explore the browser hierarchy by expanding or collapsing the categories in
the browser. You can also use the arrow keys (left, right, up, down) to move
up and down the hierarchy and select objects. To select more than one object,
press Ctrl and select the objects in the browser. To select a range of schematic
objects, click an object at one end of the range, then hold the Shift key while
clicking the name of an object at the other end of the range.

See also:

• Crossprobing Objects, on page 115

• Pushing and Popping Hierarchical Levels, on page 121

• Hierarchy Browser Popup Menu Commands, on page 347

LO

 HDL Analyst Tool Exploring Design Hierarchy

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
126 May 2015

Looking Inside Hierarchical Instances

An alternative method of viewing design hierarchy is to examine transparent
hierarchical instances (see Navigating With a Hierarchy Browser, on page 124
and Navigating With a Hierarchy Browser, on page 124 for other ways of
viewing design hierarchy). A transparent instance appears as a hollow box
with a pale yellow border. Inside this border are transparent and opaque
objects from lower design levels.

Transparent instances provide design context. They show the lower-level logic
nested within the transparent instance at the current design level, while
pushing shows the same logic a level down. The following figure compares the
same lower-level logic viewed in a transparent instance and a push operation:

Pushing down to lower-level schematic:
The pushed instance itself is not shown at
the lower level; only its details are shown.

Dissolving:
The dissolved instance is shown transparently,
with its details nested inside it.

Transparent (dissolved)
instance

Same details

Exploring Design Hierarchy HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 127

You cannot control the display of transparent instances directly. However,
you can perform the following operations, which result in the display of trans-
parent instances:

• Hierarchically expand an object (using the expansion commands in the
HDL Analyst menu).

• Dissolve selected hierarchical instances in a filtered schematic (HDL
Analyst -> Dissolve Instances).

• Filter a schematic, after selecting multiple objects at more than one
level. See Commands That Result in Filtered Schematics, on page 128
for additional information.

These operations only make non-hidden hierarchical instances transparent.
You cannot dissolve hidden or primitive instances (including technology-
specific primitives). However, you can do the following:

• Unhide hidden instances, then dissolve them.

• Push down into technology-specific primitives to see their lower-level
details, and you can show the interiors of all technology-specific primi-
tives.

See also:

• Pushing and Popping Hierarchical Levels, on page 121

• Navigating With a Hierarchy Browser, on page 124

• HDL Analyst Command, on page 280

• Transparent and Opaque Display of Hierarchical Instances, on page 107

• Hidden Hierarchical Instances, on page 108

LO

 HDL Analyst Tool Filtering and Flattening Schematics

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
128 May 2015

Filtering and Flattening Schematics

This section describes the HDL Analyst commands that result in filtered and
flattened schematics. It describes

• Commands That Result in Filtered Schematics, on page 128

• Combined Filtering Operations, on page 129

• Returning to The Unfiltered Schematic, on page 129

• Commands That Flatten Schematics, on page 130

• Selective Flattening, on page 131

• Filtering Compared to Flattening, on page 132

Commands That Result in Filtered Schematics

A filtered schematic shows a subset of your design. Any command that
results in a filtered schematic is a filtering command. Some commands, like
the Expand commands, increase the amount of logic displayed, but they are
still considered filtering commands because they result in a filtered view of
the design. Other commands like Filter Schematic and Isolate Paths remove
objects from the current display.

Filtering commands include the following:

• Filter Schematic, Isolate Paths – reduce the displayed logic.

• Dissolve Instances (in a filtered schematic) – makes selected instances
transparent.

• Expand, Expand to Register/Port, Expand Paths, Expand Inwards, Select Net Driver,
Select Net Instances – display logic connected to the current selection.

• Show Critical Path, Flattened Critical Path, Hierarchical Critical Path – show critical
paths.

All the filtering commands, except those that display critical paths, operate
on the currently selected schematic object(s). The critical path commands
operate on your entire design, regardless of what is currently selected.

All the filtering commands except Isolate Paths are accessible from the HDL
Analyst menu; Isolate Paths is in the RTL view and Technology view popup
menus (along with most of the other commands above).

Filtering and Flattening Schematics HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 129

For information about filtering procedures, see Filtering Schematics, on
page 259 in the User Guide.

See also:

• Filtered and Unfiltered Schematic Views, on page 102

• HDL Analyst Menu, on page 279 and RTL and Technology Views Popup
Menus, on page 347

Combined Filtering Operations

Filtering operations are designed to be used in combination, successively.
You can perform a sequence of operations like the following:

1. Use Filter Schematic to filter your design to examine a particular instance.
See HDL Analyst Menu: Filtering and Flattening Commands, on
page 282 for a description of the command.

2. Select Expand to expand from one of the output pins of the instance to
add its immediate successor cells to the display. See HDL Analyst Menu:
Hierarchical and Current Level Submenus, on page 280 for a
description of the command.

3. Use Select Net Driver to add the net driver of a net connected to one of the
successors. See HDL Analyst Menu: Hierarchical and Current Level
Submenus, on page 280 for a description of the command.

4. Use Isolate Paths to isolate the net driver instance, along with any of its
connecting paths that were already displayed. See HDL Analyst Menu:
Analysis Commands, on page 286 for a description of the command.

Filtering operations add their resulting filtered schematics to the history of
schematic displays, so you can use the View menu Forward and Back
commands to switch between the filtered views. You can also combine
filtering with the search operation. See Finding Schematic Objects, on
page 113 for more information.

Returning to The Unfiltered Schematic

A filtered schematic often loses the design context, as it is removed from the
display by filtering. After a series of multiple or complex filtering operations,
you might want to view the context of a selected object. You can do this by

LO

 HDL Analyst Tool Filtering and Flattening Schematics

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
130 May 2015

• Selecting a higher level object in the Hierarchy Browser; doing so always
crossprobes to the corresponding object in the original schematic.

• Using Show Context to take you directly from a selected instance to the
corresponding context in the original, unfiltered schematic.

• Using Goto Net Driver to go from a selected net to the corresponding
context in the original, unfiltered schematic.

There is no Unfilter command. Use Show Context to see the unfiltered schematic
containing a given instance. Use View->Back to return to the previous, unfil-
tered display after filtering an unfiltered schematic. You can go back and
forth between the original, unfiltered design and the filtered schematics,
using the commands View->Back and Forward.

See also:

• RTL and Technology Views Popup Menus, on page 347

• View Menu: RTL and Technology Views Commands, on page 173

Commands That Flatten Schematics

A flattened schematic contains no hierarchical objects. Any command that
results in a flattened schematic is a flattening command. This includes the
following.

Command Unfiltered Schematic Filtered Schematic

Dissolve Instances Flattens selected instances --

Flatten Current
Schematic (Flatten
Schematic)

Flattens at the current level
and all lower levels. RTL view:
flattens to generic logic level
Technology view: flattens to
technology-cell level

Flattens only non-hidden
transparent hierarchical
instances; opaque and hidden
hierarchical instances are not
flattened.

RTL->Flattened
View

Creates a new, unfiltered RTL schematic of the entire design,
flattened to the level of generic logic cells.

Technology->
Flattened View

Creates a new, unfiltered Technology schematic of the entire
design, flattened to the level of technology cells.

Filtering and Flattening Schematics HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 131

All the commands are on the HDL Analyst menu except Unflatten Schematic,
which is available in a schematic popup menu.

The most versatile commands, are Dissolve Instances and Flatten Current
Schematic, which you can also use for selective flattening (Selective Flattening,
on page 131).

See also:

• Filtering Compared to Flattening, on page 132

• Selective Flattening, on page 131

Selective Flattening

By default, flattening operations are not very selective. However, you can
selectively flatten particular instances with these command (see RTL and
Technology Views Popup Menus, on page 347 for descriptions):

• Use Hide Instances to hide instances that you do not want to flatten, then
flatten the others (flattening operations do not recognize hidden
instances). After flattening, you can Unhide Instances that are hidden.

• Flatten selected hierarchical instances using one of these commands:

– If the current schematic is unfiltered, use Dissolve Instances.

– If the schematic is filtered, use Dissolve Instances, followed by Flatten
Current Schematic. In a filtered schematic, Dissolve Instances makes the
selected instances transparent and Flatten Current Schematic flattens
only transparent instances.

Technology->
Flattened to Gates
View

Creates a new, unfiltered Technology schematic of the entire
design, flattened to the level of Boolean logic gates.

Technology->
Flattened Critical
Path

Creates a filtered, flattened Technology view schematic that
shows only the instances with the worst slack times and their
path.

Unflatten Schematic Undoes any flattening done by Dissolve Instances and Flatten
Current Schematic at the current schematic level. Returns to the
original schematic, as it was before flattening (and any
filtering).

Command Unfiltered Schematic Filtered Schematic

LO

 HDL Analyst Tool Filtering and Flattening Schematics

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
132 May 2015

The Dissolve Instances and Flatten Current Schematic (or Flatten Schematic)
commands behave differently in filtered and unfiltered schematics as
outlined in the following table:

In a filtered schematic, flattening with Flatten Current Schematic is actually a
two-step process:

1. The transparent instances of the schematic are flattened in the context
of the entire design. The result of this step is the entire hierarchical
design, with the transparent instances of the filtered schematic replaced
by their internal logic.

2. The original filtering is then restored: the design is refiltered to show
only the logic that was displayed before flattening.

Although the result displayed is that of Step 2, you can view the intermediate
result of Step 1 with View->Back. This is because the display history is erased
before flattening (Step 1), and the result of Step 1 is added to the history as if
you had viewed it.

Filtering Compared to Flattening

As a general rule, use filtering to examine your design, and flatten it only if
you really need it. Here are some reasons to use filtering instead of flattening:

• Filtering before flattening is a more efficient use of computer time and
memory. Creating a new view where everything is flattened can take
considerable time and memory for a large design. You then filter anyway
to remove the flattened logic you do not need.

• Filtering is selective. On the other hand, the default flattening operations
are global: the entire design is flattened from the current level down.

Command Unfiltered Schematic Filtered Schematic

Dissolve Instances Flattens selected
instances

Provides virtual flattening: makes
selected instances transparent,
displaying their lower-level details.

Flatten Current
Schematic
Flatten Schematic

Flattens everything
at the current level
and below

Flattens only the non-hidden,
transparent hierarchical instances: does
not flatten opaque or hidden instances.
See below for details of the process.

Filtering and Flattening Schematics HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 133

Similarly, the inverse operation (UnFlatten Schematic) unflattens every-
thing on the current schematic level.

• Flattening operations eliminate the history for the current view: You can
not use View->Back after flattening. (You can, however, use UnFlatten
Schematic to regenerate the unflattened schematic.).

See also:

• RTL and Technology Views Popup Menus, on page 347

• Selective Flattening, on page 131

LO

 HDL Analyst Tool Timing Information and Critical Paths

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
134 May 2015

Timing Information and Critical Paths

The HDL Analyst tool provides several ways of examining critical paths and
timing information, to help you analyze problem areas. The different ways are
described in the following sections.

• Timing Reports, on page 134

• Critical Paths and the Slack Margin Parameter, on page 135

• Examining Critical Path Schematics, on page 136

See the following for more information about timing and result analysis:

• Watch Window, on page 50

• Log File, on page 261

• Chapter 13, Optimizing Processes for Productivity in the User Guide

Timing Reports

When you synthesize a design, a default timing report is automatically
written to the log file, which you can view using View->View Log File. This report
provides a clock summary, I/O timing summary, and detailed timing infor-
mation for your design.

For certain device technologies, you can use the Analysis->Timing Analyst
command to generate a custom timing report. Use this command to specify
start and end points of paths whose timing interests you, and set a limit for
the number of paths to analyze between these points. By default, the sequen-
tial instances, input ports, and output ports that are currently selected in the
Technology views of the design are the candidates for choosing start and end
points. In addition, the start and end points of the previous Timing Analyst run
become the default start and end points for the next run. When analyzing
timing, any latches in the path are treated as level-sensitive registers.

The custom timing report is stored in a text file named resultsfile.ta, where
resultsfile is the name of the results file (see Implementation Results Panel,
on page 200). In addition, a corresponding output netlist file is generated,
named resultsfile_ta.srm. Both files are in the implementation results direc-
tory.

Timing Information and Critical Paths HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 135

The Timing Analyst dialog box provides check boxes for viewing the text report
(Open Report) in the Text Editor and the corresponding netlist (Open Schematic)
in a Technology view. This Technology view of the timing path, labeled Timing
View in the title bar, is special in two ways:

• The Timing View shows only the paths you specify in the Timing Analyst
dialog box. It corresponds to a special design netlist that contains
critical timing data.

• The Timing Analyst and Show Critical Path commands (and equivalent icons
and shortcuts) are unavailable whenever the Timing View is active.

See also:

• Analysis Menu, on page 267

• Timing Reports, on page 267

• Log File, on page 261

Critical Paths and the Slack Margin Parameter

The HDL Analyst tool can isolate critical paths in your design, so that you can
analyze problem areas, add timing constraints where appropriate, and resyn-
thesize for better results.

After you successfully run synthesis, you can display just the critical paths of
your design using any of the following commands from the HDL Analyst menu:

• Hierarchical Critical Path

• Flattened Critical Path

• Show Critical Path

The first two commands create a new Technology view, hierarchical or
flattened, respectively. The Show Critical Path command reuses the current
Technology view. Neither the current selection nor the current sheet display
have any effect on the result. The result is flat if the entire design was already
flat; otherwise it is hierarchical. Use Show Critical Path if you want to maintain
the existing display history.

All these commands filter your design to show only the instances (and their
paths) with the worst slack times. They also enable HDL Analyst -> Show Timing
Information, displaying timing information.

LO

 HDL Analyst Tool Timing Information and Critical Paths

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
136 May 2015

Negative slack times indicate that your design has not met its timing require-
ments. The worst (most negative) slack time indicates the amount by which
delays in the critical path cause the timing of the design to fail. You can also
obtain a range of worst slack times by setting the slack margin parameter to
control the sensitivity of the critical-path display. Instances are displayed
only if their slack times are within the slack margin of the (absolutely) worst
slack time of the design.

The slack margin is the criterion for distinguishing worst slack times. The
larger the margin, the more relaxed the measure of worst, so the greater the
number of critical-path instances displayed. If the slack margin is zero (the
default value), then only instances with the worst slack time of the design are
shown. You use HDL Analyst->Set Slack Margin to change the slack margin.

The critical-path commands do not calculate a single critical path. They filter
out instances whose slack times are not too bad (as determined by the slack
margin), then display the remaining, worst-slack instances, together with
their connecting paths.

For example, if the worst slack time of your design is -10 ns and you set a
slack margin of 4 ns, then the critical path commands display all instances
with slack times between -6 ns and -10 ns.

See also:

• HDL Analyst Menu, on page 279

• HDL Analyst Command, on page 280

• Handling Negative Slack, on page 284 of the User Guide

• Analyzing Timing in Schematic Views, on page 278 of the User Guide

Examining Critical Path Schematics

Use successive filtering operations to examine different aspects of the critical
path. After filtering, use View -> Back to return to the previous point, then filter
differently. For example, you could use the command Isolate Paths to examine
the cone of logic from a particular pin, then use the Back command to return
to the previous display, then use Isolate Paths on a different pin to examine a
different logic cone, and so on.

Timing Information and Critical Paths HDL Analyst Tool

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 137

Also, the Show Context and Goto Net Driver commands are particularly useful
after you have done some filtering. They let you get back to the original, unfil-
tered design, putting selected objects in context.

See also:

• Returning to The Unfiltered Schematic, on page 129

• Filtering and Flattening Schematics, on page 128

LO

 HDL Analyst Tool Timing Information and Critical Paths

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
138 May 2015

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 139

C H A P T E R 4

Constraints

Constraints are used in the FPGA synthesis environment to achieve optimal
design results. Timing constraints set performance goals, non-timing
constraints (design constraints) guide the tool through optimizations that
further enhance performance and physical constraints define regions and
locations for placement-aware synthesis.

This chapter provides an overview of how constraints are handled in the
FPGA synthesis environment.

• Constraint Types, on page 140

• Constraint Files, on page 141

• Timing Constraints, on page 143

• FDC Constraints, on page 146

• Methods for Creating Constraints, on page 147

• Constraint Translation, on page 149

• Constraint Checking, on page 154

• Database Object Search, on page 156

• Forward Annotation, on page 157

• Auto Constraints, on page 157

LO

 Constraints Constraint Types

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
140 May 2015

Constraint Types

One way to ensure the FPGA synthesis tools achieve the best quality of
results for your design is to define proper constraints. In the FPGA environ-
ment, constraints can be categorized by the following types:

The easiest way to specify constraints is through the SCOPE interface. The
tool saves timing and design constraints to an FDC file that you add to your
project.

See Also

Type Description

Timing Performance constraints that guide the synthesis tools to achieve optimal
results. Examples: clocks (create_clock), clock groups (set_clock_groups),
and timing exceptions like multicycle and false paths (set_multicycle_path...)
See Timing Constraints, on page 143 for information on defining these
constraints.

Design Additional design goals that enhance or guide tool optimizations.
Examples: Attributes and directives (define_attribute, define_global_attribute),
I/O standards (define_io_standard), and compile points (define_compile_point).

Constraint Files, on page 141 Overview of constraint files

Timing Constraints, on page 143 Overview of timing constraint definitions and
FDC file generation.

SCOPE Constraints Editor, on
page 159

Information about automatic generation of
timing and design constraints.

Chapter 6, Constraint Syntax Timing constraint syntax

Design Constraints, on page 245 Design constraint syntax

Constraint Files Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 141

Constraint Files

The figure below shows the files used for specifying various types of
constraints. The FDC file is the most important one and is the primary file for
both timing and non-timing design constraints. The other constraint files are
used for specific features or as input files to generate the FDC file, as
described in Timing Constraints, on page 143. The figure also indicates the
specific processes controlled by attributes and directives.

Compiler Mapper
Static
Timing

Analyzer

Legacy Synplify Timing
Constraints

Synopsys Standard
Timing Constraints

Standard SDC

Legacy SDC

FDC

ADC

Timing constraints
Design constraints
Controlling constraint & module
Physical constraint
Constraint files

TIMING

LO

 Constraints Constraint Files

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
142 May 2015

The table is a summary of the various kinds of constraint files.

File Type Common Commands Comments

FDC Timing
constraints

create_clock,
set_multicycle_delay …

Used for synthesis. Includes
timing constraints that
follow the Synopsys
standard format as well as
design constraints.

Design
constraints

define_attribute,
define_io_standard …

ADC Timing
constraints
for timing
analysis

create_clock,
set_multicycle_delay …

Used with the stand-alone
timing analyzer.

SDC
(Synopsys
Standard)

FPGA timing
constraints

create_clock,
set_clock_latency,
set_false_path …

Use sdc2fdc to convert
constraints to an FDC file so
that they can be passed to
the synthesis tools.

SDC
(Legacy)

Legacy
timing
constraints
and non-
timing (or
design)
constraints

define_clock,
define_false_path
define_attribute,
define_collection …

Use sdc2fdc to convert the
constraints to an FDC file so
that they can be passed to
the synthesis tools.

Timing Constraints Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 143

Timing Constraints

The synthesis tools have supported different timing formats in the past, and
this section describes some of the details of standardization:

• Legacy SDC and Synopsys Standard SDC, on page 143

• FDC File Generation, on page 144

• Timing Constraint Precedence in Mixed Constraint Designs, on page 145

Legacy SDC and Synopsys Standard SDC

Releases prior to G-2012.09M had two types of constraint files that could be
used in a design project:

• Legacy “Synplify-style” timing constraints (define_clock, define_false_path...)
saved to an sdc file. This file also included non-timing design
constraints, like attributes and compile points.

• Synopsys standard timing constraints (create_clock, set_false_path...).
These constraints were also saved to an sdc file, which only contained
timing constraints. Non-timing constraints were in a separate sdc file.
The tool used the two files together, drawing timing constraints from one
and non-timing constraints from the other.

Starting with the G-2012.09M release, Synopsys standard timing constraint
format has replaced the legacy-style constraint format, and a new FDC (FPGA
design constraint) file consolidates both timing and design formats. As a
result of these updates, there are some changes in the use model:

• Timing constraints in the legacy format are converted and included in
an FDC file, which includes both timing and non-timing constraints. The
file uses the Synopsys standard syntax for timing constraints
(create_clock, set_multicyle_path...). The syntax for non-timing design
constraints is unchanged (define_attribute, define_io_standard...).

• The SCOPE editor has been enhanced to support the timing constraint
changes, so that new constraints can be entered correctly.

• For older designs, use the sdc2fdc command to do a one-time conversion.

LO

 Constraints Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
144 May 2015

FDC File Generation

The following figure is a simplified summary of constraint-file handling and
the generation of fdc.

It is not required that you convert Synopsys standard sdc constraints as the
figure implies, because they are already in the correct format. You could have
a design with mixed constraints, with separate Synopsys standard sdc and fdc
files. The disadvantage to keeping them in the standard sdc format is that you
cannot view or edit the constraints through the SCOPE interface.

Timing Constraints Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 145

Timing Constraint Precedence in Mixed Constraint Designs

Your design could include timing constraints in a Synopsys standard sdc file
and others in an fdc file. With mixed timing constraints in the same design,
the following order of precedence applies:

• The tool reads the file order listed in the project file and any conflicting
constraint overwrites a previous constraint. This means that constraint
priority is determined by the constraint that is read last.

With the legacy timing constraints, it is strongly recommended that you
convert them to the fdc format. However, even if you retain the old format in
an existing design, they must be used alone and cannot be mixed in the same
design as fdc or Synopsys standard timing sdc constraints. Specifically, do
not specify timing constraints using mixed formats. For example, do not
define clocks with define_clock and create_clock together in the same constraint
file or multiple SDC/FDC files.

For the list of FPGA timing constraints (FDC) and their syntax, see FPGA
Timing Constraints, on page 210.

LO

 Constraints FDC Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
146 May 2015

FDC Constraints

The FPGA design constraints (FDC) file contains constraints that the tool uses
during synthesis. This FDC file includes both timing constraints and non-
timing constraints in a single file.

• Timing constraints define performance targets to achieve optimal
results. The constraints follow the Synopsys standard format, such as
create_clock, set_input_delay, and set_false_path.

• Non-timing (or design constraints) define additional goals that help the
tool optimize results. These constraints are unique to the FPGA
synthesis tools and include constraints such as define_attribute,
define_io_standard, and define_compile_point.

The recommended method to define constraints is to enter them in the
SCOPE editor, and the tool automatically generates the appropriate syntax. If
you define constraints manually, use the appropriate syntax for each type of
constraint (timing or non-timing), as described above. See Methods for
Creating Constraints, on page 147 for details on generating constraint files.

Prior to release G-2012.09M, designs used timing constraints in either legacy
Synplify-style format or Synopsys standard format. You must do a one-time
conversion on any existing SDC files to convert them to FDC files using the
following command:

% sdc2fdc

sdc2fdc converts constraints as follows:

Once defined, the FDC file can be added to your project. Double-click this file
from the Project view to launch the SCOPE editor to view and/or modify your
constraints. See Converting SDC to FDC, on page 157 for details on how to
run sdc2fdc.

For legacy Synplify-style
timing constraints

Converts timing constraints to Synopsys standard
format and saves them to an FDC file.

For Synopsys standard
timing constraints

Preserves Synopsys standard format timing
constraints and saves them to an FDC file.

For non-timing or design
constraints

Preserves the syntax for these constraints and
saves them to an FDC file.

Methods for Creating Constraints Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 147

Methods for Creating Constraints

Constraints are passed to the synthesis environment in FDC files using Tcl
command syntax.

New Designs

For new designs, you can specify constraints using any of the following
methods:

Definition Method Description

SCOPE Editor
(fdc file)–
Recommended

Use this method to specify constraints wherever possible.
The SCOPE editor automatically generates fdc
constraints with the right syntax. You can use it for most
constraints. See Chapter 5, SCOPE Constraints Editor,
for information how to use SCOPE to automatically
generate constraint syntax.
Access: File->New->FPGA Design Constraints …

Manually-Entered Text
Editor
(fdc File, all other
constraint files)

You can manually enter constraints in a text file. Make
sure to use the correct syntax for the timing and design
commands.
The SCOPE GUI includes a TCL View with an advanced
text editor, where you can manually generate the
constraint syntax. For a description of this view, see TCL
View, on page 184.
You can also open any constraint file in a text editor to
modify it.

Source Code
Attributes/Directives
(HDL files, cdc file)

Directives must be entered in the source code because
they affect the compiler. Do not include any other
constraints in the source code, as this makes the source
code less portable. In addition, you must recompile the
design for the constraints to take effect.
Attributes can be entered through the SCOPE interface,
as they affect the mapper, not the compiler

Automatic— First Pass Enable the Auto Constrain button in the Project view to
have the tool automatically generate constraints based
on inferred clocks. See Using Auto Constraints, on
page 295 in the User Guide for details.
Use this method as a quick first pass to get an idea of
what constraints can be set.

LO

 Constraints Methods for Creating Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
148 May 2015

If there are multiple timing exception constraints on the same object, the
software uses the guidelines described in Conflict Resolution for Timing
Exceptions, on page 203 to determine the constraint that takes precedence.

See Also

To specify the correct syntax for the timing and design commands, see:

• Chapter 6, Constraint Syntax

• Attribute Reference Manual

Existing Designs

The SCOPE editor in this release does not save constraints to SDC files. For
designs prior to G-2012.09M, it is recommended that you migrate your
timing constraints to FDC format to take advantage of the tool’s enhanced
handling of these types of constraints. To migrate constraints, use the sdc2fdc
command (see Converting SDC to FDC, on page 157l) on your sdc files.

Note: If you need to edit an SDC file, either use a text editor, or double-
click the file to open the legacy SCOPE editor. For information on
editing older SDC files, see SCOPE User Interface (Legacy), on
page 207.

See Also

To use the current SCOPE editor, see:

• Chapter 5, SCOPE Constraints Editor

• Chapter 5, Specifying Constraints

Constraint Translation Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 149

Constraint Translation

The tool includes standalone scripts to convert specific vendor constraints, as
well as functionality that includes constraint translation as part of the larger
task of generating a synthesis project from vendor files.

sdc2fdc Conversion

The sdc2fdc Tcl shell command translates legacy FPGA timing constraints to
Synopsys FPGA timing constraints. This command scans the input SDC files
and attempts to convert constraints for the implementation.

For details, see the following:

• Troubleshooting Conversion Error Messages, on page 149

• sdc2fdc FPGA Design Constraint (FDC) File, on page 151

• sdc2fdc, on page 57 in the Command Reference manual (syntax)

Troubleshooting Conversion Error Messages

The following table contains common error messages you might encounter
when running the sdc2fdc Tcl shell command, and descriptions of how to
resolve these problems. In addition to these messages, you must also ensure
that your files have read/write permissions set properly and that there is
sufficient disk space.

Message Example Underlying Problem

Remove/disable
D:FDC_constraints/rev_FDC/top_translated.fdc from the
current implementation.

Cannot translate a
*_translated.fdc file

Add/enable one or more SDC constraint files. No active constraint files

Add clock object qualifier (p: n: ...) for
"define_clock -name {clka {clka} -period 10 -clockgroup
{default_clkgroup_0}"
Synplicity_SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 32

Clock not translated

LO

 Constraints Constraint Translation

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
150 May 2015

Fix any issues in the SDC source file and rerun the sdc2fdc command.

Batch Mode
If you run sdc2fdc -batch, then the following occurs:

• The two Clock not translated messages in the table above are not
generated.

• When the translation is successful, the SDC file is disabled and the FDC
file is enabled and saved automatically in the project file.

However, if the -batch option is not used and the translation is
successful, then the SDC file is disabled and the FDC file is enabled but

Specify -name for "define_clock {p:clkb} -period 20
-clockgroup {default_clkgroup_1}"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

Clock not translated

Missing qualifier(s) (i: p: n: ...)
"define_multicycle_path 4 -from {a* b*} -to $fdc_cmd_0 -start"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 76

Bad -from list for
define_multicycle_path {a*
b*}

Mixing of object types not permitted
"define_multicycle_path -to {i:*y*.q[*] p:ena} 3"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Bad -to list for
define_multicycle_path
{i: *y* .q[*] p:ena}

Mixing of object types and missing qualifiers not
permitted "define_multicycle_path -from {i:*y*.q[*] p:ena
enab} 3"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Bad -from list for
define_multicycle_path
{i:*y* .q[*] p:ena enab}

Default 1000.
"create_clock -name {clkb} {p:clkb} -period 1000 -waveform
{0 500.0}"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

No period or frequency found

"create_clock -name {clka} {p:clka} -period 10 -rise 5
-clockgroup {default_clkgroup_0"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 32

Must specify both -rise and
-fall, or neither

Message Example Underlying Problem

Constraint Translation Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 151

not automatically saved in the Project file. A message to this effect
displays in the Tcl shell window.

sdc2fdc FPGA Design Constraint (FDC) File

The FDC constraint file generated after running sdc2fdc contains translated
legacy FPGA timing constraints (SDC), which are now in the FDC format. This
file is divided into two sections:

This file also provides the following:

• Each source sdc file has its separate subhead.

• Each compile point is treated as a top level, so its sdc file has its own
_translated.fdc file.

• The translator adds the naming rule, set_rtl_ff_names, so that the
synthesis tool knows these constraints are not from the Synopsys
Design Compiler.

The following example shows the contents of the FDC file.

###
####This file contains constraints from Synplicity SDC files that have been
####translated into Synopsys FPGA Design Constraints (FDC.
####Translated FDC output file:
####D:/bugs/timing_88/clk_prior/scratch/FDC_constraints/rev_2/top_translated.fdc
####Source SDC files to the translation:
####D:/bugs/timing_88/clk_prior/scratch/top.sdc
###

####Source SDC file to the translation:
####D:/bugs/timing_88/clk_prior/scratch/top.sdc
###

#Legacy constraint file
#C:\Clean_Demos\Constraints_Training\top.sdc
#Written on Mon May 21 15:58:35 2012
#by Synplify Pro, Synplify Pro Scope Editor

#Collections

1 Contains this information:
• Valid FPGA design constraints (e.g. define_scope_collection and define_attribute)
• Legacy timing constraints that were not translated because they were

specified with -disable.

2 Contains the legacy timing constraints that were translated.

LO

 Constraints Constraint Translation

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
152 May 2015

define_scope_collection all_grp {define_collection \
[find -inst {i:FirstStbcPhase}] \
[find -inst {i:NormDenom[6:0]}] \
[find -inst {i:NormNum[7:0]}] \
[find -inst {i:PhaseOut[9:0]}] \
[find -inst {i:PhaseOutOld[9:0]}] \
[find -inst {i:PhaseValidOut}] \
[find -inst {i:ProcessData}] \
[find -inst {i:Quadrant[1:0]}] \
[find -inst {i:State[2:0]}] \
}

#Clocks

#define_clock -disable -name {clkc} -virtual -freq 150 -clockgroup default_clkgroup_1

#Clock to Clock

#Inputs/Outputs

define_input_delay -disable {b[7:0]} 2.00 -ref clka:r
define_input_delay -disable {c[7:0]} 0.20 -ref clkb:r
define_input_delay -disable {d[7:0]} 0.30 -ref clkb:r
define_output_delay -disable {x[7:0]} -improve 0.00 -route 0.00
define_output_delay -disable {y[7:0]} -improve 0.00 -route 0.00

#Registers

#Multicycle Path
#

#False Path
#

define_false_path -disable -from {i:x[1]}

#Path Delay

#Attributes

define_io_standard -default_input -delay_type input syn_pad_type {LVCMOS_33}#

#I/O standards

#Compile Points

#Other Constraints

#SDC compliant constraints translated from Legacy Timing Constraints
###

set_rtl_ff_names {#}

create_clock -name {clka} [get_ports {clka}] -period 10 -waveform {0 5.0}
create_clock -name {clkb} [get_ports {clkb}] -period 6.666666666666667

-waveform {0 3.3333333333333335}
set_input_delay -clock [get_clocks {clka}] -clock_fall -

Constraint Translation Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 153

add_delay 0.000 [all_inputs]
set_output_delay -clock [get_clocks {clka}] -add_delay 0.000 [all_outputs]
set_input_delay -clock [get_clocks {clka}] -
add_delay 2.00 [get_ports {a[7:0]}]
set_input_delay -clock [get_clocks {clka}] -add_delay 0 [get_ports {rst}]
set mcp 4
set_multicycle_path $mcp -start \

-from \
[get_ports \
{a* \
b*} \
] \

-to \
[find -seq -hier {q?[*]}]

set_multicycle_path 3 -end \
-from \

[find -seq {*y*.q[*]}]

set_clock_groups -name default_clkgroup_0 -asynchronous \
-group [get_clocks {clka dcm|clk0_derived_clock dcm|
clk2x_derived_clock dcm|clk0fx_derived_clock}]

set_clock_groups -name default_clkgroup_1 -asynchronous \
-group [get_clocks {clkb}]

LO

 Constraints Constraint Checking

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
154 May 2015

Constraint Checking

The synthesis tools include several features to help you debug and analyze
design constraints. Use the constraint checker to check the syntax and appli-
cability of the timing constraints in the project. The synthesis log file includes
a timing report as well as detailed reports on the compiler, mapper, and
resource usage information for the design. A stand-alone timing analyzer
(STA) generates a customized timing report when you need more details
about specific paths or want to modify constraints and analyze, without
resynthesizing the design. The following sections provide more information
about these features.

Constraint Checker

Check syntax and other pertinent information on your constraint files using
Run->Constraint Check or the Check Constraints button in the SCOPE editor. This
command generates a report that checks the syntax and applicability of the
timing constraints that includes the following information:

• Constraints that are not applied

• Constraints that are valid and applicable to the design

• Wildcard expansion on the constraints

• Constraints on objects that do not exist

See Constraint Checking Report, on page 275 for details.

Timing Constraint Report Files

The results of running constraint checking, synthesis, and stand-alone
timing analysis are provided in reports that help you analyze constraints.

Constraint Checking Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 155

Use these files for additional timing constraint analysis:

File Description

_cck.rpt Lists the results of running the constraint checker (see Constraint
Checking Report, on page 275).

_cck_fdc_rpt Lists the wildcard expansion results of running the constraint
checker for collections with the get_* and all_* object query
commands using the check_fdc_query Tcl command. See
check_fdc_query, on page 21 for more information.

_scck.rpt Lists the results of running the constraint checker for collections
with the get_* and all_* object query commands.

.ta Reports timing analysis results (see Generating Custom Timing
Reports with STA, on page 285).

.srr or .htm Reports post-synthesis timing results as part of the text or HTML
log file (see Timing Reports, on page 267 and Log File, on
page 261).

LO

 Constraints Database Object Search

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
156 May 2015

Database Object Search

To apply constraints, you have to search the database to find the appropriate
objects. Sometimes you might want to search for and apply the same
constraint to multiple objects. The FPGA tools provide some Tcl commands to
facilitate the search for database objects:

Commands Common Commands Description

Find Tcl Find, open_design... Lets you search for design objects to
form collections that can apply
constraints to the group. See Using
Collections, on page 147 and find, on
page 90.

Collections define_collection,
c_union...

Create, copy, evaluate, traverse, and
filter collections. See Using Collections,
on page 147 and Collection
Commands, on page 110 for more
information.

Forward Annotation Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 157

Forward Annotation

The tool can automatically generate vendor-specific constraint files for
forward annotation to the place-and-route tools when you enable the Write
Vendor Constraints switch (on the Implementation Results tab) or use the
-write_apr_constraint option of the set_option command.

For information about how forward annotation is handled for your target
technology, refer to the appropriate vendor chapter of the FPGA Synthesis
Reference Manual.

Auto Constraints

Auto constraints are automatically generated by the synthesis tool, however,
these do not replace regular timing constraints in the normal synthesis flow.
Auto constraints are intended as a quick first pass to evaluate the kind of
timing constraints you need to set in your design.

To enable this feature and automatically generate register-to-register
constraints, use the Auto Constrain option on the left panel of the Project view.
For details, see Using Auto Constraints, on page 295 in the User Guide.

Vendor File Extension

Microsemi _SDC.SDC

LO

 Constraints Auto Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
158 May 2015

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 159

C H A P T E R 5

SCOPE Constraints Editor

The SCOPE (Synthesis Constraints OPtimization Environment®) editor
automatically generates syntax for synthesis constraints. Enter information
in the SCOPE tabs, panels, columns, and pulldowns to define constraints
and parameter values. You can also drag and drop objects from the HDL
Analyst UI to populate values in the constraint fields.

This interface creates Tcl-format Synopsys Standard timing constraints and
Synplify-style design constraints and saves the syntax to an FPGA design
constraints (FDC) file that can automatically be added to your synthesis
project. See Constraint Types, on page 140 for definitions of synthesis
constraints.

Topics in this section include:

• SCOPE User Interface, on page 160

• SCOPE Tabs, on page 161

• Industry I/O Standards, on page 186

• Delay Path Timing Exceptions, on page 190

• Specifying From, To, and Through Points, on page 196

• Conflict Resolution for Timing Exceptions, on page 203

LO

 SCOPE Constraints Editor SCOPE User Interface

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
160 May 2015

SCOPE User Interface

The SCOPE editor contains a number of panels for creating and managing
timing constraints and design attributes. This GUI offers the easiest way to
create constraint files for your project. The syntax is saved to a file using an
FDC extension and can be included in your design project.

From this editor, you specify timing constraints for clocks, ports, and nets as
well as design constraints such as attributes, collections, and compile points.
However, you cannot set black-box constraints from the SCOPE window.

To bring up the editor, use one of the following methods from the Project view:

• For a new file (the project file is open and the design is compiled):

– Choose File->New-> FPGA Design Constraints; select FPGA Constraint File
(SCOPE).

– Click the SCOPE icon in the toolbar; select FPGA Constraint File (SCOPE).

• You can also open the editor using an existing constraint file. Double-
click on the constraint file (FDC), or use File->Open, specifying the file
type as FPGA Design Constraints File (*.fdc).

See Also:

• Using the SCOPE Editor, on page 114 in the User Guide.

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 161

SCOPE Tabs

Here is a summary of the constraints created through the SCOPE editor:

If you choose an object from a SCOPE pull-down menu, it has the appropriate
prefix appended automatically. If you drag and drop an object from an RTL
view, for example, make sure to add the prefix appropriate to the language
used for the module. See Naming Rule Syntax Commands, on page 242 for
details.

Clocks

You use the Clocks panel of the SCOPE spreadsheet to define a signal as a
clock.

SCOPE Panel See ...

Clocks Clocks, on page 161

Generated Clocks Generated Clocks, on page 167

Collections Collections, on page 169

Inputs/Outputs Inputs/Outputs, on page 171

Registers Registers, on page 174

Delay Paths Delay Paths, on page 176

Attributes Attributes, on page 178

I/O Standards I/O Standards, on page 179

Compile Points Compile Points, on page 181

TCL View TCL View, on page 184

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
162 May 2015

The Clocks panel includes the following options:

Field Description

Name Specifies the clock object name.
Clocks can be defined on the following objects:
• Pins
• Ports
• Nets
For virtual clocks, the field must contain a unique name not
associated with any port, pin, or net in the design.

Period Specifies the clock period in nanoseconds. This is the
minimum time over which the clock waveform repeats. The
period must be greater than zero.

Waveform Specifies the rise and fall edge times for the clock waveforms of
the clock in nanoseconds, over an entire clock period. The first
time in the list is a rising transition, typically the first rising
transition after time zero. There must be two edges, and they
are assumed to be rise and then fall. The edges must be
monotonically increasing. If you do not specify this option, a
default waveform is assumed, which has a rise edge of 0.0 and
a fall edge of period/2.

Add Delay Specifies whether to add this delay to the existing clock or to
overwrite it. Use this option when multiple clocks must be
specified on the same source for simultaneous analysis with
different clock waveforms. When you use this option, you
must also specify the clock, and clocks with the same source
must have different names.

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 163

Clock Groups

Clock grouping is associative; two clocks can be asynchronous to each other
but both can be synchronous with a third clock.

The SCOPE GUI prompts you for a clock group for each clock that you define.
By default, the tool assigns all clocks to the default clock group. When you
add a name that differs from the default clock group name, the clock is
assigned its own clock group and is asynchronous to the default clock group
as well as all other named clock groups.

This section presents scenarios for defining clocks and includes the following
examples:

• Example 1 – SCOPE Definition

• Example 2 – Equivalent Tcl Syntax

• Example 3 – Establish Clock Relationships

• Example 4 – Using a Single Group Option

• Example 5 – Legacy Clock Grouping

Clock Group Assigns clocks to asynchronous clock groups. The clock
grouping is inclusionary (for example, clk2 and clk3 can each be
related to clk1 without being related to each other). For details,
see Clock Groups, on page 163.

Latency Specifies the clock latency applied to clock ports and clock
aliases. Applying the latency constraint on a port can be used
to model the off-chip clock delays in a multichip environment.
Clock latency can only:
• Apply to clocks defined on input ports.
• Be used for source latency.
• Apply to port clock objects.

Uncertainty Specifies the clock uncertainty (skew characteristics) of the
specified clock networks. You can only apply latency to clock
objects.

Field Description

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
164 May 2015

Example 1 – SCOPE Definition
A design has three clocks, clk1, clk2, clk3. You want clk1 and clk2 to be in the
same clock group—synchronous to each other but asynchronous to clk3. You
can apply this clock definition by adding a name in the Clock Group column, as
shown below:

This definition assigns clk1 and clk2 to clock group group1, synchronous to
each other and asynchronous to clk3. The equivalent Tcl command for this
appears in the text editor window as follows:

set_clock_groups -derive -asynchronous -name {group1}
-group {{c:clk1} {c:clk2}}

Example 2 – Equivalent Tcl Syntax
A design has three clocks: clk1, clk2, clk3. Use the following commands to set
clk2 synchronous to clk3, but asynchronous to clk1:

set_clock_groups –asynchronous –group [get_clocks {clk3 clk2}]

set_clock_groups –asynchronous -group [get_clocks {clk1}]

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 165

Example 3 – Establish Clock Relationships
A design has the following clocks defined:

create_clock -name {clka} {p:clka} -period 10 -waveform {0 5.0}
create_clock -name {clkb} {p:clkb} -period 20 -waveform {0 10.0}
create_clock -name {my_sys} {p:sys_clk} -period 200 -waveform {0
100.0}

You want to define clka and clkb as asynchronous to each other and clka and
clkb as synchronous to my_sys.

For the tool to establish these relationships, multiple -group options are
needed in a single set_clock_groups command. Clocks defined by the first
–group option are asynchronous to clocks in the subsequent –group option.
Therefore, you can use the following syntax to establish the relationships
described above:

set_clock_groups -asynchronous -group [get_clocks {clka}]
-group [get_clocks {clkb}]

Example 4 – Using a Single Group Option
set_clock_groups has a unique behavior when a single –group option is specified
in the command. For this example, the following constraint specifications are
applied:

set_clock_groups -asynchronous -name {default_clkgroup_0} -group
[get_clocks {clka my_sys}]

set_clock_groups -asynchronous -name {default_clkgroup_1} -group
[get_clocks {clkb my_sys}]

The first statement assigns clka AND my_sys as asynchronous to clkb, and the
second statement assigns clkb AND my_sys as asynchronous to clka. Therefore,
with this specification, all three clocks are established as asynchronous to
each other.

Example 5 – Legacy Clock Grouping
This section shows how the legacy clock group definitions (Synplify-style
timing constraints) are converted to the Synopsys standard timing syntax
(FDC). Legacy clock grouping can be represented through Synopsys standard
constraints, but the multi-grouping in the Synopsys standard constraints
cannot be represented in legacy constraints.

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
166 May 2015

For example, the following table shows legacy clock definitions and their
translated FDC equivalents:

The create_generated_clock constraints used in legacy SDC are preserved in
FDC. The -derive option directs the create_generated_clock command to inherit
the -source clock group. This behavior is unique to FDC and is an extension of
the Synopsys SDC standard functionality.

See Also

For equivalent Tcl syntax, see the following sections:

• create_clock, on page 212

• set_clock_groups, on page 219

• set_clock_latency, on page 223

• set_clock_uncertainty, on page 226

For information about other SCOPE panels, see SCOPE Tabs, on page 161.

Legacy
Definition

define_clock -name{clka}{p:clka}-period 10 -clockgroup default_clkgroup_0
define_clock -name {clkb}{p:clkb} -freq 150 -clockgroup default_clkgroup_1
define_clock -name {clkc} {p:clkc} -freq 200 -clockgroup default_clkgroup_1

FDC
Definition

###==== BEGIN Clocks - (Populated from SCOPE tab, do not edit)
create_clock -name {clka} {p:clka} -period 10 -waveform {0 5.0}
create_clock -name {clkb} {p:clkb} -period 6.667 -waveform {0 3.3335}
create_clock -name {clkc} {p:clkc} -period 5.0 -waveform {0 2.5}
set_clock_groups -derive -name default_clkgroup_0 -asynchronous

-group {c:clka}
set_clock_groups -derive -name default_clkgroup_1 -asynchronous

-group {c:clkb c:clkc}
###==== END Clocks

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 167

Generated Clocks

Use the Generated Clocks panel of the SCOPE spreadsheet to define a signal as
a generated clock. The equivalent Tcl constraint is create_generated_clock; its
syntax is described in create_generated_clock, on page 214.

The Generated Clocks panel includes the following options:

Field Description

Name Specifies the name of the generated clock.
If this option is not used, the clock gets the name of the first
clock source specified in the source.

Source Specifies the master clock pin, which is either a master
clock source pin or a fanout pin of the master clock driving
the generated clock definition pin. The clock waveform at
the master pin is used for deriving the generated clock
waveform.

Object Generated clocks can be defined on the following objects:
• Pins
• Ports
• Nets
• Instances—Where instances have only one output (for

example, BUFGs)

Master Clock Specifies the master clock to be used for this generated
clock, when multiple clocks fan into the master pin.

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
168 May 2015

For more information about other SCOPE options, see SCOPE Tabs, on
page 161.

Generate Type Specifies any of the following:
edges – Specifies a list of integers that represents edges from
the source clock that are to form the edges of the generated
clock. The edges are interpreted as alternating rising and
falling edges and each edge must not be less than its
previous edge. The number of edges must be an odd number
and not less than 3 to make one full clock cycle of the
generated clock waveform. For example, 1 represents the
first source edge, 2 represents the second source edge, and
so on.

divide_by – Specifies the frequency division factor. If the
divide factor value is 2, the generated clock period is twice
as long as the master clock period.

multiply_by – Specifies the frequency multiplication factor. If
the multiply factor value is 3, the generated clock period is
one-third as long as the master clock period.

Generate Parameters Specifies integers that define the type of generated clock.

Generate Modifier Defines the secondary characteristics of the generated
clock.

Modify Parameters Defines modifier values of the generated clock.

Invert Specifies whether to use invert – Inverts the generated clock
signal (in the case of frequency multiplication and division).

Add Either add this clock to the existing clock or overwrite it.
Use this option when multiple generated clocks must be
specified on the same source, because multiple clocks fan
into the master pin. Ideally, one generated clock must be
specified for each clock that fans into the master pin. If you
specify this option, you must also specify the clock and
master clock. The clocks with the same source must have
different names.

Field Description

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 169

Collections

The Collections tab allows you to set constraints for a group of objects you
have defined as a collection with the Tcl command. For details, see Creating
and Using SCOPE Collections, on page 148 of the User Guide.

You can crossprobe the collection results to an HDL Analyst view. To do this,
right-click in the SCOPE cell and select the option Select in Analyst.

Collection Commands

You can use the collection commands on collections or Tcl lists. Tcl lists can
be just a single element long.

Field Description

Enable Enables the row.

Name Enter the collection name.

Command Select a collection creation command from the drop-down
menu. See Collection Commands, on page 169 for
descriptions of the commands.

Comment Enter comments that are included in the constraints file.

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
170 May 2015

For information about all SCOPE panels, see SCOPE Tabs, on page 161.

To ... Use this command ...

Create a collection set modules
To create and save a collection, assign it to a variable.
You can also use this command to create a collection
from any combination of single elements, TCL lists and
collections:
set modules [define_collection {v:top} {v:cpu} $mycoll $mylist]
Once you have created a collection, you can assign
constraints to it in the SCOPE interface.

Copy a collection set modules_copy $modules
This copies the collection, so that any change to $modules
does not affect $modules_copy.

Evaluate a collection c_print
This command returns all objects in a column format.
Use this for visual inspection.
c_list
This command returns a Tcl list of objects. Use this to
convert a collection to a list. You can manipulate a Tcl
list with standard Tcl list commands.

Concatenate a list to a
collection

c_union

Identify differences
between lists or
collections

c_diff
Identifies differences between a list and a collection or
between two or more collections. Use the -print option to
display the results.

Identify objects
common to a list and a
collection

c_intersect
Use the -print option to display the results.

Identify objects
common to two or more
collections

c_sub
Use the -print option to display the results.

Identify objects that
belong exclusively to
only one list or
collection

c_symdiff
Use this to identify unique objects in a list and a
collection, or two or more collections. Use the -print
option to display the results.

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 171

Inputs/Outputs

The Inputs/Outputs panel models the interface of the FPGA with the outside
environment. You use it to specify delays outside the device.

The Inputs/Outputs panel includes the following options:

Field Description

Delay Type Specifies whether the delay is an input or output delay.

Port Specifies the name of the port.

Rise Specifies that the delay is relative to the rising transition on
specified port.
Currently, the synthesis tool does not differentiate between
the rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -rise option is preserved and forward annotated to
the place-and-route tool.

Fall Specifies that the delay is relative to the falling transition on
specified port
Currently, the synthesis tool does not differentiate between
the rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -fall option is preserved and forward annotated to
the place-and-route tool.

Max Specifies that the delay value is relative to the longest path.
Note: The -max delay values are reported in the top-level log file
and are forward annotated to the place-and-route tool.

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
172 May 2015

Input Delays

Here is how this constraint applies for input delays:

• Clock Fall – The default is the rising edge or rising transition of a reference
pin. If you specify clock fall, you must also specify the name of the clock.

• Add Delay – Use this option to capture information about multiple paths
leading to an input port relative to different clocks or clock edges.

For example, set_input_delay 5.0 -max -rise -clock phi1 {A} removes all
maximum rise input delay from A, because the -add_delay option is not
specified. Other input delays with different clocks or with -clock_fall are
removed.

In this example, the -add_delay option is specified as set_input_delay 5.0 -
max -rise -clock phi1 -add_delay {A}. If there is an input maximum rise delay
for A relative to clock phi1 rising edge, the larger value is used. The
smaller value does not result in critical timing for maximum delay. For
minimum delay, the smaller value is used. If there is maximum rise
input delay relative to a different clock or different edge of the same
clock, it remains with the new delay.

Min Specifies that the delay value is relative to the shortest path.
Note: The synthesis tool does not optimize for hold time
violations and only reports -min delay values in the
synlog/topLevel_fpga_mapper.srr_Min timing report
section of the log file. The -min delay values are forward
annotated to the place-and-route tool.

Clock Specifies the name of a clock for which the specified delay is
applied. If you specify the clock fall, you must also specify the
name of the clock.

Clock Fall Specifies that the delay relative to the falling edge of the clock.
For examples, see Input Delays, on page 172 and Output
Delays, on page 173.

Add Delay Specifies whether to add delay information to the existing
input delay or overwrite the input delay. For examples, see
Input Delays, on page 172 and Output Delays, on page 173.

Value Specifies the delay path value.

Field Description

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 173

Output Delays

Here is how this constraint applies for output delays:

• Clock Fall – If you specify clock fall, you must also specify the name of the
clock.

• Add Delay – By using this option, you can capture information about
multiple paths leading from an output port relative to different clocks or
clock edges.

For example, the set_output_delay 5.0 -max -rise -clock phi1 {OUT1} command
removes all maximum rise output delays from OUT1, because the
-add_delay option is not specified. Other output delays with a different
clock or with the -clock_fall option are removed.

In this example, the -add_delay option is specified: set_output_delay 5.0 -max
-rise -clock phi1 -add_delay {Z}. If there is an output maximum rise delay for
Z relative to the clock phi1 rising edge, the larger value is used. The
smaller value does not result in critical timing for maximum delay. For
minimum delay, the smaller value is used. If there is a maximum rise
output delay relative to a different clock or different edge of the same
clock, it remains with the new delay.

Priority of Multiple I/O Constraints

You can specify multiple input and output delays constraints for the same
I/O port. This is useful for cases where a port is driven by or feeds multiple
clocks. The priority of a constraint and its use in your design is determined
by a few factors:

• The software applies the tightest constraint for a given clock edge, and
ignores all others. All applicable constraints are reported in the timing
report.

• You can apply I/O constraints on three levels, with the most specific
overriding the more global:

– Global (top-level netlist), for all inputs and outputs

– Port-level, for the whole bus

– Bit-level, for single bits

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
174 May 2015

If there are two bit constraints and two port constraints, the two bit
constraints override the two port constraints for that bit. The other bits
get the two port constraints. For example, take the following constraints:

a[3:0]3 clk1:r
a[3:0]3 clk2:r
a[0]2 clk1:r

In this case, port a[0] only gets one constraint of 2 ns. Ports a[1], a[2], and
a[3] get two constraints of 3 ns each.

• If at any given level (bit, port, global) there is a constraint with a refer-
ence clock specified, then any constraint without a reference clock is
ignored. In this example, the 1 ns constraint on port a[0] is ignored.

a[0]2 clk1:r
a[0]1

See Also

For equivalent Tcl syntax, see:

• set_input_delay, on page 230

• set_output_delay, on page 238

For information about all SCOPE panels, see SCOPE Tabs, on page 161.

Registers

This panel lets the advanced user add delays to paths feeding into/out of
registers, in order to further constrain critical paths. You use this constraint
to speed up the paths feeding a register. See set_reg_input_delay, on
page 241, and set_reg_output_delay, on page 242 for the equivalent Tcl
commands.

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 175

The Registers SCOPE panel includes the following fields:

Field Description

Enabled (Required) Turn this on to enable the constraint.

Delay Type (Required) Specifies whether the delay is an input or output
delay.

Register (Required) Specifies the name of the register. If you have
initialized a compiled design, you can choose from the pull-
down list.

Route (Required) Improves the speed of the paths to or from the
register by the given number of nanoseconds. The value shrinks
the effective period for the constrained registers without
affecting the clock period that is forward-annotated to the
place-and-route tool.

Comment Lets you enter comments that are included in the constraints
file.

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
176 May 2015

Delay Paths

Use the Delay Paths panel to define the timing exceptions.

The Path Delay panel includes the following options:

Field Description

Delay Type Specifies the type of delay path you want the synthesis tool to
analyze. Choose one of the following types:
• Multicycle
• False
• Max Delay
• Reset Path
• Datapath Only

From Starting point for the path. From points define timing start
points and can be defined for clocks (c:), registers (i:), top-level
input or bi-directional ports (p:), or black box output pins (i:).
For details, see the following:
• Defining From/To/Through Points for Timing Exceptions
• Naming Rule Syntax Commands, on page 242

Through Specifies the intermediate points for the timing exception.
Intermediate points can be combinational nets (n:),
hierarchical ports (t:), or instantiated cell pins (t:). If you click
the arrow in a column cell, you open the Product of Sums (POS)
interface where you can set through constraints. For details, see
the following:
• Product of Sums Interface
• Defining From/To/Through Points for Timing Exceptions
• Naming Rule Syntax Commands, on page 242

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 177

See Also

• For equivalent Tcl syntax, see:

– set_multicycle_path, on page 235

– set_false_path, on page 228

– set_max_delay, on page 232

– reset_path, on page 217

• For more information on timing exception constraints and how the tool
resolves conflicts, see:

– Delay Path Timing Exceptions, on page 190

– Conflict Resolution for Timing Exceptions, on page 203

• For information about all SCOPE panels, see SCOPE Tabs, on page 161.

To Ending point of the path. To points must be timing end points
and can be defined for clocks (c:), registers (i:), top-level output
or bi-directional ports (p:), or black box input pins (i:). For
details, see the following:
• Defining From/To/Through Points for Timing Exceptions
• Naming Rule Syntax Commands, on page 242

Max Delay Specifies the maximum delay value for the specified path in
nanoseconds.

Setup Specifies the setup (maximum delay) calculations used for
specified path.

Start/End Used for multicycle paths with different start and end clocks.
This option determines the clock period to use for the
multiplicand in the calculation for clock distance. If you do not
specify a start or end clock, the end clock is the default.

Cycles Specifies the number of cycles required for the multicycle
path.

Field Description

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
178 May 2015

Attributes

You can assign attributes directly in the editor.

Here are descriptions for the Attributes columns:

Column Description

Enabled (Required) Turn this on to enable the constraint.

Object Type Specifies the type of object to which the attribute is assigned.
Choose from the pull-down list, to filter the available choices
in the Object field.

Object (Required) Specifies the object to which the attribute is
attached. This field is synchronized with the Attribute field, so
selecting an object here filters the available choices in the
Attribute field.

Attribute (Required) Specifies the attribute name. You can choose from
a pull-down list that includes all available attributes for the
specified technology. This field is synchronized with the Object
field. If you select an object first, the attribute list is filtered. If
you select an attribute first, the Synopsys FPGA synthesis
tool filters the available choices in the Object field. You must
select an attribute before entering a value.
If a valid attribute does not appear in the pull-down list,
simply type it in this field and then apply appropriate values.

Value (Required) Specifies the attribute value. You must specify the
attribute first. Clicking in the column displays the default
value; a drop-down arrow lists available values where
appropriate.

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 179

Enter the appropriate attributes and their values, by clicking in a cell and
choosing from the pull-down menu.

To specify an object to which you want to assign an attribute, you may also
drag-and-drop it from the RTL or Technology view into a cell in the Object
column. After you have entered the attributes, save the constraint file and
add it to your project.

See Also

• For more information on specifying attributes, see How Attributes and
Directives are Specified, on page 8.

• For information about all SCOPE panels, see SCOPE Tabs, on page 161.

I/O Standards

You can specify a standard I/O pad type to use in the design. Define an I/O
standard for any port appearing in the I/O Standards panel.

Val Type Specifies the kind of value for the attribute. For example,
string or boolean.

Description Contains a one-line description of the attribute.

Comment Lets you enter comments about the attributes.

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
180 May 2015

See Also

• The Tcl equivalent of this constraint is define_io_standard.

• For information about all SCOPE panels, see SCOPE Tabs, on page 161.

Field Description

Enabled (Required) Turn this on to enable the constraint, or off to
disable a previous constraint.

Port (Required) Specifies the name of the port. If you have
initialized a compiled design, you can select a port name from
the pull-down list. The first two entries let you specify global
input and output delays, which you can then override with
additional constraints on individual ports.

Type (Required) Specifies whether the delay is an input or output
delay.

I/O Standard Supported I/O standards by Synopsys FPGA products. See
Industry I/O Standards, on page 186 for a description of the
standards.

Slew Rate

Drive Strength

Termination

Power

Schmitt

The values for these parameters are based on the selected
I/O standard.

Description Describes the selected I/O Standard.

Comment Enter comments about an I/O standard.

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 181

Compile Points

Use the Compile Points panel to specify compile points in your design, and to
enable/disable them. This panel, available only if the device technology
supports compile points, is used to define a top-level constraint file.

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
182 May 2015

Here are the descriptions of the fields in the Compile Points panel.

Constraints for Compile Points

You can set constraints at the top-level or for modules to be used as the
compile points from the Current Design pull-down menu shown below. Use the
Compile Points tab to select compile points and specify their types.

Field Description

Enabled (Required) Turn this on to enable the constraint.

Module (Required) Specifies the name of the compile-point module.
You must specify a view module, with a v: prefix to identify
the module as a view. For example: v:alu.

Type (Required) Specifies the type of compile point:
• locked (default) – no timing reoptimization is done on the

compile point. The hierarchical interface is unchanged
and an interface logic model is constructed for the
compile point.

• soft – compile point is included in the top-level synthesis,
boundary optimizations can occur.

• hard – compile point is included in the top-level synthesis,
boundary optimizations can occur, however, the
boundary remains unchanged. Although, the boundary is
not modified, instances on both sides of the boundary
can be modified using top-level constraints.

For details, see Compile Point Types, on page 373 in the
User Guide.

Comment Lets you enter a comment about the compile point.

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 183

See Also

• The Tcl equivalent is define_compile_point.

• For more information on compile points and using the Compile Points
panel, see Synthesizing Compile Points, on page 387 in the User Guide.

• For information about all SCOPE panels, see SCOPE Tabs, on page 161.

LO

 SCOPE Constraints Editor SCOPE Tabs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
184 May 2015

TCL View

The TCL View is an advanced text file editor for defining FPGA timing and
design constraints.

This text editor provides the following capabilities:

• Uses dynamic keyword expansion and tool tips for commands that

– Automatically completes the command from a popup list

– Displays complete command syntax as a tool tip

– Displays parameter options for the command from a popup list

– Includes a keyword command syntax help

Click on Hide Syntax Help
to close this browser

SCOPE Tabs SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 185

• Checks command syntax and uses color indicators that

– Validate commands and command syntax

– Identifies FPGA design constraints and SCOPE legacy constraints

• Allows for standard editor commands, such as copy, paste,
comment/un-comment a group of lines, and highlighting of keywords

For information on how to use this Tcl text editor, see Using the TCL View of
SCOPE GUI, on page 127.

See Also

• For Tcl timing constraint syntax, see FPGA Timing Constraints, on
page 210.

• For Tcl design constraint syntax, see Design Constraints, on page 245.

• You can also use the SCOPE editor to set attributes. See How Attributes
and Directives are Specified, on page 8 for details.

LO

 SCOPE Constraints Editor Industry I/O Standards

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
186 May 2015

Industry I/O Standards

The synthesis tool lets you specify a standard I/O pad type to use in your
design. You can define an I/O standard for any port supported from the
industry standard and proprietary I/O standards.

For industry I/O standards, see Industry I/O Standards, on page 187.

For vendor-specific I/O standards, see Microsemi I/O Standards, on
page 703.

Industry I/O Standards SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 187

Industry I/O Standards

The following table lists industry I/O standards.

I/O Standard Description

AGP1X
AGP2X
BLVDS_25
CTT

Intel Corporation Accelerated Graphics Port
Intel Corporation Accelerated Graphics Port
Bus Differential Transceiver
Center Tap Terminated - EIA/JEDEC Standard JESD8-4

DIFF_HSTL_15_Class_I

DIFF_HSTL_15_Class_II

DIFF_HSTL_18_Class_I

DIFF_HSTL_18_Class_II

DIFF_SSTL_18_Class_II

DIFF_SSTL_2_Class_I

DIFF_SSTL_2_Class_II

1.5 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-9A
1.8 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-9A
1.8 volt - Differential Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-6
2.5 volt - Pseudo Differential Stub Series
Terminated Logic - EIA/JEDEC Standard JESD8-9A
2.5 volt - Pseudo Differential Stub Series
Terminated Logic - EIA/JEDEC Standard JESD8-9A

GTL

GTL+
GTL25

GTL+25
GTL33

GTL+33

Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3
Gunning Transceiver Logic Plus
Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3
Gunning Transceiver Logic Plus
Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3
Gunning Transceiver Logic Plus

LO

 SCOPE Constraints Editor Industry I/O Standards

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
188 May 2015

HSTL_12

HSTL_15_Class_II

HSTL_18_Class_I

HSTL_18_Class_II

HSTL_18_Class_III

HSTL_18_Class_IV

HSTL_Class_I

HSTL_Class_II

HSTL_Class_III

HSTL_Class_IV

HyperTransport

1.2 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
2.5 volt - Hypertransport - HyperTransport Consortium

I/O Standard Description

Industry I/O Standards SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 189

LVCMOS_12
LVCMOS_15
LVCMOS_18
LVCMOS_25
LVCMOS_33
LVCMOS_5
LVDS
LVDSEXT_25
LVPECL
LVTTL
MINI_LVDS

1.2 volt - EIA/JEDEC Standard JESD8-16
1.5 volt - EIA/JEDEC Standard JESD8-7
1.8 volt - EIA/JEDEC Standard JESD8-7
2.5 volt - EIA/JEDEC Standard JESD8-5
3.3 volt CMOS - EIA/JEDEC Standard JESD8-B
5.0 volt CMOS
Differential Transceiver - ANSI/TIA/EIA-644-95
Differential Transceiver
Differential Transceiver - EIA/JEDEC Standard JESD8-2
3.3 volt TTL - EIA/JEDEC Standard JESD8-B
Mini Differential Transceiver

PCI33

PCI66

PCI-X_133

PCML
PCML_12
PCML_14
PCML_15
PCML_25
RSDS

3.3 volt PCI 33MHz - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)
3.3 volt PCI 66MHz - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)
3.3 volt PCI-X - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)
3.3 volt - PCML
1.2 volt - PCML
1.4 volt - PCML
1.5 volt - PCML
2.5 volt - PCML
Reduced Swing Differential Signalling

SSTL_18_Class_I

SSTL_18_Class_II

SSTL_2_Class_I

SSTL_2_Class_II

SSTL_3_Class_I

SSTL_3_Class_II

ULVDS_25

1.8 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-15
1.8 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-15
2.5 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-9B
2.5 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-9B
3.3 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-8
3.3 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-8
Differential Transceiver

I/O Standard Description

LO

 SCOPE Constraints Editor Delay Path Timing Exceptions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
190 May 2015

Delay Path Timing Exceptions

For details about the following path types, see:

• Multicycle Paths, on page 190

• False Paths, on page 193

Multicycle Paths

Multicycle paths lets you specify paths with multiple clock cycles. The
following table defines the parameters for this constraint. For the equivalent
Tcl constraints, see set_multicycle_path, on page 235. This section describes
the following:

• Multi-cycle Path with Different Start and End Clocks, on page 190

• Multicycle Path Examples, on page 191

Multi-cycle Path with Different Start and End Clocks

The start/end option determines the clock period to use for the multiplicand in
the calculation for required time. The following table describes the behavior of
the multi-cycle path constraint using different start and end clocks. In all
equations, n is number of clock cycles, and clock_distance is the default,
single-cycle relationship between clocks that is calculated by the tool.

Basic required time for a multi-cycle path clock_distance + [(n-1) * end_clock_period]

Required time with no end clock defined clock_distance + [(n-1) * global_period]

Required time with -start option defined clock_distance + [(n-1) * start_clock_period]

Required time with no start clock defined clock_distance + [(n-1) * global_period]

Delay Path Timing Exceptions SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 191

If you do not specify a start or end option, by default the end clock is used for
the constraint. Here is an example:

Multicycle Path Examples

Multicycle Path Example 1
If you apply a multicycle path constraint from D1 to D2, the allowed time is
#cycles x normal time between D1 and D2. In the following figure, CLK1 has a
period of 10 ns. The data in this path has only one clock cycle before it must
reach D2. To allow more time for the signal to complete this path, add a
multiple-cycle constraint that specifies two clock cycles (10 x 2 or 20 ns) for
the data to reach D2.

CLK1

10

CLK1

0 20 30

D2 Q2D1 Q1

10 ns

CLK1

D2 Q2D1 Q1

20 ns

Q1

D2

D2

without constraint with multiple-cycle path=2

required time required time

(without constraint)

(multiple-cycle path=2)

LO

 SCOPE Constraints Editor Delay Path Timing Exceptions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
192 May 2015

Multicycle Path Example 2
The design has a multiplier that multiplies signal_a with signal_b and puts the
result into signal_c. Assume that signal_a and signal_b are outputs of registers
register_a and register_b, respectively. The RTL view for this example is shown
below. On clock cycle 1, a state machine enables an input enable signal to
load signal_a into register_a and signal_b into register_b. At the beginning of clock
cycle 2, the multiply begins. After two clock cycles, the state machine enables
an output_enable signal on clock cycle 3 to load the result of the multiplication
(signal_c) into an output register (register_c).

The design frequency goal is 50 MHz (20 ns) and the multiply function takes
35 ns, but it is given 2 clock cycles. After optimization, this 35 ns path is
normally reported as a timing violation because it is more than the 20 ns
clock-cycle timing goal. To avoid reporting the paths as timing violations, use
the SCOPE window to set 2-cycle constraints (From column) on register_a and
register_b, or include the following in the timing constraint file:

Paths from register_a use 2 clock cycles
set_multicycle_path -from register_a 2

Paths from register_b use 2 clock cycles
set_multicycle_path -from register_b 2

Alternatively, you can specify a 2-cycle SCOPE constraint (To column) on
register_c, or add the following to the constraint file:

Paths to register_c use 2 clock cycles
set_multicycle_path -to register_c 2

Delay Path Timing Exceptions SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 193

False Paths

You use the Delay Paths constraint to specify clock paths that you want the
synthesis tool to ignore during timing analysis and assign low (or no) priority
during optimization. The equivalent Tcl constraint is described in
set_false_path, on page 228.

This section describes the following:

• Types of False Paths, on page 193

• Priority of False Path Constraints, on page 194

Types of False Paths

A false path is a path that is not important for timing analysis. There are two
types of false paths:

• Architectural false paths

These are false paths that the designer is aware of, like an external reset
signal that feeds internal registers but which is synchronized with the
clock. The following example shows an architectural false path where
the primary input x is always 1, but which is not optimized because the
software does not optimize away primary inputs.

• Code-introduced false paths

These are false paths that you identify after analyzing the schematic.

0

1

0

1

+
1

+

xx

z

a

b c

d

x

LO

 SCOPE Constraints Editor Delay Path Timing Exceptions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
194 May 2015

Priority of False Path Constraints

False path constraints can be either explicit or implicit, and the priority of the
constraint depends on the type of constraint it is.

• An explicit false path constraint is one that you apply to a path using
the Delay Paths pane of the SCOPE GUI, or the following Tcl syntax:

set_false_path {-from point} | {-to point} | {-through point}

This type of false path constraint has the highest priority of any of the
types of constraints you can place on a path. Any path containing an
explicit false path constraint is ignored by the software, even if you place
a different type of constraint on the same path.

• Lower-priority false path constraints are those that the software
automatically applies as a result of any of the following actions:

– You assign clocks to different groups (Clocks pane of SCOPE GUI).

– You assign an implicit false path (by selecting the false option in the
Delay (ns) column of the SCOPE Clock to Clock panel). (This condition
applies for legacy timing constraints.)

– You disable the Use clock period for unconstrained IO option (Project ->
Implementation Options->Constraints).

Implicit false path constraints are overridden by any subsequent
constraints you place on a path. For example, if you assign two clocks to
different clock groups, then place a maximum delay constraint on a
path that goes through both clocks, the delay constraint has priority.

False Path Constraint Examples

In this example, the design frequency goal is 50 MHz (20ns) and the path
from register_a to register_c is a false path with a large delay of 35 ns. After
optimization, this 35 ns path is normally reported as a timing violation
because it is more than the 20 ns clock-cycle timing goal. To lower the
priority of this path during optimization, define it as a false path. You can do
this in many ways:

• If all paths from register_a to any register or output pins are not timing-
critical, then add a false path constraint to register_a in the SCOPE inter-
face (From), or put the following line in the timing constraint file:

Delay Path Timing Exceptions SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 195

#Paths from register_a are ignored
set_false_path -from {i:register_a}

• If all paths to register_c are not timing-critical, then add a false path
constraint to register_c in the SCOPE interface (To), or include the
following line in the timing constraint file:

#Paths to register_c are ignored
set_false_path -to {i:register_c}

• If only the paths between register_a and register_c are not timing-critical,
add a From/To constraint to the registers in the SCOPE interface (From
and To), or include the following line in the timing constraint file:

#Paths to register_c are ignored
set_false_path -from {i:register_a} -to {i:register_c}

LO

 SCOPE Constraints Editor Specifying From, To, and Through Points

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
196 May 2015

Specifying From, To, and Through Points

The following section describes from, to, and through points for timing excep-
tions specified by the multicycle paths, false paths, and max delay paths
constraints.

• Timing Exceptions Object Types, on page 196

• From/To Points, on page 196

• Through Points, on page 198

• Product of Sums Interface, on page 199

• Clocks as From/To Points, on page 201

Timing Exceptions Object Types

Timing exceptions must contain the type of object in the constraint specifica-
tion. You must explicitly specify an object type, n: for a net, or i: for an
instance, in the instance name parameter of all timing exceptions. For
example:

set_multicycle_path -from {i:inst2.lowreg_output[7]}
-to {i:inst1.DATA0[7]} 2

If you use the SCOPE GUI to specify timing exceptions, it automatically
attaches the object type qualifier to the object name.

From/To Points

From specifies the starting point for the timing exception. To specifies the
ending point for the timing exception. When you specify an object, use the
appropriate prefix (see syn_black_box, on page 47) to avoid confusion. The
following table lists the objects that can serve as starting and ending points:

From Points To Points

Clocks. See Clocks as From/To Points,
on page 201 for more information.

Clocks. See Clocks as From/To Points,
on page 201 for more information.

Registers Registers

Specifying From, To, and Through Points SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 197

You can specify multiple from points in a single exception. This is most
common when specifying exceptions that apply to all the bits of a bus. For
example, you can specify constraints From A[0:15] to B – in this case, there is an
exception, starting at any of the bits of A and ending on B.

Similarly, you can specify multiple to points in a single exception. If you
specify both multiple starting points and multiple ending points such as From
A[0:15] to B[0:15], there is actually an exception from any start point to any end
point. In this case, the exception applies to all 16 * 16 = 256 combinations of
start/end points.

Top-level input or bi-directional ports Top-level output or bi-directional ports

Instantiated library primitive cells (gate
cells)

Instantiated library primitive cells (gate
cells)

Black box outputs Black box inputs

From Points To Points

LO

 SCOPE Constraints Editor Specifying From, To, and Through Points

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
198 May 2015

Through Points

Through points are limited to nets; however, there are many ways to specify
these constraints.

• Single Point

• Single List of Points

• Multiple Through Points

• Multiple Through Lists

You define these constraints in the appropriate SCOPE panels, or in the POS
GUI (see Product of Sums Interface, on page 199). When a port and net have
the same name, preface the name of the through point with n: for nets, t: for
hierarchical ports, and p: for top-level ports. For example n:regs_mem[2] or
t:dmux.bdpol. The n: prefix must be specified to identify nets; otherwise, the
associated timing constraint will not be applied for valid nets.

Single Point

You can specify a single through point. In this case, the constraint is applied to
any path that passes through regs_mem[2]:

set_false_path -through regs_mem[2]

Single List of Points

If you specify a list of through points, the through option behaves as an OR
function and applies to any path that passes through any of the points in the
list. In the following example, the constraint is applied to any path through
regs_mem[2] OR prgcntr.pc[7] OR dmux.alub[0] with a maximum delay value of 5
ns (-max 5):

set_max_delay
-through {regs_mem[2], prgcntr.pc[7], dmux.alub[0]} 5

Specifying From, To, and Through Points SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 199

Multiple Through Points

You can specify multiple points for the same constraint by preceding each
point with the -through option. In the following example, the constraint
operates as an AND function and applies to paths through regs_mem[2] AND
prgcntr.pc[7] AND dmux.alub[0]:

set_max_delay
-through regs_mem[2]
-through prgcntr.pc[7]
-through dmux.alub[0] 5

Multiple Through Lists

If you specify multiple -through lists, the constraint is applied as an AND/OR
function and is applied to the paths through all points in the lists. The
following constraint applies to all paths that pass through {A1 or A2 or...An}
AND {B1 or B2 or B3}:

set_false_path –through {A1 A2...An} –through {B1 B2 B3}

In this example,

set_multicycle_path
-through {net1, net2}
-through {net3, net4} 2

all paths that pass through the following nets are constrained at 2 clock
cycles:

net1 AND net3
OR net1 AND net4
OR net2 AND net3
OR net2 AND net4

Product of Sums Interface

You can use the SCOPE GUI to format -through points for nets with multicycle
path, false path, and max delay path constraints in the Product of Sums (POS)
interface of the SCOPE editor. You can also manually specify constraints that
use the -through option. For more information, see Defining From/To/Through
Points for Timing Exceptions, on page 132 in the User Guide.

LO

 SCOPE Constraints Editor Specifying From, To, and Through Points

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
200 May 2015

The POS interface is accessible by clicking the arrow in a Through column cell
in the following SCOPE panels:

• Multi-Cycle Paths

• False Paths

• Delay Paths

Field Description

Prod 1, 2, etc. Type the first net name in a cell in a Prod row, or drag the
net from a HDL Analyst view into the cell. Repeat this
step along the same row, adding other nets in the Sum
columns. The nets in each row form an OR list.

Sum 1, 2, etc. Type the first net name in the first cell in a Sum column,
or drag the net from a HDL Analyst view into the cell.
Repeat this step down the same Sum column. The nets in
each column form an AND list.

Drag and Drop Goes Along Row - places objects in multiple Sum columns,
utilizing only one Prod row.
Down Column - places objects in multiple Prod rows, utilizing
only one Sum column.

Drag and Drop Inserts New Cells - New cells are created when dragging and
dropping nets.
Overwrites Cells - Existing cells are overwritten when
dragging and dropping nets.

Save/Cancel Saves or cancels your session.

Specifying From, To, and Through Points SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 201

Clocks as From/To Points

You can specify clocks as from/to points in your timing exception constraints.
Here is the syntax:

set_timing_exception -from | -to {c:clock_name [:edge]}

where

• timing_exception is one of the following constraint types: multicycle path,
false path, or max delay

• c:clock_name:edge is the name of the clock and clock edge (r or f). If you do
not specify a clock edge, by default both edges are used.

See the following sections for details and examples on each timing exception.

Multicycle Path Clock Points

When you specify a clock as a from or to point, the multicycle path constraint
applies to all registers clocked by the specified clock.

The following constraint allows two clock periods for all paths from the rising
edge of the flip-flops clocked by clk1:

set_multicycle_path -from {c:clk1:r} 2

You cannot specify a clock as a through point. However, you can set a
constraint from or to a clock and through an object (net, pin, or hierarchical
port). The following constraint allows two clock periods for all paths to the
falling edge of the flip-flops clocked by clk1 and through bit 9 of the hierar-
chical net:

set_multicycle_path -to {c:clk1:f} -through (n:MYINST.mybus2[9]} 2

LO

 SCOPE Constraints Editor Specifying From, To, and Through Points

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
202 May 2015

False Path Clock Points

When you specify a clock as a from or to point, the false path constraint is set
on all registers clocked by the specified clock. False paths are ignored by the
timing analyzer. The following constraint disables all paths from the rising
edge of the flip-flops clocked by clk1:

set_false_path -from {c:clk1:r}

You cannot specify a clock as a through point. However, you can set a
constraint from or to a clock and through an object (net, pin, or hierarchical
port). The following constraint disables all paths to the falling edge of the flip-
flops clocked by clk1 and through bit 9 of the hierarchical net.

set_false_path -to {c:clk1:f} -through (n:MYINST.mybus2[9]}

Path Delay Clock Points

When you specify a clock as a from or to point for the path delay constraint,
the constraint is set on all paths of the registers clocked by the specified
clock. This constraint sets a max delay of 2 ns on all paths to the falling edge
of the flip-flops clocked by clk1:

set_max_delay -to {c:clk1:f} 2

You cannot specify a clock as a through point, but you can set a constraint
from or to a clock and through an object (net, pin, or hierarchical port). The
next constraint sets a max delay of 0.2 ns on all paths from the rising edge of
the flip-flops clocked by clk1 and through bit 9 of the hierarchical net:

set_max_delay -from {c:clk1:r} -through (n:MYINST.mybus2[9]}.2

Conflict Resolution for Timing Exceptions SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 203

Conflict Resolution for Timing Exceptions

The term timing exceptions refers to the false path, max path delay, and
multicycle path timing constraints. When the tool encounters conflicts in the
way timing exceptions are specified through the constraint file, the software
uses a set priority to resolve these conflicts. Conflict resolution is categorized
into four levels, meaning that there are four different tiers at which conflicting
constraints can occur, with one being the highest. The table below summa-
rizes conflict resolution for constraints. The sections following the table
provide more details on how conflicts can occur and examples of how they are
resolved.

In addition to the four levels of conflict resolution for timing exceptions, there
are priorities for the way the tool handles multiple I/O delays set on the same
port and implicit and explicit false path constraints. For information on
resolving these types of conflicts, see Priority of Multiple I/O Constraints, on
page 173 and Priority of False Path Constraints, on page 194.

Conflict
Level

Constraint Conflict Priority For Details, see ...

1 Different timing
exceptions set on the
same object.

1 – False Path
2 – Path Delay
3 – Multi-cycle Path

Conflicting Timing
Exceptions, on
page 204.

2 Timing exceptions of
the same constraint
type, using different
semantics
(from/to/through).

1 – From
2 – To
3 – Through

Same Constraint
Type with Different
Semantics, on
page 205.

3 Timing exceptions of
the same constraint
type using the same
semantic, but set on
different objects.

1 – Ports/Instances/Pins
2 – Clocks

Same Constraint
and Semantics with
Different Objects,
on page 206.

4 Identical timing
constraints, except
constraint values differ.

Tightest, or most
constricting constraint.

Identical
Constraints with
Different Values, on
page 206.

LO

 SCOPE Constraints Editor Conflict Resolution for Timing Exceptions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
204 May 2015

Conflicting Timing Exceptions

The first (and highest) level of resolution occurs when timing exceptions—
false paths, max path delay, or multicycle path constraints—conflict with
each other. The tool follows this priority for applying timing exceptions:

1. False Path

2. Path Delay

3. Multicycle Path

For example:

set_false_path -from {c:C1:r}
set_max_delay -from {i:A} -to {i:B} 10
set_multicycle_path -from {i:A} -to {i:B} 2

These constraints are conflicting because the path from A to B has three
different constraints set on it. When the tool encounters this type of conflict,
the false path constraint is honored. Because it has the highest priority of all
timing exceptions, set_false_path is applied and the other timing exceptions are
ignored.

C1

A R2B C1=3 ns

Conflict Resolution for Timing Exceptions SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 205

Same Constraint Type with Different Semantics

The second level of resolution occurs when conflicts between timing excep-
tions that are of the same constraint type, use different semantics
(from/to/through). The priority for these constraints is as follows:

1. From

2. To

3. Through

If there are two multicycle constraints set on the same path, one specifying a
from point and the other specifying a to point, the constraint using -from takes
precedence, as in the following example.

set_multicycle_path -from {i:A} 3
set_multicycle_path -to {i:B} 2

In this case, the tool uses:

set_multicycle_path -from {i:A} 3

The other constraint is ignored even though it sets a tighter constraint.

C1

A R2B C1=3 ns

LO

 SCOPE Constraints Editor Conflict Resolution for Timing Exceptions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
206 May 2015

Same Constraint and Semantics with Different Objects

The third level resolves timing exceptions of the same constraint type that use
the same semantic, but are set on different objects. The priority for design
objects is as follows:

1. Ports/Instances/Pins

2. Clocks

If the same constraints are set on different objects, the tool ignores the
constraint set on the clock for that path.

set_multicycle_path -from {i:mac1.datax[0]} -start 4
set_multicycle_path -from {c:clk1:r} 2

In the example above, the tool uses the first constraint set on the instance
and ignores the constraint set on the clock from i:mac1.datax[0], even though
the clock constraint is tighter.

For details on how the tool prioritizes multiple I/O delays set on the same
port or implicit and explicit false path constraints, see Priority of False Path
Constraints, on page 194 and Priority of Multiple I/O Constraints, on
page 173.

Identical Constraints with Different Values

Where timing constraints are identical except for the constraint value, the
tightest or most constricting constraint takes precedence. In the following
example, the tool uses the constraint specifying two clock cycles:

set_multicycle_path -from {i:special_regs.trisa[7:0]} 2
set_multicycle_path -from {i:special_regs.trisa[7:0]} 3

SCOPE User Interface (Legacy) SCOPE Constraints Editor

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 207

SCOPE User Interface (Legacy)

You can use the legacy SCOPE editor for the SDC constraint files created
before release version G-2012.09. However, it is recommended that you
translate your SDC files to FDC files to enable the latest version of the SCOPE
editor and to utilize the enhanced timing constraint handling in the tool. The
latest version of the SCOPE editor automatically formats timing constraints
using Synopsys Standard syntax (such as create_clock, and set_multicyle_path).

To do this, add your SDC constraint files to your project and run the following
at the command line:

% sdc2fdc

This feature translates all SDC files in your project.

If you want to edit your existing SDC file, to open the legacy SCOPE editor,
double-click on your constraint file in the Project view.

The details of the legacy SCOPE interface and constraint syntax are no longer
documented here. Refer to the SolvNet article on legacy constraints for
details.

LO

 SCOPE Constraints Editor SCOPE User Interface (Legacy)

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
208 May 2015

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 209

C H A P T E R 6

Constraint Syntax

The following describe Tcl equivalents for the timing and design constraints
you specify in the SCOPE editor or in a constraint file.

• FPGA Timing Constraints, on page 210

• Design Constraints, on page 245

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
210 May 2015

FPGA Timing Constraints

The FPGA synthesis tools support FPGA timing constraints for a subset of the
clock definition, I/O delay, and timing exception constraints.

For more information about using FPGA timing constraints with your project,
see Using the SCOPE Editor, on page 114 in the User Guide.

For information on the supported design constraints, see Design Constraints,
on page 245.

The remainder of this section describes the constraint file syntax for the
following FPGA timing constraints in the FPGA synthesis tools.

• create_clock

• create_generated_clock

• reset_path

• set_clock_groups

• set_clock_latency

• set_clock_route_delay

• set_clock_uncertainty

• set_false_path

• set_input_delay

• set_max_delay

• set_multicycle_path

• set_output_delay

• set_reg_input_delay

• set_reg_output_delay

Note: When adding comments for constraints, use standard Tcl syntax
conventions. Otherwise, invalid specifications can cause the constraint to be
ignored. The (#) comment must begin on a new line or needs to be preceded
by a (;), if the comment is on the same line as the constraint. For example:

create_clock -period 10 [get_ports CLK]; # comment text

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 211

comment text
set_clock_groups -asynchronous -group
MMCM_module|clk100_90_MMCM_derived_clock_CLKIN1

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
212 May 2015

create_clock

Creates a clock object and defines its waveform in the current design.

Syntax

The supported syntax for the create_clock constraint is:

create_clock
-name clockName [-add] {objectList} |

-name clockName [-add] [{objectList}] |
[-name clockName [-add]] {objectList}

-period value
[-waveform {riseValue fallValue}]
[-disable]
[-comment commentString]

Arguments

-name
clockName

Specifies the name for the clock being created, enclosed in quotation
marks or curly braces. If this option is not used, the clock gets the
name of the first clock source specified in the objectList option. If you
do not specify the objectList option, you must use the -name option,
which creates a virtual clock not associated with a port, pin, or net.
You can use both the -name and objectList options to give the clock a
more descriptive name than the first source pin, port, or net. If you
specify the -add option, you must use the -name option and the clocks
with the same source must have different names.

-add Specifies whether to add this clock to the existing clock or to
overwrite it. Use this option when multiple clocks must be specified
on the same source for simultaneous analysis with different clock
waveforms. When you specify this option, you must also use the
-name option.

-period value Specifies the clock period in nanoseconds. This is the minimum time
over which the clock waveform repeats. The value type must be
greater than zero.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 213

-waveform
riseValue
fallValue

Specifies the rise and fall edge times for the clock waveforms of the
clock in nanoseconds, over an entire clock period. The first time is a
rising transition, typically the first rising transition after time zero.
There must be two edges, and they are assumed to be rise followed
by fall. The edges must be monotonically increasing. If you do not
specify this option, a default waveform is assumed, which has a rise
edge of 0.0 and a fall edge of periodValue/2.

objectList Clocks can be defined on the following objects: pins, ports, and nets
The FPGA synthesis tools support nets and instances, where
instances have only one output (for example, BUFGs).

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool honors
the annotation and preserves it with the object so that the exact
string is written out when the constraint is written out. The
comment remains intact through the synthesis, place-and-route,
and timing-analysis flows.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
214 May 2015

create_generated_clock

Creates a generated clock object.

Syntax

The supported syntax for the create_generated_clock constraint is:

create_generated_clock
-name clockName [-add]] | {clockObject}
-source masterPinName
[-master_clock clockName]
[-divide_by integer | -multiply_by integer [-duty_cycle value]]
[-invert]
[-edges {edgeList}]
[-edge_shift {edgeShiftList}]
[-combinational]
[-disable]
[-comment commentString]

Arguments

-name
clockName

Specifies the name of the generated clock. If this option is not
used, the clock gets the name of the first clock source specified
in the -source option (clockObject). If you specify the -add option,
you must use the -name option and the clocks with the same
source must have different names.

-add Specifies whether to add this clock to the existing clock or to
overwrite it. Use this option when multiple generated clocks
must be specified on the same source, because multiple clocks
fan into the master pin. Ideally, one generated clock must be
specified for each clock that fans into the master pin. If you
specify this option, you must also use the -name and
-master_clock options.

clockObject The first clock source specified in the -source option in the
absence of clockName. Clocks can be defined on pins, ports, and
nets. The FPGA synthesis tools support nets and instances,
where instances have only one output (for example, BUFGs).

-source
masterPinName

Specifies the master clock pin, which is either a master clock
source pin or a fanout pin of the master clock driving the
generated clock definition pin. The clock waveform at the master
pin is used for deriving the generated clock waveform.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 215

-master_clock
clockName

Specifies the master clock to be used for this generated clock,
when multiple clocks fan into the master pin.

-divide_by
integer

Specifies the frequency division factor. If the divideFactor value
is 2, the generated clock period is twice as long as the master
clock period.

-multiply_by
integer

Specifies the frequency multiplication factor. If the
multiplyFactor value is 3, the generated clock period is one-third
as long as the master clock period.

-duty_cycle
percent

Specifies the duty cycle, as a percentage, if frequency
multiplication is used. Duty cycle is the high pulse width.
Note: This option is valid only when used with the -multiply_by
option.

-invert Inverts the generated clock signal (in the case of frequency
multiplication and division).

-edges edgeList Specifies a list of integers that represents edges from the source
clock that are to form the edges of the generated clock. The
edges are interpreted as alternating rising and falling edges and
each edge must not be less than its previous edge. The number
of edges must be an odd number and not less than 3 to make
one full clock cycle of the generated clock waveform. For
example, 1 represents the first source edge, 2 represents the
second source edge, and so on.

-edge_shift
edgeShiftList

Specifies a list of floating point numbers that represents the
amount of shift, in nanoseconds, that the specified edges are to
undergo to yield the final generated clock waveform. The
number of edge shifts specified must be equal to the number of
edges specified. The values can be positive or negative; positive
indicating a shift later in time, while negative indicates a shift
earlier in time. For example, 1 indicates that the corresponding
edge is to be shifted by one library time unit.

-combinational The source latency paths for this type of generated clock only
includes the logic where the master clock propagates. The
source latency paths do not flow through sequential element
clock pins, transparent latch data pins, or source pins of other
generated clocks.

-disable Disables the constraint.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
216 May 2015

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 217

reset_path

Resets the specified paths to single-cycle timing.

Syntax

The supported syntax for the reset_path constraint is:

reset_path [-setup]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
[-disable]
[-comment commentString]

Arguments

-setup Specifies that setup checking (maximum delay) is reset to
single-cycle behavior.

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:
• Clocks
• Registers
• Top-level input or bi-directional ports)
• Black box outputs
• Sequential cell clock pins
• Sequential cell output pins
When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
218 May 2015

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
• Combinational nets
• Hierarchical ports
• Pins on instantiated cells
By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
If more than one object is included, the objects must be
enclosed either in quotation marks ("") or in braces ({}). If you
specify the -through option multiple times, reset_path applies to
the paths that pass through a member of each objectList. If you
use the -through option in combination with the -from or -to
options, reset_path applies only if the -from or -to and the -through
conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:
• Clocks
• Registers
• Top-level output or bi-directional ports
• Black box inputs
• Sequential cell data input pins
If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points.

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 219

set_clock_groups

Specifies clock groups that are mutually exclusive or asynchronous with each
other in a design. Clocks created with create_clock are considered synchro-
nous as long as no set_clock_groups constraints specify otherwise. Paths
between asynchronous clocks are not considered for timing analysis.

Clock grouping in the FPGA synthesis environment is inclusionary or exclu-
sionary. For example, clk2 and clk3 can each be related to clk1 without being
related to each other.

Syntax

set_clock_groups
-asynchronous | -physically_exclusive | -logically_exclusive
[-name clockGroupname]
-group {clockList} [-group {clockList} …]
-derive
[-disable]
[-comment commentString]

Arguments

-asynchronous Specifies that the clock groups are asynchronous to each
other (the FPGA synthesis tools assume all clock groups
are synchronous). Two clocks are asynchronous with
respect to each other if they have no phase relationship at
all.

-physically_exclusive Specifies that the clock groups are physically exclusive to
each other. An example is multiple clocks that are defined
on the same source pin.
The FPGA synthesis tools accept this option, but treats it
as -asynchronous.

-logically_exclusive Specifies that the clock groups are logically exclusive to
each other. An example is multiple clocks that are selected
by a multiplexer, but might have coupling with each other
in the design.
The FPGA synthesis tools accept this option, but treats it
as -asynchronous.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
220 May 2015

Restrictions

Be aware of the restrictions for the following set_clock_groups options:

-name
{clockGroupName}

Specifies a unique name for a clock grouping. This option
allows you to easily identify specified clock groups, which
are exclusive or asynchronous with all other clock groups
in the design.

-group {clockList} Specifies a space-separated list of clocks in {clockList} that
are asynchronous to all other clocks in the design, or
asynchronous to the clocks specified in other -group
arguments in the same command.
If you specify only one group, the clocks in that group are
exclusive or asynchronous with all other clocks in the
design. Whenever a new clock is created, it is automatically
included in the default “other” group that includes all the
other clocks in the design.
If you specify -group multiple times in a single command
execution, the listed clocks are only asynchronous with the
clocks in the other groups specified in the same command.
You can include a clock in only one group in a single
command execution. To include a clock in multiple groups,
use multiple set_clock_groups commands.
Do not use commas between clock names in the list. See -
group Option, on page 221.

-derive Specifies that generated and derived clocks inherit the
clock group of the parent clock. By default, a generated
clock and its master clock are not in the same group when
the exclusive or asynchronous clock groups are defined.
The -derive option lets you override this behavior and allow
generated or derived clocks to inherit the clock group of
their parent source clock.

-disable Disables the constraint.

-comment textString Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so
that the exact string is written out when the constraint is
written out. The comment remains intact through the
synthesis, place-and-route, and timing-analysis flows.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 221

-group Option
Do not insert commas between clock names when you use the -group option,
because the tool treats the comma as part of the clock name. This is true for
all constraints that contain lists. This means that if you specify the following
constraint, the tool generates a warning that it cannot find clk1,:

set_clock_groups -asynchronous -group {clk1, clk2}

Examples

The following examples illustrate how to use this constraint.

Example 1
This set_clock_groups constraint specifies that clk4 is asynchronous to all other
clocks in the design.

set_clock_groups -asynchronous -group {clk4}

Example 2
This set_clock_groups constraint specifies that clock clk1, clk2, and clk3 are
asynchronous to all other clocks in the design. If a new clock called clkx is
added to the design, clk1, clk2, and clk3 are asynchronous to it too.

set_clock_groups -asynchronous -group {clk1 clk2 clk3}

Example 3
The following set_clock_groups constraint has multiple -group arguments, and
specifies that clk1 and clk2 are asynchronous to clk3 and clk4.

set_clock_groups -asynchronous -group {clk1 clk2}
-group {clk3 clk4}

Example 4
The following set_clock_groups constraint specifies that clk1 and clk2 which were
synchronous when defined with the create_clock command, are now asynchro-
nous.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
222 May 2015

create_clock [get_ports {c1}] -name clk1 -period 10
create_clock [get_ports {c2}] -name clk2 -period 16
create_clock [get_ports {c3}] -name clk3 -period 5
set_clock_groups -asynchronous -group [get_clocks {clk1}]

-group [get_clocks {clk2}]

The following constructs are equivalent:

set_clock_groups -asynchronous -group [get_clocks {clk1}]

set_clock_groups -asynchronous -group {clk1}

Example 5
The following constraint specifies that test|clkout0_derived_clock_CLKIN1 and
test|clkout1_derived_clock_CLKIN1 are asynchronous to all other clocks in the
design:

set_clock_groups –asynchronous –group [get_clocks {*clkout*}]

Example 6
This example defines the clock on the u1.clkout0 net is asynchronous to all
other clocks in the design:

set_clock_groups –asynchronous –group [get_clocks –of_objects
{n:u1.clkout0}]

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 223

set_clock_latency

Specifies clock network latency.

Syntax

The supported syntax for the set_clock_latency constraint is:

set_clock_latency
-source
[-clock {clockList}]
delayValue
{objectList}
[-disable]

Arguments

Description

In the FPGA synthesis tools, the set_clock_latency constraint accepts both clock
objects and clock aliases. Applying a set_clock_latency constraint on a port can
be used to model the off-chip clock delays in a multi-chip environment. Clock
latency is forward annotated in the top-level constraint file as part of the time
budgeting that takes place in the Certify/HAPS flow. The annotated values
represent the arrival times for clocks on specific ports of any particular FPGA
in a HAPS design.

In the above syntax, objectList references either input ports with defined
clocks or clock aliases defined on the input ports. When more than one clock
is defined for an input port, the -clock option can be used to apply different
latency values to each alias.

-source Indicates that the specified delay is applied to the clock source
latency.

-clock clockList Indicates that the specified delay is applied with respect to the
specified clocks. By default, the specified delay is applied to all
specified objects.

delayValue Specifies the clock latency value.

objectList Specifies the input ports for which clock latency is to be set

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
224 May 2015

Restrictions

The following limitations are present in the FPGA synthesis environment:

• Clock latency can only be applied to clocks defined on input ports.

• The set_clock_latency constraint is only used for source latency.

• The constraint only applies to port clock objects.

• Latency on clocks defined with create_generated_clock is not supported.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 225

set_clock_route_delay

Translates the -route option for the legacy define_clock constraint.

Syntax

The supported syntax for the set_clock_route_delay constraint is:

set_clock_route_delay {clockAliasList} {delayValue}

Arguments

Description

The sdc2fdc translator performs a translation of the -route option for the legacy
define_clock constraint and places a set_clock_route_delay constraint in the
*_translated.fdc file using the following format:

set_clock_route_delay [get_clocks {clk_alias_1 clk_alias_2 ...}]
{delay_in_ns}

clockAliasList Lists the clock aliases to include the route delay.

delayValue Specifies the route delay value.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
226 May 2015

set_clock_uncertainty

Specifies the uncertainty (skew) of the specified clock networks.

Syntax

The supported syntax for the set_clock_uncertainty constraint is:

set_clock_uncertainty
{objectList}
-from fromClock |-rise_from riseFromClock | -fall_from fallFromClock
-to toClock |-rise_to riseToClock | -fall_to fallToClock
value

Arguments

objectList Specifies the clocks for simple uncertainty. The uncertainty is
applied to the capturing latches clocked by one of the specified
clocks. You must specify either this argument or a clock pair
with the -from/-rise_from/-fall_from and -to/-rise_to/-fall_to options;
you cannot specify both an object list and a clock pair.

-from fromClock Specifies the source clocks for interclock uncertainty. You can
use only one of the -from, -rise_from, and -fall_from options and you
must specify a destination clock with one of the -to, -rise_to, and
-fall_to options.

-rise_from
riseFromClock

Specifies that the uncertainty applies only to the rising edge of
the source clock. You can use only one of the -from, -rise_from,
and -fall_from options and you must specify a destination clock
with one of the -to, -rise_to, and -fall_to options.

-fall_from
fallFromClock

Specifies that the uncertainty applies only to the falling edge of
the source clock. You can use only one of the -from, -rise_from,
and -fall_from options and you must specify a destination clock
with one of the -to, -rise_to, and -fall_to options.

-to toClock Specifies the destination clocks for interclock uncertainty. You
can use only one of the -to, -rise_to, and -fall_to options and you
must specify a source clock with one of the -from, -rise_from, and
-fall_from options.

-rise_to
riseToClock

Specifies that the uncertainty applies only to the rising edge of
the destination clock. You can use only one of the -to, -rise_to,
and -fall_to options and you must specify a source clock with one
of the -from, -rise_from, and -fall_from options.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 227

-fall_to fallToClock Specifies that the uncertainty applies only to the falling edge of
the destination clock. You can use only one of the -to, -rise_to,
and -fall_to options and you must specify a source clock with one
of the -from, -rise_from, and -fall_from options.

value Specifies a floating-point number that indicates the uncertainty
value. Typically, clock uncertainty should be positive. Negative
uncertainty values are supported for constraining designs with
complex clock relationships. Setting the uncertainty value to a
negative number could lead to optimistic timing analysis and
should be used with extreme care.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
228 May 2015

set_false_path

Removes timing constraints from particular paths.

Syntax

The supported syntax for the set_false_path constraint is:

set_false_path
[-setup]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
[-disable]
[-comment commentString]

Arguments

-setup Specifies that setup checking (maximum delay) is reset to
single-cycle behavior.

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:
• Clocks
• Registers
• Top-level input or bi-directional ports
• Black box outputs
• Sequential cell clock pins
• Sequential cell output pins
• When the specified object is a clock, all flip-flops, latches, and

primary inputs related to that clock are used as path start
points.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 229

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
• Combinational nets
• Hierarchical ports
• Pins on instantiated cells
By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
If more than one object is included, the objects must be
enclosed either in quotation marks ("") or in braces ({}). If you
specify the -through option multiple times, set_path applies to the
paths that pass through a member of each objectList. If you use
the -through option in combination with the -from or -to options,
set_false_path applies only if the -from or -to and the -through
conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:
• Clocks
• Registers
• Top-level output or bi-directional ports
• Black box inputs
• Sequential cell data input pins
If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points.

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
230 May 2015

set_input_delay

Sets input delay on pins or input ports relative to a clock signal.

Syntax

The supported syntax for the set_input_delay constraint is:

set_input_delay
[-clock clockName [-clock_fall]]
[-rise|-fall]
[-min|-max]
[-add_delay]
delayValue
{portPinList}
[-disable]
[-comment commentString]

Argument

-clock clockName Specifies the clock to which the specified delay is related. If
-clock_fall is used, -clock clockName must be specified. If -clock is
not specified, the delay is relative to time zero for combinational
designs. For sequential designs, the delay is considered relative
to a new clock with the period determined by considering the
sequential cells in the transitive fanout of each port.

-clock_fall Specifies that the delay is relative to the falling edge of the clock.
The default is the rising edge.

-rise Specifies that delayValue refers to a rising transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed to be equal.
Currently, the synthesis tool does not differentiate between the
rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -rise option is preserved and forward annotated to
the place-and-route tool.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 231

-fall Specifies that delayValue refers to a falling transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed equal.
Currently, the synthesis tool does not differentiate between the
rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -fall option is preserved and forward annotated to
the place-and-route tool.

-min Specifies that delayValue refers to the shortest path. If neither
-max nor -min is specified, maximum and minimum input delays
are assumed equal.
Note: The synthesis tool does not optimize for hold time
violations and only reports -min delay values in the
synlog/topLevel_fpga_mapper.srr_Min timing report section
of the log file. The -min delay values are forward annotated to the
place-and-route tool.

-max Specifies that delayValue refers to the longest path. If neither
-max nor -min is specified, maximum and minimum input delays
are assumed equal.
Note: The -max delay values are reported in the top-level log file
and are forward annotated to the place-and-route tool.

-add_delay Specifies if delay information is to be added to the existing input
delay or if is to be overwritten. The -add_delay option enables you
to capture information about multiple paths leading to an input
port that are relative to different clocks or clock edges.

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

delayValue Specifies the path delay. The delayValue must be in units
consistent with the technology library used during optimization.
The delayValue represents the amount of time the signal is
available after a clock edge. This represents a combinational
path delay from the clock pin of a register.

portPinList Specifies a list of input port names in the current design to
which delayValue is assigned. If more than one object is
specified, the objects are enclosed in quotes ("") or in braces ({}).

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
232 May 2015

set_max_delay

Specifies a maximum delay target for paths in the current design.

Syntax

The supported syntax for the set_max_delay constraint is:

set_max_delay
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
delayValue
[-disable]
[-comment commentString]

Arguments

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:
• Clocks
• Registers
• Top-level input or bi-directional ports
• Black box outputs
• Sequential cell clock pins
• Sequential cell output pins
When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points. All paths from these start points to the end points in the
-from objectList are constrained to delayValue. If a -to objectList is
not specified, all paths from the -from objectList are affected. If
you include more than one object, you must enclose the objects
in quotation marks ("") or braces ({}).

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 233

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
• Combinational nets
• Hierarchical ports
• Pins on instantiated cells
By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
The max delay value applies only to paths that pass through
one of the points in the -through objectList. If more than one
object is included, the objects must be enclosed either in
quotation marks ("") or in braces ({}). If you specify the -through
option multiple times, set_max_delay applies to the paths that
pass through a member of each objectList. If you use the -through
option in combination with the -from or -to options, set_max_delay
applies only if the -from or -to and the -through conditions are
satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:
• Clocks
• Registers
• Top-level output or bi-directional ports
• Black box inputs
• Sequential cell data input pins
If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points. All
paths to the end points in the -to objectList are constrained to
delayValue. If a -from objectList is not specified, all paths to the
-to objectList are affected. If you include more than one object,
you must enclose the objects in quotation marks ("") or braces
({}).

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
234 May 2015

delayValue Specifies the value of the desired maximum delay for paths
between start and end points. You must express delayValue in
the same units as the technology library used during
optimization. If a path start point is on a sequential device,
clock skew is included in the computed delay. If a path start
point has an input delay specified, that delay value is added to
the path delay. If a path end point is on a sequential device,
clock skew and library setup time are included in the computed
delay. If the end point has an output delay specified, that delay
is added into the path delay.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 235

set_multicycle_path

Modifies the single-cycle timing relationship of a constrained path.

Syntax

The supported syntax for the set_multicycle_path constraint is:

set_multicycle_path
[-start |-end]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
pathMultiplier
[-disable]
[-comment commentString]

Arguments

-start | -end Specifies if the multi-cycle information is relative to the period of
either the start clock or the end clock. These options are only
needed for multi-frequency designs; otherwise start and end are
equivalent. The start clock is the clock source related to the
register or primary input at the path start point. The end clock
is the clock source related to the register or primary output at
the path endpoint. The default is to move the setup check
relative to the end clock, and the hold check relative to the start
clock. A setup multiplier of 2 with -end moves the relation
forward one cycle of the end clock. A setup multiplier of 2 with -
start moves the relation back one cycle of the start clock. A hold
multiplier of 1 with -start moves the relation forward one cycle of
the start clock. A hold multiplier of 1 with -end moves the
relation back one cycle of the end clock.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
236 May 2015

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:
• Clocks
• Registers
• Top-level input or bi-directional ports
• Black box outputs
• Sequential cell clock pins
• Sequential cell output pins
When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points. If a -to objectList is not specified, all paths from the -from
objectList are affected. If you include more than one object, you
must enclose the objects in quotation marks ("") or braces ({}).

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
• Combinational nets
• Hierarchical ports
• Pins on instantiated cells
The multi-cycle values apply only to paths that pass through
one of the points in the -through objectList. If more than one
object is included, the objects must be enclosed either in double
quotation marks ("") or in braces ({}). If you specify the -through
option multiple times, set_multicycle_delay applies to the paths
that pass through a member of each objectList. If the -through
option is used in combination with the -from or -to options, the
multi-cycle values apply only if the -from or -to conditions and
the -through conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:
• Clocks
• Registers
• Top-level output or bi-directional ports
• Black box inputs
• Sequential cell data input pins
If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points. If a
-from objectList is not specified, all paths to the -to objectList are
affected. If you include more than one object, you must enclose
the objects in quotation marks ("") or braces ({})..

-disable Disables the constraint.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 237

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

pathMultiplier Specifies the number of cycles that the data path must have for
setup or hold relative to the start point or end point clock before
data is required at the end point. When used with -setup, this
value is applied to setup path calculations. When used with
-hold, this value is applied to hold path calculations. If neither
-hold nor -setup are specified, pathMultiplier is used for setup,
and 0 is used for hold. Changing the pathMultiplier for setup
also affects the hold check.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
238 May 2015

set_output_delay

Sets output delay on pins or output ports relative to a clock signal.

Syntax

The supported syntax for the set_output_delay constraint is:

set_output_delay
[-clock clockName [-clock_fall]]
[-rise|[-fall]
[-min|-max]
[-add_delay]
delayValue
{portPinList}
[-disable]
[-comment commentString]

Arguments

-clock clockName Specifies the clock to which the specified delay is related. If
-clock_fall is used, -clock clockName must be specified. If -clock is
not specified, the delay is relative to time zero for combinational
designs. For sequential designs, the delay is considered relative
to a new clock with the period determined by considering the
sequential cells in the transitive fanout of each port.

-clock_fall Specifies that the delay is relative to the falling edge of the clock.
If -clock is specified, the default is the rising edge.

-rise Specifies that delayValue refers to a rising transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed to be equal.
Currently, the synthesis tool does not differentiate between the
rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -rise option is preserved and forward annotated to
the place-and-route tool.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 239

-fall Specifies that delayValue refers to a falling transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed equal.
Currently, the synthesis tool does not differentiate between the
rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -fall option is preserved and forward annotated to
the place-and-route tool.

-min Specifies that delayValue refers to the shortest path. If neither
-max nor -min is specified, maximum and minimum output
delays are assumed equal.
Note: The synthesis tool does not optimize for hold time
violations and only reports -min delay values in the
synlog/topLevel_fpga_mapper.srr_Min timing report section
of the log file. The -min delay values are forward annotated to the
place-and-route tool.

-max Specifies that delayValue refers to the longest path. If neither
-max nor -min is specified, maximum and minimum output
delays are assumed equal.
Note: The -max delay values are reported in the top-level log file
and are forward annotated to the place-and-route tool.

-add_delay Specifies whether to add delay information to the existing
output delay or to overwrite. The -add_delay option enables you
to capture information about multiple paths leading to an
output port that are relative to different clocks or clock edges.

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

delayValue Specifies the path delay. The delayValue must be in units
consistent with the technology library used during optimization.
The delayValue represents the amount of time that the signal is
required before a clock edge. For maximum output delay, this
usually represents a combinational path delay to a register plus
the library setup time of that register. For minimum output
delay, this value is usually the shortest path delay to a register
minus the library hold time

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
240 May 2015

portPinList A list of output port names in the current design to which
delayValue is assigned. If more than one object is specified, the
objects are enclosed in double quotation marks ("") or in braces
({}).

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 241

set_reg_input_delay

Speeds up paths feeding a register by a given number of nanoseconds.

Syntax

set_reg_input_delay {registerName} [-route ns] [-disable] [-comment textString]

Arguments

Description

The set_reg_input_delay timing constraint speeds up paths feeding a register by
a given number of nanoseconds. The Synopsys FPGA synthesis tool attempts
to meet the global clock frequency goals for a design as well as the individual
clock frequency goals (set with create_clock). Use this constraint to speed up
the paths feeding a register. For information about the equivalent SCOPE
spreadsheet interface, see Registers, on page 174.

Use this constraint instead of the legacy constraint, define_reg_input_delay.

registerName A single bit, an entire bus, or a slice of a bus.

-route Advanced user option that you use to tighten constraints during
resynthesis, when the place-and-route timing report shows the
timing goal is not met because of long paths to the register.

-comment Allows the command to accept a comment string. The tool honors the
annotation and preserves it with the object so that the exact string is
written out when the constraint is written out. The comment remains
intact through the synthesis, place-and-route, and timing-analysis
flows.

-disable Disables the constraint.

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
242 May 2015

set_reg_output_delay

Speeds up paths coming from a register by a given number of nanoseconds.

Syntax

set_reg_output_delay {registerName} [-route ns] [-disable] [-comment textString]

Arguments

Description

The set_reg_output_delay constraint speeds up paths coming from a register by
a given number of nanoseconds. The synthesis tool attempts to meet the
global clock frequency goals for a design as well as the individual clock
frequency goals (set with create_clock). Use this constraint to speed up the
paths coming from a register. For information about the equivalent SCOPE
spreadsheet interface, see Registers, on page 174.

Use this constraint instead of the legacy constraint, define_reg_output_delay.

Naming Rule Syntax Commands

The FPGA synthesis environment uses a set of naming conventions for design
objects in the RTL when your project contains constraint files. The following
naming rule commands are added to the constraint file to change the
expected default values. These commands must appear at the beginning of

registerName A single bit, an entire bus, or a slice of a bus.

-route Advanced user option that you use to tighten constraints during
resynthesis, when the place-and-route timing report shows the
timing goal is not met because of long paths from the register.

-comment Allows the command to accept a comment string. The tool honors
the annotation and preserves it with the object so that the exact
string is written out when the constraint is written out. The
comment remains intact through the synthesis, place-and-route,
and timing-analysis flows.

-disable Disables the constraint.

FPGA Timing Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 243

the constraint file before any other constraints. Similarly, when multiple
constraint files are included in the project, the naming rule commands must
be in the first constraint file read.

set_hierarchy_separator Command
The set_hierarchy_separator command redefines the hierarchy separator
character (the default separator character is the period in the FPGA synthesis
environment). For example, the following command changes the separator
character to a forward slash:

set_hierarchy_separator {/}

Embedded Tcl commands, such as get_pins must be enclosed in brackets []
for the software to execute the command. Also, the curly brackets { } are
required when object names include the escape (\) character or square
brackets. For example, the following syntax is honored by the tool:

set_hierarchy_separator {/}
create_clock -name {clk1} [get_pins
{pdp_c/ib_phy_c/port_g\.1\.phy_c/c7_g\.gtxe2_common_0_i/GTREFCLK[0]}]
-period {10}

set_rtl_ff_names Command
The set_rtl_ff_names command controls the stripping of register suffixes in the
object strings of delay-path constraints (for example, set_false_path,
set_multicycle_path). Generally, it is only necessary to change this value from its
default when constraints that target ASIC designs are being imported from
the Design Compiler (in the Design Compiler, inferred registers are given a
_reg suffix during the elaboration phase; constraints targeting these registers
must include this suffix). When importing constraints from the Design
Compiler, include the following command to change the value of this naming
rule to {_reg} to automatically recognize the added suffix.

set_rtl_ff_names {_reg}

For example, using the above value allows the DC exception

set_false_path –to [get_cells {register_bus_reg[0]}]

to apply to the following object without having to manually modify the
constraint:

[get_cells {register_bus[0]}]

LO

 Constraint Syntax FPGA Timing Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
244 May 2015

bus_naming_style Command
The bus_naming_style command redefines the format for identifying bits of a
bus (by default, individual bits of a bus are identified by the bus name
followed by the bus bit enclosed in square brackets). For example, the
following command changes the bus-bit identification from the default
busName[busBit] format to the busName_busBit format:

bus_naming_style {%s_%d}

bus_dimension_separator_style Command
The bus_dimension_separator_style command redefines the format for identifying
multi-dimensional arrays (by default, multidimensional arrays such as row 2,
bit 3 of array ABC[n x m] are identified as ABC[2][3]). For example, the
following command changes the bus-dimension separator from individual
square bracket sets to an underscore:

bus_dimension_separator_style {_}

The resulting format for the above example is:

ABC[2_3]

read_sdc Command
Reads in a script in Synopsys FPGA constraint format. The supported syntax
for the read_sdc constraint is:

read_sdc fileName

Design Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 245

Design Constraints

This section describes the constraint file syntax for the following non-timing
design constraints:

• define_compile_point, on page 246

• define_current_design, on page 247

• define_io_standard, on page 248

LO

 Constraint Syntax Design Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
246 May 2015

define_compile_point

The define_compile_point command defines a compile point in a top-level
constraint file. You use one define_compile_point command for each compile
point you define. For the equivalent SCOPE spreadsheet interface, see
Compile Points, on page 181. (Compile points are only available for certain
technologies.)

This is the syntax:

define_compile_point [-disable] {moduleName}
-type {soft|hard|locked|locked, partition} [-comment textString]

Refer to Guidelines for Entering and Editing Constraints, on page 129 for
details about the syntax and prefixes for naming objects.

Here is a syntax example:

define_compile_point {v:work.prgm_cntr} -type {locked}

-disable Disables a previous compile point definition.

-type Specifies the type of compile point. This can be soft, hard, locked, or
locked, partition. See Compile Point Types, on page 373 for more
information.

Design Constraints Constraint Syntax

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 247

define_current_design

The define_current_design command specifies the module to which the
constraints that follow it apply. It must be the first command in a block-level
or compile-point constraint file. The specified module becomes the top level
for objects defined in this hierarchy and the constraints applied in the respec-
tive block-level or compile-point constraint file.

This is the syntax:

define_current_design {regionName | libraryName.moduleName }

Refer to Guidelines for Entering and Editing Constraints, on page 129 for
details about the syntax and prefixes for naming objects.

Here is an example:

define_current_design {lib1.prgm_cntr}

Objects in all constraints that follow this command relate to prgm_cntr.

LO

 Constraint Syntax Design Constraints

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
248 May 2015

define_io_standard

Specifies a standard I/O pad type to use for various Microsemi families. See
I/O Standards, on page 179 for details of the SCOPE equivalent.

define_io_standard [-disable] {p:portName} -delay_type input|output|bidir
syn_pad_type {IO_standard} [parameter {value}...]

In the above syntax:

portName is the name of the input, output, or bidirectional port.

-delay_type identifies the port direction which must be input, output, or bidir.

syn_pad_type is the I/O pad type (I/O standard) to be assigned to
portName.

parameter is one or more of the parameters defined in the following
table. Note that these parameters are device-family dependent.

Examples:

define_io_standard {p:DATA1[7:0]} -delay_type input
syn_pad_type {LVCMOS_33} syn_io_slew {high}
syn_io_drive {12} syn_io_termination {pulldown}

Parameter Function

syn_io_termination The termination type; typical values are pullup
and pulldown.

syn_io_drive The output drive strength; values include low
and high or numerical values in mA.

syn_io_dv2 Switch to use a 2x impedance value (DV2).

syn_io_dci Switch for digitally-controlled impedance (DCI).

syn_io_slew The slew rate for single-ended output buffers;
values include slow and fast or low and high.

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 249

C H A P T E R 7

Input and Result Files

This chapter describes the input and output files used by the synthesis tool.

• Input Files, on page 250

• Libraries, on page 254

• Output Files, on page 256

• Log File, on page 261

• Timing Reports, on page 267

• Constraint Checking Report, on page 275

LO

 Input and Result Files Input Files

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
250 May 2015

Input Files

The following table describes the input files used by the synthesis tool.

Extension File Description

.adc Analysis
Design
Constraint

Contains timing constraints to use for stand-alone
timing analysis. Constraints in this file are used only
for timing analysis and do not change the result files
from synthesis. Constraints in the adc file are applied
in addition to sdc constraints used during synthesis.
Therefore, adc constraints affect timing results only if
there are no conflicts with sdc constraints.
You can forward annotate adc constraints to your
vendor constraint file without rerunning synthesis.
See Using Analysis Design Constraints, on page 288
of the User Guide for details.

.fdc Synopsys
FPGA Design
Constraint

Create FPGA timing and design constraints with
SCOPE. You can run the sdc2fdc utility to translate
legacy FPGA timing constraints (SDC) to Synopsys
FPGA timing constraints (FDC). For details, see the
sdc2fdc, on page 57.

.ini Configuration
and
Initialization

Governs the behavior of the synthesis tool. You
normally do not need to edit this file. For example,
use the HDL Analyst Options dialog box, instead, to
customize behavior. See HDL Analyst Options
Command, on page 305.
On the Windows 7 platforms, the ini file is in the
C:\Users\userName\AppData\Roaming\Synplicity directory
On Linux workstations, the ini file is in the following
directory: (~/.Synplicity, where ~ is your home
directory, which can be set with the environment
variable $HOME).

.prj Project Contains all the information required to complete a
design. It is in Tcl format, and contains references to
source files, compilation, mapping, and optimization
switches, specifications for target technology and
other runtime options.

.sdc Constraint Contains the timing constraints (clock parameters,
I/O delays, and timing exceptions) in Tcl format.
You can either create this file manually or generate it
by entering constraints in the SCOPE window.

Input Files Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 251

HDL Source Files

The HDL source files for a project can be in either VHDL (vhd), Verilog (v), or
SystemVerilog (sv) format.

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the built-
in macro libraries, you can easily instantiate vendor macros directly into the
VHDL designs, and forward-annotate them to the output netlist. Refer to the
appropriate vendor support documentation for more information.

.sv Source files
(Verilog)

Design source files in SystemVerilog format. The sv
source file is added to the Verilog directory in the
Project view. For more information about the Verilog
and SystemVerilog languages, and the synthesis
commands and attributes you can include, see
Verilog, on page 252, Chapter 8, Verilog Language
Support, and Chapter 9, SystemVerilog Language
Support. For information about using VHDL and
Verilog files together in a design, see Using Mixed
Language Source Files, on page 43 of the User
Guide.

.vhd Source files
(VHDL)

Design source files in VHDL format. See VHDL, on
page 252 and Chapter 10, VHDL Language Support
for details. For information about using VHDL and
Verilog files together in a design, see Using Mixed
Language Source Files, on page 43 of the User
Guide.

.v Source files
(Verilog)

Design source files in Verilog format. For more
information about the Verilog language, and the
synthesis commands and attributes you can include,
see Verilog, on page 252, Chapter 8, Verilog
Language Support, and Chapter 9, SystemVerilog
Language Support. For information about using
VHDL and Verilog files together in a design, see Using
Mixed Language Source Files, on page 43 of the
User Guide.

Extension File Description

LO

 Input and Result Files Input Files

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
252 May 2015

VHDL

The Synopsys FPGA synthesis tool supports a synthesizable subset of
VHDL93 (IEEE 1076), and the following IEEE library packages:

• numeric_bit

• numeric_std

• std_logic_1164

The synthesis tool also supports the following industry standards in the IEEE
libraries:

• std_logic_arith

• std_logic_signed

• std_logic_unsigned

The Synopsys FPGA synthesis tool library contains an attributes package
(installDirectory/lib/vhd/synattr.vhd) of built-in attributes and timing constraints
that you can use with VHDL designs. The package includes declarations for
timing constraints (including black-box timing constraints), vendor-specific
attributes, and synthesis attributes. To access these built-in attributes, add
the following two lines to the beginning of each of the VHDL design units that
uses them:

library synplify;
use synplify.attributes.all;

For more information about the VHDL language, and the synthesis
commands and attributes you can include, see Chapter 10, VHDL Language
Support.

Verilog

The Synopsys FPGA synthesis tool supports a synthesizable subset of Verilog
2001 and Verilog 95 (IEEE 1364) and SystemVerilog extensions. For more
information about the Verilog language, and the synthesis commands and
attributes you can include, see Chapter 8, Verilog Language Support and
Chapter 9, SystemVerilog Language Support.

Input Files Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 253

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the built-
in macro libraries, you can instantiate vendor macros directly into Verilog
designs and forward-annotate them to the output netlist. Refer to the User
Guide for more information.

LO

 Input and Result Files Libraries

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
254 May 2015

Libraries

You can instantiate components from a library, which can be either in Verilog
or VHDL. For example, you might have technology-specific or custom IP
components in a library, or you might have generic library components. The
installDirectory/lib directory included with the software contains some compo-
nent libraries you can use for instantiation.

There are two kinds of libraries you can use:

• Technology-specific libraries that contain I/O pad, macro, or other
component descriptions. The lib directory lists these kinds of libraries
under vendor sub-directories. The libraries are named for the technology
family, and in some cases also include a version number for the version
of the place-and-route tool with which they are intended to be used.

For information about using vendor-specific libraries to instantiate
LPMs, PLLs, macros, I/O pads, and other components, refer to the
appropriate sections in Chapter 15, Optimizing for Microsemi Designsin
the User Guide.

• Technology-independent libraries that contain common components.
You can have your own library or use the one Synopsys provides. This
library is a Verilog library of common logic elements, much like the
Synopsys® GTECH component library. See The Generic Technology
Library, on page 255 for a description of this library.

Libraries Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 255

The Generic Technology Library

The synthesis software includes this Verilog library for generic components
under the installDirectory/lib/generic_technology directory. Currently, the library is
only available in Verilog format. The library consists of technology-indepen-
dent common logic elements, which help the designer to develop technology-
independent parts. The library models extract the functionality of the compo-
nent, but not its implementation. During synthesis, the mappers implement
these generic components in implementations that are appropriate to the
technology being used.

To use components from this directory, add the library to the project by doing
either of the following:

• Add add_file -verilog "$LIB/generic_technology/gtech.v to your prj file or type it
in the Tcl window.

• In the tool window, click the Add file button, navigate to the installDirec-
tory/lib/generic_technology directory and select the gtech.v file.

When you synthesize the design, the tool uses components from this library.

You cannot use the generic technology library together with other generic
libraries, as this could result in a conflict. If you have your own GTECH
library that you intend to use, do not use the generic technology library.

LO

 Input and Result Files Output Files

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
256 May 2015

Output Files

The synthesis tool generates reports about the synthesis run and files that
you can use for simulation or placement and routing. The following table
describes the output files, categorizing them as either synthesis result and
report files, or output files generated as input for other tools.

Extension File Description

.areasrr Hierarchical Area
Report

Reports area-specific information
such as sequential and
combinational RAMs, DSPs, and
Black Boxes on each module in the
design.

_cck.rpt Constraint Checker
Report

Checks the syntax and
applicability of the timing
constraints in the fdc file for your
project and generates a report
(projectName_cck.rpt). See
Constraint Checking Report, on
page 275 for more information.

_compiler.linkerlog Compiler log file for
HDL source file
linking

Provides details of why the VHDL
and/or Verilog components in the
source files were not properly
linked. This file is located in the
synwork directory for the
implementation.

.fse FSM information file Design-dependent. Contains
information about encoding types
and transition states for all state
machines in the design.

.info Design component
files

Design-dependent. Contains
detailed information about design
components like state machines or
ROMs.

.linkerlog Mixed language
ports/generics
differences

Provides details of why the VHDL
and/or Verilog components in the
source files were not properly
linked. This file is located in the
synwork directory for the
implementation. The same
information is also reported in the
log file.

Output Files Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 257

.pfl Message Filter
criteria

Output file created after filtering
messages in the Messages window.
See Updating the projectName.pfl
file, on page 206 in the User
Guide.

Results file:
• .edf

Vendor-specific
results file

Results file that contains the
synthesized netlist, written out in a
format appropriate to the
technology and the place-and-
route tool you are using. Generally,
the format is EDIF.
Specify this file on the
Implementation Results panel of the
Implementation Options dialog box
(Implementation Results Panel, on
page 200).

run_options.txt Project settings for
implementations

This file is created when a design is
synthesized and contains the
project settings and options used
with the implementations. These
settings and options are also
processed for displaying the Project
Status view after synthesis is run.
For details, see Project Status Tab,
on page 40.

.sap Synplify Annotated
Properties

This file is generated after the
Annotated Properties for Analyst option
is selected in the Device panel of
the Implementation Options dialog
box. After the compile stage, the
tool annotates the design with
properties like clock pins. You can
find objects based on these
annotated properties using Tcl Find.
For more information, see find, on
page 90Using the Tcl Find
Command to Define Collections,
on page 141 in the User Guide.

Extension File Description

LO

 Input and Result Files Output Files

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
258 May 2015

 .sar Archive file Output of the Synopsys FPGA
Archive utility in which design
project files are stored into a single
archive file. Archive files use
Synopsys Proprietary Format. See
Archive Project Command, on
page 185 for details on archiving,
unarchiving and copying projects.

_scck.rpt Constraint Checker
Report (Syntax Only)

Generates a report that contains
an overview of the design
information, such as, the top-level
view, name of the constraints file, if
there were any constraint syntax
issues, and a summary of clock
specifications.

.srd Intermediate
mapping files

Used to save mapping information
between synthesis runs. You do
not need to use these files.

.srm Mapping output files Output file after mapping. It
contains the actual technology-
specific mapped design. This is the
representation that appears
graphically in a Technology view.

.srr Synthesis log file Provides information on the
synthesis run, as well as area and
timing reports. See Log File, on
page 261, for more information.

.srs Compiler output file Output file after the compiler stage
of the synthesis process. It
contains an RTL-level
representation of a design. This is
the representation that appears
graphically in an RTL view.

Extension File Description

Output Files Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 259

synlog folder Intermediate
technology mapping
files

This folder contains intermediate
netlists and log files after
technology mapping has been run.
Timestamp information is
contained in these netlist files to
manage jobs with up-to-date
checks. For more information, see
Using Up-to-date Checking for
Job Management, on page 178.

synwork folder Intermediate pre-
mapping files

This folder contains intermediate
netlists and log files after pre-
mapping has been run. Timestamp
information is contained in these
netlist files to manage jobs with
up-to-date checks. For more
information, see Using Up-to-date
Checking for Job Management, on
page 178.

.ta Customized Timing
Report

Contains the custom timing
information that you specify
through Analysis->Timing Analyst. See
Analysis Menu, on page 267, for
more information.

_ta.srm Customized
mapping output file

Creates a customized output
netlist when you generate a custom
timing report with HDL
Analyst->Timing Analyst. It contains
the representation that appears
graphically in a Technology view.
See Analysis Menu, on page 267
for more information.

Extension File Description

LO

 Input and Result Files Output Files

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
260 May 2015

.tap Timing Annotated
Properties

This file is generated after the
Annotated Properties for Analyst option
is selected in the Device panel of the
Implementation Options dialog box.
After the compile stage, the tool
annotates the design with timing
properties and the information can
be analyzed in the RTL view and
Design Planner. You can also find
objects based on these annotated
properties using Tcl Find. For more
information, see Using the Tcl
Find Command to Define
Collections, on page 141 in the
User Guide.

.tlg Log file This log file contains a list of all the
modules compiled in the design.

vendor constraint file Constraints file for
forward annotation

Contains synthesis constraints to
be forward-annotated to the place-
and-route tool. The constraint file
type varies with the vendor and the
technology. Refer to the vendor
chapters for specific information
about the constraints you can
forward-annotate. Check the
Implementation Results dialog
(Implementation Options) for
supported files. See
Implementation Results Panel, on
page 200.

Extension File Description

Log File Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 261

Log File

The log file report, located in the implementation directory, is written out in
two file formats: text (projectName.srr), and HTML with an interactive table of
contents (projectName.htm and projectName_srr.htm) where projectName is the
name of your project. Select View Log File in HTML in the Options->Project View
Options dialog box to enable viewing the log file in HTML. Select the View Log
button in the Project view (Buttons and Options, on page 98) to see the log file
report.

. vm

. vhm
Mapped Verilog or
VHDL netlist

Optional post-synthesis netlist file
in Verilog (.vm) or VHDL (.vhm)
format. This is a structural netlist
of the synthesized design, and
differs from the original RTL used
as input for synthesis. Specify
these files on the Implementation
Results dialog box (Implementation
Options). See Implementation
Results Panel, on page 200.
Typically, you use this netlist for
gate-level simulation, to verify your
synthesis results. Some designers
prefer to simulate before and after
synthesis, and also after place-
and-route. This approach helps
them to isolate the stage of the
design process where a problem
occurred.
The Verilog and VHDL output files
are for functional simulation only.
When you input stimulus into a
simulator for functional
simulation, use a cycle time for the
stimulus of 1000 time ticks.

Extension File Description

LO

 Input and Result Files Log File

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
262 May 2015

The log file is written each time you compile or synthesize (compile and map)
the design. When you compile a design without mapping it, the log file
contains only compiler information. As a precaution, a backup copy of the log
file (srr) is written to the backup sub-directory in the Implementation Results
directory. Only one backup log file is updated for subsequent synthesis runs.

The log file contains detailed reports on the compiler, mapper, timing, and
resource usage information for your design. Errors, notes, warnings, and
messages appear in both the log file and on the Messages tab in the Tcl
window.

For further details about different sections of the log file, see the following:

For information about ... See ...

Compiled files, messages (warnings, errors, and
notes), user options set for synthesis, state machine
extraction information, including a list of reachable
states.

Compiler Report, on
page 263

Buffers added to clocks in certain supported
technologies.

Clock Buffering Report, on
page 263

Buffers added to nets. Net Buffering Report, on
page 264

Compile point remapping Compile Point Information,
on page 264

Timing results. This section of the log file begins with
“START TIMING REPORT” section.
If you use the Timing Analyst to generate a custom
timing report, its format is the same as the timing
report in the log file, but the customized timing
report is in a ta file.

Timing Reports, on
page 267

Resources used by synthesis mapping Resource Usage Report, on
page 265

Design changes made as a result of retiming Retiming Report, on
page 265

Design changes made as a result of gated clock
conversion

Errors, Warnings, Notes,
and Messages, on page 265

Log File Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 263

Compiler Report

This report starts with the compiler version and date, and includes the
following:

• Project information: the top-level module.

• Design information: HDL syntax and synthesis checks, black box
instantiations, FSM extractions and inferred RAMs/ROMs. It also
includes informational or warning messages about unused ports,
removal of redundant logic, and latch inference. See Errors, Warnings,
Notes, and Messages, on page 265 for details about the kinds of
messages.

• Netlist filter information: constant propagation.

Premap Report

This report begins with the pre-mapper version and date, and reports the
following:

• File loading times and memory usage

• Clock summary

Mapper Report

This report begins with the mapper version and date, and reports the
following:

• Project information: the names of the constraint files, target technology,
and attributes set in the design.

• Design information such as flattened instances, extraction of counters,
FSM implementations, clock nets, buffered nets, replicated logic, RTL
optimizations, and informational or warning messages. See Errors,
Warnings, Notes, and Messages, on page 265 for details about the kinds
of messages.

Clock Buffering Report

This section of the log file reports any clocks that were buffered. For example:

Clock Buffers:
Inserting Clock buffer for port clock0,TNM=clock0

LO

 Input and Result Files Log File

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
264 May 2015

Net Buffering Report

Net buffering reports are generated for most all of the supported FPGAs and
CPLDs. This information is written in the log file, and includes the following
information:

• The nets that were buffered or had their source replicated

• The number of segments created for that net

• The total number of buffers added during buffering

• The number of registers and look-up tables (or other cells) added during
replication

Example: Net Buffering Report
Net buffering Report:
Badd_c[2] - loads: 24, segments 2, buffering source
Badd_c[1] - loads: 32, segments 2, buffering source
Badd_c[0] - loads: 48, segments 3, buffering source
Aadd_c[0] - loads: 32, segments 3, buffering source
Added 10 Buffers
Added 0 Registers via replication
Added 0 LUTs via replication

Compile Point Information

The Summary of Compile Points section of the log file (projectName.srr) lists each
compile point, together with an indication of whether it was remapped, and, if
so, why. Also, a timing report is generated for each compile point located in
its respective results directories in the Implementation Directory. The compile
point is the top-level design for this report file.

For more information on compile points and the compile-point synthesis flow,
see Synthesizing Compile Points, on page 387of the User Guide.

Timing Section

A default timing report is written to the log file (projectName.srr) in the “START
OF TIMING REPORT” section. See Timing Reports, on page 267, for details.

For certain device technologies, you can use the Timing Analyst to generate
additional timing reports for point-to-point analysis (see Analysis Menu, on
page 267). Their format is the same as the timing report.

Log File Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 265

Resource Usage Report

A resource usage report is added to the log file each time you compile or
synthesize. The format of the report varies, depending on the architecture you
are using. The report provides the following information:

• The total number of cells, and the number of combinational and sequen-
tial cells in the design

• The number of clock buffers and I/O cells

• Details of how many of each type of cell in the design

See Checking Resource Usage, on page 195 in the User Guide for a brief
procedure on using the report to check for overutilization.

Retiming Report

Whenever retiming is enabled, a retiming report is added to the log file
(projectName.srr). It includes information about the design changes made as a
result of retiming, such as the following:

• The number of flip-flops added, removed, or modified because of
retiming. Flip-flops modified by retiming have a _ret suffix added to their
names.

• Names of the flip-flops that were moved by retiming and no longer exist
in the Technology view.

• Names of the flip-flops created as result of the retiming moves, that did
not exist in the RTL view.

• Names of the flip-flops modified by retiming; for example, flip-flops that
are in the RTL and Technology views, but have different fanouts because
of retiming.

Errors, Warnings, Notes, and Messages

Throughout the log file, interactive error, note, warning, and informational
messages appear.

• Error messages begin with “@E:”

• Warning messages begin with “@W:”

• Notes begin with “@N:”

LO

 Input and Result Files Log File

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
266 May 2015

• Advisories begin with “@A:”

• Informational messages begin with “@I:”

Colors distinguish different types of messages:

The errors, warnings, and notes are also displayed in the Messages tab of the
Output window. To get help on a message, you can single click on the
numeric ID at the beginning of the message in the log file or Messages window.
To crossprobe to the corresponding HDL source code, single click on the
source file name.

Color Message Type Example

Blue Information (@I)
Notes (@N)

@I: :"C:\designs\Designs6\module1\mychip.v”
@N: CL201 |Trying to extract state machine for ...

Brown Warnings (@W) @W: CG146 |Creating black_box for empty module ...

Red Errors(@E) @E: CS106 |Reference to undefined module ...

Timing Reports Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 267

Timing Reports

Timing results can be written to one or more of the following files:

The timing reports in the srr/htm and ta files have the following sections:

• Timing Report Header, on page 268

• Performance Summary, on page 268

• Clock Relationships, on page 270

• Interface Information, on page 271

• Detailed Clock Report, on page 272

• Asynchronous Clock Report, on page 274

.srr or .htm Log file that contains a default timing report. To find this
information, after synthesis completes, open the log file
(View -> Log File), and search for START OF TIMING REPORT.

.ta Timing analysis file that contains timing information
based on the parameters you specify in the stand-alone
Timing Analyst (Analysis->Timing Analyst).

designName_async_clk
.rpt.scv

Asynchronous clock report file that is generated when you
enable the related option in the stand-alone Timing
Analyzer (Analysis->Timing Analyst). This report can be
displayed in a spreadsheet tool and contains information
for paths that cross between multiple clock groups. See
Asynchronous Clock Report, on page 274 for details on
this report.

LO

 Input and Result Files Timing Reports

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
268 May 2015

Timing Report Header

The timing report header lists the date and time, the name of the top-level
module, the number of paths requested for the timing report, and the
constraint files used.

You can control the size of the timing report by choosing Project -> Implementa-
tion Options, clicking the Timing Report tab of the panel, and specifying the
number of start/end points and the number of critical paths to report. See
Timing Report Panel, on page 201, for details.

Performance Summary

The Performance Summary section of the timing report reports estimated and
requested frequencies for the clocks, with the clocks sorted by negative slack.
The timing report has a different section for detailed clock information (see
Detailed Clock Report, on page 272). The Performance Summary lists the
following information for each clock in the design:

Performance Summary
Column

Description

Starting Clock Clock at the start point of the path.
If the clock name is system, the clock is a collection
of clocks with an undefined clock event. Rising and
falling edge clocks are reported as one clock
domain.

Requested/Estimated
Frequency

Target frequency goal /estimated value after
synthesis. See Cross-Clock Path Timing Analysis,
on page 270 for information on how cross-clock
path slack is reported.

Requested/Estimated Period Target clock period/estimated value after
synthesis.

Timing Reports Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 269

The synthesis tool does not report inferred clocks that have an unreasonable
slack time. Also, a real clock might have a negative period. For example,
suppose you have a clock going to a single flip-flop, which has a single path
going to an output. If you specify an output delay of –1000 on this output,
then the synthesis tool cannot calculate the clock frequency. It reports a
negative period and no clock.

Clock Types

The synthesis timing reports include the following types of clocks:

• Declared Clocks

User-defined clocks specified in the constraint file.

• Inferred Clocks

These are clocks that the synthesis timing engine finds during
synthesis, but which have not been constrained by the user. The tool
assigns the default global frequency specified for the project to these
clocks.

• Derived Clocks

These are clocks that the synthesis tool identifies from a clock
divider/multiplier such as DCM.

Slack Difference between estimated and requested
period. See Cross-Clock Path Timing Analysis, on
page 270 for information on how cross-clock path
slack is reported.

Clock Type The type of clock: inferred, declared, derived or system.
For more information, see Clock Types, on
page 269.

Clock Group Name of the clock group that a clock belongs.

Performance Summary
Column

Description

LO

 Input and Result Files Timing Reports

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
270 May 2015

• System Clock

The system clock is the delay for the combinatorial path. Additionally, a
system clock can be reported if there are sequential elements in the
design for a clock network that cannot be traced back to a clock. Also,
the system clock can occur for unconstrained I/O ports. You must
investigate these conditions.

Clock Relationships

For each pair of clocks in the design, the Clock Relationships section of the
timing report lists both the required time (constraint) and the worst slack time
for each of the intervals rise to rise, fall to fall, rise to fall, and fall to rise. See Cross-
Clock Path Timing Analysis, on page 270 for details about cross-clock paths.

This information is provided for the paths between related clocks (that is,
clocks in the same clock group). If there is no path at all between two clocks,
then that pair is not reported. If there is no path for a given pair of edges
between two clocks, then an entry of No paths appears.

For information about how these relationships are calculated, see Clock
Groups, on page 163. For tips on using clock groups, see Defining Other
Clock Requirements, on page 171 in the User Guide.

Cross-Clock Path Timing Analysis

The following describe how the timing analyst calculates cross-clock path
frequency and slack.

Timing Reports Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 271

Cross-Clock Path Frequency
For each data path, the tool estimates the highest frequency that can be set
for the clock(s) without a setup violation. It finds the largest scaling factor
that can be applied to the clock(s) without causing a setup violation. If the
start clock is not the same as the end clock, it scales both by the same factor.

scale = (minimum time period -(-current slack))/minimum time period

It assumes all other delays in the setup calculation (e.g., uncertainty) are
fixed.

It applies relevant multicycle constraints to the setup calculation.

The estimated frequency for a clock is the minimum frequency over all paths
that start or end on that clock, with the following exceptions:

• The tool does not consider paths between the system clock and another
clock to estimate frequency.

• It considers paths with a path delay constraint to be asynchronous, and
does not use them to estimate frequency.

• It considers paths between clocks in different domains to be asynchro-
nous, and does not use them to estimate frequency.

Slack for Cross-Clock Paths
The slack reported for a cross-clock path is the worst slack for any path that
starts on that clock. Note that this differs from the estimated frequency calcu-
lation, which is based on the worst slack for any path starting or ending on
that clock.

Interface Information

The interface section of the timing report contains information on arrival
times, required times, and slack for the top-level ports. It is divided into two
subsections, one each for Input Ports and Output Ports. Bidirectional ports are
listed under both. For each port, the interface report contains the following
information.

LO

 Input and Result Files Timing Reports

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
272 May 2015

Detailed Clock Report

Each clock reported in the performance summary also has a detailed clock
report section in the timing report. The clock reports are listed in order of
negative slack.

General Critical Path Information

This section contains general information about the most critical paths in the
design.

Port parameter Description

Port Name Port name.

Starting Reference Clock The reference clock.

User Constraint The input/output delay. If a port has multiple delay
records, the report contains the values for the record with
the worst slack. The reference clock corresponds to the
worst slack delay record.

Arrival Time Input ports: define_input_delay, or default value of 0.
Output ports: path delay (including clock-to-out delay of
source register).
For purely combinational paths, the propagation delay is
calculated from the driving input port.

Required Time Input ports: clock period – (path delay + setup time of
receiving register + define_reg_input_delay value).
Output ports: clock period – define_output_delay. Default
value of define_output_delay is 0.

Slack Required Time – Arrival Time

Clock Information Description

N most critical start points Start points can be input ports or registers. If the
start point is a register, you see the starting pin in the
report. To change the number of start points reported,
choose Project -> Implementation Options, and set the
number on the Timing Report panel.

Timing Reports Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 273

Worst Path Information

For each critical path, the timing report has a detailed description. It starts
with a summary of the information and is followed by a detailed pin-by-pin
report. The summary reports information like requested period, actual
period, start and end points, and logic levels. Note that the requested period
here is period -route delay, while the requested period in the Performance
Summary (Performance Summary, on page 268) is just the clock period.

The detailed path report uses this format: Output pin – Net – Input pin – Output pin –
Net – Input pin. The following table describes the critical path information
reported:

N most critical end points End points can be output ports or registers. If the end
point is a register, you see the ending pin in the
report. To change the number of end points reported,
select Project -> Implementation Options, and set the
number on the Timing Report panel.

N worst path information
(see the next table for
details)

Starting with the most critical path, the worst path
Information sections contain details of the worst
paths in the design. Paths from clock A to clock B are
reported as critical paths in the section for clock A.
You can change the number of critical paths on the
Timing Report panel of the Implementation Options dialog
box.

Critical path information Description

Instance/Net Name Technology view names for the instances and nets in
the critical path

Type Type of cell

Pin Name Name of the pin

Pin Dir Pin direction

Delay The delay value.

Arrival Time Clock delay at the source + the propagation delay
through the path

Fan Out Number of fanouts for the point in the path

Clock Information Description

LO

 Input and Result Files Timing Reports

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
274 May 2015

Asynchronous Clock Report

You can generate a report for paths that cross between clock groups using
the stand-alone Timing Analyst (Analysis->Timing Analyst, Generate Asynchronous
Clock Report check box). Generally, paths in different clock groups are
automatically handled as false paths. This option provides a file that contains
information on each of the paths and can be viewed in a spreadsheet tool. To
display the CSV-format report:

1. Locate the file in your results directory projectName_async_clk.rpt.csv.

2. Open the file in your spreadsheet tool.

 Column Description

Index Path number.

Path Delay Delay value as reported in standard timing (ta) file.

Logic Levels Number of logic levels in the path (such as LUTs,
cells, and so on) that are between the start and end
points.

Types Cell types, such as LUT, logic cell, and so on.

Route Delay As reported for each path in ta

Source Clock Start clock.

Destination Clock End clock.

Data Start Pin Sequential device output pin at start of path.

Data End Pin Setup check pin at destination.

Constraint Checking Report Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 275

Constraint Checking Report

Use the Run->Constraint Check command to generate a report on the constraint
files in your project. The projectName_cck.rpt file provides information such as
invalid constraint syntax, constraint applicability, and any warnings or
errors. For details about running Constraint Check, see Tcl Syntax Guidelines
for Constraint Files, on page 52 in the User Guide.

This section describes the following topics:

• Reporting Details, on page 275

• Inapplicable Constraints, on page 276

• Applicable Constraints With Warnings, on page 277

• Sample Constraint Check Report, on page 278

Reporting Details

This constraint checking file reports the following:

• Constraints that are not applied

• Constraints that are valid and applicable to the design

• Wildcard expansion on the constraints

• Constraints on objects that do not exist

It contains the following sections:

Summary Statement which summarizes the total number of issues
defined as an error or warning (x) out of the total number of
constraints with issues (y) for the total number of constraints
(z) in the fdc file.
Found <x> issues in <y> out of <z> constraints

Clock Relationship Standard timing report clock table, without slack.

Unconstrained
Start/End Points

Lists I/O ports that are missing input/output delays.

LO

 Input and Result Files Constraint Checking Report

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
276 May 2015

Inapplicable Constraints

Refer to the following table for constraints that were not applied because
objects do not exist or the object type check was not valid:

Unapplied
constraints

Constraints that cannot be applied because objects do not
exist or the object type check is not valid. See Inapplicable
Constraints, on page 276 for more information.

Applicable
constraints with
issues

Constraints will be applied either fully or partially, but there
might be issues that generate warnings which should be
investigated, such as some objects/collections not existing.
Also, whenever at least one object in a list of objects is not
specified with a valid object type a warning is displayed. See
Applicable Constraints With Warnings, on page 277 for more
information.

Constraints with
matching wildcard
expressions

Lists constraints or collections using wildcard expressions up
to the first 1000, respectively.

For these constraints ... Objects must be ...

Attributes Valid definitions

create_clock • Ports
• Nets
• Pins
• Registers
• Instantiated buffers

create_generated_clock Clocks

define_compile_point • Region
• View

define_current_design v:view

Constraint Checking Report Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 277

Applicable Constraints With Warnings

The following table lists reasons for warnings in the report file:

set_false_path
set_multicycle_path

set_max_delay

For -to or -from objects:
• i:sequential instances
• p:ports
• i:black boxes
For -through objects
• n:nets
• t:hierarchical ports
• t:pins

set_multicycle_path Specified as a positive integer

set_input_delay • Input ports
• bidir ports

set_output_delay • Output ports
• Bidir ports

set_reg_input_delay

set_reg_output_delay

Sequential instances

For these constraints ... Objects must be ...

create_clock • Ports
• Nets
• Pins
• Registers
• Instantiated buffers

set_clock_uncertainty A single object. Multiple objects are
not supported.

define_compile_point A single object. Multiple objects are
not supported.

define_current_design v:view

For these constraints ... Objects must be ...

LO

 Input and Result Files Constraint Checking Report

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
278 May 2015

Sample Constraint Check Report

The following is a sample report generated by constraint checking:

Synopsys Constraint Checker, version maprc, Build 1138R, built Jun 7 2013
Copyright (C) 1994-2013, Synopsys, Inc.

Written on Fri Jun 7 09:42:22 2013
DESIGN INFO

Top View: "decode_top"
Constraint File(s): "C:\timing_88\FPGA_decode_top.sdc"
SUMMARY

Found 3 issues in 2 out of 27 constraints

set_false_path
set_multicycle_path

set_path_delay

For -to or -from objects:
• i:sequential instances
• p:ports
• i:black boxes
For -through objects:
• n:nets
• t:hierarchical ports
• t:pins

set_input_delay A single object. Multiple objects are
not supported.

set_output_delay A single object. Multiple objects are
not supported.

set_reg_input_delay

set_reg_output_delay

A single object. Multiple objects are
not supported.

For these constraints ... Objects must be ...

Constraint Checking Report Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 279

DETAILS

Clock Relationships

Starting Ending | rise to rise | fall to fall | rise to fall | fall to rise
--
clk2x clk2x | 24.000 | 24.000 | 12.000 | 12.000
--
clk2x clk | 24.000 | No paths | No paths | 12.000
clk clk2x | 24.000 | No paths | 12.000 | No paths
clk clk | 48.000 | No paths | No paths | No paths
==
Note:
'No paths' indicates there are no paths in the design for that pair of clock edges.
'Diff grp' indicates that paths exist but the starting clock and ending clock are in
different clock groups

Unconstrained Start/End Points

p:test_mode

Inapplicable constraints

set_false_path -from p:next_synd -through i:core.tab1.ram_loader
@E:|object "i:core.tab1.ram_loader" does not exist
@E:|object "i:core.tab1.ram_loader" is incorrect type; "-through" objects must be of
type net (n:), or pin (t:)

Applicable constraints with issues

set_false_path -from {core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.omega_inst.omega_tmp_d_lch[7:0]}
@W:|object "core.decoder.root_mult*.root_prod_pre[*]" is missing qualifier which may
result in undesired results; "-from" objects must be of type clock (c:), inst (i:), port
(p:), or pin (t:)

Constraints with matching wildcard expressions
**

set_false_path -from {core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.omega_inst.omega_tmp_d_lch[7:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

LO

 Input and Result Files Constraint Checking Report

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
280 May 2015

set_false_path -from {i:core.decoder.*.root_prod_pre[*]} -to {i:core.decoder.t_*_[*]}
@N:|expression "core.decoder.*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]
@N:|expression "core.decoder.t_*_[*]" applies to objects:
core.decoder.t_20_[7:0]
core.decoder.t_19_[7:0]
core.decoder.t_18_[7:0]
core.decoder.t_17_[7:0]
core.decoder.t_16_[7:0]
core.decoder.t_15_[7:0]
core.decoder.t_14_[7:0]
core.decoder.t_13_[7:0]
core.decoder.t_12_[7:0]
core.decoder.t_11_[7:0]
core.decoder.t_10_[7:0]
core.decoder.t_9_[7:0]
core.decoder.t_8_[7:0]
core.decoder.t_7_[7:0]
core.decoder.t_6_[7:0]
core.decoder.t_5_[7:0]
core.decoder.t_4_[7:0]
core.decoder.t_3_[7:0]
core.decoder.t_2_[7:0]
core.decoder.t_1_[7:0]
core.decoder.t_0_[7:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.err[7:0]}
N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.omega_inst.deg_omega[4:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.omega_inst.omega_tmp[0:7]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.root[7:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

Constraint Checking Report Input and Result Files

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 281

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.root_inst.count[3:0]}
N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.root_inst.q_reg[7:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.root_inst.q_reg_d_lch[7:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult.root_prod_pre[*]} -to
{i:core.decoder.error_inst.den[7:0]}
@N:|expression "core.decoder.root_mult.root_prod_pre[*]" applies to objects:
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult1.root_prod_pre[*]} -to
{i:core.decoder.error_inst.num1[7:0]}
@N:|expression "core.decoder.root_mult1.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.synd_reg_*_[7:0]} -to {i:core.decoder.b_*_[7:0]}
@N:|expression "core.decoder.synd_reg_*_[7:0]" applies to objects:
core.decoder.un1_synd_reg_0_[7:0]
core.decoder.synd_reg_20_[7:0]
core.decoder.synd_reg_19_[7:0]
core.decoder.synd_reg_18_[7:0]
core.decoder.synd_reg_17_[7:0]
core.decoder.synd_reg_16_[7:0]
core.decoder.synd_reg_15_[7:0]
core.decoder.synd_reg_14_[7:0]
core.decoder.synd_reg_13_[7:0]
core.decoder.synd_reg_12_[7:0]
core.decoder.synd_reg_11_[7:0]
core.decoder.synd_reg_10_[7:0]
core.decoder.synd_reg_9_[7:0]
core.decoder.synd_reg_8_[7:0]
core.decoder.synd_reg_7_[7:0]
core.decoder.synd_reg_6_[7:0]
core.decoder.synd_reg_5_[7:0]
core.decoder.synd_reg_4_[7:0]
core.decoder.synd_reg_3_[7:0]
core.decoder.synd_reg_2_[7:0]
core.decoder.synd_reg_1_[7:0]

LO

 Input and Result Files Constraint Checking Report

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
282 May 2015

@N:|expression "core.decoder.b_*_[7:0]" applies to objects:
core.decoder.un1_b_0_[7:0]
core.decoder.b_calc.un1_lambda_0_[7:0]
core.decoder.b_20_[7:0]
core.decoder.b_19_[7:0]
core.decoder.b_18_[7:0]
core.decoder.b_17_[7:0]
core.decoder.b_16_[7:0]
core.decoder.b_15_[7:0]
core.decoder.b_14_[7:0]
core.decoder.b_13_[7:0]
core.decoder.b_12_[7:0]
core.decoder.b_11_[7:0]
core.decoder.b_10_[7:0]
core.decoder.b_9_[7:0]
core.decoder.b_8_[7:0]
core.decoder.b_7_[7:0]
core.decoder.b_6_[7:0]
core.decoder.b_5_[7:0]
core.decoder.b_4_[7:0]
core.decoder.b_3_[7:0]
core.decoder.b_2_[7:0]
core.decoder.b_1_[7:0]
core.decoder.b_0_[7:0

Library Report

End of Constraint Checker Report

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 283

C H A P T E R 8

Verilog Language Support

This chapter discusses Verilog support in the synthesis tool. SystemVerilog
support is described separately, in Chapter 9, SystemVerilog Language
Support. This chapter includes the following topics:

• Support for Verilog Language Constructs, on page 284

• Verilog 2001 Support, on page 298

• Verilog Synthesis Guidelines, on page 329

• Verilog Module Template, on page 342

• Scalable Modules, on page 343

• Built-in Gate Primitives, on page 287

• Combinational Logic, on page 348

• Sequential Logic, on page 353

• Verilog State Machines, on page 363

• Instantiating Black Boxes in Verilog, on page 368

• PREP Verilog Benchmarks, on page 369

• Hierarchical or Structural Verilog Designs, on page 370

• Verilog Attribute and Directive Syntax, on page 377

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
284 May 2015

Support for Verilog Language Constructs

This section describes support for various Verilog language constructs:

• Supported and Unsupported Verilog Constructs, on page 284

• Ignored Verilog Language Constructs, on page 285

Supported and Unsupported Verilog Constructs

The following table lists the supported and unsupported Verilog constructs. If
the tool encounters an unsupported construct, it generates an error message
and stops.

Supported Verilog Constructs Unsupported Verilog Constructs

Net types:
wire, tri, tri0, tri1

Net types:
trireg, triand, trior, wand, wor, charge
strength

Register types:
• reg, integer, time (64-bit reg)
• arrays of reg

Register types:
real

Gate primitive, module, and macromodule
instantiations

Built-in unidirectional and
bidirectional switches, and pull-up/pull-
down

inputs, outputs, and inouts to a module UDPs and specify blocks

All operators
+, -, *, /, %, **, <, >, <=, >=, ==, !=, ===, !==,
==?, !=?, &&, ||, !, ~, &, ~&, |, ~|, ^~, ~^, ^, <<,
>>, ?:, { }, {{ }}
(See Operators, on page 292 for additional
details.)

Net names:
release, and hierarchical net names
(for simulation only)

Procedural statements:
assign, if-else-if, case, casex, casez, for, repeat,
while, forever, begin, end, fork, join

Procedural statements:
deassign, wait

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 285

Ignored Verilog Language Constructs

When it encounters certain Verilog constructs, the tool ignores them and
continues the synthesis run. The following constructs are ignored:

• delay, delay control, and drive strength

• scalared, vectored

• initial block

• Compiler directives (except for 'define, 'ifdef, 'ifndef, 'else, 'elsif, 'endif, 'include,
and 'undef, which are supported)

• Calls to system tasks and system functions (they are only for simulation)

Data Types

Verilog data types can be categorized into the following general types:

• Net Data Types, on page 286

• Register Data Types, on page 286

Procedural assignments:
• always blocks, user tasks, user functions

(See always Blocks for Combinational
Logic, on page 349)

• Blocking assignments =
• Non-blocking assignments <=
Do not use = with <= for the same register.
Use parameter override: # and defparam
(down one level of hierarchy only).

• Named events and event triggers

Continuous assignments

Compiler directives:
'define, 'ifdef, 'ifndef, 'else, 'elsif, 'endif, 'include,
'undef

Miscellaneous:
• Parameter ranges
• Local declarations to begin-end block
• Variable indexing of bit vectors on the left

and right sides of assignments

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
286 May 2015

• Miscellaneous Data Types, on page 286

Net Data Types

Net data types are used to model physical connections. The following net
types are supported:

While the Synopsys FPGA Verilog compiler allows the use of tri0 and tri1 nets,
these nets are treated as wire net types during synthesis, and any variable
declared as a tri0 or tri1 net type behaves as a wire net type. A warning is issued
in the log file alerting you that a tri0 or tri1 variable is being treated as a wire
net type and that a simulation mismatch is possible.

Register Data Types

The supported register data types are outlined in the following table:

Miscellaneous Data Types

The following data types are also supported:

wire Connects elements; used with nets driven by a single gate or
continuous assignment

tri Connects elements; used when a net includes more than one
driver

tri0 Models resistive pulldown device (its value is 0 when no driver is
present)

tri1 Models resistive pullup device (its value is 1 when no driver is
present)

reg A 1-bit wide data type; when more than one bit is required, a
range declaration is included

integer A 32-bit wide data type that cannot include a range declaration

time A 64-bit wide data type that stores simulation time as an unsigned
number; a range declaration is not allowed

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 287

Built-in Gate Primitives

You can create hardware by directly instantiating built-in gates into your
design (in addition to instantiating your own modules). The built-in Verilog
gates are called primitives.

Syntax

gateTypeKeyword [instanceName] (portList) ;

The gate type keywords for simple and tristate gates are listed in the following
tables. The instanceName is a unique instance name and is optional. The signal
names in the portList can be given in any order with the restriction that all
outputs must precede any inputs. For tristate gates, outputs come first, then
inputs, and then enable. The following tables list the supported keywords.

parameter Specifies a constant value for a variable (see Creating a Scalable
Module, on page 343)

localparam A local constant parameter (see Localparams, on page 312)

genvar A Verilog 2001 temporary variable used for index control within a
generate loop (see Generate Statement, on page 314)

Keyword (Simple Gates) Definition

buf buffer

not inverter

and and gate

nand nand gate

or or gate

nor nor gate

xor exclusive or gate

xnor exclusive nor gate

Keyword (Tristate Gates) Definition

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
288 May 2015

Port Definitions

Port signals are defined as input, output, or bidirectional and are referred to
as the port list for the module. The three signal declarations are input, output,
and inout as described in the following table.

Statements

Statement types include loop statements, case statements, and conditional
statements as described in the ensuing subsections.

loop Statements

Loop statements are used to modify blocks of procedural statements. The
loop statements include for, repeat, while, and forever as described in the
following table:

bufif1 tristate buffer with logic one enable

bufif0 tristate buffer with logic zero enable

notif1 tristate inverter with logic one enable

notif0 tristate inverter with logic zero enable

input An input signal to the module

output An output signal from the module

inout A bidirection signal to/from the module

for Continues to execute a given statement until the expression
becomes true; the first assignment is executed initially and then
the expression is evaluated repeatedly

repeat Executes a given statement a fixed number of times; the number
of executions is defined by the expression following the repeat
keyword.

while Executes a given statement until the expression becomes true

forever Continuously repeats the ensuing statement

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 289

case Statements

Case statements select one statement from a list of statements based on the
value of the case expression. A case statement is introduced with a case,
casex, or casez keyword and is terminated with an endcase statement. A case
statement can include a default condition that is taken when none of the case
select expressions is valid.

Conditional Statements

Conditional statements are used to determine which statement is to be
executed based on a conditional expression. The conditional statements
include if, else, and else if. The simplified syntax for these conditional state-
ments is either:

if (conditionalExpression)
statement1;

else
statement2;

or

if (conditionalExpression)
statement1;

else if (conditionalExpression);
statement2;

else
statement3;

The if statement can be used in one of two ways:

case allow branching on multiple conditional expressions based on case
statement matching

casex allows branching of multiple conditional expression matching
where any 'x' (unknown) or 'z' value appearing in the case
expression is treated as a don't care

casez allows branching of multiple conditional expression matching
where any 'z' (high impedance) value appearing in the case
expression is treated as a don't care

endcase terminates a case, casex, or casez statement

default assigns a case expression to a default condition when there are no
other matching conditions

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
290 May 2015

• as a single “if-else” statement shown in the first simplified syntax

• as a multiple “if-else-if” statement shown in the second simplified syntax

In the first syntax, when conditionalExpression evaluates true, statement1 is
executed, and when conditionalExpression evaluates false, statement2 is
executed.

In the second syntax, when conditionalExpression evaluates true, statement1
is executed as in the first syntax example. However, when conditionalExpres-
sion evaluates false, the second conditional expression (else if) is evaluated
and, depending on the result, either statement2 or statement3 is executed.

Blocks

Blocks delimit a set of statements. The block is typically introduced by a
keyword that identifies the start of the block, and is terminated by an end
keyword that identifies the end of the block.

module/endmodule Block

The module/endmodule block is the basic compilation unit in Verilog.
Modules are introduced with the module (or macromodule) keyword and are
terminated by the endmodule keyword. For more information, see Verilog
Module Template, on page 342. The following example shows the basic
module syntax.

module add (out, in1, in2);output out;
input in1, in2;
assign out = in1 & in2;
endmodule

begin/end Block

A begin/end block provides a method of grouping multiple statements into a
always block. The statements within the this block are executed in the order
listed. When a timing control statement is included within the block, execu-
tion of the next statement is delayed until after the timing delay. The
following example illustrates a begin/end block:

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 291

module tmp (in1, in2, out1, out2);
input in1, in2;
output out1, out2;
reg out1, out2;

always@(in1, in2)
begin

out1 =(in1 & in2);
out2 =(in1 | in2);

end
endmodule

fork/join Block

A fork/join block provides a method of grouping multiple statements into a an
always block. The statements within this block are executed simultaneously.
With parallel blocks, because all statements are executed at the same time,
mutually dependent statements are not allowed. The following example illus-
trates a fork/join block:

module tmp (in1, in2, out1, out2);
input in1, in2;
output out1, out2;
reg out1, out2;

always@(in1, in2)
fork

out1 =(in1 & in2);
out2 =(in1 | in2);

join
endmodulefork, join

generate/endgenerate Block

A generate block is created using one of the generate-loop, generate-condi-
tional, or generate-case format. The block is introduced with the keyword
generate and terminated with the keyword endgenerate. For more information,
see Generate Statement, on page 314.

Compiler Directives

Compiler directives control compilation within an EDA environment. These
directives are prefixed with an accent grave (‘) or “tick mark.” Compiler direc-
tives are not Verilog statements and, as such, do not require the semicolon

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
292 May 2015

terminator. A compiler directive remains active until it is modified or disabled
by another directive. The following table lists the supported compiler direc-
tives:

Operators

Arithmetic Operators

Arithmetic operators can be used with all data types.

'include File inclusion; the contents of the referenced file are inserted at
the location of the 'include directive.

'ifdef Executes a conditional procedural statement based on a defined
macro

'ifndef Executes a conditional procedural statement in the absence of a
text macro

'else Indicates an alternative to the previous `ifdef or `ifndef condition

'elsif Indicates an alternative to the previous `ifdef or `ifndef condition

'endif Indicates the end of an `ifdef or `ifndef conditional procedural
statement

'define Creates a macro for text substitution

'undef Removes the definition of a previously defined text macro

'celldefine Identifies the source code limited by 'cellname and 'endcelldefine as a
cell.

'endcelldefine Identifies the source code limited by 'cellname and 'endcelldefine as a
cell.

Symbol Usage Function

+ a + b a plus b

- a - b a minus b

* a * b a multiplied by b

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 293

The / and % operators are supported for compile-time constants and constant
powers of two. For the modulus operator (%), the result takes the sign of the
first operand.

The exponential operation for a**b is supported, where:

Exponential operation includes the following limitations:

• The exponent cannot be a negative number when the base operand is a
dynamic value.

• The following conditions generate an error:

– Operand a is a dynamic variable and operand b is a negative
constant.

– Operands a and b are dynamic variables.

– Operand a is a constant power of 2 and negative (for example,
-2, -4, -6 ...) and operand b is a dynamic signal (signed/unsigned).

– Operand a is a constant non power of 2 and positive/negative (for
example, 1/-1, 3/-3, 5/-5 ...) and operand b is a dynamic signal
(signed/unsigned).

For the two previous conditions, the compiler only supports operand
a as a power of 2 positive integer (for example, 2, 4, 6 ...) and operand b
as a dynamic signal (signed/unsigned).

/ a / b a divided by b

% a % b a modulo b

** a **b a to the power of b

Operand Can be a ...

a • Constant (positive/negative)
• Dynamic variable (signed/unsigned)

b • Constant (positive/negative)
• Dynamic variable (positive/negative integer)

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
294 May 2015

Relational Operators

Relational operators compare expressions. The value returned by a relational
operator is 1 if the expression evaluates true or 0 if the expression evaluates
false.

Equality Operators

The equality operators compare expressions. When a comparison fails, the
result is 0, otherwise it is 1. When both operands of a logical equality (==) or
logical inequality (!=) contain an unknown value (x) or high-impedance (z)
value, the result of the comparison is unknown (x); otherwise the result is
either true or false.

When an operands of case equality (===) or case inequality (!==) contains an
unknown value (x) or high-impedance (z) value, the result is calculated bit-
by-bit.

When an equality (==) or inequality (!=) operator includes unknown bits (for
example, A==4'b10x1 or A!=4'b111z), the Synopsys Verilog compiler assumes
that the output is always False. This assumption contradicts the LRM which
states that the output should be x (unknown) and can result in a possible
simulation mismatch

Symbol Usage Function

< a < b a is less than b

> a > b a is greater than b

<= a <= b a is less than or equal to b

=> a => b a equal to or greater than b

Symbol Usage Function

== m == n m is equal to n

!= m != n m is not equal to n

=== m === n m is identical to n

!== m !== n m is not identical to n

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 295

Wildcard Equality Operators

The wildcard equality operators (==? and !=?) compare expressions and
perform bit-wise comparisons between the two operands. When the right-side
operand contains an unknown value (x) or high-impedance (z) value for a
given bit position, the compiler treats them as wildcards. The wildcard bit can
match any value (0, 1, x, or z) that corresponds to the bit of the left-side
operand to which it is being compared. All the other bits are compared for
logical equality or inequality operations.

For the wildcard operation below:

sig1 ==? 3'b10x

The compiler implements the following behavior:

sig1 == 3'b100 | | sig1 == 3'b101

Note that the Synopsys Verilog compiler does not support wildcard equality
operators with two variable operands.

Logical Operators

Logical operators connect expressions. The result a logical operation is 0 if
false, 1 if true, or x (unknown) if ambiguous. The negation operator (!)
changes a nonzero or true value of the operand to 0 or a zero or false value to
1; an ambiguous value results in x (unknown) value.

Bitwise Operators

Bitwise operators are described in the following table:

Symbol Usage Function

&& a && b a and b

|| a || b a or b

! !a not a

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
296 May 2015

Unary Reduction Operators

Unary reduction operators are described in the following table:

Miscellaneous Operators

Miscellaneous operators are described in the following table:

Symbol Usage Function

~ ~m Invert each bit

& m & n AND each bit

| m | n OR each bit

^ m ^ n Exclusive OR each bit

~^, ^~ m ~^ n
m ^~ n

Exclusive NOR each bit

Symbol Usage Function

& &m AND all bits

~& ~&m NAND all bits

| |m OR all bits

~| ~|m NOR all bits

^ ^m Exclusive OR all bits

^~, ~^ ~^m
^~m

Exclusive NOR all bits

Symbol Usage Function

? : sel? m:n If sel is true, select m

{ } {m,n} Concatenate m to n

{ { } } {n{m}} Replicate m n times

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 297

Procedural Assignments

The Verilog procedure may be an always or initial statement, task, or function.
Assignment statements for procedural assignments always appear within the
procedures and can execute concurrently with other procedures.

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
298 May 2015

Verilog 2001 Support

You can choose the Verilog standard to use for a project or given files within a
project: Verilog ‘95 or Verilog 2001. See File Options Popup Menu Command,
on page 335 and Setting Verilog and VHDL Options, on page 83 of the User
Guide. The synthesis tool supports the following Verilog 2001 features:

Feature Description

Combined Data, Port Types
(ANSI C-style Modules)

Module data and port type declarations can be
combined for conciseness.

Comma-separated Sensitivity
List

Commas are allowed as separators in sensitivity
lists (as in other Verilog lists).

Wildcards (*) in Sensitivity List Use @* or @(*) to include all signals in a
procedural block to eliminate mismatches
between RTL and post-synthesis simulation.

Signed Signals Data types net and reg, module ports, integers of
different bases and signals can all be signed.
Signed signals can be assigned and compared.
Signed operations can be performed for vectors
of any length.

Inline Parameter Assignment by
Name

Assigns values to parameters by name, inline.

Constant Function Builds complex values at elaboration time.

Configuration Blocks Specifies a set of rules that defines the source
description applied to an instance or module.

Localparams A constant that cannot be redefined or modified.

$signed and $unsigned Built-in
Functions

Built-in Verilog 2001 function that converts
types between signed and unsigned.

$clog2 Constant Math Function Returns the value of the log base-2 for the
argument passed.

Generate Statement Creates multiple instances of an object in a
module. You can use generate with loops and
conditional statements.

Automatic Task Declaration Dynamic allocation and release of storage for
tasks.

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 299

Combined Data, Port Types (ANSI C-style Modules)

In Verilog 2001, you can combine module data and port type declarations to
be concise, as shown below:

Multidimensional Arrays Groups elements of the declared element type
into multi-dimensional objects.

Variable Partial Select Supports indexed part select expressions (+:
and -:), which use a variable range to provide
access to a word or part of a word.

Cross-Module Referencing Accesses elements across modules.

ifndef and elsif Compiler
Directives

'ifndef and 'elsif compiler directive support.

Verilog ‘95

module adder_16 (sum, cout, cin, a, b);
output [15:0] sum;
output cout;
input [15:0] a, b;
input cin;
reg [15:0] sum;
reg cout;
wire [15:0] a, b;
wire cin;

Verilog 2001

module adder_16(output reg [15:0] sum, output reg cout,
input wire cin, input wire [15:0] a, b);

Feature Description

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
300 May 2015

Comma-separated Sensitivity List

In Verilog 2001, you can use commas as separators in sensitivity lists (as in
other Verilog lists).

Wildcards (*) in Sensitivity List

In Verilog 2001, you can use @* or @(*) to include all signals in a procedural
block, eliminating mismatches between RTL and post-synthesis simulation.

Verilog ‘95

always @(a or b or cin)
sum = a - b - cin;

always @(posedge clock or negedge reset)
if (!reset)
q <= 0;

else
q <= d;

Verilog 2001

always @(a, b or cin)
sum = a - b - cin;

always @(posedge clock, negedge reset)
if (!reset)
q <= 0;

else
q <= d;

Verilog ‘95

always @(a or b or cin)
sum = a - b - cin;

Verilog 2001

// Style 1:
always @(*)

sum = a - b - cin;

// Style 2:
always @*

sum = a - b - cin;

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 301

Signed Signals

In Verilog 2001, data types net and reg, module ports, integers of different bases
and signals can all be signed. You can assign and compare signed signals,
and perform signed operations for vectors of any length.

Declaration
module adder (output reg signed [31:0] sum,

wire signed input [31:0] a, b;

Assignment
wire signed [3:0] a = 4’sb1001;

Comparison
wire signed [1:0] sel;
parameter p0 = 2’sb00, p1 = 2’sb01, p2 = 2’sb10, p3 = 2’sb11;
case sel

p0: ...
p1: ...
p2: ...
p3: ...

endcase

Inline Parameter Assignment by Name

In Verilog 2001, you can assign values to parameters by name, inline:

module top(/* port list of top-level signals */);
dff #(.param1(10), .param2(5)) inst_dff(q, d, clk);

endmodule

where:

module dff #(parameter param1=1, param2=2) (q, d, clk);
input d, clk;
output q;

...
endmodule

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
302 May 2015

Constant Function

In Verilog 2001, you can use constant functions to build complex values at
elaboration time.

Example – Constant function
module ram
// Verilog 2001 ANSI parameter declaration syntax

#(parameter depth=129,
parameter width=16)

// Verilog 2001 ANSI port declaration syntax
(input clk, we,

// Calculate addr width using Verilog 2001 constant function
input [clogb2(depth)-1:0] addr,
input [width-1:0] di,
output reg [width-1:0] do);

function integer clogb2;
input [31:0] value;

for (clogb2=0; value>0; clogb2=clogb2+1)
value = value>>1;

endfunction
reg [width-1:0] mem[depth-1:0];

always @(posedge clk) begin
if (we)

begin
mem[addr]<= di;
do<= di;

end
else

do<= mem[addr];
end

endmodule

Localparam

In Verilog 2001, localparam (constants that cannot be redefined or modified)
follow the same parameter rules in regard to size and sign. Unlike parameter,
localparam cannot be overidden by a defparam from another module.

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 303

Example:
parameter ONE = 1
localparam TWO=2*ONE
localparam [3:0] THREE=TWO+1;
localparam signed [31:0] FOUR=2*TWO;

Configuration Blocks

Verilog configuration blocks define a set of rules that explicitly specify the
exact source description to be used for each instance in a design. A configu-
ration block is defined outside the module and multiple configuration blocks
are supported.

Syntax
config configName;

design libraryIdentifier.moduleName;
default liblist listofLibraries;
configurationRule;

endconfig

Design Statement

The design statement specifies the library and module for which the configu-
ration rule is to defined.

design libraryIdentifier.moduleName;
libraryIdentifier :- Library Name
moduleName :- Module Name

Default Statement

The default liblist statement lists the library from which the definition of the
module and sub-modules can be selected. A use clause cannot be used in this
statement.

default liblist listof_Libraries;
listofLibraries :- List of Libraries

Configuration Rule Statement

In this section, rules are defined for different instances or cells in the design.
The rules are defined using instance or cell clauses.

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
304 May 2015

• instance clause – specifies the particular source description for a given
instance in the design.

• cell clause – specifies the source description to be picked for a particular
cell/module in a given design.

A configuration rule can be defined as any of the following:

• instance clause with liblist

instance moduleName.instance liblist listofLibraries;

• instance clause with use clause

instance moduleName.instance use libraryIdentifier.[cellName |
configName];

• cell clause with liblist

cell cellName liblist listofLibraries;

• cell clause with use clause

cell cellName use libraryIdentifier.[cellName | configName];

Configuration Block Examples

The following examples illustrate Verilog 2001 configuration blocks.

Example – Configuration with instance clause

The following example has different definitions for the leaf module compiled
into the multlib and xorlib libraries; configuration rules are defined specifically
for instance u2 in the top module to have the definition of leaf module as XOR
(by default the leaf definition is multiplier). This example uses an instance
clause with liblist to define the configuration rule.

//********Leaf module with the Multiplication definition

// Multiplication definition is compiled to the library "multlib"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib multlib "leaf_mult.v"

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 305

module leaf
(
//Input Port

input [7:0] d1,
input [7:0] d2,

//Output Port
output reg [15:0] dout

);

always@*
dout = d1 * d2;

endmodule //EndModule

//********Leaf module with the XOR definition

// XOR definition is compiled to the library "xorlib"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib xorlib "leaf_xor.v"

module leaf
(
//Input Port

input [7:0] d1,
input [7:0] d2,

//Output Port
output reg[15:0] dout

);

always@(*)
dout = d1 ^ d2;

endmodule //EndModule

//********Top module definition

// Top module definition is compiled to the library "TOPLIB"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib TOPLIB "top.v"

module top
(
//Input Port

input [7:0] d1,
input [7:0] d2,
input [7:0] d3,

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
306 May 2015

input [7:0] d4,
//Output Port

output [15:0] dout1,
output [15:0] dout2

);

leaf
u1
(

.d1(d1),

.d2(d2),

.dout(dout1)
);

leaf
u2
(

.d1(d3),

.d2(d4),

.dout(dout2)
);

endmodule //End Module

//********Configuration Definition

// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib TOPLIB "cfg.v"

config cfg;
design TOPLIB.top;
default liblist multlib xorlib TOPLIB; //By default the leaf

// definition is Multiplication definition
instance top.u2 liblist xorlib; //For instance u2 the default

// definition is overridden and the "leaf" definition is
// picked from "xorlib" which is XOR.

endconfig //EndConfiguration

Basically, configuration blocks can be represented by the top-level design
with hierarchy shown as follows:

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 307

Example – Configuration with cell clause

In the following example, different definitions of the leaf module are compiled
into the multlib and xorlib libraries; a configuration rule is defined for cell leaf
that picks the definition of the cell from the multlib library. This example uses
a cell clause with a use clause to define the configuration rule.

//********Configuration Definition
// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib TOPLIB "cfg.v"

config cfg;
design TOPLIB.top;
default liblist xorlib multlib TOPLIB; //By default the leaf

// definition uses the XOR definition
cell leaf use multlib.leaf;

//Definition of the instances u1 and u2
// will be Multiplier which is picked from "multlib"

endconfig //EndConfiguration

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
308 May 2015

Example – Hierarchical reference of the module inside the configuration

Similar to the previous example, different definitions of leaf are compiled into
the multlib, addlib, and xorlib libraries; suppose the adder and submodule
definitions are also included in the code. The configuration rule is defined for
instance u2 that is referenced in the hierarchy as the lowest instance module
using an instance clause.

//********Leaf module with the ADDER definition

// ADDER definition is compiled to the library "addlib"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib addlib "leaf_add.v"

module leaf
(
//Input Port

input [7:0] d1,
input [7:0] d2,

//Output Port
output [15:0] dout

);

assign dout = d1 + d2;
endmodule

//********Submodule definition

// Submodule definition is compiled to the library "SUBLIB"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib SUBLIB "sub.v"

module sub
(
//Input Port

input [7:0] d1,
input [7:0] d2,
input [7:0] d3,
input [7:0] d4,

//Output Port
output [15:0] dout1,
output [15:0] dout2

);

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 309

leaf
u1
(

.d1(d1),

.d2(d2),

.dout(dout1)
);

leaf
u2
(

.d1(d3),

.d2(d4),

.dout(dout2)
);
endmodule //End Module

The configuration is defined as follows:

//********Configuration Definition

// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib TOPLIB "cfg.v"

config cfg;
design TOPLIB.top;
default liblist addlib multlib xorlib TOPLIB SUBLIB; //By
default,

//the leaf definition uses the ADDER definition
instance top.u1.u2 liblist xorlib multlib; //For instances u2 is

//referred hierarchy to lowest instances and the default
definition

//is overridden by XOR definition for this instanceendconfig
//EndConfiguration

Multiple Configuration Blocks

When using multiple configurations, if a configuration for the top level exists,
the configuration is implemented; lower level configurations do not apply
unless the top-level configuration includes an instance clause that maps an
instance to another configuration.

The following code examples define how multiple configuration blocks can be
configured.

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
310 May 2015

Example Top Module – Multiple Configurations

Example Submodule 1_1 – Multiple Configurations

Example Submodule 1_2 – Multiple Configurations

Example Submodule 2_1 – Multiple Configurations

Example Submodule 2_2 – Multiple Configurations

Example Submodule 3_1 – Multiple Configurations

Example Submodule 3_2 – Multiple Configurations

Example Submodule 4_1 – Multiple Configurations

Example Submodule 4_2 – Multiple Configurations

Example Configuration 1 – Multiple Configurations

Example Configuration 2 – Multiple Configurations

Example Configuration – Multiple Configurations

Configuration with Generate Statements

An instance or cell clause can be defined within a generate statement. A
configuration rule specifies how this instance or cell is to be configured;
where the generated instance or cell for the submodule is compiled into the
work1 library and the top module is compiled into the work2 library. See the
example below:

Example 1 – Configuration with Generate (Instance Clause)

//********Submodule definition

// Submodule definition is compiled to the library "work1"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib work1 "sub.v"

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 311

Example 1A – Submodule Definition
//********Top module definition

// Top module definition is compiled to the library "work2"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib work2 "top.v"

Example 1B – Top-Level Module Definition
For example, you can use either definition of the configuration as shown
below.

//********Configuration Definition

// Configuration definition is compiled to the library "work"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib work "config.v"

Example 1C – Configuration Definition
config cfg1;
design work2.top;
instance top.blk1.inst liblist work1;
endconfig

OR

config cfg1;
design work2.top;
cell sub use work1.sub;
endconfig

Limitations

Configuration blocks do not support the following:

• Nested configuration

• A use clause with the cell name or library name omitted

• Mixed HDL configuration

• Multiple top levels in the design clause

• Parameter override for the configuration

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
312 May 2015

Localparams

In Verilog 2001, localparams (constants that cannot be redefined or modified)
follow the same parameter rules in regard to size and sign.

Example:
parameter ONE = 1
localparam TWO=2*ONE
localparam [3:0] THREE=TWO+1;
localparam signed [31:0] FOUR=2*TWO;

$signed and $unsigned Built-in Functions

In Verilog 2001, the built-in Verilog 2001 functions can be used to convert
types between signed and unsigned.

c = $signed (s); /* Assign signed valued of s to c. */
d = $unsigned (s); /* Assign unsigned valued of s to d. */

$clog2 Constant Math Function

Verilog-2005 includes the $clog2 constant math function which returns the
value of the log base-2 for the argument passed. This system function can be
used to compute the minimum address width necessary to address a memory
of a given size or the minimum vector width necessary to represent a given
number of states.

Syntax

$clog2(argument)

In the above syntax, argument is an integer or vector.

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 313

Example 1 – Constant Math Function Counter

module top
#(parameter COUNT = 256)
//Input
(input clk,

input rst,
//Output
//Function used to compute width based on COUNT value of counter:

output [$clog2(COUNT)-1:0] dout);
reg[$clog2(COUNT)-1:0]count;

always@(posedge clk)
begin

if(rst)
count = 'b0;

else
count = count + 1'b1;

end
assign dout = count;
endmodule

Example 2 – Constant Math Function RAM

module top

(parameter DEPTH = 256,

parameter WIDTH = 16)
(
//Input

input clk,
input we,
input rst,

//Function used to compute width of address based on depth of RAM:
input [$clog2(DEPTH)-1:0] addr,
input [WIDTH-1:0] din,

//Output
output reg[WIDTH-1:0] dout);

reg[WIDTH-1:0] mem[(DEPTH-1):0];

always @ (posedge clk)
if (rst == 1)

dout = 0;
else

dout = mem[addr];

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
314 May 2015

always @(posedge clk)
if (we) mem[addr] = din;

endmodule

Generate Statement

The newer Verilog 2005 generate statement is now supported in Verilog 2001.
Defparams, parameters, and function and task declarations within generate state-
ments are supported. In addition, the naming scheme for registers and
instances is enhanced to include closer correlation to specified generate
symbolic hierarchies. Generated data types have unique identifier names and
can be referenced hierarchically. Generate statements are created using one of
the following three methods: generate-loop, generate-conditional, or generate-
case.

// for loop
generate
begin:G1

genvar i;
for (i=0; i<=7; i=i+1)
begin :inst

adder8 add (sum [8*i+7 : 8*i], c0[i+1],
a[8*i+7 : 8*i], b[8*i+7 : 8*i], c0[i]);

end
end
endgenerate

// if-else
generate

if (adder_width < 8)
ripple_carry # (adder_width) u1 (a, b, sum);

else
carry_look_ahead # (adder_width) u1 (a, b, sum);

endgenerate

// case
parameter WIDTH=1;
generate

case (WIDTH)
1: adder1 x1 (c0, sum, a, b, ci);
2: adder2 x1 (c0, sum, a, b, ci);
default: adder # width (c0, sum, a, b, ci);

endcase
endgenerate

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 315

Automatic Task Declaration

In Verilog 2001, tasks can be declared as automatic to dynamically allocate
new storage each time the task is called and then automatically release the
storage when the task exits. Because there is no retention of tasks from one
call to another as in the case of static tasks, the potential conflict of two
concurrent calls to the same task interfering with each other is avoided.
Automatic tasks make it possible to use recursive tasks.

This is the syntax for declaring an automatic task:

task automatic taskName (argument [, argument , ...]) ;

Arguments to automatic tasks can include any language-defined data type
(reg, wire, integer, logic, bit, int, longint, or shortint) or a user-defined datatype
(typedef, struct, or enum). Multidimensional array arguments are not supported.

Automatic tasks can be synthesized but, like loop constructs, the synthesis
tool must be able to statically determine how many levels of recursive calls
are to be made. Automatic (recursive) tasks are used to calculate the factorial
of a given number.

Example
module automatic_task (input byte in1,

output bit [8:0] dout);
parameter FACT_OP = 3;
bit [8:0] dout_tmp;

task automatic factorial(input byte operand,
output bit [8:0] out1);

integer nFuncCall = 0;
begin

if (operand == 0)
begin

out1 = 1;
end
else
begin

nFuncCall++;
factorial((operand-1), out1);
out1 = out1 * operand;

end
end
endtask

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
316 May 2015

always_comb
factorial(FACT_OP,dout_tmp);
assign dout = dout_tmp + in1 ;
endmodule

Multidimensional Arrays

In Verilog 2001, arrays are declared by specifying the element address ranges
after the declared identifiers. Use a constant expression, when specifying the
indices for the array. The constant expression value can be a positive integer,
negative integer, or zero. Refer to the following examples.

These examples apply to register types too:

reg [3:0] mem[7:0]; // A regular memory of 8 words with 4
//bits/word.

reg [3:0] mem[7:0][3:0]; // A memory of memories.

There is a Verilog restriction which prohibits bit access into memory words.
Verilog 2001 removes all such restrictions. This applies equally to wires
types. For example:

wire[3:0] my_wire[3:0];

assign y = my_wire[2][1]; // refers to bit 1 of 2nd word (word
//does not imply storage here) of my_wire.

2-dimensional wire object my_wire is an eight-bit-wide vector with indices from 5 to 0.
wire [7:0] my_wire [5:0];

3-dimensional wire object my_wire is an eight-bit-wide vector with indices from 5 to 0
whose indices are from 3 down to 0.
wire [7:0] my_wire [5:0] [3:0];

3-dimensional wire object my_wire is an eight-bit-wide vector (-4 to 3) with indices
from -3 to 1 whose indices are from 3 down to 0.
wire [-4:3] my_wire [-3:1] [3:0];

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 317

Variable Partial Select

In Verilog 2001, indexed partial select expressions (+: and -:), which use a
variable range to provide access to a word or part of a word, are supported.
The software extracts the size of the operators at compile time, but the index
expression range can remain dynamic. You can use the partial select opera-
tors to index any non-scalar variable.

The syntax to use these operators is described below.

vectorName [baseExpression +: widthExpression]
vectorName [baseExpression -: widthExpression]

This is an example using partial select expressions:

module part_select_support (down_vect, up_vect, out1, out2, out3);
output [7:0] out1;
output [1:0] out2;
output [7:0] out3;
input [31:0] down_vect;
input [0:31] up_vect;
wire [31:0] down_vect;
wire [0:31] up_vect;
wire [7:0] out1;
wire [1:0] out2;
wire [7:0] out3;
wire [5:0] index1;
assign index1 = 1;

vectorName Name of vector. Direction in the declaration affects the
selection of bits

baseExpression Indicates the starting point for the array. Can be any legal
Verilog expression.

+: The +: expression selects bits starting at the
baseExpression while adding the widthExpression.
Indicates an upward slicing.

-: The -: expression selects bits starting at the
baseExpression while subtracting the widthExpression.
Indicates a downward slicing.

widthExpression Indicates the width of the slice. It must evaluate to a
constant at compile time. If it does not, you get a syntax
error.

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
318 May 2015

assign out1 = down_vect[index1+:8]; // resolves to [8:1]
assign out2 = down_vect[index1-:8]; // should resolve to [1:0],

// but resolves to constant 2'b00 instead
assign out3 = up_vect[index1+:8]; // resolves to [1:8]
endmodule

For the Verilog code above, the following description explains how to validate
partial select assignments to out2:

• The compiler first determines how to slice down_vect.

– down_vect is an array of [31:0]

– assign out2 = down_vect [1 -: 8] will slice down_vect starting at value 1
down to -6 as [1 : -6], which includes [1, 0, -1, -2, -3, -4, -5, -6]

• Then, the compiler assigns the respective bits to the outputs.

– out2 [0] = down_vect [-6]
out2 [1] = down_vect [-5]

– Negative ranges cannot be specified, so out2 is tied to “00”.

– Therefore, change the following expression in the code to:
assign out2 = down_vect [1 -: 2], which resolves to down_vect [1,0]

Cross-Module Referencing

Cross-module referencing (XMR) is a method of accessing an element across
modules in Verilog and SystemVerilog. Verilog supports accessing elements
across different scopes using the hierarchical reference (.) operator. Cross-
module referencing can also be done on the variable of any of the data types
available in SystemVerilog.

Cross-module referencing support includes:

• Downward Cross-Module Referencing

• Upward Cross-Module Referencing

• Cross-Module Referencing of Generate Blocks

• Cross-Module Referencing Generate Block Examples

• Limitations

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 319

Downward Cross-Module Referencing

In downward cross-module referencing, you reference elements of lower-level
modules in the higher-level modules through instantiated names. This is the
syntax for a downward cross-module reference:

port/variable = inst1.inst2.value; // XMR Read

inst1.inst2.port/variable = value; // XMR Write

In this syntax, inst1 is the name of an instance instantiated in the top module
and inst2 is the name of an instance instantiated in inst1. Value can be a
constant, parameter, or variable. Port/variable is defined/declared once in
the current module.

Example – Downward Read Cross-Module Reference
module top (

input a,
input b,
output c,
output d);

sub inst1 (.a(a), .b(b), .c(c));
assign d = inst1.a;
endmodule

module sub (
input a,
input b,
output c);

assign c = a & b;
endmodule

Example – Downward Write Cross-Module Reference
module top
(input a,

input b,
output c,
output d

);

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
320 May 2015

sub inst1 (.a(a), .b(b), .c(c), .d(d));
assign top.inst1.d = a;
endmodule

module sub
(input a,

input b,
output c,
output d

);

assign c = a & b;
endmodule

Upward Cross-Module Referencing

In upward cross-module referencing, a lower-level module references items in
a higher-level module in the hierarchy through the name of the top module.

This is the syntax for an upward reference from a lower module:

port/variable = top.inst1.inst2.value; // XMR Read

top.inst1.inst2.port/variable = value; // XMR Write

The starting reference is the top-level module. In this syntax, top is the name
of the top-level module, inst1 is the name of an instance instantiated in top
module and inst2 is the name of an instance instantiated in inst1. Value can
be a constant, parameter, or variable. Port/variable is the one
defined/declared in the current module.

Example – Upward Read Cross-Module Reference
module top (

input a,
input b,
output c,
output d);

sub inst1 (.a(a), .b(b), .c(c), .d(d));
endmodule

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 321

module sub (
input a,
input b,
output c,
output d);

assign c = a & b;
assign d = top.a;
endmodule

Cross-Module Referencing of Generate Blocks

For cross-module referencing of generate blocks, signals can be referenced
into, within, and from generate blocks to elements outside its boundary.
Support includes:

• Upward read or write cross-module referencing into, within, and from
generate blocks.

• Downward read or write cross-module referencing into, within, and from
generate blocks.

• Cross-module referencing supports different types of generate blocks,
such as, generate blocks using a for/if/case statement.

• Cross-module referencing into or from a generate block of any hierarchy.

Cross-Module Referencing Generate Block Examples

Cross-module referencing of generate blocks are supported for modules
shown in the following examples.

Example 1A – XMR of a Generate Block
This code example implements cross-module referencing of the generate
block in the top-level module.

module top
input [3:0] in1,in2,
input clk,
output [3:0] out1,out2
;

../examples/verilog/xmr/Example1/generate1a.html

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
322 May 2015

generate
begin:blk1
sub inst (in1,clk,out1);
end:blk1
endgenerate

//XMR write
assign top.blk1.inst.temp1 = in2;

//XMR read
assign out2 = top.blk1.inst.temp;
endmodule

Example 1B – XMR of a Generate Block
Here is the code example of the sub-module, for which write and read cross-
module referencing occurs from the top-level module above.

module sub
input [3:0] in1,
input clk,
output reg [3:0] out1
;

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)
begin

temp <= {in1[0],in1[3],in1[2],in1[1]};
out1 <= temp&temp1;

end
endmodule

Example 2A– XMR of Generate Block with an if Statement
This code example implements cross-module referencing of the generate
block using an if statement in the top-level design.

// Top module
module top

input [3:0] in1, in2,
input clk,
output [3:0] out1, out2
;

parameter [2:0] sel = 3'b101;

../examples/verilog/xmr/Example1/generate1b.html
../examples/verilog/xmr/Example2/generate2a_if.html

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 323

generate
begin:blk1
if(sel[2]) begin: if_blk1

sub inst (in1,clk,out1);
//XMR read
assign out2 = inst.temp;
//XMR write
assign inst.temp1 = in2;

end:if_blk1

else begin: else_blk1
sub inst1 (in1,clk,out1);

end:else_blk1
end:blk1

endgenerate
endmodule

Example 2B– XMR of Generate Block with an if Statement
Here is the code example of the sub-module that is referenced from the top-
level generate block.

// Sub module
module sub (

input [3:0] in1,
input clk,
output reg [3:0] out1
;

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)

begin
temp <= {in1[0],in1[3],in1[2],in1[1]};
out1 <= temp&temp1;

end
endmodule

../examples/verilog/xmr/Example2/generate2b_if.html

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
324 May 2015

Example 3A: XMR of Generate Block with a for Statement
This code example implements cross-module referencing of the generate
block using a for statement in the top-level design.

// Top module
module top (

input [7:0] in1,
input [3:0] in2,
input clk,
output [7:0] out1,
output [3:0] out2
;

parameter [2:0] sel = 3'b101;

genvar i;
generate
begin:blk1

for (i=0;i<2;i++)
begin:loop1

sub inst1 (in1[i*4+3:i*4],clk,out1[i*4+3:i*4]);
end
end:blk1
endgenerate

//XMR read
assign out2 = top.blk1.loop1[0].inst1.temp;

//XMR write
assign top.blk1.loop1[0].inst1.temp1 = in2;
assign top.blk1.loop1[1].inst1.temp1 = in2;
endmodule

Example 3B: XMR of Generate Block with a for Statement
Here is the code example of the sub-module that is referenced from the top-
level generate block.

// Sub module
module sub (

input [3:0] in1,
input clk,
output reg [3:0] out1
;

../examples/verilog/xmr/Example3/generate3a_for.html
../examples/verilog/xmr/Example3/generate3b_for.html

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 325

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)
begin

temp <= {in1[0],in1[3],in1[2],in1[1]};
out1 <= temp&temp1;

end
endmodule

Example 4A: XMR of Generate Block with case Statements
This code example implements cross-module referencing of the generate
block using case statements in the top-level design.

// Sub module 2
module sub2 (

input [3:0] in1,
input clk,
output reg [3:0] out1
;

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)
begin

temp <= {in1[1],in1[3],in1[0],in1[2]};
out1 <= temp&temp1;

end
endmodule

// Top module
module top (

input [3:0] in1, in2,
input clk,
output [3:0] out1, out2
);

parameter [1:0] sel1 = 2'b01;
parameter [1:0] sel2 = 2'b11;

generate
begin:g_blk1

case (sel1)
0 : begin:blk0

sub1 inst0 (in1,clk,out1);

../examples/verilog/xmr/Example4/generate4a_case.html

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
326 May 2015

end

1 : begin:blk1
sub1 inst1 (in1,clk,out1);
end

2 : begin:blk2
sub1 inst2 (in1,clk,out1);
end

3 : begin:blk3
sub1 inst3 (in1,clk,out1);
end

endcase

//XMR read
assign top.g_blk2.blk3.inst3.temp1 = top.g_blk1.blk1.inst1.temp;
//XMR write
assign top.g_blk1.blk1.inst1.temp1 = top.g_blk2.blk3.inst3.temp;
end:g_blk1
endgenerate

generate
begin:g_blk2

case (sel2)
0 : begin:blk0

sub2 inst0 (in2,clk,out2);
end

1 : begin:blk1
sub2 inst1 (in2,clk,out2);
end

2 : begin:blk2
sub2 inst2 (in2,clk,out2);
end

3 : begin:blk3
sub2 inst3 (in2,clk,out2);
end

endcase
end:g_blk2
endgenerate
endmodule

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 327

Example 4B: XMR of Generate Block with case Statements
Here is the code example of the sub-module that is referenced from the top-
level generate block.

// Sub module 1
module sub1 (

input [3:0] in1,
input clk,
output reg [3:0] out1
;

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)

begin
temp <= {in1[0],in1[3],in1[2],in1[1]};
out1 <= temp&temp1;

end
endmodule

Limitations

The following limitations currently exist with cross-module referencing:

• Cross-module referencing through an array of instances is not
supported.

• In upward cross-module referencing, the reference must be an absolute
path (an absolute path is always from the top-level module).

• Functions and tasks cannot be accessed through cross-module refer-
ence notation.

• You can only use cross-module referencing with Verilog/SystemVerilog
elements. You cannot access VHDL elements with hierarchical refer-
ences.

• To access VHDL hierarchical references, it is recommended that you do
this using the hypersource/connect mechanism. For details, see Using
Hyper Source, on page 462.

../examples/verilog/xmr/Example4/generate4b_case.html

LO

 Verilog Language Support Verilog 2001 Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
328 May 2015

ifndef and elsif Compiler Directives

Verilog 2001 supports the `ifndef and `elsif compiler directives. Note that the
`ifndef directive is the opposite of `ifdef.

module top(output out);
`ifndef a

assign out = 1'b01;
`elsif b

assign out = 1'b10;
`else

assign out = 1'b00;
`endif

endmodule

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 329

Verilog Synthesis Guidelines

This section provides guidelines for synthesis using Verilog and covers the
following topics:

• General Synthesis Guidelines, on page 329

• Library Support in Verilog, on page 330

• Constant Function Syntax Restrictions, on page 334

• Multi-dimensional Array Syntax Restrictions, on page 334

• Signed Multipliers in Verilog, on page 336

• Verilog Language Guidelines: always Blocks, on page 337

• Initial Values in Verilog, on page 338

• Cross-language Parameter Passing in Mixed HDL, on page 341

• Library Directory Specification for the Verilog Compiler, on page 341

General Synthesis Guidelines

Some general guidelines are presented here to help you synthesize your
Verilog design. See Verilog Module Template, on page 342 for additional infor-
mation.

• Top-level module – The synthesis tool picks the last module compiled
that is not referenced in another module as the top-level module.
Module selection can be overridden from the Verilog panel of the Implemen-
tation Options dialog box.

• Simulate your design before synthesis to expose logic errors. Logic
errors that you do not catch are passed through the synthesis tool, and
the synthesized results will contain the same logic errors.

• Simulate your design after placement and routing – Have the place-and-
route tool generate a post placement and routing (timing-accurate)
simulation netlist, and do a final simulation before programming your
devices.

• Avoid asynchronous state machines – To use the synthesis tool for
asynchronous state machines, make a netlist of technology primitives
from your target library.

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
330 May 2015

• Level-sensitive latches – For modeling level-sensitive latches, use contin-
uous assignment statements.

Library Support in Verilog

Verilog libraries are used to compile design units; this is similar to VHDL
libraries. Use the libraries in Verilog to support mixed-HDL designs, where
the VHDL design includes instances of a Verilog module that is compiled into
a specific library. Library support in Verilog can be used with Verilog 2001
and SystemVerilog designs.

Compiling Design Units into Libraries

By default, the Verilog source files are compiled into the work library. You can
compile these Verilog source files into any user-defined library.

To compile a Verilog file into a user-defined library:

1. Select the file in the Project view.

The library name appears next to the filename; it directly follows the
filename.

2. Right-click and select File Options from the popup menu. Specify the
name for your library in the Library Names field. You can:

– Compile multiple files into the same library.

– Also compile the same file into multiple libraries.

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 331

Searching for Verilog Design Units in Mixed-HDL Designs

When a VHDL file references a Verilog design unit, the compiler first searches
the corresponding library for which the VHDL file was compiled. If the Verilog
design unit is not found in the user-defined library for which the VHDL file
was compiled, the compiler searches the work library and then all the other
Verilog libraries.

Therefore, to use a specific Verilog design unit in the VHDL file, compile the
Verilog file into the same user-defined library for which the corresponding
VHDL file was compiled. You cannot use the VHDL library clause for Verilog
libraries.

Specifying the Verilog Top-level Module

To set the Verilog top-level module for a user-defined library, use library-
Name.moduleName in the Top Level Module field on the Verilog tab of the Imple-
mentation Options dialog box. You can also specify the following equivalent Tcl
command:

set_option -top_module "signed.top"

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
332 May 2015

Limitations

The following functions are not supported:

• Direct Entity Instantiation

• Configuration for Verilog Instances

Example 1: Specifying Verilog Top-level Module—Compiled to the
Non-work Library

//top_unsigned.v compiled into a user defined library – "unsigned"
//add_file -verilog -lib unsigned "./top_unsigned.v"
module top (input unsigned [7:0] a, b,
output unsigned [15:0] result);
assign result = a * b;
endmodule

//top_signed.v compiled into a user defined library – "signed"
//add_file -verilog -lib signed "./top_signed.v"
module top (input signed [7:0] a, b,
output signed [15:0] result);
assign result = a * b;
endmodule

To set the top-level module from the signed library:

• Specify the prefix library name for the module in the Top Level Module
option in the Verilog panel of the Implementation Options dialog box.

• set_option -top_module "signed.top"

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 333

Example 2: Referencing Verilog Module from VHDL

This example includes two versions of the Verilog sub module that are
compiled into the signed_lib and unsigned_lib libraries. The compiler uses the
sub module from unsigned_lib when the top.vhd is compiled into unsigned_lib.

//Sub module sub in sub_unsigned is compiled into unsigned_lib
//add_file -verilog -lib unsigned_lib "./sub_unsigned.v"
module sub (input unsigned [7:0] a, b,
output unsigned [15:0] result);
assign result = a * b;
endmodule

//Sub module sub in sub_signed is compiled into signed_lib
//add_file -verilog -lib signed_lib "./sub_signed.v"
module sub (input signed [7:0] a, b,
output signed [15:0] result);
assign result = a * b;
endmodule

//VHDL Top module top is compiled into unsigned_lib library
// add_file -vhdl -lib unsigned_lib "./top.vhd"
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY top IS
GENERIC(
size_t : integer := 8
);

PORT(a_top : IN std_logic_vector(size_t-1 DOWNTO 0);
b_top : IN std_logic_vector(size_t-1 DOWNTO 0);
result_top : OUT std_logic_vector(2*size_t-1 DOWNTO 0)

);
END top;

ARCHITECTURE RTL OF top IS
component sub

PORT(a : IN std_logic_vector(7 DOWNTO 0);
b : IN std_logic_vector(7 DOWNTO 0);
result : OUT std_logic_vector(15 DOWNTO 0));

END component;
BEGIN
U1 : sub

PORT MAP (

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
334 May 2015

a => a_top,
b => b_top,

result => result_top
);
END ARCHITECTURE RTL;

Constant Function Syntax Restrictions

For Verilog 2001, the syntax for constant functions is identical to the existing
function definitions in Verilog. Restrictions on constant functions are as
follows:

• No hierarchal references are allowed

• Any function calls inside constant functions must be constant functions

• System tasks inside constant functions are ignored

• System functions inside constant functions are illegal

• Any parameter references inside a constant function should be visible

• All identifiers, except arguments and parameters, should be local to the
constant function

• Constant functions are illegal inside the scope of a generate statement

Multi-dimensional Array Syntax Restrictions

For Verilog 2001, the following examples show multi-dimensional array
syntax restrictions.

reg [3:0] arrayb [7:0][0:255];

arrayb[1] = 0;
// Illegal Syntax - Attempt to write to elements [1][0]..[1][255]

arrayb[1][12:31] = 0;
// Illegal Syntax - Attempt to write to elements [1][12]..[1][31]

arrayb[1][0] = 0;
// Okay. Assigns 32’b0 to the word referenced by indices [1][0]

Arrayb[22][8] = 0;
// Semantic Error, There is no word 8 in 2nd dimension.

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 335

When using multi-dimension arrays, the association is always from right-to-
left while the declarations are left-to-right.

Example 1
module test (input a,b, output z, input clk, in1, in2);
reg tmp [0:1][1:0];

always @(posedge clk)
begin
 tmp[1][0] <= a ^ b;
 tmp[1][1] <= a & b;
 tmp[0][0] <= a | b;
 tmp[0][1] <= a &~ b;
end
assign z = tmp[in1][in2];

endmodule

Example 2
module bb(input [2:0] in, output [2:0] out)

/* synthesis syn_black_box */;
endmodule

module top(input [2:0] in, input [2:1] d1, output [2:0] out);
wire [2:0] w1[2:1];
wire [2:0] w2[2:1];

generate
begin : ABCD

genvar i;
for(i=1; i < 3; i = i+1)
begin : CDEF

assign w1[i] = in;
bb my_bb(w1[i], w2[i]);

end
end
endgenerate
assign out = w2[d1];

endmodule

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
336 May 2015

Signed Multipliers in Verilog

This section applies only to those using Verilog compilers earlier than version
2001.

The software contains an updated signed multiplier module generator. A
signed multiplier is used in Verilog whenever you multiply signed numbers.
Because earlier versions of Verilog compilers do not support signed data
types, an example is provided on how to write a signed multiplier in your
Verilog design:

module smul4(a, b, clk, result);
input [3:0]a;
input [3:0]b;
input clk;
output [7:0]result;
wire [3:0] inputa_signbits, inputb_signbits;
reg [3:0]inputa;
reg [3:0]inputb;
reg [7:0]out, result;
assign inputa_signbits = {4{inputa[3]}};
assign inputb_signbits = {4{inputb[3]}};

always @(inputa or inputb or inputa_signbits or inputb_signbits)
begin

out = {inputa_signbits,inputa} * {inputb_signbits,inputb};
end

always @(posedge clk)
begin

inputa = a;
inputb = b;
result = out;

end

endmodule

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 337

Verilog Language Guidelines: always Blocks

An always block can have more than one event control argument, provided
they are all edge-triggered events or all signals; these two kinds of arguments
cannot be mixed in the same always block.

Examples

// OK: Both arguments are edge-triggered events
always @(posedge clk or posedge rst)

// OK: Both arguments are signals
always @(A or B)

// No good: One edge-triggered event, one signal
always @(posedge clk or rst)

An always block represents either sequential logic or combinational logic. The
one exception is that you can have an always block that specifies level-sensi-
tive latches and combinational logic. Avoid this style, however, because it is
error prone and can lead to unwanted level-sensitive latches.

An event expression with posedge/negedge keywords implies edge-triggered
sequential logic; and without posedge/negedge keywords implies combina-
tional logic, a level-sensitive latch, or both.

Each sequential always block is triggered from exactly one clock (and optional
sets and resets).

You must declare every signal assigned a value inside an always block as a reg
or integer. An integer is a 32-bit quantity by default, and is used with the
Verilog operators to do two's complement arithmetic.

Syntax:

integer [msb : lsb] identifier ;

Avoid combinational loops in always blocks. Make sure all signals assigned in
a combinational always block are explicitly assigned values every time the
always block executes, otherwise the synthesis tool needs to insert level-sensi-
tive latches in the design to hold the last value for the paths that do not
assign values. This is a common source of errors, so the tool issues a warning
message that latches are being inserted into your design.

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
338 May 2015

You will get an error message if you have combinational loops in your design
that are not recognized as level-sensitive latches by the synthesis tool (for
example if you have an asynchronous state machine).

It is illegal to have a given bit of the same reg or integer variable assigned in
more than one always block.

Assigning a 'bx to a signal is interpreted as a “don't care” (there is no 'bx value
in hardware); the synthesis tool then creates the hardware with the most
efficient design.

Initial Values in Verilog

In Verilog, you can now store and pass initial values that the synthesis
software previously ignored. Initial values specified in Verilog only affect the
compiler output. This ensures that the synthesis results match the simula-
tion results. For initial values for RAM, see Initial Values for RAMs, on
page 615.

Initial Values for Registers

The synthesis compiler reads the procedural assign statements with initial
values. It then stores the values, propagates them to inferred logic, and
passes them down stream. The initial values only affect the output of the
compiler; initial value properties are not forward-annotated to the final
netlist.

If synthesis removes an unassigned register that has an initial value, the
initialization values are still propagated forward. If bits of a register are
unassigned, the compiler removes the unassigned bits and propagates the
initial value.

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 339

To illustrate, assume register one does not receive any input (an initial value
is not specified). If the register is not initialized, it is subsequently removed
during the optimization process. However, if the register is initialized to a
value of 1 as in the example below, the compiler keeps the register during
synthesis.

module test (
input clk,
input [7:0] a,
output [7:0] z);

reg [7:0] z_reg = 8'hf0 ;
reg one = 1'd1;

always@(posedge clk)
z_reg <= a + one;
assign z = z_reg;

endmodule

The following figures show the RTL and Technology views.

RTL View

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
340 May 2015

RTL View

Technology View

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 341

Cross-language Parameter Passing in Mixed HDL

The compiler supports the passing of parameters for integers, natural
numbers, real numbers, and strings from Verilog to VHDL. The compiler also
supports the passing of these same generics from VHDL to Verilog.

Library Directory Specification for the Verilog Compiler

Currently, if a module is instantiated in a module top without a module
definition, the Verilog compiler errors out. Verilog simulators provide a
command line switch (-y libraryDirectory) to specify a set of library directories
which the compiler searches.

Library directories are specified in the Library Directories section in the Verilog
panel of the Implementations Options dialog box.

Example:

If the project has one Verilog file specified

module foo(input a, b, output z);

foobar u1 (a, b, z);

endmodule

Then, if foobar.v exists in one of the specified directories, it is loaded into the
compiler.

LO

 Verilog Language Support Verilog Module Template

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
342 May 2015

Verilog Module Template

Hardware designs can include combinational logic, sequential logic, state
machines, and memory. These elements are described in the Verilog module.
You also can create hardware by directly instantiating built-in gates into your
design (in addition to instantiating your own modules).

Within a Verilog module you can describe hardware with one or more contin-
uous assignments, always blocks, module instantiations, and gate instantia-
tions. The order of these statements within the module is irrelevant, and all
execute concurrently. The following is the Verilog module template:

module <top_module_name>(<port_list>);

/* Port declarations. followed by wire,
reg, integer, task and function declarations */

/* Describe hardware with one or more continuous assignments,
always blocks, module instantiations and gate instantiations */

// Continuous assignment
wire <result_signal_name>;
assign <result_signal_name> = <expression>;

// always block
always @(<event_expression>)

begin
// Procedural assignments
// if statements
// case, casex, and casez statements
// while, repeat and for loops
// user task and user function calls

end

// Module instantiation
<module_name> <instance_name> (<port_list>);

// Instantiation of built-in gate primitive
gate_type_keyword (<port_list>);

endmodule

The statements between the begin and end statements in an always block
execute sequentially from top to bottom. If you have a fork-join statement in an
always block, the statements within the fork-join execute concurrently.

Scalable Modules Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 343

A disable statement can be included to terminate an active procedure within a
module. As shown in the example, including a disable statement in the
begin/end block prevents the out2 =(in1 | in2) expression from being executed.

always@(in1, in2)
begin : comb1

out1 =(in1 & in2);
disable comb1;

out2 =(in1 | in2);
endendmodule

You can add comments in Verilog by preceding your comment text with // (two
forward slashes). Any text from the slashes to the end of the line is treated as
a comment, and is ignored by the synthesis tool. To create a block comment,
start the comment with /* (forward slash followed by asterisk) and end the
comment with */ (asterisk followed by forward slash). A block comment can
span any number of lines but cannot be nested inside another block
comment.

Scalable Modules

This section describes creating and using scalable Verilog modules. The
topics include:

• Creating a Scalable Module, on page 343

• Using Scalable Modules, on page 344

• Using Hierarchical defparam, on page 346

Creating a Scalable Module

You can create a Verilog module that is scalable, so that it can be stretched or
shrunk to handle a user-specified number of bits in the port list buses.

Declare parameters with default parameter values. The parameters can be
used to represent bus sizes inside a module.

Syntax

parameter parameterName = value ;

LO

 Verilog Language Support Scalable Modules

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
344 May 2015

You can define more than one parameter per declaration by using comma-
separated parameterName = value pairs.

Example

parameter size = 1;
parameter word_size = 16, byte_size = 8;

Using Scalable Modules

To use scalable modules, instantiate the scalable module and then override
the default parameter value with the defparam keyword. Give the instance
name of the module you are overriding, the parameter name, and the new
value.

Syntax

defparam instanceName .parameterName = newValue ;

Example

big_register my_register (q, data, clk, rst);
defparam my_register.size = 64;

Combine the instantiation and the override in one statement. Use a # (hash
mark) immediately after the module name in the instantiation, and give the
new parameter value. To override more than one parameter value, use a
comma-separated list of new values.

Syntax

moduleName # (newValuesList) instanceName (portList);

Example

big_register #(64) my_register (q, data, clk, rst);

Scalable Modules Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 345

Creating a Scalable Adder

module adder(cout, sum, a, b, cin);

/* Declare a parameter, and give a default value */
parameter size = 1;
output cout;

/* Notice that sum, a, and b use the value of the size parameter */
output [size-1:0] sum;
input [size-1:0] a, b;
input cin;
assign {cout, sum} = a - b - cin;
endmodule

Scaling by Overriding a Parameter Value with defparam

You can instantiate a Verilog module for the VHDL entity adder and override
its size parameter using the following statement highlighted in the Verilog
code:

module adder8(cout, sum, a, b, cin);
output cout;
output [7:0] sum;
input [7:0] a, b;
input cin;
adder my_adder (cout, sum, a, b, cin);

// Creates my_adder as an eight bit adder
defparam my_adder.size = 8;
endmodule

Scaling by Overriding the Parameter Value with #

module adder16(cout, sum, a, b, cin);
output cout;

You can define a parameter at this level of hierarchy and pass that value
down to a lower-level instance. In this example, a parameter called my_size is
declared. You can declare a parameter with the same name as the lower level
name (size) because this level of hierarchy has a different name range than
the lower level and there is no conflict – but there is no correspondence
between the two names either, so you must explicitly pass the parameter
value down through the hierarchy.

LO

 Verilog Language Support Scalable Modules

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
346 May 2015

parameter my_size = 16; // I want a 16-bit adder
output [my_size-1:0] sum;
input [my_size-1:0] a, b;
input cin;

/* my_size overrides size inside instance my_adder of adder */
// Creates my_adder as a 16-bit adder
adder #(my_size) my_adder (cout, sum, a, b, cin);
endmodule

Using Hierarchical defparam

The defparam statement is used to specify constant expressions. For example,
the defparam statement can be used to define the width of variables or specify
time delays. The compiler supports defparam to override parameter values for
modules at the current level or multiple levels of hierarchy.

Syntax

defparam hierarchicalPath = constantExpression

For example: defparam i1.i2.i3.parameter = constant

Example: Hierarchical defparam
//Leaf level module
module leaf (data, clk, dout);
parameter width = 2;
input [width-1:0] data;
input clk;
output [width-1:0] dout;

assign dout = (width==14) ? 2'b01 : 2'b11;
endmodule

//Sub Module
module sub (data, clk, dout);
parameter width2= 22;
input [width2-1:0] data;
input clk;
output [width2-1:0] dout;

leaf leaf1 (data,clk,dout);
endmodule

../examples/verilog/hierdef/defparam.html

Scalable Modules Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 347

//Top module
module top (data, clk, dout);
parameter width2= 22;
input [width2-1:0] data;
input clk;
output [width2-1:0] dout;

sub sub1 (data,clk,dout);

//Overriding parameter using hierarchical defparam
defparam sub1.leaf1.width=14;
endmodule

For the leaf module, the RTL view below shows that the input and output data
widths are [0:14] in the HDL Analyst tool.

LO

 Verilog Language Support Combinational Logic

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
348 May 2015

Combinational Logic

Combinational logic is hardware with output values based on some function
of the current input values. There is no clock, and no saved states. Most
hardware is a mixture of combinational and sequential logic.

You create combinational logic with an always block and/or continuous
assignments.

Combinational Logic Examples

The following combinational logic synthesis examples are included in the
installDirectory/examples/verilog/common_rtl/combinat directory:

• Adders

• ALU

• Bus Sorter

• 3-to-8 Decoder

• 8-to-3 Priority Encoders

• Comparator

• Multiplexers (concurrent signal assignments, case statements, or if-then-
else statements can be used to create multiplexers; the tool automati-
cally creates parallel multiplexers when the conditions in the branches
are mutually exclusive)

• Parity Generator

• Tristate Drivers

Combinational Logic Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 349

always Blocks for Combinational Logic

Use the Verilog always blocks to model combinational logic as shown in the
following template.

always @(event_expression)
begin

// Procedural assignment statements,
// if, case, casex, and casez statements
// while, repeat, and for loops
// task and function calls

end

When modeling combinational logic with always blocks, keep the following in
mind:

• The always block must have exactly one event control (@(event_ expres-
sion)) in it, located immediately after the always keyword.

• List all signals feeding into the combinational logic in the event expres-
sion. This includes all signals that affect signals that are assigned inside
the always block. List all signals on the right side of an assignment inside
an always block. The tool assumes that the sensitivity list is complete,
and generates the desired hardware. However, it will issue a warning
message if any signals on the right side of an assignment inside an
always block are not listed, because your pre- and post-synthesis simula-
tion results might not match.

• You must explicitly declare as reg or integer all signals you assign in the
always block.

Note: Make sure all signals assigned in a combinational always block
are explicitly assigned values each time the always block executes.
Otherwise, the synthesis tool must insert level-sensitive latches
in your design to hold the last value for the paths that do not
assign values. This will occur, for instance, if there are combina-
tional loops in your design. This often represents a coding error.
The synthesis tool issues a warning message that latches are
being inserted into your design because of combinational loops.
You will get an error message if you have combinational loops in
your design that are not recognized as level-sensitive latches by
the synthesis tool.

LO

 Verilog Language Support Combinational Logic

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
350 May 2015

Event Expression

Every always block must have one event control (@(event_expression)), that
specifies the signal transitions that trigger the always block to execute. This is
analogous to specifying the inputs to logic on a schematic by drawing wires to
gate inputs. If there is more than one signal, separate the names with the or
keyword.

Syntax
always @ (signal1 or signal2 ...)

Example
/* The first line of an always block for a multiplexer that

triggers when 'a', 'b' or 'sel' changes */
always @(a or b or sel)

Locate the event control immediately after the always keyword. Do not use the
posedge or negedge keywords in the event expression; they imply edge-sensi-
tive sequential logic.

Example: Multiplexer
See also Comma-separated Sensitivity List, on page 300.

module mux (out, a, b, sel);
output out;
input a, b, sel;
reg out;

always @(a or b or sel)
begin

if (sel)
out = a;

else
out = b;

end
endmodule

Combinational Logic Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 351

Continuous Assignments for Combinational Logic

Use continuous assignments to model combinational logic. To create a
continuous assignment:

1. Declare the assigned signal as a wire using the syntax:

wire [msb : lsb] result_signal ;

2. Specify your assignment with the assign keyword, and give the
expression (value) to assign.

assign result_signal = expression ;

or ...

Combine the wire declaration and assignment into one statement:

wire [msb : lsb] result_signal = expression ;

Each time a signal on the right side of the equal sign (=) changes value, the
expression re-evaluates, and the result is assigned to the signal on the left
side of the equal sign. You can use any of the built-in operators to create the
expression.

The bus range [msb : lsb] is only necessary if your signal is a bus (more than
one bit wide).

All outputs and inouts to modules default to wires; therefore the wire declara-
tion is redundant for outputs and inouts and assign result_signal = expression is
sufficient.

Example: Bit-wise AND

module bitand (out, a, b);
output [3:0] out;
input [3:0] a, b;
/* This wire declaration is not required because "out" is an

output in the port list */
wire [3:0] out;
assign out = a & b;
endmodule

LO

 Verilog Language Support Combinational Logic

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
352 May 2015

Example: 8-bit Adder

module adder_8 (cout, sum, a, b, cin);
output cout;
output [7:0] sum;
input cin;
input [7:0] a, b;
assign {cout, sum} = a - b - cin;
endmodule

Signed Multipliers

A signed multiplier is inferred whenever you multiply signed numbers in
Verilog 2001 or VHDL. However, Verilog 95 does not support signed data
types. If your Verilog code does not use the Verilog 2001 standard, you can
implement a signed multiplier in the following way:

module smul4(a, b, clk, result);
input [3:0]a;
input [3:0]b;
input clk;
output [7:0]result;
reg [3:0]inputa;
reg [3:0]inputb;
reg [7:0]out, result;

always @(inputa or inputb)
begin

out = {{4{inputa[3]}},inputa} * {{4{inputb[3]}},inputb};
end

always @(posedge clk)
begin

inputa = a;
inputb = b;
result = out;

end

endmodule

Sequential Logic Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 353

Sequential Logic

Sequential logic is hardware that has an internal state or memory. The state
elements are either flip-flops that update on the active edge of a clock signal
or level-sensitive latches that update during the active level of a clock signal.

Because of the internal state, the output values might depend not only on the
current input values, but also on input values at previous times. A state
machine is sequential logic where the updated state values depend on the
previous state values. There are standard ways of modeling state machines in
Verilog. Most hardware is a mixture of combinational and sequential logic.

You create sequential logic with always blocks and/or continuous assign-
ments.

Sequential Logic Examples

The following sequential logic synthesis examples are included in the install-
Directory/examples/verilog/common_rtl/sequentl directory:

• Flip-flops and level-sensitive latches

• Counters (up, down, and up/down)

• Register file

• Shift registers

• State machines

For additional information on synthesizing flip-flops and latches, see these
topics:

• Flip-flops Using always Blocks, on page 354

• Level-sensitive Latches, on page 355

• Sets and Resets, on page 357

• SRL Inference, on page 362

LO

 Verilog Language Support Sequential Logic

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
354 May 2015

Flip-flops Using always Blocks

To create flip-flops/registers, assign values to the signals in an always block,
and specify the active clock edge in the event expression.

always Block Template

always @(event_expression)
begin

// Procedural statements
end

The always block must have one event control (@(event_expression)) immedi-
ately after the always keyword that specifies the clock signal transitions that
trigger the always block to execute.

Syntax
always @ (edgeKeyword clockName)

where edgeKeyword is posedge (for positive-edge triggered) or negedge (for
negative-edge triggered).

Example
always @(posedge clk)

Assignments to Signals in always Blocks

When assigning signals in an always block:

• Explicitly declare, as a reg or integer, any signal you assign inside an
always block.

• Any signal assigned within an edge-triggered always block will be imple-
mented as a register; for instance, signal q in the following example.

Example
module dff_or (q, a, b, clk);
output q;
input a, b, clk;
reg q; // Declared as reg, since assigned in always block

Sequential Logic Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 355

always @(posedge clk)
begin

q <= a | b;
end
endmodule

In this example, the result of a | b connects to the data input of a flip-flop, and
the q signal connects to the q output of the flip-flop.

Level-sensitive Latches

The preferred method of modeling level-sensitive latches in Verilog is to use
continuous assignment statements.

Example
module latchor1 (q, a, b, clk);
output q;
input a, b, clk;

assign q = clk ? (a | b) : q;
endmodule

Whenever clk, a, or b change, the expression on the right side re-evaluates. If
your clk becomes true (active, logic 1), a|b is assigned to the q output. When
the clk changes and becomes false (deactivated), q is assigned to q (holds the
last value of q). If a or b changes and clk is already active, the new value a|b
is assigned to q.

Although it is simpler to specify level-sensitive latches using continuous
assignment statements, you can create level-sensitive latches from always
blocks. Use an always block and follow these guidelines for event expression
and assignments.

always Block Template

always@(event_expression)
begin // Procedural statements
end

Whenever the assignment to a signal is incompletely defined, the event
expression specifies the clock signal and the signals that feed into the data
input of the level-sensitive latch.

LO

 Verilog Language Support Sequential Logic

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
356 May 2015

Syntax
always @ (clockName or signal1 or signal2 ...)

Example
always @(clk or data)
begin

if (clk)
q <= data;

end

The always block must have exactly one event control (@(event_expression)) in
it, and must be located immediately after the always keyword.

Assignments to Signals in always Blocks

You must explicitly declare as reg or integer any signal you assign inside an
always block.

Any incompletely-defined signal that is assigned within a level-triggered
always block will be implemented as a latch.

Whenever level-sensitive latches are generated from an always block, the tool
issues a warning message, so that you can verify if a given level-sensitive
latch is really what you intended. (If you model a level-sensitive latch using
continuous assignment then no warning message is issued.)

Example: Creating Level-sensitive Latches You Want
module latchor2 (q, a, b, clk);
output q;
input a, b, clk;
reg q;

always @(clk or a or b)
begin

if (clk)
q <= a | b;

end
endmodule

If clk, a, or b change, and clk is a logic 1, then set q equal to a|b.

Sequential Logic Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 357

What to do when clk is a logic zero is not specified (there is no else in the if
statement), so when clk is a logic 0, the last value assigned is maintained
(there is an implicit q=q). The synthesis tool correctly recognizes this as a
level-sensitive latch, and creates a level-sensitive latch in your design. The
tool issues a warning message when you compile this module (after examina-
tion, you may choose to ignore this message).

Example: Creating Unwanted Level-sensitive Latches
module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;

always @(sel or a or b or c or d)
begin

case (sel)
2'd0: out = a;
2'd1: out = b;
2'd3: out = d;

endcase
end
endmodule

In the above example, the sel case value 2'd2 was intentionally omitted.
Accordingly, out is not updated when the select line has the value 2'd2, and a
level-sensitive latch must be added to hold the last value of out under this
condition. The tool issues a warning message when you compile this module,
and there can be mismatches between RTL simulation and post-synthesis
simulation. You can avoid generating level-sensitive latches by adding the
missing case in the case statement; using a “default” case in the case state-
ment; or using the Verilog full_case directive.

Sets and Resets

A set signal is an input to a flip-flop that, when activated, sets the state of the
flip-flop to a logic one. Asynchronous sets take place independent of the
clock, whereas synchronous sets only occur on an active clock edge.

A reset signal is an input to a flip-flop that, when activated, sets the state of
the flip-flop to a logic zero. Asynchronous resets take place independent of
the clock, whereas synchronous resets take place only at an active clock
edge.

LO

 Verilog Language Support Sequential Logic

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
358 May 2015

Asynchronous Sets and Resets

Asynchronous sets and resets are independent of the clock. When active,
they set flip-flop outputs to one or zero (respectively), without requiring an
active clock edge. Therefore, list them in the event control of the always block,
so that they trigger the always block to execute, and so that you can take the
appropriate action when they become active.

Event Control Syntax
always @ (edgeKeyword clockSignal or edgeKeyword resetSignal or

edgeKeyword setSignal)

EdgeKeyword is posedge for active-high set or reset (or positive-edge triggered
clock) or negedge for active-low set or reset (or negative-edge triggered clock).

You can list the signals in any order.

Example: Event Control
// Asynchronous, active-high set (rising-edge clock)
always @(posedge clk or posedge set)

// Asynchronous, active-low reset (rising-edge clock)
always @(posedge clk or negedge reset)

// Asynchronous, active-low set and active-high reset
// (rising-edge clock)
always @(posedge clk or negedge set or posedge reset)

Example: always Block Template with Asynch, Active-high reset, set
always @(posedge clk or posedge set or posedge reset)
begin

if (reset) begin

/* Set the outputs to zero */

end else if (set) begin

/* Set the outputs to one */

Sequential Logic Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 359

end else begin

/* Clocked logic */
end

end

Example: flip-flop with Asynchronous, Active-high reset and set
module dff1 (q, qb, d, clk, set, reset);
input d, clk, set, reset;
output q, qb;
// Declare q and qb as reg because assigned inside always
reg q, qb;

always @(posedge clk or posedge set or posedge reset)
begin

if (reset) begin
q <= 0;
qb <= 1;

end else if (set) begin
q <= 1;
qb <= 0;

end else begin
q <= d;
qb <= ~d;

end
end
endmodule

For simple, single variable flip-flops, the following template can be used.

always @(posedge clk or posedge set or posedge reset)

q = reset ? 1'b0 : set ? 1'b1 : d;

Synchronous Sets and Resets

Synchronous sets and resets set flip-flop outputs to logic 1 or 0 (respectively)
on an active clock edge.

Do not list the set and reset signal names in the event expression of an always
block so they do not trigger the always block to execute upon changing.
Instead, trigger the always block on the active clock edge, and check the reset
and set inside the always block first.

LO

 Verilog Language Support Sequential Logic

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
360 May 2015

RTL View Primitives
The Verilog compiler can detect and extract the following flip-flops with
synchronous sets and resets and display them in the RTL schematic view:

• sdffr – flip-flop with synchronous reset

• sdffs – flip-flop with synchronous set

• sdffrs – flip-flop with both synchronous set and reset

• sdffpat – vectored flip-flop with synchronous set/reset pattern

• sdffre – enabled flip-flop with synchronous reset

• sdffse – enabled flip-flop with synchronous set

• sdffpate – enabled, vectored flip-flop with synchronous set/reset pattern

You can check the name (type) of any primitive by placing the mouse pointer
over it in the RTL view: a tooltip displays the name. The following figure
shows flip-flops with synchronous sets and resets.

Event Control Syntax
always @ (edgeKeyword clockName)

In the syntax line, edgeKeyword is posedge for a positive-edge triggered clock or
negedge for a negative-edge triggered clock.

Sequential Logic Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 361

Example: Event Control
// Positive edge triggered
always @(posedge clk)

// Negative edge triggered
always @(negedge clk)

Example: always Block Template with Synchronous, Active-high reset, set
always @(posedge clk)
begin

if (reset) begin
/* Set the outputs to zero */

end else if (set) begin
/* Set the outputs to one */

end else begin
/* Clocked logic */

end
end

Example: D Flip-flop with Synchronous, Active-high set, reset
module dff2 (q, qb, d, clk, set, reset);
input d, clk, set, reset;
output q, qb;
reg q, qb;

always @(posedge clk)
begin

if (reset) begin
q <= 0;
qb <= 1;

end else if (set) begin
q <= 1;
qb <= 0;

end else begin
q <= d;
qb <= ~d;

end
end
endmodule

LO

 Verilog Language Support Sequential Logic

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
362 May 2015

SRL Inference

Sequential elements can be mapped into SRLs using an initialization assign-
ment in the Verilog code. You can now infer SRLs with initialization values.
Enable the System Verilog option on the Verilog tab of the Implementation Options
dialog box before you run synthesis.

This is an example of a SRL with no resets. It has four 4-bit wide registers
and a 4-bit wide read address. Registers shift when the write enable is 1.

module test_srl(clk, enable, dataIn, result, addr);
input clk, enable;
input [3:0] dataIn;
input [3:0] addr;
output [3:0] result;
reg [3:0] regBank[3:0]='{4'h0,4'h1,4'h2,4'h3};
integer i;

always @(posedge clk) begin
if (enable == 1) begin

for (i=3; i>0; i=i-1) begin
regBank[i] <= regBank[i-1];

end
regBank[0] <= dataIn;
end

end

assign result = regBank[addr];
endmodule

Verilog State Machines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 363

Verilog State Machines

This section describes Verilog state machines: guidelines for using them,
defining state values, and dealing with asynchrony. The topics include:

• State Machine Guidelines, on page 363

• State Values, on page 365

• Asynchronous State Machines, on page 366

State Machine Guidelines

A finite state machine (FSM) is hardware that advances from state to state at
a clock edge.

The synthesis tool works best with synchronous state machines. You
typically write a fully synchronous design and avoid asynchronous paths
such as paths through the asynchronous reset of a register. See Asynchro-
nous State Machines, on page 366, for information about asynchronous state
machines.

• The state machine must have a synchronous or asynchronous reset, to
be inferred. State machines must have an asynchronous or synchro-
nous reset to set the hardware to a valid state after power-up, and to
reset your hardware during operation (asynchronous resets are avail-
able freely in most FPGA architectures).

• You can define state machines using multiple event controls in an always
block only if the event control expressions are identical (for example,
@(posedge clk)). These state machines are known as implicit state
machines. However it is better to use the explicit style described here
and shown in Example – FSM Coding Style, on page 364.

• Separate the sequential from the combinational always block statements.
Besides making it easier to read, it makes what is being registered very
obvious. It also gives better control over the type of register element
used.

• Represent states with defined labels or enumerated types.

• Use a case statement in an always block to check the current state at the
clock edge, advance to the next state, then set the output values. You

LO

 Verilog Language Support Verilog State Machines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
364 May 2015

can use if statements in an always block, but stay with case statements,
for consistency.

• Always use a default assignment as the last assignment in your case
statement and set the state variable to 'bx. See Example: default Assign-
ment, on page 364.

• Set encoding style with the syn_encoding directive. This attribute
overrides the default encoding assigned during compilation. The default
encoding is determined by the number of states. See syn_encoding
Values, on page 54 for a list of default and other encodings. When you
specify a particular encoding style with syn_encoding, that value is used
during the mapping stage to determine encoding style.

object /*synthesis syn_encoding="sequential"*/;

See syn_encoding, on page 54, for details about the syntax and values.

One-hot implementations are not always the best choice for state
machines, even in FPGAs and CPLDs. For example, one-hot state
machines might result in larger implementations, which can cause
fitting problems. An example in an FPGA where one-hot implementation
can be detrimental is a state machine that drives a large decoder, gener-
ating many output signals. In a 16-state state machine, for instance, the
output decoder logic might reference sixteen signals in a one-hot imple-
mentation, but only four signals in a sequential representation.

Example – FSM Coding Style

Example: default Assignment

default: state = 'bx;

Assigning 'bx to the state variable (a “don't care” for synthesis) tells the tool
that you have specified all the used states in your case statement. Any
remaining states are not used, and the synthesis tool can remove unneces-
sary decoding and gates associated with the unused states. You do not have
to add any special, non-Verilog directives.

If you set the state to a used state for the default case (for example, default state
= state1), the tool generates the same logic as if you assign 'bx, but there will be
pre- and post-synthesis simulation mismatches until you reset the state
machine. These mismatches occur because all inputs are unknown at start
up on the simulator. You therefore go immediately into the default case,

Verilog State Machines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 365

which sets the state variable to state1. When you power up the hardware, it
can be in a used state, such as state2, and then advance to a state other than
state1. Post-synthesis simulation behaves more like hardware with respect to
initialization.

State Values

In Verilog, you must give explicit state values for states. You do this using
parameter or `define statements. It is recommended that you use parameter, for
the following reasons:

• The `define is applied globally whereas parameter definitions are local.
With global `define definitions, you cannot reuse common state names
that you might want to use in multiple designs, like RESET, IDLE, READY,
READ, WRITE, ERROR and DONE. Local definitions make it easier to reuse
certain state names in multiple FSM designs. If you work around this
restriction by using `undef and then redefining them with `define in the
new FSM modules, it makes it difficult to probe the internal values of
FSM state buses from a testbench and compare them to state names.

• The tool only displays state names in the FSM Viewer if they are defined
using parameter.

Example 1: Using Parameters for State Values

parameter state1 = 2'h1, state2 = 2'h2;
...
current_state = state2; // Setting current state to 2'h2

Example 2: Using `define for State Values

`define state1 2'h1
`define state2 2'h2
...
current_state = `state2; // Setting current state to 2'h2

LO

 Verilog Language Support Verilog State Machines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
366 May 2015

Asynchronous State Machines

Avoid defining asynchronous state machines in Verilog. An asynchronous
state machine has states, but no clearly defined clock, and has combina-
tional loops.

Do not use tools to design asynchronous state machines; the synthesis tool
might remove your hazard-suppressing logic when it performs logic optimiza-
tion, causing your asynchronous state machines to work incorrectly.

The synthesis tool displays a “Found combinational loop” warning message
for an asynchronous state machine when it detects combinational loops in
continuous assignment statements, always blocks, and built-in gate-primitive
logic.

To create asynchronous state machines, do one of the following:

• To use Verilog, make a netlist of technology primitives from your target
library. Any instantiated technology primitives are left in the netlist, and
not removed during optimization.

• Use a schematic editor (and not Verilog) for the asynchronous state
machine part of your design.

The following asynchronous state machine examples generate warning
messages.

Example – Asynchronous FSM with Continuous Assignment

Example – Asynchronous FSM with an always Block

Example – READ Address Registered
module ram_test(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
input clk, we;
reg [6:0] read_add;
reg [7:0] mem [127:0];

../examples/verilog/RAM_inference/Sync_READ_RAMs/READ_addr_registered/RDADDR_reg.html

Verilog State Machines Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 367

always @(posedge clk) begin
if(we)

mem[a] <= d;
read_add <= a;

end

assign q = mem[read_add];
endmodule

Example – Data Output Registered
module ram_test(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
input clk, we;
reg [7:0] q;
reg [7:0] mem [127:0];

always @(posedge clk) begin
q <= mem [a];
if(we)

mem[a] <= d;
end

endmodule

../examples/verilog/RAM_inference/Sync_READ_RAMs/DATA_output_registered/DATAOUT_reg.html

LO

 Verilog Language Support Instantiating Black Boxes in Verilog

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
368 May 2015

Instantiating Black Boxes in Verilog

Black boxes are modules with just the interface specified; internal informa-
tion is ignored by the software. Black boxes can be used to directly instan-
tiate:

• Technology-vendor primitives and macros (including I/Os).

• User-designed macros whose functionality was defined in a schematic
editor, or another input source. (When the place-and-route tool can
merge design netlists from different sources.)

Black boxes are specified with the syn_black_box directive. If the macro is an
I/O, use black_box_pad_pin=1 on the external pad pin. The input, output, and
delay through a black box are specified with special black box timing direc-
tives (see syn_black_box, on page 47).

For most of the technology-vendor architectures, macro libraries are provided
(in installDirectory/lib/technology/family.v) that predefine the black boxes for their
primitives and macros (including I/Os).

Verilog simulators require a functional description of the internals of a black
box. To ensure that the functional description is ignored and treated as a
black box, use the translate_off and translate_on directives. See
translate_off/translate_on, on page 227 for information on the translate_off and
translate_on directives.

If the black box has tristate outputs, you must define these outputs with a
black_box_tri_pins directive (see black_box_tri_pins, on page 29).

For information on how to instantiate black boxes and technology-vendor
I/Os, see Defining Black Boxes for Synthesis, on page 302 of the User Guide.

PREP Verilog Benchmarks Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 369

PREP Verilog Benchmarks

PREP (Programmable Electronics Performance) Corporation distributes
benchmark results that show how FPGA vendors compare with each other in
terms of device performance and area. The following PREP benchmarks are
included in the installDirectory/examples/verilog/common_rtl/prep:

• PREP Benchmark 1, Data Path (prep1.v)

• PREP Benchmark 2, Timer/Counter (prep2.v)

• PREP Benchmark 3, Small State Machine (prep3.v)

• PREP Benchmark 4, Large State Machine (prep4.v)

• PREP Benchmark 5, Arithmetic Circuit (prep5.v)

• PREP Benchmark 6, 16-Bit Accumulator (prep6.v)

• PREP Benchmark 7, 16-Bit Counter (prep7.v)

• PREP Benchmark 8, 16-Bit Pre-scaled Counter (prep8.v)

• PREP Benchmark 9, Memory Map (prep9.v)

The source code for the benchmarks can be used for design examples for
synthesis or for doing your own FPGA vendor comparisons.

LO

 Verilog Language Support Hierarchical or Structural Verilog Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
370 May 2015

Hierarchical or Structural Verilog Designs

This section describes the creation and use of hierarchical Verilog designs:

• Using Hierarchical Verilog Designs, on page 370

• Creating a Hierarchical Verilog Design, on page 370

• synthesis Macro, on page 372

• text Macro, on page 373

Using Hierarchical Verilog Designs

The software accepts and processes hierarchical Verilog designs. You create
hierarchy by instantiating a module or a built-in gate primitive within
another module.

The signals connect across the hierarchical boundaries through the port list,
and can either be listed by position (the same order that you declare them in
the lower-level module), or by name (where you specify the name of the lower-
level signals to connect to).

Connecting by name minimizes errors, and can be especially advantageous
when the instantiated module has many ports.

Creating a Hierarchical Verilog Design

To create a hierarchical design:

1. Create modules.

2. Instantiate the modules within other modules. (When you instantiate
modules inside of others, the ones that you have instantiated are
sometimes called “lower-level modules” to distinguish them from the
“top-level” module that is not inside of another module.)

3. Connect signals in the port list together across the hierarchy either “by
position” or “by name” (see the examples, below).

Hierarchical or Structural Verilog Designs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 371

Example: Creating Modules (Interfaces Shown)

module mux(out, a, b, sel); // mux
output [7:0] out;
input [7:0] a, b;
input sel;

// mux functionality

endmodule

module reg8(q, data, clk, rst); // Eight-bit register
output [7:0] q;
input [7:0] data;
input clk, rst;
// Eight-bit register functionality
endmodule

module rotate(q, data, clk, r_l, rst); // Rotates bits or loads
output [7:0] q;
input [7:0] data;
input clk, r_l, rst;
// When r_l is high, it rotates; if low, it loads data
// Rotate functionality
endmodule

Example: Top-level Module with Ports Connected by Position

module top1(q, a, b, sel, r_l, clk, rst);
output [7:0] q;
input [7:0] a, b;
input sel, r_l, clk, rst;
wire [7:0] mux_out, reg_out;

// The order of the listed signals here will match
// the order of the signals in the mux module declaration.
mux mux_1 (mux_out, a, b, sel);
reg8 reg8_1 (reg_out, mux_out, clk, rst);
rotate rotate_1 (q, reg_out, clk, r_l, rst);

endmodule

LO

 Verilog Language Support Hierarchical or Structural Verilog Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
372 May 2015

Example: Top-level Module with Ports Connected by Name

module top2(q, a, b, sel, r_l, clk, rst);
output [7:0] q;
input [7:0] a, b;
input sel, r_l, clk, rst;
wire [7:0] mux_out, reg_out;

/* The syntax to connect a signal "by name" is:
.<lower_level_signal_name>(<local_signal_name>)
*/
mux mux_1 (.out(mux_out), .a(a), .b(b), .sel(sel));

/* Ports connected "by name" can be in any order */
reg8 reg8_1 (.clk(clk), .data(mux_out), .q(reg_out), .rst(rst));
rotate rotate_1 (.q(q), .data(reg_out), .clk(clk),

.r_l(r_l), .rst(rst));
endmodule

synthesis Macro

Use this text macro along with the Verilog `ifdef compiler directive to condi-
tionally exclude part of your Verilog code from being synthesized. The most
common use of the synthesis macro is to avoid synthesizing stimulus that only
has meaning for logic simulation.

The synthesis macro is defined so that the statement `ifdef synthesis is true. The
statements in the `ifdef branch are compiled; the stimulus statements in the
`else branch are ignored.

Note: Because Verilog simulators do not recognize a synthesis macro,
the compiler for your simulator will use the stimulus in the `else
branch.

In the following example, an AND gate is used for synthesis because the tool
recognizes the synthesis macro to be defined (as true); the assign c = a & b branch
is taken. During simulation, an OR gate is used instead, because the
simulator does not recognize the synthesis macro to be defined; the assign
c = a | b branch is taken.

Hierarchical or Structural Verilog Designs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 373

Note: A macro in Verilog has a non-zero value only if it is defined.

module top (a,b,c);
input a,b;
output c;

`ifdef synthesis
assign c = a & b;

`else
assign c = a | b;

`endif
endmodule

text Macro

The directive define creates a macro for text substitution. The compiler substi-
tutes the text of the macro for the string macroName. A text macro is defined
using arguments that can be customized for each individual use.

The syntax for a text macro definition is as follows.

textMacroDefinition ::= define textMacroName macroText

textMacroName ::= textMacroIdentifier[(formalArgumentList)]

formalArgumentList ::= formalArgumentIdentifier {, formalArgumentIdentifier}

When formal arguments are used to define a text macro, the scope of the
formal argument is extended to the end of the macro text. You can use a
formal argument in the same manner as an identifier.

A text macro with one or more arguments is expanded by replacing each
formal argument with the actual argument expression.

Example 1

`define MIN(p1, p2) (p1)<(p2)?(p1):(p2)

module example1(i1, i2, o);
input i1, i2;
output o;
reg o;

LO

 Verilog Language Support Hierarchical or Structural Verilog Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
374 May 2015

always @(i1, i2) begin
o = `MIN(i1, i2);
end
endmodule

Example 2

`define SQR_OF_MAX(a1, a2) (`MAX(a1, a2))*(`MAX(a1, a2))
`define MAX(p1, p2) (p1)<(p2)?(p1):(p2)

module example2(i1, i2, o);
input i1, i2;
output o;
reg o;

always @(i1, i2) begin
o = `SQR_OF_MAX(i1, i2);
end
endmodule

Example 3

Include File ppm_top_ports_def.inc
//ppm_top_ports_def.inc

// Single source definition for module ports and signals
// of PPM TOP.
// Input
`DEF_DOT `DEF_IN([7:0]) in_test1 `DEF_PORT(in_test1) `DEF_END
`DEF_DOT `DEF_IN([7:0]) in_test2 `DEF_PORT(in_test2) `DEF_END

// In/Out
// `DEF_DOT `DEF_INOUT([7:0]) io_bus1 `DEF_PORT(io_bus1) `DEF_END

// Output
`DEF_DOT `DEF_OUT([7:0]) out_test2 `DEF_PORT(out_test2)
// No DEF_END here...

`undef DEF_IN
`undef DEF_INOUT
`undef DEF_OUT
`undef DEF_END
`undef DEF_DOT
`undef DEF_PORT

Hierarchical or Structural Verilog Designs Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 375

Verilog File top.v
// top.v

`define INC_TYPE 1
module ppm_top(
 `ifdef INC_TYPE
// Inc file Port def...

`define DEF_IN(arg1) /* arg1 */
`define DEF_INOUT(arg1) /* arg1 */
`define DEF_OUT(arg1) /* arg1 */
`define DEF_END ,
`define DEF_DOT /* nothing */
`define DEF_PORT(arg1) /* arg1 */

`include "ppm_top_ports_def.inc"
`else
// Non-Inc file Port def, above defines should expand to
// what is below...

/* nothing */ /* [7:0] */ in_test1 /* in_test1 */ ,
/* nothing */ /* [7:0] */ in_test2 /* in_test2 */ ,

// In/Out
//`DEF_DOT `DEF_INOUT([7:0]) io_bus1 `DEF_PORT(io_bus1)

`DEF_END

// Output
/* nothing */ /* [7:0] */ out_test2 /* out_test2 */

// No DEF_END here...
 `endif
);

`ifdef INC_TYPE
// Inc file Signal type def...
`define DEF_IN(arg1) input arg1
`define DEF_INOUT(arg1) inout arg1
`define DEF_OUT(arg1) output arg1
`define DEF_END ;
`define DEF_DOT /* nothing */
`define DEF_PORT(arg1) /* arg1 */

LO

 Verilog Language Support Hierarchical or Structural Verilog Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
376 May 2015

`include "ppm_top_ports_def.inc"
`else
// Non-Inc file Signal type def, defines should expand to
// what is below...

/* nothing */ input [7:0] in_test1 /* in_test1 */ ;
/* nothing */ input [7:0] in_test2 /* in_test2 */ ;

// In/Out
//`DEF_DOT `DEF_INOUT([7:0]) io_bus1 `DEF_PORT(io_bus1)`DEF_END

// Output
/* nothing */ output [7:0] out_test2 /* out_test2) */

// No DEF_END here...
`endif

 ; /* Because of the 'No DEF_END here...' in line of the include
file. */

assign out_test2 = (in_test1 & in_test2);

endmodule

Verilog Attribute and Directive Syntax Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 377

Verilog Attribute and Directive Syntax

Verilog attributes and directives allow you to associate information with your
design to control the way it is analyzed, compiled, and mapped.

• Attributes direct the way your design is optimized and mapped during
synthesis.

• Directives control the way your design is analyzed prior to mapping.
They must therefore be included directly in your source code; they
cannot be specified in a constraint file like attributes.

Verilog does not have predefined attributes or directives for synthesis. To
define directives or attributes in Verilog, attach them to the appropriate
objects in the source code as comments. You can use either of the following
comment styles:

• Regular line comments

• Block or C-style comments

Each specification begins with the keyword synthesis. The directive or attribute
value is either a string, placed within double quotes, or a Boolean integer (0
or 1). Directives, attributes, and their values are-case sensitive and are
usually in lower case.

Attribute Syntax and Examples using Verilog Line Comments

Here is the syntax using a regular Verilog comment:

// synthesis directive | attribute [= "value"]

This example shows how to use the syn_hier attribute:

// synthesis syn_hier = "firm"

This example shows the parallel_case directive:

// synthesis parallel_case

This directive forces a multiplexed structure in Verilog designs. It is implicitly
true whenever you use it, which is why there is no associated value.

LO

 Verilog Language Support Verilog Attribute and Directive Syntax

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
378 May 2015

Attribute Syntax and Examples Using Verilog C-Style Comments

Here is the syntax for specifying attributes and directives with the C-style
block comment:

/* synthesis directive | attribute [= "value"] */

This example shows the syn_hier attribute specified with a C-style comment:

/* synthesis syn_hier = "firm" */

The following are some other rules for using C-style comments to define attri-
butes:

• If you use C-style comments, you must place the comment after the
object declaration and before the semicolon of the statement. For
example:

module bl_box(out, in) /* synthesis syn_black_box */ ;

• To specify more than one directive or attribute for a given design object,
place them within the same comment, separated by a space. Do not use
commas as separators. Here is an example where the syn_preserve and
syn_state_machine directives are specified in a single comment:

module radhard_dffrs(q,d,c,s,r)
/* synthesis syn_preserve=1 syn_state_machine=0 */;

• To make source code more readable, you can split long block comment
lines by inserting a backslash character (\) followed immediately by a
newline character (carriage return). A line split this way is still read as a
single line; the backslash causes the newline following it to be ignored.
You can split a comment line this way any number of times. However,
note these exceptions:

– The first split cannot occur before the first attribute or directive
specification.

– A given attribute or directive specification cannot be split before its
equal sign (=).

Take this block comment specification for example:

/* synthesis syn_probe=1 xc_loc="P20,P21,P22,P23,P24,P25,P26,P27" */;

You cannot split the line before you specify the first attribute, syn_probe.
You cannot split the line before either of the equal signs (syn_probe= or

Verilog Attribute and Directive Syntax Verilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 379

xc_loc=). You can split it anywhere within the string value
"P20,P21,P22,P23,P24,P25,P26,P27".

Attribute Examples Using Verilog 2001 Parenthetical Comments

Here is the syntax for specifying attributes and directives as Verilog 2001
parenthetical comments:

(* directive |attribute [= "value"] *)

Verilog 2001 parenthetical comments can be applied to:

• individual objects

• multiple objects

• individual objects within a module definition

The following example shows two syn_keep attributes specified as parenthet-
ical comments:

module example1(out1, out2, clk, in1, in2);
output out1, out2;
input clk;
input in1, in2;
wire and_out;
(* syn_keep=1 *) wire keep1;
(* syn_keep=1 *) wire keep2;
reg out1, out2;
assign and_out=in1&in2;
assign keep1=and_out;
assign keep2=and_out;

always @(posedge clk)begin;
out1<=keep1;
out2<=keep2;

end
endmodule

For the above example, a single parenthetical comment could be added
directly to the reg statement to apply the syn_keep attribute to both out1 and
out2:

(* syn_keep=1 *) reg out1, out2;

LO

 Verilog Language Support Verilog Attribute and Directive Syntax

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
380 May 2015

The following rules apply when using parenthetical comments to define attri-
butes:

• Always place the comment before the design object (and terminating
semicolon). For example:

(* syn_black_box *) module bl_box(out, in);

• To specify more than one directive or attribute for a given object, place
the attributes within the same parenthetical comment, separated by a
space (do not use commas as separators). The following example shows
the syn_preserve and syn_state_machine directives applied in a single
parenthetical comment:

(* syn_preserve=1 syn_state_machine=0 *)
module radhard_dffrs(q,d,c,s,r);

• Parenthetical comments can be applied to individual objects within a
module definition. For example,

module example2 (out1, (*syn_preserve=1*) out2, clk, in1, in2);

applies a syn_preserve attribute to out2, and

module example2 ((*syn_preserve=1*) out1,
(*syn_preserve=1*) out2, clk, in1, in2);

applies a syn_preserve attribute to both out1 and out2

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 381

C H A P T E R 9

SystemVerilog Language Support

This chapter describes support for the SystemVerilog standard in the
Synopsys FPGA synthesis tools. For information on the Verilog standard, see
Chapter 8, Verilog Language Support. SystemVerilog support includes:

• Feature Summary, on page 382

• Unsized Literals, on page 387

• Data Types, on page 387

• Arrays, on page 397

• Data Declarations, on page 400

• Operators and Expressions, on page 407

• Procedural Statements and Control Flow, on page 420

• Processes, on page 423

• Tasks and Functions, on page 428

• Hierarchy, on page 432

• Interface, on page 440

• System Tasks and System Functions, on page 448

• Generate Statement, on page 450

• Assertions, on page 455

• Keyword Support, on page 459

LO

 SystemVerilog Language Support Feature Summary

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
382 May 2015

Feature Summary

SystemVerilog is a IEEE (P1800) standard with extensions to the IEEE
Std.1800-2009 SystemVerilog standard. The extensions integrate features
from C, C++, VHDL, OVA, and PSL. The following table summarizes the
SystemVerilog features currently supported in the Synopsys FPGA Verilog
compilers. See SystemVerilog Limitations, on page 385 for a list of limita-
tions.

Feature Brief Description

Unsized Literals Specification of unsized literals as
single-bit values without a base
specifier.

Data Types
• Typedefs
• Enumerated Types
• Struct Construct
• Union Construct
• Static Casting

Data types that are a hybrid of both
Verilog and C including:
• User-defined types that allow you to

create new type definitions from
existing types

• Variables and nets defined with a
specific set of named values

• Structure data type to represent
collections of variables referenced as
a single name

• Data type collections sharing the
same memory location

• Conversion of one data type to
another data type.

Arrays
• Arrays
• Arrays of Structures

Packed, unpacked, and multi-
dimensional arrays of structures.

Data Declarations
• Constants
• Variables
• Nets
• Data Types in Parameters
• Type Parameters

Data declarations including constant,
variable, net, and parameter data
types.

Feature Summary SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 383

Operators and Expressions
• Operators
• Aggregate Expressions
• Streaming Operator
• Set Membership Operator
• Set Membership Case Inside Operator
• Type Operator

C assignment operators and special
bit-wise assignment operators.

Procedural Statements and Control Flow
• Do-While Loops
• For Loops
• Unnamed Blocks
• Block Name on end Keyword
• Unique and Priority Modifiers

Procedural statements including
variable declarations and block
functions.

Processes
• always_comb
• always_latch
• always_ff

Specialized procedural blocks that
reduce ambiguity and indicate the
intent.

Tasks and Functions
• Implicit Statement Group
• Formal Arguments
• endtask/endfunction Names

Information on implicit grouping for
multiple statements, passing formal
arguments, and naming end
statements for functions and tasks.

Hierarchy
• Compilation Units
• Packages
• Port Connection Constructs
• Extern Module

Permits sharing of language-defined
data types, user-defined types,
parameters, constants, function
definitions, and task definitions among
one or more compilation units,
modules, or interfaces (pkgs)

Interface
• Interface Construct
• Modports

Interface data type to represent port
lists and port connection lists as single
name.

System Tasks and System Functions
• $bits System Function
• Array Querying Functions

Queries to returns number of bits
required to hold an expression as a bit
stream or array.

Feature Brief Description

LO

 SystemVerilog Language Support Feature Summary

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
384 May 2015

Generate Statement: Conditional
Generate Constructs

Generate-loop, generate-conditional, or
generate-case statements with
defparams, parameters, and function
and task declarations.
Conditional if-generate and case-
generate constructs

Assertions
• SVA System Functions

SystemVerilog assertion support.

Keyword Support Supported and unsupported keywords.

Feature Brief Description

Feature Summary SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 385

SystemVerilog Limitations

The following SystemVerilog limitations are present in the current release.

Interface

• An array of interfaces cannot be used as a module port.

• An interface cannot have a multi-dimensional port.Access of array type
elements outside of the interface are not supported. For example:

interface ff_if (input logic din, input [7:0] DHAin1,
input [7:0] DHAin2, output logic dout);

logic [1:0] [1:0] [1:0] DHAout_intf;

always_comb
DHAout_intf = DHAin1 + DHAin2;

modport write (input din, output dout);
endinterface: ff_if

• ff_if ff_if_top(.*);
DHAout = ff_if_top.DHAout_intf;Modport definitions within a Generate
block are not supported. For example:

interface myintf_if (input logic [7:0] a , input logic [7:0] b,
output logic [7:0] out1, output logic [7:0] out2);

generate
begin: x
genvar i;

for (i = 0;i <= 7;i=i+1)
begin : u

modport myinst(input .ma(a[i]), input .mb(b[i]),
output .mout1(out1[i]) , output .mout2(out2[i]));

end
end

endgenerate
endinterface

LO

 SystemVerilog Language Support Feature Summary

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
386 May 2015

Compilation Unit and Package

• Write access to the variable defined in package/compilation unit is not
supported. For example:

package MyPack;
typedef struct packed {

int r;
longint g;
byte b;

} MyStruct ;

MyStruct StructMyStruct;
endpackage: MyPack

import MyPack::*;
module top (...
...

always@(posedge clk)
StructMyStruct <= '{default:254};

Unsized Literals SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 387

Unsized Literals

SystemVerilog allows you to specify unsized literals without a base specifier
(auto-fill literals) as single-bit values with a preceding apostrophe ('). All bits
of the unsized value are set to the value of the specified bit.

'0, '1, 'X, 'x, 'Z, 'z // sets all bits to this value

In other words, this feature allows you to fill a register, wire, or any other data
types with 0, 1, X, or Z in simple format.

Data Types

SystemVerilog makes a clear distinction between an object and its data type.
A data type is a set of values, or a set of operations that can be performed on
those values. Data types can be used to declare data objects.

SystemVerilog offers the following data types, which represent a hybrid of
both Verilog and C:

Data types are characterized as either of the following:

• 4-state (4-valued) data types that can hold 1, 0, X, and Z values

Verilog Example SystemVerilog equivalent

a = 4'b1111; a = '1;

Data Type Description

shortint 2-state, SystemVerilog data type, 16-bit signed integer

int 2-state, SystemVerilog data type, 32-bit signed integer

longint 2-state, SystemVerilog data type, 64-bit signed integer

byte 2-state, SystemVerilog data type, 8-bit signed integer or
ASCII character

bit 2-state, SystemVerilog data type, user-defined vector size

logic 4-state, SystemVerilog data type, user-defined vector size

LO

 SystemVerilog Language Support Data Types

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
388 May 2015

• 2-state (2-valued) data types that can hold 1 and 0 values

The following apply when using data types:

• The data types byte, shortint, int, integer and longint default to signed; data
types bit, reg, and logic default to unsigned, as do arrays of these types.

• The signed keyword is part of Verilog. The unsigned keyword can be used
to change the default behavior of signed data types.

• The Verilog compiler does not generate an error even if a 2-state data
type is assigned X or Z. It treats it as a “don't care” and issues a warning.

• Do not use the syn_keep directive on nets with SystemVerilog data types.
When you use data types such as bit, logic, longint, or shortint, the
synthesis software might not be aware of the bit sizes on the LHS and
RHS for the net. For example:

bit x;
shortint y;
assign y =x;

In this case, bit defaults to a 1-bit width and includes a shortint of 16-bit
width. If syn_keep is applied on y, the software does not use the other 15
bits.

Typedefs

You can create your own names for type definitions that you use frequently in
your code. SystemVerilog adds the ability to define new net and variable user-
defined names for existing types using the typedef keyword.

Example – Simple typedef Variable Assignment

Example – Using Multiple typedef Assignments

Enumerated Types

The synthesis tools support SystemVerilog enumerated types in accordance
with SV LRM section: 6.19.

Data Types SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 389

The enumerated types feature allows variables and nets to be defined with a
specific set of named values. This capability is particularly useful in state-
machine implementation where the states of the state machine can be
verbally represented

Data Types

Enumerated types have a base data type which, by default, is int (a 2-state,
32-bit value). By default, the first label in the enumerated list has a logic
value of 0, and each subsequent label is incremented by one.

For example, a variable that has three legal states:

enum {WAITE, LOAD, READY} state ;

The first label in the enumerated list has a logic value of 0 and each subse-
quent label is incremented by one. In the example above, State is an int type
and WAITE, LOAD And READY have 32-bit int values. WAITE is 0, LOAD is 1, and
READY is 2.

For this example, an explicit base type of logic is specified that allows the
enumerated types of state to more specifically model hardware:

enum logic [2:0] {WAITE=3’b001, LOAD=3’b010,READY=3’b100} state;

Specifying Ranges

SystemVerilog enumerated types also allow you to specify ranges that are
automatically elaborated. Types can be specified as outlined in the following
table.

Syntax Description

name Associates the next consecutive number with the specified name.

name = C Associates the constant C to the specified name.

name[N] Generates N named constants in this sequence: name0, name1,...,
nameN-1. N must be a positive integral number.

LO

 SystemVerilog Language Support Data Types

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
390 May 2015

The following example declares enumerated variable vr, which creates the
enumerated named constants register0 and register1, which are assigned the
values 1 and 2, respectively. Next, it creates the enumerated named constants
register2, register3, and register4 and assigns them the values 10, 11, and 12.

enum { register[2] = 1, register[2:4] = 10 } vr;

State-Machine Example

The following is an example state-machine design in SystemVerilog.

Example – State-machine Design

Type Casting Using Enumerated Types

By using enumerated types, you can define a type. For example:

typedef enum { red,green,blue,yellow,white,black } Colors;

The above definition assigns a unique number to each of the color identifiers
and creates the new data type Colors. This new type can then be used to
create variables of that type.

Valid assignment would be:

Colors c;

C = green;

name[N] = C Optionally assigns a constant to the generated named constants to
associate that constant with the first generated named constant.
Subsequent generated named constants are associated with
consecutive values. N must be a positive integral number.

name[N:M] Creates a sequence of named constants, starting with nameN and
incrementing or decrementing until it reaches named constant
nameM. N and M are non-negative integral numbers.

name[N:M] = C Optionally assigns a constant to the generated named constants to
associate that constant with the first generated named constants.
Subsequent generated named constants are associated
consecutive values. N and M must be positive integral numbers.

Syntax Description

Data Types SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 391

Enumerated Types in Expressions

Elements of enumerated types can be used in numerical expressions. The
value used in the expression is the value specified with the numerical value.
For example:

typedef enum {red,green,blue,yellow,white,black} Colors;
integer a,b;
a = blue *3 // 6 is assigned to a
b = yellow + green; // 4 is assigned to b

Enumerated Type Methods

SystemVerilog provides a set of specialized methods to iterate values of
enumerated types. The enumerated type method can be used to conveniently
code logic such as a state machine. Apply the enumerated type methods on
the specified enumerated type variable, using any of the methods below:

• first – Returns the first member of the enumeration.

enum first();

• last – Returns the last member of the enumeration.

enum last();

• next – Returns the next nth enumeration value starting from the current
value of the specified variable.

enum next();

• prev – Returns the previous nth enumeration value starting from the
current value of the specified variable.

enum prev();

• num – Returns the number of elements for the specified enumerations.

int num();

Note: Only the prev and next constructs support argument values.

LO

 SystemVerilog Language Support Data Types

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
392 May 2015

The following code example shows that enumeration methods can be used to
traverse the FSM, instead of having to explicitly specify the enumeration.

Example - Enumerated Type Method

Limitations
The compiler does not support enumerated type methods with:

• Enumeration type method of name()

• Cross-module referencing (XMR)

Struct Construct

SystemVerilog adds several enhancements to Verilog for representing large
amounts of data. In SystemVerilog, the Verilog array constructs are extended
both in how data can be represented and for operations on arrays. A struc-
ture data type has been defined as a means to represent collections of data
types. These data types can be either standard data types (such as int, logic, or
bit) or, they can be user-defined types (using SystemVerilog typedef). Struc-
tures allow multiple signals, of various data types, to be bundled together
and referenced by a single name.

Structures are defined under section 4.11 of IEEE Std 1800-2005 (IEEE
Standard for SystemVerilog).

In the example structure floating_pt_num below, both characteristic and
mantissa are 32-bit values of type bit.

struct {
bit [31:0] characteristic;
bit [31:0] mantissa;

} floating_pt_num;

Alternately, the structure could be written as:

typedef struct {
bit [31:0] characteristic;
bit [31:0] mantissa;

} flpt;
flpt floating_pt_num;

In the above sequence, a type flpt is defined using typedef which is then used to
declare the variable floating_pt_num.

Data Types SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 393

Assigning a value to one or more fields of a structure is straight-forward.

floating_pt_num.characteristic = 32'h1234_5678;

floating_pt_num.mantissa = 32'h0000_0010;

As mentioned, a structure can be defined with fields that are themselves
other structures.

typedef struct {
flpt x;
flpt y;

} coordinate;

Packed Struct

Various other unique features of SystemVerilog data types can also be
applied to structures. By default, the members of a structure are unpacked,
which allows the Synopsys FPGA tools to store structure members as
independent objects. It is also possible to pack a structure in memory without
gaps between its bit fields. This capability can be useful for fast access of data
during simulation and possibly result in a smaller footprint of your simula-
tion binary.

To pack a structure in memory, use the packed keyword in the definition of
the structure:

typedef struct packed {
bit [31:0] characteristic;
bit [31:0] mantissa;

} flpt;

An advantage of using packed structures is that one or more bits from such a
structure can be selected as if the structure was a packed array. For
instance, flpt[47:32] in the above declaration is the same as character-
istic[15:0].

Struct members are selected using the .name syntax as shown in the following
two code segments.

LO

 SystemVerilog Language Support Data Types

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
394 May 2015

// segment 1
typedef struct {

bit [7:0] opcode;
bit [23:0] addr;

} instruction; // named structure type
instruction IR; // define variable
IR.opcode = 1; //set field in IR.

// segment 2
struct {

int x,y;
} p;
p.x = 1;

Union Construct

A union is a collection of different data types similar to structure with the
exception that members of the union share the same memory location. At any
given time, you can write to any one member of the union which can then be
read by the same member or a different member of that union.

Union is broadly classified as:

• Packed Union

• Unpacked Union

Currently, only packed unions are supported.

Packed Union

A packed union can only have members that are of the packed type (packed
structure, packed array of logic, bit, int, etc.). All members of a packed union
must be of equal size.

Syntax
Union packed
{

member1;
member2;

} unionName;

Data Types SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 395

Unpacked Union

The members of an unpacked union can include both packed and unpacked
types (packed/unpacked structures, arrays of packed/unpacked logic, bit,
int, etc.) with no restrictions as to the size of the union members.

Syntax
Union
{

member1;
member2;

} unionName;

Example 1 – Basic Packed Union (logical operation)

Example 2 – Basic Packed Union (arithmetic operation)

Example 3 – Nested Packed Union

Example 4 – Array of packed Union

Limitations

The SystemVerilog compiler does not support the following union constructs:

• unpacked union

• tagged packed union

• tagged unpacked union

Currently, support is limited to packed unions, arrays of packed unions, and
nested packed unions.

Static Casting

Static casting allows one data type to be converted to another data type. The
static casting operator is used to change the data type, the size, or the sign:

• Type casting – a predefined data type is used as a castingType to change
the data type.

LO

 SystemVerilog Language Support Data Types

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
396 May 2015

• Size casting – a positive decimal number is used as a castingType to
change the number of data bits.

• Sign casting – signed/unsigned are used to change the sign of data type.

• Bit-stream casting – type casting that is applied to unpacked arrays and
structs. During bit-stream casting, both the left and right sides of the
equation must be the same size. Arithmetic operations cannot be
combined with static casting operations as is in the case of singular data
types.

Syntax

castingType'(castingExpression)

Example – Type Casting of Singular Data Types

Example – Type Casting of Aggregate Data Types

Example – Bit-stream Casting

Example – Size Casting

Example – Sign Casting

Arrays SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 397

Arrays

Topics in this section include:

• Arrays, on page 397

• Arrays of Structures, on page 399

Arrays

SystemVerilog uses the term packed array to refer to the dimensions declared
before the object name (same as Verilog vector width). The term unpacked
array refers to the dimensions declared after the object name (same as
Verilog array dimensions). For example:

reg [7:0] foo1; //packed array
reg foo2 [7:0]; //unpacked array

A packed array is guaranteed to be represented as a contiguous set of bits
and, therefore, can be conveniently accessed as array elements. While
unpacked is not guaranteed to work so, but in terms of hardware, both would
be treated or bit-blasted into a single dimension.

module test1 (input [3:0] data, output [3:0] dout);
//example on packed array four-bit wide.

assign dout = data;
endmodule

module test2 (input data [3:0], output dout [3:0]);
//unpacked array of 1 bit by 4 depth;

assign dout = data;
endmodule

Multi-dimensional packed arrays unify and extend Verilog's notion of regis-
ters and memories:

reg [1:0][2:0] my_var[32];

Classical Verilog permitted only one dimension to be declared to the left of the
variable name. SystemVerilog permits any number of such packed dimen-
sions. A variable of packed array type maps 1:1 onto an integer arithmetic
quantity. In the example above, each element of my_var can be used in expres-

LO

 SystemVerilog Language Support Arrays

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
398 May 2015

sions as a six-bit integer. The dimensions to the right of the name (32 in this
case) are referred to as unpacked dimensions. As in Verilog-2001, any
number of unpacked dimensions is permitted.

The general rule for multi-dimensional packed array is as follows:

reg/wire [matrixn:0] … [matrix1:0][depth:0][width:0] temp;

The general rule for multi-dimensional unpacked array is as follows:

reg/wire temp1 [matrixn:0]… [matrix1:0][depth:0]; //single bit wide
reg/wire [widthm:0] temp2 [matrixn:0]… [matrix1:0][depth:0];

// widthm bit wide

The general rule for multi-dimensional array, mix of packed/unpacked, is as
follows:

reg/wire [widthm:0] temp3 [matrix:0]… [depth:0];

reg/wire [depth:0][width:0] temp4 [matrixm:0]… [matrix1:0]

For example, in a multi-dimensional declaration, the dimensions declared
following the type and before the name vary more rapidly than the dimen-
sions following the name.

Multi-dimensional arrays can be used as ports of the module.

The following items are now supported for multi-dimensional arrays:

• Assignment of a whole multi-dimensional array to another.

• Access (reading) of an entire multi-dimensional array.

• Assignment of an index (representing a complete dimension) of a multi-
dimensional array to another.

• Access (reading) of an index of a multi-dimensional array.

• Assignment of a slice of a multi-dimensional array.

• Access of a slice of a multi-dimensional array.

• Access of a variable part-select of a multi-dimensional array.

In addition, wire declarations are supported for any packed or unpacked data
type. This support includes multi-dimensional enum and struct data types in
input port declarations (see Nets, on page 402 for more information).

Arrays SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 399

Packed arrays are supported with the access/store mechanisms listed above.
Packed arrays can also be used as ports and arguments to functions and tasks.
The standard multi-dimensional access of packed arrays is supported.

Unpacked array support is the same as packed array supported stated in
items one through seven above.

Example – Multi-dimensional Packed Array with Whole Assignment

Example – Multi-dimensional Packed Array with Partial Assignment

Example – Multi-dimensional Packed Array with Arithmetic Ops

Example – Packed/Unpacked Array with Partial Assignment

Arrays of Structures

SystemVerilog supports multi-dimensional arrays of structures which can be
used in many applications to manipulate complex data structures. A multi-
dimensional array of structure is a structured array of more than one dimen-
sion. The structure can be either packed or unpacked and the array of this
structure can be either packed or unpacked or a combination of packed and
unpacked. As a result, there are many combinations that define a multi-
dimensional array of structure.

A multi-dimensional array of structure can be declared as either anonymous
type (inline) or by using a typedef (user-defined data type).

Some applications where multi-dimensional arrays of structures can be used
are where multi-channeled interfaces are required such as packet processing,
dot-product of floating point numbers, or image processing.

LO

 SystemVerilog Language Support Data Declarations

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
400 May 2015

Example – Multi-dimensional Array of Packed and Unpacked
Structures Using typedef

Example – Multi-dimensional Array of UnPacked Structures Using
typedef

Example – Multi-dimensional Array of Packed Structures Using
Anonymous Type

Example – Multi-dimensional Array of Packed Structures Using
typedef

Array Querying Functions

SystemVerilog provides system functions that return information about a
particular dimension of an array. For information on this function, see Array
Querying Functions, on page 449.

Data Declarations

There are several data declarations in SystemVerilog: literals, parameters,
constants, variables, nets, and attributes. The following are described here:

• Constants, on page 401

• Variables, on page 401

• Nets, on page 402

• Data Types in Parameters, on page 403

• Type Parameters, on page 403

Data Declarations SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 401

Constants

Constants are named data variables, which never change. A typical example
for declaring a constant is as follows:

const a = 10;

const logic [3:0] load = 4'b1111;

const reg [7:0] load1 = 8'h0f, dataone = '1;

The Verilog compiler generates an error if constant is assigned a value.

const shortint a = 10;
assign a = '1; // This is illegal

Variables

Variables can be declared two ways:

Method 2 uses the keyword var to preface the variable. In this type of declara-
tion, a data type is optional. If the data type is not specified, logic is inferred.

Typical module declaration:

module test01 (input var shortint datain1,datain2,
output var logic [15:0] dataout1,dataout2);

A variable can be initialized as follows:

var a = 1'b1;

Method 1 Method 2

shortint a, b;
logic [1:0] c, d;

var logic [15:0] a;
var a,b; // equivalent var logic a, b
var [1:0] c, d; // equivalent var logic [1:0] c, d
input var shortint datain1,datain2;
output var logic [15:0] dataout1,dataout2;

LO

 SystemVerilog Language Support Data Declarations

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
402 May 2015

Nets

Nets are typically declared using the wire keyword. Any 4-state data type can
be used to declare a net. When using wire with struct and union constructs,
each member of the construct must be a 4-state data type.

Syntax

wire 4stateDataType identifierName ;

Example – Logic Type Defined as a Wire Type
module top (

input wire logic [1:0] din1,din2 , // logic defined as wire
output logic [1:0] dout);
assign dout = din1 + din2;

endmodule

Example – struct Defined as a Wire Type
typedef struct { logic [4:1] a;
} MyStruct;

module top (
input wire MyStruct [1:0] din [1:0] [1:0], // structure

// defined as wire
output wire MyStruct [1:0] dout [1:0] [1:0]); // structure

// defined as wire
assign dout = din;
endmodule

Restrictions
Using wire with a 2-state data type (for example, int or bit) results in the
following error message:

CG1205 | Net data types must be 4-state values

A lexical restriction also applies to a net or port declaration in that the net
type keyword wire cannot be followed by reg.

Data Declarations SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 403

Data Types in Parameters

In SystemVerilog with different data types being introduced, the parameter
can be of any data type (i.e., language-defined data type, user-defined data
type, and packed/unpacked arrays and structures). By default, parameter is
the int data type.

Syntax

parameter dataType varaibleName = value

In the above syntax, dataType is a language-defined data type, user-defined
data type, or a packed/unpacked structure or array.

Example – Parameter is of Type longint

Example – Parameter is of Type enum

Example – Parameter is of Type structure

Example – Parameter is of Type longint Unpacked Array

Type Parameters

SystemVerilog includes the ability for a parameter to also specify a data type.
This capability allows modules or instances to have data whose type is set for
each instance – these type parameters can have different values for each of
their instances.

Note: Overriding a type parameter with a defparam statement is illegal.

Syntax

parameter type typeIdentifierName = dataType;

localparam type typeIdentifierName = dataType;

In the above syntax, dataType is either a language-defined data type or a
user-defined data type.

LO

 SystemVerilog Language Support Data Declarations

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
404 May 2015

Example – Type Parameter of Language-Defined Data Type
//Compilation Unit
module top
#(

parameter type PTYPE = shortint,
parameter type PTYPE1 = logic[3:2][4:1] //parameter is of

//2D logic type
)
(
//Input Ports

input PTYPE din1_def,
input PTYPE1 din1_oride,

//Output Ports
output PTYPE dout1_def,
output PTYPE1 dout1_oride

);

sub u1_def //Default data type
(

.din1(din1_def),

.dout1(dout1_def)
);

sub #
(

.PTYPE(PTYPE1) //Parameter type is override by 2D Logic
)
u2_oride
(

.din1(din1_oride),

.dout1(dout1_oride)
);

endmodule

//Sub Module
module sub
#(

parameter type PTYPE = shortint //parameter is of shortint type
)
(
//Input Ports

input PTYPE din1,
//Output Ports

output PTYPE dout1
);

Data Declarations SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 405

always_comb
begin

dout1 = din1 ;
end
endmodule

Example – Type Parameter of User-Defined Data Type
//Compilation Unit
typedef logic [0:7]Logic_1DUnpack[2:1];
typedef struct {

byte R;
int B;
logic[0:7]G;

} Struct_dt;

module top
#(

parameter type PTYPE = Logic_1DUnpack,
parameter type PTYPE1 = Struct_dt

)
(
//Input Ports

input PTYPE1 din1_oride,
//Output Ports

output PTYPE1 dout1_oride
);

sub #
(

.PTYPE(PTYPE1) //Parameter type is override by a structure type
)
u2_oride
(

.din1(din1_oride),

.dout1(dout1_oride)
);

endmodule

//Sub Module
module sub
#(

parameter type PTYPE = Logic_1DUnpack // Parameter 1D
// logic Unpacked data type

)
(

LO

 SystemVerilog Language Support Data Declarations

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
406 May 2015

//Input Ports
input PTYPE din1,

//Output Ports
output PTYPE dout1

);

always_comb
begin

dout1.R = din1.R;
dout1.B = din1.B ;
dout1.G = din1.G ;

end
endmodule

Example – Type Local Parameter
//Compilation Unit
module sub
#(
parameter type PTYPE1 = shortint, //Parameter is of shortint type
parameter type PTYPE2 = longint //Parameter is of longint type
)

(
//Input Ports

input PTYPE1 din1,
//Output Ports

output PTYPE2 dout1
);

//Localparam type definitation
localparam type SHORTINT_LPARAM = PTYPE1;
SHORTINT_LPARAM sig1;
assign sig1 = din1;
assign dout1 = din1 * sig1;
endmodule

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 407

Operators and Expressions

Topics in this section include:

• Operators, on page 407

• Aggregate Expressions, on page 408

• Streaming Operator, on page 411

• Set Membership Operator, on page 412

• Set Membership Case Inside Operator, on page 412

• Type Operator, on page 416

Operators

SystemVerilog includes the C assignment operators and special bit-wise
assignment operators:

+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, >>>=

An assignment operator is semantically equivalent to a blocking assignment
with the exception that the expression is only evaluated once.

Operator Example Same as

A += 2; A = A + 2;

B -= B; B = B - A;

C *= B; C = C * B;

D /= C; D = D / C;

E %= D; E = E % D;

F &= E; F = F & E;

G |= F; G = G | F;

H ^= G; H = H ^ G;

I <<= H; I = I << H;

LO

 SystemVerilog Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
408 May 2015

Increment and Decrement Operators
In addition, SystemVerilog also has the increment/decrement operators i++,
i--, ++i, and --i.

In the following code segment, out1 gets r1 and out2 gets the twice-decre-
mented value of out1:

always @(*)
begin

out1 = r1--;
out2 = --r1;

end

Aggregate Expressions

Aggregate expressions (aggregate pattern assignments) are primarily used to
initialize and assign default values to unpacked arrays and structures.

Syntax

SystemVerilog aggregate expressions are constructed from braces; an
apostrophe prefixes the opening (left) brace.

'{ listofValues }

J >>= I; J = J >> I;

K <<<=J; K = K <<< J;

L >>>=K; L = L >>> K;

Operator Example Same as

A++; A = A + 1;

A--; A = A - 1;

++A; Increment first and then use A

--A; Decrement first and then use A

Operator Example Same as

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 409

In the syntax, listofValues is a comma-separated list. SystemVerilog also
provides a mechanism to initialize all of the elements of an unpacked array by
specifying a default value within the braces using the following syntax:

'{ default: value }
'{ data type:value }
'{ index:value }

The aggregate (pattern) assignment can be used to initialize any of the
following.

• a 2-dimensional unpacked array under a reset condition (see Initializing
Unpacked Array Under Reset Condition example).

• all the elements of a 2-dimensional unpacked array to a default value
using the default keyword under a reset condition (see Initializing
Unpacked Array to Default Value example).

• a specific data type using the keyword for type instead of default (see
Initializing Specific Data Type example).

• unpacked elements of ports that can be passed to a submodule during
instantiations (see Aggregate on Port example). For example:

sub u1(.temp('{'0,'1,'1,0})

Example – Aggregate on Ports
Currently, you must enable the Beta Features for Verilog on the Verilog tab of the
Implementation Options panel to use this feature. Otherwise, the compiler
generates an error message.

Example: Aggregate on Ports (Submodule)

Example: Aggregate on Ports (Top-Level Module)

Aggregate (pattern) assignment can also be specified in a package (see Aggre-
gate Assignment in Package example) and in a compilation unit (see Aggre-
gate Assignment in Compilation Unit example).

LO

 SystemVerilog Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
410 May 2015

Example – Initializing Unpacked Array Under Reset Condition

Example – Initializing Unpacked Array to Default Value

Example – Initializing Specific Data Type

Example – Aggregate Assignment in Package

Example – Aggregate Assignment in Compilation Unit

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 411

Streaming Operator

The streaming operator (>> or <<) packs the bit-stream type to a particular
sequence of bits in a user-specified order. Bit-stream types can be any
integral, packed or unpacked type or structure. The streaming operator can
be used on either the left or right side of the expression.

The streaming operator determines the order of bits in the output data
stream:

• The left-to-right operator (>>) arranges the output data bits in the same
order as the input bit stream

• The right-to-left operator (<<) arranges the output data bits in reverse
order from the input bit stream

Syntax

streamingExpression ::= { streamOperator [sliceSize] streamConcatenation }

streamOperator ::= >> | <<

sliceSize ::= dataType | constantExpression

streamConcatenation ::= {streamExpression {, streamExpression} }

streamExpression ::= arrayRangeExpression

When an optional sliceSize value is included, the stream is broken up into the
slice-size segments prior to performing the specified streaming operation. By
default, the sliceSize value is 1.

Usage

The streaming operator is used to:

• Reverse the entire data stream

• Bit-stream from one data type to other

When the slice size is larger than the data stream, the stream is left-justified
and zero-filled on the right. If the data stream is larger than the left side
variable, an error is reported.

LO

 SystemVerilog Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
412 May 2015

Example – Packed type inputs/outputs with RHS operator

Example – Unpacked type inputs/outputs with RHS operator

Example – Packed type inputs/outputs with LHS operator

Example – Slice-size streaming with RHS operator

Example – Slice-size streaming with LHS slice operation

Set Membership Operator

The set membership operator, also referred to as the inside operator, returns
the value TRUE when the expression value (i.e., the LHS of the operator) is
present in the value list of the RHS operator. If the expression value is not
present in the RHS operator, returns FALSE.

Syntax

(expressionValue) inside {listofValues}

expressionValue ::= singularExpression

listofValues ::= rangeofValues, expressions, arrayofAggregateTypes

Example – Inside operator with dynamically changing input at LHS
operator

Example – Inside operator with expression at LHS operator

Example – Inside operator with dynamically changing input at LHS and
RHS operators

Example – Inside operator with array of parameter at LHS operator

Set Membership Case Inside Operator

With the case inside operator, a case expression is compared to each case item.
Also, when using this operator, the case items can include an open range.
The comparison returns TRUE when the case expression matches a case
item, otherwise it returns FALSE.

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 413

Syntax

[unique|priority] case (caseExpression) inside
(caseItem) : statement ;
(caseItem) : statement ;

.

.

.
[default : statement ;]

endcase

In the above syntax, caseItem can be:

• a list of constants

• an open range

• a combination of a list of constants and an open range

The case inside operator supports the following optional modifiers:

• unique – each caseItem is unique and there are no overlapping caseItems.
If there is an overlapping caseItem, a warning is issued.

• priority – the case statement is prioritized and all possible legal cases are
covered by the case statement. If the caseExpression fails to match any
of the caseItems, a warning is issued.

Example – Case Inside
module top# (

parameter byte p1[2:1][4:1] = '{'{0,2,4,6},'{1,3,5,7}})
//Input
(input logic[4:1]sel,a,b,
//Output

output logic[3:1] q);

always_comb begin
case (sel) inside

8,p1[1],10,12,14:q <= a;
p1[2],9,11,13,15:q <= b;

endcase
end
endmodule

LO

 SystemVerilog Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
414 May 2015

Example – Unique Case Inside
module top# (

parameter byte p1[2:1][4:1] = '{'{15,14,13,12},'{0,1,2,3}})
//Input
(input logic[4:1]sel1,sel2,

input byte a,b,
//Output

output byte q);

generate begin
always@(*) begin

unique case (sel1^sel2) inside
p1 : q = a+b;
[4:7],13,14,15 : q = a ^ b;
[9:12],8 : q = a*b;

endcase
end

end
endgenerate
endmodule

Example – Priority Case Inside
typedef enum logic[4:1] {s[0:15]} EnumDt;

module top (
input logic reset,
input logic clock,
input logic x,
input logic[2:1] y,
output logic[3:1] op);

EnumDt state;

always@(posedge reset or posedge clock)
begin

if (reset == 1'b1)
begin

op <= 3'b000;
state <= s0;

end
else
begin

priority case (state) inside
[s0:s2],s12 : begin

if (x == 1'b0 && y == 1'b0)
begin

state <= s3;

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 415

op <= 3'b001;
end
else
begin

state <= s2;
op <= 3'b000;

end
end
[s3:s5] : begin

if(x == 1'b1 && y== 1'b0)
begin

state <= s7;
op <= 3'b010;

end
else
begin

state <= s9;
op <= 3'b110;

end
end
[s6:s8],s13 : begin

if(x == 1'b0 && y== 1'b1)
begin

state <= s11;
op <= 3'b011;

end
else if (x == 1'b0 && y == 1'b1)
begin

state <= s4;
op <= 3'b010;

end
end
[s9:s11] : begin

if(x == 1'b1 && y== 1'b1)
begin

state <= s5;
op <= 3'b100;

end
else if (x == 1'b0 && y == 1'b1)
begin

state <= s0;
op <= 3'b111;

end
end
default : begin

state <= s1;

LO

 SystemVerilog Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
416 May 2015

op <= 3'b111;
end

endcase
end

end
endmodule

Type Operator

SystemVerilog provides a type operator as a way of referencing the data type of
a variable or an expression.

Syntax

type(dataType | expression)

dataType – a user-defined data type or language-defined data type

expression – any expression, variable, or port

An expression inside the type operator results in a self-determined type of
expression; the expression is not evaluated. Also the expression cannot
contain any hierarchical references.

Data Declaration

The type operator can be used while declaring signals, variables, or ports of a
module/interface or a member of that interface.

Example – Using Type Operator to Declare Input/Output Ports
typedef logic signed[4:1]logicdt;
// Module top
module top(

input type(logicdt) d1,
output type(logicdt) dout1);

type(logicdt) sig;
var type(logicdt) sig1;
assign sig = d1;
assign sig1= d1+1'b1;
assign dout1= sig + sig1;
endmodule

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 417

Data Type Declaration

Defining of the user-defined data type can have the type operator, wherein a
variable or another user-defined data type can be directly referenced while
defining a data type using the type operator. The data type can be defined in
the compilation unit, package, or inside the module or interface.

Example – Using Type Operator to Declare Unpacked Data Type
typedef logic[4:1] logicdt;
typedef type(logicdt)Unpackdt[2:1];

module top(
input Unpackdt d1,
output Unpackdt dout1);

assign dout1[2] = d1[2];
assign dout1[1] = d1[1];
endmodule

Type Casting

The type operator can be used to directly reference the data type of a variable
or port, or can be user-defined and used in type casting to convert either
signed to unsigned or unsigned to signed.

Example – Using Type Operator to Reference Data Type
typedef logic [20:0]dt;
//Module top
module top (

input byte d1,d2,
output int unsigned dout1);

assign dout1 = type(dt)'(d1 * d2);
endmodule

Defining Type Parameter/Local Parameter

The type operator can be used when defining a Type parameter to define the
data type. The definition can be overridden based on user requirements.

LO

 SystemVerilog Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
418 May 2015

Example – Using Type Operator to Declare Parameter Type Value
// Module top
module top(

input byte a1,
input byte a2,
output shortint dout1);

parameter type dtype = type(a1);
dtype sig1;
assign sig1 = a1;
assign dout1 = ~sig1;
endmodule

Comparison and Case Comparison

The type operator can be used to compare two types when evaluating a condi-
tion or a case statement.

Example – Using Type Operator in a Comparison
// Module top
module top (

input byte d1,
input shortint d2,
output shortint dout1);

always_comb begin
if(type(d1) == type(d2))

dout1 = d1;
else

dout1 = d2;
end
endmodule

Limitations

The type operator is not supported on complex expressions (for example
type(d1*d2)).

$typeof Operator

Verilog (IEEE Std 1800-2012) LRM no longer supports the $typeof operator.
However, the synthesis tools can support the $typeof operator in accordance
with SystemVerilog (IEEE Std 1800-2012) LRM section: 6.23. SystemVerilog

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 419

provides the $typeof system function used to assign or override a type param-
eter or as a comparison with another $typeof operator, which is evaluated
during elaboration.

Syntax

typeofFunction ::=

$typeof (dataType) – A user-defined data type or language-defined data type

$typeof (expression) – Any expression, variable, or port

For example:

bit [12:0] A_bus;
parameter type bus_t = $typeof(A_bus);

Example: $type Operator
For this test case:

• Parameter mtype is defined as logic signed [7:0].

• Input and output ports (din and dout) are defined as type mtype.

• Parameter mtype1 is created after the $typeof operator is applied to input
port din.

• As a result, sig1 is also defined with parameter mtype1.

Limitations

The compiler does not support the following $typeof conditions:

• When the $typeof operator uses an expression as its argument, the
expression cannot contain any hierarchical references or reference
elements of dynamic objects.

• The $typeof operator is not supported on complex expressions. For
example:

$typeof (d1 + 4'h4 - 2'b01)

LO

 SystemVerilog Language Support Procedural Statements and Control Flow

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
420 May 2015

Procedural Statements and Control Flow

Topics in this section include

• Do-While Loops

• For Loops, on page 421

• Unnamed Blocks, on page 421

• Block Name on end Keyword, on page 421

• Unique and Priority Modifiers, on page 422

Do-While Loops

The while statement executes a loop for as long as the loop-control test is true.
The control value is tested at the beginning of each pass through the loop.
However, a while loop does not execute at all if the test on the control value is
false the first time the loop is encountered. This top-testing behavior can
require extra coding prior to beginning the while loop, to ensure that any
output variables of the loop are consistent.

SystemVerilog enhances the for loop and adds a do-while loop, the same as in
C. The control on the do-while loop is tested at the end of each pass through
the loop (instead of at the beginning). This implies that each time the loop is
encountered in the execution flow, the loop statements are executed at least
once.

Because the statements within a do-while loop are going to execute at least
once, all the logic for setting the outputs of the loop can be placed inside the
loop. This bottom-testing behavior can simplify the coding of while loops,
making the code more concise and more intuitive.

Procedural Statements and Control Flow SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 421

Example – Simple Do-while Loop

Example – Do-while with If Else Statement

Example – Do-while with Case Statement

For Loops

SystemVerilog simplifies declaring local variables for use in for loops. The
declaration of the for loop variable can be made within the for loop. This elimi-
nates the need to define several variables at the module level, or to define
local variables within named begin…end blocks as shown in the following
example.

Example – Simple for Loop
A variable defined as in the example above, is local to the loop. References to
the variable name within the loop see the local variable, however, reference to
the same variable outside the loop encounters an error. This type of variable
is created and initialized when the for loop is invoked, and destroyed when the
loop exits.

SystemVerilog also enhances for loops by allowing more than one initial
assignment statement. Multiple initial or step assignments are separated by
commas as shown in the following example.

Example – For Loop with Two Variables

Unnamed Blocks

SystemVerilog allows local variables to be declared in unnamed blocks.

Example – Local Variable in Unnamed Block

Block Name on end Keyword

SystemVerilog allows a block name to be defined after the end keyword when
the name matches the one defined on the corresponding begin keyword. This
means, you can name the start and end of a begin statement for a block. The

LO

 SystemVerilog Language Support Procedural Statements and Control Flow

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
422 May 2015

additional name does not affect the block semantics, but does serve to
enhance code readability by documenting the statement group that is being
completed.

Example – Including Block Name with end Keyword

Unique and Priority Modifiers

SystemVerilog adds unique and priority modifiers to use in case statements. The
Verilog full_case and parallel_case statements are located inside of comments
and are ignored by the Verilog simulator. For synthesis, full_case and
parallel_case directives instruct the tool to take certain actions or perform
certain optimizations that are unknown to the simulator.

To prevent discrepancies when using full_case and parallel_case directives and
to ensure that the simulator has the same understanding of them as the
synthesis tool, use the priority or unique modifier in the case statement. The
priority and unique keywords are recognized by all tools, including the Verilog
simulators, allowing all tools to have the same information about the design.

The following table shows how to substitute the SystemVerilog unique and
priority modifiers for Verilog full_case and parallel_case directives for synthesis.

Processes SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 423

Example – Unique Case

Example – Priority Case

Processes

In Verilog, an “if” statement with a missing “else” condition infers an uninten-
tional latch element, for which the Synopsys FPGA compiler currently gener-
ates a warning. Many commercially available compilers do not generate any
warning, causing a serious mismatch between intention and inference.
SystemVerilog adds three specialized procedural blocks that reduce
ambiguity and clearly indicate the intent:

• always_comb, on page 424

• always_latch, on page 426

• always_ff, on page 427

Verilog using full_case, parallel_case SystemVerilog using unique/priority
case modifiers

case (...)

...

endcase

case (...)

...

endcase

case (...) //full_case

...

endcase

priority case (...)

...

endcase

case (...) //parallel_case

...

endcase

unique case (...)

...

default : ...

endcase

case (...) //full_case
parallel_case

...

endcase

unique case (...)

...

endcase

LO

 SystemVerilog Language Support Processes

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
424 May 2015

Use them instead of the Verilog general purpose always procedural block to
indicate design intent and aid in the inference of identical logic across
synthesis, simulation, and formal verification tools.

always_comb

The SystemVerilog always_comb process block models combinational logic,
and the logic inferred from the always_comb process must be combinational
logic. The Synopsys FPGA compiler warns you if the behavior does not repre-
sent combinational logic.

The semantics of an always_comb block are different from a normal always
block in these ways:

• It is illegal to declare a sensitivity list in tandem with an always_comb
block.

• An always_comb statement cannot contain any block, timing, or event
controls and fork, join, or wait statements.

Note the following about the always_comb block:

• There is an inferred sensitivity list that includes all the variables from
the RHS of all assignments within the always_comb block and variables
used to control or select assignments See Examples of Sensitivity to LHS
and RHS of Assignments, on page 425.

• The variables on the LHS of the expression should not be written by any
other processes.

• The always_comb block is guaranteed to be triggered once at time zero
after the initial block is executed.

• always_comb is sensitive to changes within the contents of a function and
not just the function arguments, unlike the always@(*) construct of
Verilog 2001.

Example – always_comb Block

Invalid Use of always_comb Block

The following code segments show use of the construct that are NOT VALID.

Processes SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 425

always_comb @(a or b) //Wrong. Sensitivity list is inferred not
//declared

begin
foo;

end

always_comb
begin

@clk out <=in; //Wrong to use trigger within this always block
end

always_comb
begin

fork //Wrong to use fork-join within this always block
out <=in;
join

end

always_comb
begin

if(en)mem[waddr]<=data; //Wrong to use trigger conditions
//within this block

end

Examples of Sensitivity to LHS and RHS of Assignments

In the following code segment, sensitivity only to the LHS of assignments
causes problems.

always @(y)
if (sel)

y= a1;
else

y= a0;

In the following code segment, sensitivity only to the RHS of assignments
causes problems.

always @(a0, a1)
if (sel)

y= a1;
else

y= a0;

In the following code segment, sensitivity to the RHS of assignments and
variables used in control logic for assignments produces correct results.

LO

 SystemVerilog Language Support Processes

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
426 May 2015

always @(a0, a1, sel)
if (sel)

y= a1;
else

y= a0;

always_latch

The SystemVerilog always_latch process models latched logic, and the logic
inferred from the always_latch process must only be latches (of any kind). The
Synopsys FPGA compiler warns you if the behavior does not follow the intent.

Note the following:

• It is illegal for always_latch statements to contain a sensitivity list, any
block, timing, or event controls, and fork, join, or wait statements.

• The sensitivity list of an always_latch process is automatically inferred by
the compiler and the inferring rules are similar to the always_comb
process (see always_comb, on page 424).

Example – always_latch Block

Invalid Use of always_latch Block

The following code segments show use of the construct that are NOT VALID.

always_latch
begin

if(en)
treg<=1;

else
treg<=0; //Wrong to use fully specified if statement

end

always_latch
begin

@(clk)out <=in; //Wrong to use trigger events within this
//always block

end

Processes SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 427

always_ff

The SystemVerilog always_ff process block models sequential logic that is
triggered by clocks. The compiler warns you if the behavior does not repre-
sent the intent. The always_ff process has the following restrictions:

• An always_ff block must contain only one event control and no blocking
timing controls.

• Variables on the left side of assignments within an always_ff block must
not be written to by any other process.

Example – always_ff Block

Invalid Use of always_ff Block

The following code segments show use of the construct that are NOT VALID.

always_ff @(posedge clk or negedge rst)
begin

if(rst)
treg<=in; //Illegal; wrong polarity for rst in the

//sensitivity list and the if statement
end

always_ff
begin

@(posedgerst)treg<=0;
@(posedgeclk)treg<=in; //Illegal; two event controls

end

always_ff @(posedge clk or posedge rst)
begin

treg<=0; //Illegal; not clear which trigger is to be
// considered clk or rst

end

LO

 SystemVerilog Language Support Tasks and Functions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
428 May 2015

Tasks and Functions

Support for task and function calls includes the following:

• Implicit Statement Group

• Formal Arguments, on page 428

• endtask/endfunction Names, on page 431

Implicit Statement Group

Multiple statements in the task or function definition do not need to be placed
within a begin…end block. Multiple statements are implicitly grouped,
executed sequentially as if they are enclosed in a begin…end block.

/* Statement grouping */
function int incr2(int a);

incr2 = a + 1;
incr2 = incr2 + 1;

endfunction

Formal Arguments

This section includes information on passing formal arguments when calling
functions or tasks. Topics include:

• Passing Arguments by Name

• Default Direction and Type

• Default Values

Passing Arguments by Name

When a task or function is called, SystemVerilog allows for argument values to
be passed to the task/function using formal argument names; order of the
formal arguments is not important. As in instantiations in Verilog, named
argument values can be passed in any order, and are explicitly passed
through to the specified formal argument. The syntax for the named
argument passing is the same as Verilog’s syntax for named port connections
to a module instance. For example:

Tasks and Functions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 429

/* General functions */
function [1:0] inc(input [1:0] a);

inc = a + 1;
endfunction
function [1:0] sel(input [1:0] a, b, input s);

sel = s ? a : b;
endfunction

/* Tests named connections on function calls */
assign z0 = inc(.a(a));
assign z2 = sel(.b(b), .s(s), .a(a));

Default Direction and Type

In SystemVerilog, input is the default direction for the task/function declaration.
Until a formal argument direction is declared, all arguments are assumed to
be inputs. Once a direction is declared, subsequent arguments will be the
declared direction, the same as in Verilog.

The default data type for task/function arguments is logic, unless explicitly
declared as another variable type. (In Verilog, each formal argument of a
task/function is assumed to be reg). For example:

/* Tests default direction of argument */
function int incr1(int a);

incr1 = a + 1;
endfunction

In this case, the direction for a is input even though this is not explicitly
defined.

Default Values

SystemVerilog allows an optional default value to be defined for each formal
argument of a task or function. The default value is specified using a syntax
similar to setting the initial value of a variable. For example:

function int testa(int a = 0, int b, int c = 1);
testa = a + b + c;

endfunction

task testb(int a = 0, int b, int c = 1, output int d);
d = a + b + c;

endtask

LO

 SystemVerilog Language Support Tasks and Functions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
430 May 2015

When a task/function is called, it is not necessary to pass a value to the
arguments that have default argument values. If nothing is passed to the
task/function for that argument position, the default value is used. Specifying
default argument values allows a task/function definition to be used in multiple
ways. Verilog requires that a task/function call have the exact same number of
argument expressions as the number of formal arguments. SystemVerilog
allows the task/function call to have fewer argument expressions than the
number of formal arguments. A task/function call must pass a value to an
argument, if the formal definition of the argument does not have a default
value. Consider the following examples:

/* functions With positional associations and missing arguments */
assign a = testa(,5); /* Same as testa(0,5,1) */
assign b = testa(2,5); /* Same as testa(2,5,1) */
assign c = testa(,5,); /* Same as testa(0,5,1) */
assign d = testa(,5,7); /* Same as testa(0,5,7) */
assign e = testa(1,5,2); /* Same as testa(1,5,2) */

/* functions With named associations and missing arguments */
assign k = testa(.b(5)); /* Same as testa(0,5,1) */
assign l = testa(.a(2),.b(5)); /* Same as testa(2,5,1) */
assign m = testa(.b(5)); /* Same as testa(0,5,1) */
assign n = testa(.b(5),.c(7)); /* Same as testa(0,5,7) */
assign o = testa(.a(1),.b(5),.c(2)); /* Same as testa(1,5,2) */

In general, tasks are not supported outside the scope of a procedural block
(even in previous versions). This is primarily due to the difference between
tasks and function.

Here are some task examples using default values:

always @(*)
begin
/* tasks With named associations and missing arguments */
testb(.b(5),.d(f)); /* Same as testb(0,5,1) */
testb(.a(2),.b(5),.d(g)); /* Same as testb(2,5,1) */
testb(.b(5),.d(h)); /* Same as testb(0,5,1) */
testb(.b(5),.c(7),.d(i)); /* Same as testb(0,5,7) */
testb(.a(1),.b(5),.c(2),.d(j)); /* Same as testb(1,5,2) */

/* tasks With positional associations and missing arguments */
testb(,5,,p); /* Same as testb(0,5,1) */
testb(2,5,,q); /* Same as testb(2,5,1) */
testb(,5,,r); /* Same as testb(0,5,1) */
testb(,5,7,s); /* Same as testb(0,5,7) */
testb(1,5,2,t); /* Same as testb(1,5,2) */

Tasks and Functions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 431

endtask/endfunction Names

SystemVerilog allows a name to be specified with the endtask or endfunction
keyword. The syntax is:

endtask : taskName

endfunction : functionName

The space before and after the colon is optional. The name specified must be
the same as the name of the corresponding task or function as shown in the
following example.

/* Function w/ statement grouping, also has an endfunction label */

function int incr3(int a);
incr3 = a + 1;
incr3 = incr3 + 1;
incr3 = incr3 + 1;

endfunction : incr3

/* Test with a task - also has an endtask label */
task task1;
input [1:0] in1,in2,in3,in4;
output [1:0] out1,out2;

out1 = in1 | in2;
out2 = in3 & in4;

endtask : task1

/* Test with a task - some default values */
task task2(
input [1:0] in1=2'b01,in2= 2'b10,in3 = 2'b11,in4 = 2'b11,
output [1:0] out1 = 2'b10,out2);

out2 = in3 & in4;
endtask : task2

/* Tests default values for arguments */
function int dflt0(input int a = 0, b = 1);

dflt0 = a + b;
endfunction

/* Call to function with default direction */
assign z1 = incr1(3);
assign z3 = incr2(3);
assign z4 = incr3(3);
assign z9 = dflt0();
assign z10 = dflt0(.a(7), .b());

LO

 SystemVerilog Language Support Hierarchy

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
432 May 2015

always @(*)
begin

task1(.in1(in1), .out2(z6), .in2(in2), .out1(z5),
.in3(in3), .in4(in4));

task1(in5, in6, in7, in8, z7, z8);
task2(in5, in6, in7, in8, z11, z12);
task2(in5, in6, , , z13, z14);
task2(.out1(z15), .in1(in5), .in2(in6), .out2(z16),

.in3(in7), .in4(in8));
task2(.out2(z18), .in2(in6), .in1(in5), .in3(),

.out1(z17), .in4());
end

Hierarchy

Topics in this section include:

• Compilation Units, below

• Packages, on page 434

• Port Connection Constructs, on page 436

• Extern Module, on page 439

Compilation Units

Compilation units allow declarations to be made outside of a package,
module, or interface boundary. These units are visible to all modules that are
compiled at the same time.

A compilation unit’s scope exists only for the source files that are compiled at
the same time; each time a source file is compiled, a compilation unit scope is
created that is unique to only that compilation.

Syntax

//$unit definitions

declarations;

//End of $unit

Hierarchy SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 433

module ();
. . .
. . .
. . .
endmodule

In the above syntax, declarations can be variables, nets, constants, user-
defined data types, tasks, or functions

Usage

Compilation units can be used to declare variables and nets, constants, user-
defined data types, tasks, and functions as noted in the following examples.

A variable can be defined within a module as well as within a compilation
unit. To reference the variable from the compilation unit, use the
$unit::variableName syntax. To resolve the scope of a declaration, local declara-
tions must be searched first followed by the declarations in the compilation
unit scope.

Example – Compilation Unit Variable Declaration

Example – Compilation Unit Net Declaration

Example – Compilation Unit Constant Declaration

Example – Compilation Unit User-defined Datatype Declaration

Example – Compilation Unit Task Declaration

Example – Compilation Unit Function Declaration

Example – Compilation Unit Access

Example – Compilation Unit Scope Resolution
To use the compilation unit for modules defined in multiple files, enable the
Multiple File Compilation Unit check box on the Verilog tab of the Implementation
Options dialog box as shown below.

LO

 SystemVerilog Language Support Hierarchy

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
434 May 2015

You can also enable this compiler directive by including the following Tcl
command in your project (prj) file:

set_option -multi_file_compilation_unit 1

Limitations

Compilation unit elements can only be accessed or read, and cannot appear
between module and endmodule statements.

Packages

Packages permit the sharing of language-defined data types, typedef user-
defined types, parameters, constants, function definitions, and task defini-
tions among one or more compilation units, modules, or interfaces. The
concept of packages is leveraged from the VHDL language.

Syntax

SystemVerilog packages are defined between the keywords package and
endpackage.

package packageIdentifier;

packageItems

endpackage : packageIdentifier

Hierarchy SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 435

PackageItems includes user-defined data types, parameter declarations,
constant declarations, task declarations, function declarations, and import
statements from other packages. To resolve the scope of any declaration, the
local declarations are always searched before declarations in packages.

Referencing Package Items

As noted in the following examples, package items can be referenced by:

• Direct reference using a scope resolution operator (::). The scope resolu-
tion operator allows referencing a package by the package name and
then selecting a specific package item.

• Importing specific package items using an import statement to import
specific package items into a module.

• Importing package items using a wildcard (*) instead of naming a
specific package item.

LO

 SystemVerilog Language Support Hierarchy

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
436 May 2015

Example – Direct Reference Using Scope Resolution Operator (::)

Example – Importing Specific Package Items

Example – Wildcard (*) Import Package Items

Example – User-defined Data Types (typedef)

Example – Parameter Declarations

Example – Constant Declarations

Example – Task Declarations

Example – Function Declarations

Example – import Statements from Other Packages

Example – Scope Resolution

Limitations

The variables declared in packages can only be accessed or read; package
variables cannot be written between a module statement and its end module
statement.

Port Connection Constructs

Instantiating modules with a large number of ports is unnecessarily verbose
and error-prone in Verilog. The SystemVerilog .name and “.*” constructs
extend the 1364 Verilog feature of allowing named port connections on
instantiations, to implicitly instantiate ports.

.name Connection

The SystemVerilog .name connection is semantically equivalent to a Verilog
named port connection of type .port_identifier(name). Use the .name construct
when the name and size of an instance port are the same as those on the

Hierarchy SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 437

module. This construct eliminates the requirement to list a port name twice
when both the port name and signal name are the same and their sizes are
the same as shown below:

module myand(input [2:0] in1, in2, output [2:0] out);
...
endmodule

module foo (….ports….)
wire [2:0] in1, out;
wire [7:0] tmp;
wire [7:0] in2 = tmp;
myand mand1(.in1, .out, .in2(tmp[2:0])); // valid

Note: SystemVerilog .name connection is currently not supported for
mixed-language designs.

Restrictions to the .name feature are the same as the restrictions for named
associations in Verilog. In addition, the following restrictions apply:

• Named associations and positional associations cannot be mixed:

myand mand2(.in1, out, tmp[2:0]);

• Sizes must match in mixed named and positional associations. The
example below is not valid because of the size mismatch on in2.

myand mand3(.in1, .out, .in2);

• The identifier referred by the .name must not create an implicit declara-
tion, regardless of the compiler directive ‘default_nettype.

• You cannot use the .name connection to create an implicit cast.

• Currently, the .name port connection is not supported for mixed HDL
source code.

.* Connection

The SystemVerilog “.*” connection is semantically identical to the default
.name connection for every port in the instantiated module. Use this connec-
tion to implicitly instantiate ports when the instance port names and sizes
match the connecting module’s variable port names and sizes. The implicit .*

LO

 SystemVerilog Language Support Hierarchy

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
438 May 2015

port connection syntax connects all other ports on the instantiated
module.Using the .* connection facilitates the easy instantiation of modules
with a large number of ports and wrappers around IP blocks.

The ".*" connection can be freely mixed with .name and .port_identifier(name)
type connections. However, it is illegal to have more than one ".*" expression
per instantiation.

The use of ".*" facilitates easy instantiation of modules with a large number of
ports and wrappers around IP blocks as shown in the code segment below:

module myand(input [2:0] in1, in2, output [2:0] out);
...
endmodule

module foo (….ports….)
wire [2:0] in1, in2, out;
wire [7:0] tmp;

myand and1(.*); // Correct usage, connect in1, in2, out
myand and2(.in1, .*) // Correct usage, connect in2 and out
myand and3(.in1(tmp[2:0]), .*); // Correct Usage, connect

// in2 and out
myand and5(.in1, .in2, .out, .*); //Correct Usage, ignore the .*

Note: SystemVerilog “.*” connection is currently not supported for
mixed-language designs.

Restrictions to the .* feature are the same as the restrictions for the .name
feature. See .name Connection, on page 436. In addition, the following
restrictions apply:

• Named associations and positional associations cannot be mixed. For
example

myand and4(in1, .*);

is illegal (named and positional connections cannot be mixed)

• Named associations where there is a mismatch of variable sizes or
names generate an error.

• You can only use the .* once per instantiation, although you can mix the
.* connection with .name and .port_identifier(name) type connections.

Hierarchy SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 439

• If you use a .* construction but all remaining ports are explicitly
connected, the compiler ignores the .* construct.

• Currently, the .* port connection is not supported for mixed HDL source
code.

Extern Module

SystemVerilog simplifies the compilation process by allowing you to specify a
prototype of the module being instantiated. The prototype is defined using the
extern keyword, followed by the declaration of the module and its ports. Either
the Verilog-1995 or the Verilog-2001 style of module declaration can be used
for the prototype.

The extern module declaration can be made in any module, at any level of the
design hierarchy. The declaration is only visible within the scope in which it
is defined. Support is limited to declaring extern module outside the module.

Syntax

extern module moduleName (direction port1, direction portVector port2,
direction port3);

Example 1 – Extern Module Instantiation

Example 2 – Extern Module Reference

Limitations

An extern module declaration is not supported within a module.

LO

 SystemVerilog Language Support Interface

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
440 May 2015

Interface

Topics in this section include:

• Interface Construct

• Modports, on page 446

• Limitations and Non-Supported Features, on page 447

Interface Construct

SystemVerilog includes enhancements to Verilog for representing port lists
and port connection lists characterized by name repetition with a single name
to reduce code size and simplify maintenance. The interface and modport struc-
tures in SystemVerilog perform this function. The interface construct includes
all of the characteristics of a module with the exception of module instantia-
tion; support for interface definitions is the same as the current support for
module definitions. Interfaces can be instantiated and connected to client
modules using generates.

Interface Definition: Internal Logic and Hierarchical Structure

Per the SystemVerilog standard, an interface definition can contain any logic
that a module can contain with the exception that interfaces cannot contain
module instantiations. An interface definition can contain instantiations of
other interfaces. Like modules, interface port declaration lists can include
interface-type ports. Synthesis support for interface logic is the same as the
current support for modules.

Port Declarations and Port Connections for Interfaces

Per the SystemVerilog standard, interface port declaration and port connec-
tion syntax/semantics are identical to those of modules.

Interface Member Types

The following interface member types are visible to interface clients:

• 4-State var types: reg, logic, integer

• 2-State var types: bit, byte, shortint, int, longint

Interface SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 441

• Net types: wire, wire-OR, and wire-AND

• Scalars and 1-dimensional packed arrays of above types

• Multi-dimensional packed and unpacked arrays of above types

• SystemVerilog struct types

Interface Member Access

The members of an interface instance can be accessed using the syntax:

interfaceRef .interfaceMemberName

In the above syntax, interfaceRef is either:

• the name of an interface-type port of the module/interface containing
the member access

• the name of an interface instance that is instantiated directly within the
module/interface containing the member access.

Note that reference to interface members using full hierarchical naming is not
supported and that only the limited form described above for instances at the
current level of hierarchy is supported.

Access to an interface instance by clients at lower levels of the design
hierarchy is achieved by connecting the interface instance to a compatible
interface-type port of a client instance and connecting this port to other
compatible interface-type ports down the hierarchy as required. This
chaining of interface ports can be done to an arbitrary depth. Note that inter-
face instances can be accessed only by clients residing at the same or lower
levels of the design hierarchy.

Interface-Type Ports

Interface-type ports are supported as described in the SystemVerilog
standard, and generic interface ports are supported. A modport qualifier can
appear in either a port declaration or a port connection as described in the
SystemVerilog standard. Interface-type ports:

• can appear in either module or interface port declarations

• can be used to access individual interface items using “.” syntax:

interfacePortname.interfaceMemberName

LO

 SystemVerilog Language Support Interface

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
442 May 2015

• can be connected directly to compatible interface ports of module/inter-
face instances

Interface/Module Hierarchy

Interfaces can be instantiated within either module or interface definitions.
See Interface Member Access, on page 441 for additional details on hierar-
chical interface port connections.

Interface Functions and Tasks

Import-only functions and tasks (using import keyword in modport) are
supported.

Element Access Outside the Interface

Interface can have a collection of variables or nets, and this collection can be
of a language-defined data type, user-defined data type, or array of language
and user-defined data type. All of these variables can be accessed outside the
interface.

The following example illustrates accessing a 2-dimensional structure type
defined within the interface that is being accessed from another module.

Example – Accessing a 2-dimensional Structure
typedef struct
{

byte st1;
}Struct1D_Dt[1:0][1:0];

//Interface Definition
interface intf(

input bit clk,
input bit rst

);

Struct1D_Dt i1; //2D - Structure type
modport MP(input i1,input clk,input rst); //Modport Definition

endinterface

Interface SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 443

//Sub1 Module definition
module sub1(

intf INTF1, //Interface
input int d1

);

assign INTF1.i1[1][1].st1 = d1[7:0];
assign INTF1.i1[1][0].st1 = d1[15:8];
assign INTF1.i1[0][1].st1 = d1[23:16];
assign INTF1.i1[0][0].st1 = d1[31:24];

endmodule

//Sub2 Module definition
module sub2(

intf.MP IntfMp, //Modport Interface
output byte dout[3:0]

);

always_ff@(posedge IntfMp.clk)
begin

if(IntfMp.rst)
begin

dout <= '{default:'1};
end
else begin

dout[3] <= IntfMp.i1[1][1].st1;
dout[2] <= IntfMp.i1[1][0].st1;
dout[1] <= IntfMp.i1[0][1].st1;
dout[0] <= IntfMp.i1[0][0].st1;

end
end
endmodule

//Top Module definition
module top(

input bit clk,
input bit rst,
input int d1,
output byte dout[3:0]

);
intf intu1(.clk(clk),.rst(rst));
sub1 sub1u1(.INTF1(intu1),.d1(d1));
sub2 sub2u1(.IntfMp(intu1.MP),.dout(dout));
endmodule

LO

 SystemVerilog Language Support Interface

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
444 May 2015

Nested Interface

With the nested interface feature, nesting of interface is possible by either
instantiating one interface in another or by using one interface as a port in
another interface. Generic interface is not supported for nested interface;
array of interface when using interface as a port also is not supported.

The following example illustrates the use of a nested interface. In the
example, one interface is instantiated within another interface and this top-
level interface is used in the modules.

Example – Nested Interface
//intf1 Interface definition
interface intf1;

byte i11;
byte i12;

endinterface

//IntfTop Top Interface definition
interface IntfTop;

intf1 intf1_u1(); //Interface instantiated
shortint i21;

endinterface

//Sub1 Module definition
module sub1(

input byte d1,
input byte d2,
IntfTop intfN1

);
assign intfN1.intf1_u1.i11 = d1; //Nested interface being accessed
assign intfN1.intf1_u1.i12 = d2; //Nested interface being accessed
endmodule

//Sub2 Module definition
module sub2(

IntfTop intfN2
);
assign intfN2.i21 = intfN2.intf1_u1.i11 + intfN2.intf1_u1.i12;
//Nested

//interface being accessed
endmodule

Interface SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 445

//Sub3 Module definition
module sub3(

IntfTop intfN3,
output shortint dout

);
assign dout = intfN3.i21;
endmodule

//Top Module definition
module top(

input byte d1,
input byte d2,
output shortint dout

);
IntfTop IntfTopU1();

sub1 sub1U1(.d1(d1),.d2(d2),.intfN1(IntfTopU1));
sub2 sub2U1(.intfN2(IntfTopU1));
sub3 sub3U1(.intfN3(IntfTopU1), .dout(dout));

endmodule

Arrays of Interface Instances

In Verilog, multiple instances of the same module can be created using the
array of instances concept. This same concept is extended for the interface
construct in SystemVerilog to allow multiple instances of the same interface
to be created during component instantiation or during port declaration.
These arrays of interface instances and slices of interface instance arrays can
be passed as connections to arrays of module instances across modules.

The following example illustrates the use of array of interface instance both
during component instantiation and during port declaration.

Example – Array of Interface During Port Declaration
//intf Interface Definition
interface intf;

byte i1;
endinterface

//Sub1 Module definition
module sub1(

intf IntfArr1 [3:0], //Array of interface during port
declaration

input byte d1[3:0]
);

LO

 SystemVerilog Language Support Interface

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
446 May 2015

assign IntfArr1[0].i1 = d1[0];
assign IntfArr1[1].i1 = d1[1];
assign IntfArr1[2].i1 = d1[2];
assign IntfArr1[3].i1 = d1[3];
endmodule

//Sub2 Module definition
module sub2(

intf IntfArr2[3:0], //Array of interface during port
declaration

output byte dout[3:0]
);
assign dout[0] = IntfArr2[0].i1;
assign dout[1] = IntfArr2[1].i1;
assign dout[2] = IntfArr2[2].i1;
assign dout[3] = IntfArr2[3].i1;
endmodule

//Top module definition
module top(

input byte d1[3:0],
output byte dout[3:0]

);
intf intfu1[3:0](); //Array of interface instances

sub1 sub1u1(intfu1,d1);
sub2 sub2u1(intfu1,dout);

endmodule

Modports

Modport expressions are supported, and modport selection can be done in
either the port declaration of a client module or in the port connection of a
client module instance.

If a modport is associated with an interface port or instance through a client
module, the module can only access the interface members enumerated in
the modport. However, per the SystemVerilog standard, a client module is not
constrained to use a modport, in which case it can access any interface
members.

Interface SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 447

Modport Keywords

The input, output, inout, and import access modes are parsed without errors. The
signal direction for input, output, and inout is ignored during synthesis, and the
correct signal polarity is inferred from how the interface signal is used within
the client module. The signal polarity keywords are ignored because the
precise semantics are currently not well-defined in the SystemVerilog
standard, and simulator support has yet to be standardized.

Example – Instantiating an interface Construct

Limitations and Non-Supported Features

The following restrictions apply when using interface/modport structures:

• Declaring interface within another interface is not supported.

• Do not code RAM RTL within a SystemVerilog interface definition, since
this can prevent extraction of the RAM primitive. However, the RAM can
be defined within a module.

• Direction information in modports has no effect on synthesis.

• Exported (export keyword) interface functions and tasks are not
supported.

• Virtual interfaces are not supported.

• Full hierarchical naming of interface members is not supported.

• Modports defined within generate statements are not supported.

LO

 SystemVerilog Language Support System Tasks and System Functions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
448 May 2015

System Tasks and System Functions

Topics in this section include:

• $bits System Function, on page 448

• Array Querying Functions, on page 449

$bits System Function

SystemVerilog supports a $bits system function which returns the number of
bits required to hold an expression as a bit stream. The syntax is:

$bits(datatype)

$bits(expression)

In the above syntax, datatype can be any language-defined data type (reg,
wire, integer, logic, bit, int, longint, or shortint) or user-defined datatype (typedef,
struct, or enum) and expression can be any value including packed and
unpacked arrays.

The $bits system function is synthesizable and can be used with any of the
following applications:

• Port Declaration

• Variable Declaration

• Constant Definition

• Function Definition

System tasks and system functions are described in Section 22 of IEEE Std
1800-2005 (IEEE Standard for SystemVerilog); $bits is described in Section
22.3.

System Tasks and System Functions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 449

Example – $bits System Function

Example – $bits System Function within a Function

Limitations

The $bits system function is not supported under the following conditions:

• Passing an interface member as an argument to the $bits function is not
supported. In the example

parameter logic[2:0] din = $bits(ff_if_0.din);

interface instance ff_if_0.din is one of the ports of the modport. To avoid the
limitation, use the actual value as the argument in place of the interface
member.

• $bits cannot be used within a module instantiation:

module Top
(output foo);
Intf intf();
Foo #(.PARAM($bits(intf.i))) Foo (.foo);

endmodule : Top

• $bits is not supported with params/localparams:

localparam int WIDTH = $bits(ramif.port0_out);

Array Querying Functions

SystemVerilog provides system functions that return information about a
particular dimension of an array.

Syntax

arrayQuery (arrayIdentifier[,dimensionExpression]);
arrayQuery (dataTypeName[,dimensionExpression]);
$dimensions | $unpacked_dimensions (arrayIdentifier | dataTypeName)

In the above syntax, arrayQuery is one of the following array querying
functions:

• $left – returns the left bound (MSB) of the dimension.

• $right – returns the right bound (LSB) of the dimension.

LO

 SystemVerilog Language Support Generate Statement

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
450 May 2015

• $low – returns the lowest value of the left and right bound dimension.

• $high – returns the highest value of the left and right bound dimension.

• $size – returns the number of elements in a given dimension.

• $increment – returns a value "1" when the left bound is greater than or
equal to the right bound, else it returns a value "-1".

In the third syntax example, $dimensions returns the total number of packed
and unpacked dimensions in a given array, and $unpacked_dimensions returns
the total number of unpacked dimensions in a given array. The variable
dimensionExpression, by default, is "1". The order of dimension expression
increases from left to right for both unpacked and packed dimensions,
starting with the unpacked dimension for a given array.

Example 1 – Array Querying Function $left and $right Used on Packed
2D-data Type

Example 2 – Array Querying Function $low and $high Used on
Unpacked 3D-data Type

Example 3 – Array Querying Function $size and $increment Used on a
Mixed Array

Example 4 – Array Querying Function $dimensions and
$unpacked_dimensions Used on a Mixed Array

Example 5 – Array Querying Function with Data Type as Input

Generate Statement

The synthesis tools support the Verilog 2005 generate statement, which
conforms to the Verilog 2005 LRM. The tools also support defparam, parameter,
and function and task declarations within generate statements. The naming
scheme for registers and instances is also enhanced to include closer correla-
tion to specified generate symbolic hierarchies. Generated data types have
unique identifier names and can be referenced hierarchically. Generate state-
ments are created using one of the following three methods: generate-loop,
generate-conditional, or generate-case.

Generate Statement SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 451

Note: The generate statement is a Verilog 2005 feature; to use this state-
ment with the FPGA synthesis tools, you must enable System-
Verilog for your project.

Example 1 – Shift Register Using generate-for

Example 2 – Accessing Variables Declared in a generate-if

Example 3 – Accessing Variables Declared in a generate-case

Limitations

The following generate statement functions are not currently supported:

• Defparam support for generate instances

• Hierarchical access for interface

• Hierarchical access of function/task defined within a generate block

Note: Whenever the generate statement contains symbolic hierarchies
separated by a hierarchy separator (.), the instance name
includes the (\) character before this hierarchy separator (.).

LO

 SystemVerilog Language Support Generate Statement

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
452 May 2015

Conditional Generate Constructs

The if-generate and case-generate conditional generate constructs allow the
selection of, at most, one generate block from a set of alternative generate
blocks based on constant expressions evaluated during elaboration. The
generate and endgenerate keywords are optional.

Generate blocks in conditional generate constructs can be either named or
unnamed and can consist of only a single item. It is not necessary to enclose
the blocks with begin and end keywords; the block is still a generate block
and, like all generate blocks, comprises a separate scope and a new level of
hierarchy when it is instantiated. The if-generate and case-generate constructs
can be combined to form a complex generate scheme.

Note: Conditional generate constructs are a Verilog 2005 feature; to
use these constructs with the FPGA synthesis tools, you must
enable SystemVerilog for your project.

Example 1 – Conditional Generate: if-generate
// test.v
module test
(parameter width = 8,

 sel = 2)

(input clk,
 input [width-1:0] din,
 output [width-1:0] dout1,
 output [width-1:0] dout2);

if(sel == 1)
begin:sh
reg [width-1:0] sh_r;

always_ff @ (posedge clk)
sh_r <= din;

end
else

begin:sh
reg [width-1:0] sh_r1;
reg [width-1:0] sh_r2;

Generate Statement SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 453

always_ff @ (posedge clk)
begin

sh_r1 <= din;
sh_r2 <= sh_r1;

end
end

assign dout1 = sh.sh_r1;
assign dout2 = sh.sh_r2;

endmodule

Example 2 – Conditional Generate: case-generate
// top.v
module top
(parameter mod_sel = 3,

 mod_sel2 = 3,
 width1 = 8,
 width2 = 16)

(input [width1-1:0] a1,
 input [width1-1:0] b1,
 output [width1-1:0] c1,
 input [width2-1:0] a2,
 input [width2-1:0] b2,
 output [width2-1:0] c2);

case(mod_sel)
0:

begin:u1
my_or u1(.a(a1),.b(b1),.c(c1));

end
1:

begin:u1
my_and u2(.a(a2),.b(b2),.c(c2));

end
default:

begin:u1
my_or u1(.a(a1),.b(b1),.c(c1));

end
endcase

case(mod_sel2)
0:

begin:u3
my_or u3(.a(a1),.b(b1),.c(c1));

end

LO

 SystemVerilog Language Support Generate Statement

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
454 May 2015

1:
begin:u4

my_and u4(.a(a2),.b(b2),.c(c2));
end

default:
begin:def

my_and u2(.a(a2),.b(b2),.c(c2));
end

endcase
endmodule

// my_and.v
module my_and
(parameter width2 = 16)

(input [width2-1:0] a,
 input [width2-1:0] b,
 output [width2-1:0] c
);

assign c = a & b;
endmodule

// my_or.v
module my_or
(parameter width = 8)

(input [width-1:0] a,
 input [width-1:0] b,
 output [width-1:0] c);

assign c = a | b;
endmodule

Assertions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 455

Assertions

The parsing of SystemVerilog Assertions (SVA) is supported as outlined in the
following table.

Assertion Construct Support Level Comment

Immediate assertions Supported

Concurrent
assertions

Partially Supported,
Ignored

Multiclock properties are not
supported

Boolean expressions Partially Supported,
Ignored

In the boolean expressions, $rose
function having a clocking event is
not supported.

Sequence Supported, ignored

Declaring sequences Partially Supported,
Ignored

Sequence with ports declared in
global space is not supported

Sequence operations Partially Supported,
Ignored

All variations of first_match, within
and intersect in a sequence is not
supported.

Manipulating data in
a sequence

Partially Supported,
Ignored

More than one assignment in the
parenthesis is not supported.

Calling subroutines
on sequence match

Partially Supported,
Ignored

Calling of more than one tasks is not
supported

System functions Partially Supported System functions $onehot, $onehot1,
and $countones supported; $isunknown
not supported

Declaring properties Partially Supported,
Ignored

Declaring of properties in a package
and properties with ports declared in
global space are not supported

Multiclock support Partially Supported,
Ignored

Expect statement Not Supported

Final blocks Partially Supported,
Ignored

Property blocks Supported, Ignored

LO

 SystemVerilog Language Support Assertions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
456 May 2015

SVA System Functions

SystemVerilog assertion support includes the $onehot, $onehot0, and
$countones system functions. These functions check for specific characteris-
tics on a particular signal and return a single-bit value.

• $onehot returns true when only one bit of the expression is true.

• $onehot0 returns true when no more than one bit of the expression is
high (either one bit high or no bits are high).

• $countones returns true when the number of ones in a given expression
matches a predefined value.

Syntax

$onehot (expression)

$onehot0 (expression)

$countones (expression)

Example 1 – System Function within if Statement
The following example shows a $onehot/$onehot0 function used inside an if
statement and ternary operator.

Checker Partially Supported,
Ignored

Default clocking and
default disable iff

Supported, Ignored

Let statement Partially Supported,
Ignored

Program Partially Supported,
Ignored

Assertion Construct Support Level Comment

Assertions SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 457

module top
(
//Input
input byte d1,
input byte d2,
input shortint d3,

//Output
output byte dout1,
output byte dout2
);

byte sig1;
assign sig1 = d1 + d2;

//Use of $onehot
always_comb begin

if($onehot(sig1))
dout1 = d3[7:0];

else
dout1 = d3[15:8];

end

byte sig2;
assign sig2 = d1 ^ d2;
//Use of $onehot0
assign dout2 = $onehot0(sig2)? d3[7:0] : d3[15:8];

endmodule

Example 2 – System Function with Expression
The following example includes an expression, which is evaluated to a single-
bit value, as an argument to a system function.

module top
(
//Input
input byte d1,
input byte d2,
input shortint d3,
//Output
output byte dout1,
output byte dout2
);

//Use of $onehot with Expression inside onehot function

LO

 SystemVerilog Language Support Assertions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
458 May 2015

always@*
begin

if($onehot((d1 == d2) ? d1[3:0] : d1[7:4]))
dout1 = d3[7:0];

else
dout1 = d3[15:8];

end

//Use of $onehot0 with AND operation inside onehot function
assign dout2 = $onehot0(d1 & d2)? d3[7:0] : d3[15:8];

endmodule

Example 3 – Ones Count
In the following example, a 4-bit count is checked for two and only two bits
set to 1 which, when present, returns true.

module top(
input clk,
input rst,
input byte d1,
output byte dout

);
logic[3:0] count;

always_ff@(posedge clk)begin
if(rst)

count <= '0;
else

count <= count + 1'b1;
end

assign dout = $countones(count) == 3'd2 ? d1 : ~d1;
endmodule

Keyword Support SystemVerilog Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 459

Keyword Support

This table lists supported SystemVerilog keywords in the Synopsys FPGA
synthesis tools:

always_comb always_ff always_latch assert*

assume* automatic bind* bit

break byte checker* clocking*

const continue cover* do

endchecker* endclocking* endinterface endproperty*

endsequence* enum expect* extern

final* function global* import

inside int interface intersect*

let* logic longint modport

packed package parameter priority

property* restrict* return sequence*

shortint struct task throughout*

timeprecision* timeunit* typedef union

unique void within*

* Reserved keywords for SystemVerilog assertion parsing; cannot be used as
identifiers or object names

LO

 SystemVerilog Language Support Keyword Support

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
460 May 2015

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 461

C H A P T E R 1 0

VHDL Language Support

This chapter discusses how you can use the VHDL language to create HDL
source code for the synthesis tool:

• Language Constructs, on page 462

• VHDL Language Constructs, on page 464

• VHDL Implicit Data-type Defaults, on page 507

• VHDL Synthesis Guidelines, on page 512

• Sets and Resets, on page 526

• VHDL State Machines, on page 530

• Hierarchical Design Creation in VHDL, on page 538

• Configuration Specification and Declaration, on page 542

• Scalable Designs, on page 566

• Instantiating Black Boxes in VHDL, on page 572

• VHDL Attribute and Directive Syntax, on page 574

• VHDL Synthesis Examples, on page 576

• PREP VHDL Benchmarks, on page 578

LO

 VHDL Language Support Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
462 May 2015

Language Constructs

This section generally describes how the synthesis tool relates to different
VHDL language constructs. The topics include:

• Supported VHDL Language Constructs, on page 462

• Unsupported VHDL Language Constructs, on page 463

• Partially-supported VHDL Language Constructs, on page 464

• Ignored VHDL Language Constructs, on page 464

Supported VHDL Language Constructs

The following is a compact list of language constructs that are supported.

• Entity, architecture, and package design units

• Function and procedure subprograms

• All IEEE library packages, including:

– std_logic_1164

– std_logic_unsigned

– std_logic_signed

– std_logic_arith

– numeric_std and numeric_bit

– standard library package (std)

• In, out, inout, buffer, linkage ports

• Signals, constants, and variables

• Aliases

• Integer, physical, and enumeration data types; subtypes of these

• Arrays of scalars and records

• Record data types

• File types

• All operators (-, -, *, /, **, mod, rem, abs, not, =, /=, <, <=, >, >=, and, or, nand,
nor, xor, xnor, sll, srl, sla, sra, rol, ror, &)

Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 463

Note: With the ** operator, arguments are compiler constants. When
the left operand is 2, the right operand can be a variable.

• Sequential statements: signal and variable assignment, wait, if, case, loop,
for, while, return, null, function, and procedure call

• Concurrent statements: signal assignment, process, block, generate (for
and if), component instantiation, function, and procedure call

• Component declarations and four methods of component instantiations

• Configuration specification and declaration

• Generics; attributes; overloading

• Next and exit looping control constructs

• Predefined attributes: t'base, t'left, t'right, t'high, t'low, t'succ, t'pred, t'val, t'pos,
t'leftof, t'rightof, integer'image, a'left, a'right, a'high, a'low, a'range, a'reverse_range,
a'length, a'ascending, s'stable, s'event

• Unconstrained ports in entities

• Global signals declared in packages

Unsupported VHDL Language Constructs

If any of these constructs are found, an error message is reported and the
synthesis run is cancelled.

• Register and bus kind signals

• Guarded blocks

• Expanded (hierarchical) names

• User-defined resolution functions. The synthesis tool only supports the
resolution functions for std_logic and std_logic_vector.

• Slices with range indices that do not evaluate to constants

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
464 May 2015

Partially-supported VHDL Language Constructs

When one of the following constructs in encountered, compilation continues,
but will subsequently error out if logic must be generated for the construct.

• real data types (real data expressions are supported in VHDL-2008 IEEE
float_pkg.vhd) – real data types are supported as constant declarations or
as constants used in expressions as long as no floating point logic must
be generated

• access types – limited support for file I/O

• null arrays – null arrays are allowed as operands in concatenation
expressions

Ignored VHDL Language Constructs

The synthesis tool ignores the following constructs in your design. If found,
the tool parses and ignores the construct (provided that no logic is required to
be synthesized) and continues with the synthesis run.

• disconnect

• report

• initial values on inout ports

• assert on ports and signals

• after

VHDL Language Constructs

This section describes the synthesis language support that the synthesis tool
provides for each VHDL construct. The language information is taken from
the most recent VHDL Language Reference Manual (Revision ANSI/IEEE Std
1076-1993). The section names match those from the LRM, for easy refer-
ence.

• Data Types

• Declaring and Assigning Objects in VHDL

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 465

• Dynamic Range Assignments

• Signals and Ports

• Variables

• VHDL Constants

• Libraries and Packages

• Operators

• VHDL Process

• Common Sequential Statements

• Concurrent Signal Assignments

• Resource Sharing

• Combinational Logic

• Sequential Logic

• Component Instantiation in VHDL

• VHDL Selected Name Support

• User-defined Function Support

• Demand Loading

Data Types

Predefined Enumeration Types

Enumeration types have a fixed set of unique values. The two predefined data
types – bit and Boolean, as well as the std_logic type defined in the
std_logic_1164 package are the types that represent hardware values. You can
declare signals and variables (and constants) that are vectors (arrays) of these
types by using the types bit_vector, and std_logic_vector. You typically use
std_logic and std_logic_vector, because they are highly flexible for synthesis and
simulation.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
466 May 2015

User-defined Enumeration Types

You can create your own enumerated types. This is common for state
machines because it allows you to work with named values rather than
individual bits or bit vectors.

Syntax
type type_name is (value_list);

std_logic Values Treated by the synthesis tool as ...

'U' (uninitialized) don't care

'X' (forcing unknown) don't care

'0' (forcing logic 0) logic 0

'1' (forcing logic 1) logic 1

'Z' (high impedance) high impedance

'W' (weak unknown) don't care

'L' (weak logic 0) logic 0

'H' (weak logic 1) logic 1

'-' (don't care) don't care

bit Values Treated by the synthesis tool as ...

'0' logic 0

'1' logic 1

boolean Values Treated by the synthesis tool as ...

false logic 0

true logic 1

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 467

Examples
type states is (state0, state1, state2, state3);
type traffic_light_state is (red, yellow, green);

Integers

An integer is a predefined VHDL type that has 32 bits. When you declare an
object as an integer, restrict the range of values to those you are using. This
results in a minimum number of bits for implementation and on ports.

Data Types for Signed and Unsigned Arithmetic

For signed arithmetic, you have the following choices:

• Use the std_logic_vector data type defined in the std_logic_1164 package,
and the package std_logic_signed.

• Use the signed data type, and signed arithmetic defined in the package
std_logic_arith.

• Use an integer subrange (for example: signal mysig: integer range -8 to 7). If
the range includes negative numbers, the synthesis tool uses a two’s-
complement bit vector of minimum width to represent it (four bits in this
example). Using integers limits you to a 32-bit range of values, and is
typically only used to represent small buses. Integers are most
commonly used for indexes.

• Use the signed data type from the numeric_std or numeric_bit packages.

For unsigned arithmetic, you have the following choices:

• Use the std_logic_vector data type defined in the std_logic_1164 package and
the package std_logic_unsigned.

• Use the unsigned data type and unsigned arithmetic defined in the
package std_logic_arith.

• Use an integer subrange (for example: signal mysig: integer range 0 to 15). If
the integers are restricted to positive values, the synthesis tool uses an
unsigned bit vector of minimum width to represent it (four bits in this
example). Using integers limits you to a 32-bit range of values, and is
typically only used to represent small buses (integers are most
commonly used for indexes).

• Use the unsigned data type from the numeric_std or numeric_bit packages.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
468 May 2015

Physical Types

A physical type is a numeric type for representing a physical quantity such as
time. The declaration of a physical type includes the specification of a base
unit and possibly a number of secondary units that are multiples of the base
unit. The syntax for declaring physical types is:

type physical_type is range_constraint
units

base_unit;
unit_definitions;
...

end units

The following example illustrates a physical-type definition:

type time is range -2_147_483_647 to 2_147_483_647
units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;

end units;

Arrays

An array is a composite object made up of elements that are of the same
subtype.

type typeName is array (range) of elementType

type typeName is array (type range <>) of elementType

Each of the elements within the array is indexed by one or more indices
belonging to specified discrete types. The number of indices is the number of
dimensions (that is, a one-dimensional array has one index, a two-dimen-
sional array has two indices, etc.). The order of indices is significant and
follows the order of dimensions in the type declaration.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 469

An array can be either constrained or unconstrained. An array is said to be
constrained if the size of the array is constrained. The size of the array can be
constrained using a discrete type mark or a range. In both cases, the number
of the elements in the array is known during the compilation.

An array is said to be unconstrained if its size is unconstrained. The size of
an unconstrained array is declared in the form of the name of the discrete
type with an unconstrained range. The number of elements of an uncon-
strained array type is unknown. The size of a particular object is specified
only when it is declared.

The standard package contains declarations of two one-dimensional uncon-
strained predefined array types: string and bit_vector. Elements of the string type
are of the type character and are indexed by positive values, and the elements
of the bit_vector type are of the type bit and are indexed by natural values.

Declaring and Assigning Objects in VHDL

VHDL objects (object classes) include signals (and ports), variables, and
constants. The synthesis tool does not support the file object class.

Naming Objects

VHDL is case insensitive. A VHDL name (identifier) must start with a letter
and can be followed by any number of letters, numbers, or underscores ('_').
Underscores cannot be the first or last character in a name and cannot be
used twice in a row. No special characters such as '$', '?', '*', '-', or '!', can be
used as part of a VHDL identifier.

Syntax

object_class object_name : data_type [:= initial_value] ;

• In the above syntax:

• object_class is a signal, variable, or constant.

• object_name is the name (the identifier) of the object.

• data_type can be any predefined data type (such as bit or std_logic_vector) or
user-defined data type.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
470 May 2015

Assignment Operators

<= Signal assignment operator.

:= Variable assignment and initial value operator.

Ranges

A range specifies a subset of values of a scalar type.

range leftBound to rightBound

range leftBound downto rightBound

range <>

A range can be either ascending or descending. A range is called ascending
when it is specified with the keyword to as the direction and the left bound
value is smaller than the right bound (otherwise the range is null). A range is
called descending when the range is specified with the keyword downto as the
direction and the left bound is greater than the right bound (otherwise the
range is null). A range can be null range if the set contains no values.

Dynamic Range Assignments

The tools support VHDL assignments with dynamic ranges, which are
defined as follows:

A(b downto c) <= D(e downto f);

A and D are constrained variables or signals, and b, c, e, and f are constants
(generics) or variables. Dynamic range assignments can be used for RHS,
LHS, or both.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity test is
port (data_out: out std_logic_vector(63 downto 0);

data_in: in std_logic_vector(63 downto 0);
selector: in NATURAL range 0 to 7);

end test;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 471

architecture rtl of test is
begin

data_out((selector*8)+7 downto (selector*8))
<= data_in((selector*8)+7 downto (selector*8));

end rtl;

Currently, the following limitations apply to dynamic range assignments:

• There is no support for procedures.

• There is no support for selected signal assignment; i.e., with expression
Select.

• There is no support for use with concatenation operators.

Null Ranges

A null range is a range that specifies an empty subset of values. A range
specified as m to n is a null range when m is greater than n, and a range
specified as n downto m is a null range when n is less than m.

Support for null ranges allows ports with negative ranges to be compiled
successfully. During compilation, any port declared with a null range and its
related logic are removed by the compiler.

In the following example, port a_in1 (-1 to 0) is a null range and is subsequently
removed by the compiler.

-- top.vhd
library ieee;
use ieee.std_logic_1164.all;

entity top is
generic (width : integer := 0);

port (a_in1 : in std_logic_vector(width -1 downto 0);
b_in1 : in std_logic_vector(3 downto 0);
c_out1 : out std_logic_vector(3 downto 0));

end top;

architecture struct of top is
component sub is

port (a_in1 : in std_logic_vector(width -1 downto 0);
b_in1 : in std_logic_vector(3 downto 0);
c_out1 : out std_logic_vector(3 downto 0));

end component;

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
472 May 2015

begin
UUT : sub port map (a_in1 => a_in1, b_in1 => b_in1,

c_out1 => c_out1);
end struct;

-- sub.vhd
library ieee;
use ieee.std_logic_1164.all;

entity sub is
generic (width : integer := 0);

port (a_in1 : in std_logic_vector(width -1 downto 0);
b_in1 : in std_logic_vector(3 downto 0);
c_out1 : out std_logic_vector(3 downto 0));

end sub;

architecture rtl of sub is
begin

c_out1 <= not (b_in1 & a_in1);
end rtl;

Signals and Ports

In VHDL, the port list of the entity lists the I/O signals for the design using
the syntax:

port (port_declaration);

where port_declaration is any of the following:

portSignalName : in portSignalType := initialValue

portSignalName : out portSignalType := initialValue

portSignalName : inout portSignalType := initialValue

portSignalName : buffer portSignalType := initialValue

portSignalName : linkage portSignalType := initialValue

Ports of mode in can be read from, but not assigned (written) to. Ports of mode
out can be assigned to, but not read from. Ports of mode inout are bidirectional
and can be read from and assigned to. Ports of mode buffer are like inout ports,
but can have only one associated internal driver. With ports of mode linkage,
the value of the port can be read or updated, but only by appearing as an
actual corresponding to an interface object of mode linkage.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 473

Internal signals are declared in the architecture declarative area and can be
read from or assigned to anywhere within the architecture.

Examples

signal my_sig1 : std_logic; -- Holds a single std_logic bit
begin -- An architecture statement area
my_sig1 <= '1'; -- Assign a constant value '1'

-- My_sig2 is a 4-bit integer
signal my_sig2 : integer range 0 to 15;

begin -- An architecture statement area
my_sig2 <= 12;

-- My_sig_vec1 holds 8 bits of std_logic, indexed from 0 to 7
signal my_sig_vec1 : std_logic_vector (0 to 7);

begin -- An architecture statement area

-- Simple signal assignment with a literal value
my_sig_vec1 <= "01001000";

-- 16 bits of std_logic, indexed from 15 down to 0
signal my_sig_vec2 : std_logic_vector (15 downto 0);

begin -- An architecture statement area

-- Simple signal assignment with a vector value
my_sig_vec2 <= "0111110010000101";

-- Assigning with a hex value FFFF
my_sig_vec2 <= X"FFFF";

-- Use package Std_Logic_Signed
signal my_sig_vec3 : signed (3 downto 0);

begin -- An architecture statement area

-- Assigning a signed value, negative 7
my_sig_vec3 <= "1111";

-- Use package Std_Logic_Unsigned
signal my_sig_vec4 : unsigned (3 downto 0);

begin -- An architecture statement area

-- Assigning an unsigned value of 15
my_sig_vec4 <= "1111";

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
474 May 2015

-- Declare an enumerated type, a signal of that type, and
-- then make an valid assignment to the signal

type states is (state0, state1, state2, state3);
signal current_state : states;

begin -- An architecture statement area
current_state <= state2;

-- Declare an array type, a signal of that type, and
-- then make a valid assignment to the signal

type array_type is array (1 downto 0) of
std_logic_vector (7 downto 0);

signal my_sig: array_type;
begin -- An architecture statement area
my_sig <= ("10101010","01010101");

Variables

VHDL variables are declared within a process or subprogram and then used
internally. Generally, variables are not visible outside the process or subpro-
gram where they are declared unless passed as a parameter to another
subprogram.

Example

process (clk) -- What follows is the process declaration area
variable my_var1 : std_logic := '0'; -- Initial value '0'

begin -- What follows is the process statement area
my_var1 := '1';

end process;

Example

process (clk, reset)
-- Set the initial value of the variable to hex FF

variable my_var2 : std_logic_vector (1 to 8) := X"FF";

begin
-- my_var2 is assigned the octal value 44

my_var2 := O"44";
end process;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 475

VHDL Constants

VHDL constants are declared in any declarative region and can be used
within that region. The value of a constant cannot be changed.

Example

package my_constants is
constant num_bits : integer := 8;

-- Other package declarations

end my_constants;

Aliases

An alias declares an alternative name for any existing object which can be a
signal, variable, constant, or file.

alias aliasName : aliasType is objectName;

Aliases can also be used for non-objects, virtually everything that has been
previously declared with the exception of labels, loop parameters, and
generate parameters. An alias does not define a new object; it is just a specific
name assigned to some existing object.

Aliases are typically used to assign specific names to vector slices to improve
readability of the specification. When an alias denotes a slice of an object and
no subtype indication is given, the subtype of the object is viewed as if it was
of the subtype specified by the slice.alias alias_name : alias_type is
object_name;

Libraries and Packages

When you want to synthesize a design in VHDL, include the HDL files in the
source files list of your synthesis tool project. Often your VHDL design will
have more than one source file. List all the source files in the order you want
them compiled; the files at the top of the list are compiled first.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
476 May 2015

Compiling Design Units into Libraries

All design units in VHDL, including your entities and packages are compiled
into libraries. A library is a special directory of entities, architectures and/or
packages. You compile source files into libraries by adding them to the source
file list. In VHDL, the library you are compiling has the default name work. All
entities and packages in your source files are automatically compiled into
work. You can keep source files anywhere on your disk, even though you add
them to libraries. You can have as many libraries as are needed.

1. To add a file to a library, select the file in the Project view.

The library structure is maintained in the Project view. The name of the
library where a file belongs appears on the same line as the filename,
and directly in front of it.

2. Choose Project -> Set Library from the menu bar, then type the library
name. You can add any number of files to a library.

3. If you want to use a design unit that you compiled into a library (one
that is no longer in the default work library), you must use a library clause
in the VHDL source code to reference it.

For example, if you add a source file for the entity ram16x8 to library
my_rams, and instantiate the 16x8 RAM in the design called top_level, you
must add library my_rams; just before defining top_level.

Predefined Packages

The synthesis tool supports the two standard libraries, std and ieee, that
contain packages containing commonly used definitions of data types,
functions, and procedures. These libraries and their packages are built in to
the synthesis tool, so you do not compile them. The predefined packages are
described in the following table.

Library Package Description

std standard Defines the basic VHDL types
including bit and bit_vector

ieee std_logic_1164 Defines the 9-value std_logic and
std_logic_vector types

ieee numeric_bit Defines numeric types and arithmetic
functions. The base type is BIT.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 477

The synthesis tools also have vendor-specific built-in macro libraries for
components like gates, counters, flip-flops, and I/Os. The libraries are
located in installDirectory/lib/vendorName. Use the built-in macro libraries to
instantiate vendor macros directly into the VHDL designs and forward-
annotate them to the output netlist. Refer to the appropriate vendor support
chapter for more information.

Additionally, the synthesis tool library contains an attributes package of
built-in attributes and timing constraints (installDirectory/lib/vhd/synattr.vhd)
that you can use with VHDL designs. The package includes declarations for
timing constraints (including black-box timing constraints), vendor-specific
attributes and synthesis attributes. To access these built-in attributes, add
the following two lines to the beginning of each of the VHDL design units that
uses them:

library synplify;
use synplify.attributes.all;

If you want the addition operator (+) to take two std_ulogic or std_ulogic_vector as
inputs, you need the function defined in the std_logic_arith package (the
cdn_arith.vhd file in installDirectory/lib/vhd/). Add this file to the project. To
successfully compile, the VHDL file that uses the addition operator on these
input types must have include the following statement:

use work.std_logic_arith.all;

ieee numeric_std Defines arithmetic operations on types
defined in std_logic_1164

ieee std_logic_arith Defines the signed and unsigned
types, and arithmetic operations for
the signed and unsigned types

ieee std_logic_signed Defines signed arithmetic for std_logic
and std_logic_vector

ieee std_logic_unsigned Defines unsigned arithmetic for
std_logic and std_logic_vector

Library Package Description

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
478 May 2015

Accessing Packages

To gain access to a package include a library clause in your VHDL source code
to specify the library the package is contained in, and a use clause to specify
the name of the package. The library and use clauses must be included
immediately before the design unit (entity or architecture) that uses the
package definitions.

Syntax
library library_name;
use library_name .package_name.all;

To access the data types, functions and procedures declared in std_logic_1164,
std_logic_arith, std_logic_signed, or std_logic_unsigned, you need a library ieee clause
and a use clause for each of the packages you want to use.

Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

-- Other code

Library and Package Rules

To access the standard package, no library or use clause is required. The
standard package is predefined (built-in) in VHDL, and contains the basic
data types of bit, bit_vector, Boolean, integer, real, character, string, and others along
with the operators and functions that work on them.

If you create your own package and compile it into the work library to access
its definitions, you still need a use clause before the entity using them, but
not a library clause (because work is the default library.)

To access packages other than those in work and std, you must provide a library
and use clause for each package as shown in the following example of
creating a resource library.

-- Compile this in library mylib
library ieee;
use ieee.std_logic_1164.all;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 479

package my_constants is
constant max: std_logic_vector(3 downto 0):="1111";

.

.

.
end package;

-- Compile this in library work
library ieee, mylib;
use ieee.std_logic_1164.all;
use mylib.my_constants.all;

entity compare is
port (a: in std_logic_vector(3 downto 0);

z: out std_logic);
end compare;

architecture rtl of compare is
begin

z <= '1' when (a = max) else '0';
end rtl;

The rising_edge and falling_edge functions are defined in the std_logic_1164
package. If you use these functions, your clock signal must be declared as
type std_logic.

Instantiating Components in a Design

No library or use clause is required to instantiate components (entities and
their associated architectures) compiled in the default work library. The files
containing the components must be listed in the source files list before any
files that instantiate them.

To instantiate components from the built-in technology-vendor macro
libraries, you must include the appropriate use and library clauses in your
source code. Refer to the section for your vendor for more information.

To create a separate resource library to hold your components, put all the
entities and architectures in one source file, and assign that source file the
library components in the synthesis tool Project view. To access the compo-
nents from your source code, put the clause library components; before the
designs that instantiate them. There is no need for a use clause. The project
file (prj) must include both the files that create the package components and
the source file that accesses them.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
480 May 2015

Package Definitions

A package is a unit that groups various declarations to be shared among
several designs. Packages are stored in libraries for greater convenience. A
package consists of package declaration as shown in the following syntax:

package packageName is

package_declarations

end package packageName;

The purpose of a package is to declare shareable types, subtypes, constants,
signals, files, aliases, component attributes, and groups. Once a package is
defined, it can be used in multiple independent designs. Items declared in a
package declaration are visible in other design units if the use clause is
applied.

Literals

There are five classes of literals: numeric literals, enumeration literals, string
literals, bit-string literals, and the literal null.

Numeric Literals

The class of numeric literals includes abstract literals (which include integer
literals and real literals) and physical literals. A real literal includes a decimal
point, while an integer literal does not. When a real or integer literal is written
in the conventional decimal notation, it is called a decimal literal.

When a number is written in exponential form, the letter E of the exponent
can be written either in lowercase or in uppercase. If the exponential form is
used for an integer number, then a zero exponent is allowed.

Abstract literals can be written in the form of based literals. In such cases,
the base is specified explicitly (in decimal literals, the base is implicitly ten).
The base in a based literal must be at least two and no more than sixteen.
The base is specified in decimal notation.

The digits used in based literals can be any decimal digits (0..9) or a letter
(either in upper or lower case). The meaning of based notation is as in
decimal literals, with the exception of base.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 481

A physical literal consists of an abstract numeric literal followed by an identi-
fier that denotes the unit of the given physical quantity.

Enumeration literals

The enumeration literals are literals of enumeration types, used in type decla-
ration and in expressions that evaluate to a value of an enumeration type.
This class of literals includes identifiers and character literals. Reserved
words cannot be used in identifiers, unless they are a part of extended identi-
fiers that start and end with a backslash.

String Literals

String literals are made up of a sequence of graphic characters (letters, digits,
and special characters) enclosed between double quotation marks. This class
of literals is usually used for warnings or reports that are displayed during
simulation.

Bit-String Literals

Bit-string literals represent values of string literals that denote sequences of
extended digits, the range of which depends on the specified base.

The base specifier determines the base of the digits: the letter B denotes
binary digits (0 or 1), letter O denotes octal digits (0 to 7), and letter X denotes
hexadecimal (digits 0 to 9 and letters A to F, case insensitive). Underlines can
be used to increase readability and have no impact on the value.

All values specified as bit-string literals are converted into binary representa-
tion without underlines. Binary strings remain unchanged (only underlines
are removed), each octal digit is converted into three bits and each hexadec-
imal character is converted into four bits.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
482 May 2015

Operators

The synthesis tool supports the creation of expressions using all predefined
VHDL operators:

Arithmetic Operator Description

- Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation (supported for compile-time constants and
when left operand is 2; right operand can be a variable)

abs Absolute value

mod Modulus

rem Remainder

Relational Operator Description

= Equal (if either operand has a bit with an 'X' or 'Z' value, the
result is 'X')

/= Not equal (if either operand has a bit with an 'X' or 'Z' value,
the result is 'X')

< Less than (if, because of unknown bits in the operands, the
relation is ambiguous, then the result is the unknown value
'X')

<= Less than or equal to (if, because of unknown bits in the
operands, the relation is ambiguous, then the result is the
unknown value 'X')

> Greater than (if, because of unknown bits in the operands,
the relation is ambiguous, then the result is the unknown
value 'X')

>= Greater than or equal to (if, because of unknown bits in the
operands, the relation is ambiguous, then the result is the
unknown value 'X')

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 483

Note: Initially, X's are treated as “don’t-cares”, but they are eventually
converted to 0's or 1's in a way that minimizes hardware.

Logical Operator Description

and and

or or

nand nand

nor nor

xor xor

xnor xnor

not not (takes only one operand)

Shift Operator Description

sll Shift left logical – logically shifted left by R index positions

srl Shift right logical – logically shifted right by R index positions

sla Shift left arithmetic – arithmetically shifted left by R index
positions

sra Shift right arithmetic – arithmetically shifted right by R index
positions

rol Rotate left logical – rotated left by R index positions

ror Rotate right logical – rotated right by R index positions

Miscellaneous Operator Description

- Identity

- Negation

& Concatenation

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
484 May 2015

Large Time Resolution

The support of predefined physical time types includes the expanded range
from –2147483647 to +2147483647 with units ranging from femtoseconds,
and secondary units ranging up to an hour. Predefined physical time types
allow selection of a wide number range representative of time type.

Example 1 – Using Large Time Values in Comparisons
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

entity test is
generic (INTERVAL1 : time := 1000 fs;

INTERVAL2 : time := 1 ps;
INTERVAL3 : time := 1000 ps;
INTERVAL4 : time := 1 ns

);

port (a : in std_logic_vector(3 downto 0);
b : in std_logic_vector(3 downto 0);
c : out std_logic_vector(3 downto 0);
d : out std_logic_vector(3 downto 0)

);
end test;

architecture RTL of test is
begin

c <= (a and b) when (INTERVAL1 = INTERVAL2) else
(a or b);

d <= (a xor b) when (INTERVAL3 /= INTERVAL4) else
(a nand b);

end RTL;

Example 2 – Using Large Time Values in Constant Calculations
library ieee;
use ieee.std_logic_1164.all;

entity test is
generic (Interval : time := 20 ns;

CLK_PERIOD : time := 8 ns);
port (en : in std_logic;

a : in std_logic_vector(10 downto 0);

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 485

b : in std_logic_vector(10 downto 0);
a_in : in std_logic_vector(7 downto 0);
b_in : in std_logic_vector(7 downto 0);
dummyOut : out std_logic_vector(7 downto 0);
out1 : out std_logic_vector(10 downto 0));

end entity;

architecture behv of test is
constant my_time : positive := (Interval / 2 ns);
constant CLK_PERIOD_PS : real := real(CLK_PERIOD / 1 ns);
constant RESULT : positive := integer(CLK_PERIOD_PS);
signal dummy : std_logic_vector (RESULT-1 downto 0);
signal temp : std_logic_vector (my_time downto 0);

begin
process (a, b)
begin

temp <= a and b;
out1 <= temp;

end process;
dummy <= (others => '0') when en = '1' else

(a_in or b_in);
dummyOut <= dummy;
end behv;

Example 3 – Using Large Time Values in Generic Calculations
library IEEE;
use IEEE.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity test is
generic (clk_period : time := 6 ns);
port (rst_in : in std_logic;

in1 : in std_logic;
CLK_PAD : in std_logic;
RST_DLL : in std_logic;
dout : out std_logic;
CLK_out : out std_logic;
LOCKED : out std_logic);

end test;

architecture STRUCT of test is
signal CLK, CLK_int, CLK_dcm : std_logic;
signal clk_dv : std_logic;
constant clk_prd : real := real(clk_period / 2.0 ns);

begin
U1 : IBUFG port map (I => CLK_PAD, O => CLK_int);

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
486 May 2015

U2 : DCM generic map
(CLKDV_DIVIDE => clk_prd)

port map (CLKFB => CLK,
CLKIN => CLK_int,
CLKDV => clk_dv,
DSSEN => '0',
PSCLK => '0',
PSEN => '0',
PSINCDEC => '0',
RST => RST_DLL,
CLK0 => CLK_dcm,
LOCKED => LOCKED);

U3 : BUFG port map (I => CLK_dcm, O => CLK);
CLK_out <= CLK;

process (clk_dv , rst_in, in1)
begin

if (rst_in = '1') then
dout <= '0';

elsif (clk_dv'event and clk_dv = '1') then
dout <= in1;

end if;
end process;

end architecture STRUCT;

VHDL Process

The VHDL keyword process introduces a block of logic that is triggered to
execute when one or more signals change value. Use processes to model
combinational and sequential logic.

process Template to Model Combinational Logic

<optional_label> : process (<sensitivity_list>)

-- Declare local variables, data types,
-- and other local declarations here

begin
-- Sequential statements go here, including:
-- signal and variable assignments
-- if and case statements
-- while and for loops
-- function and procedure calls

end process <optional_label>;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 487

Sensitivity List

The sensitivity list specifies the signal transitions that trigger the process to
execute. This is analogous to specifying the inputs to logic on a schematic by
drawing wires to gate inputs. If there is more than one signal, separate the
names with commas.

A warning is issued when a signal is not in the sensitivity list but is used in
the process, or when the signal is in the sensitivity list but not used by the
process.

Syntax

process (signal1, signal2, ...);

A process can have only one sensitivity list, located immediately after the
keyword process, or one or more wait statements. If there are one or more wait
statements, one of these wait statements must be either the first or last state-
ment in the process.

List all signals feeding into the combinational logic (all signals that affect
signals assigned inside the process) in the sensitivity list. If you forget to list
all signals, the synthesis tool generates the desired hardware, and reports a
warning message that you are not triggering the process every time the
hardware is changing its outputs, and therefore your pre- and post-synthesis
simulation results might not match.

Any signals assigned in the process must either be outputs specified in the
port list of the entity or declared as signals in the architecture declarative
area. Any variables assigned in the process are local and must be declared in
the process declarative area.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
488 May 2015

Note: Make sure all signals assigned in a combinational process are
explicitly assigned values each time the process executes. Other-
wise, the synthesis tool must insert level-sensitive latches in your
design, in order to hold the last value for the paths that don't
assign values (if, for example, you have combinational loops in
your design). This usually represents coding error, so the
synthesis tool issues a warning message that level-sensitive
latches are being inserted into the design because of combina-
tional loops. You will get an error message if you have combina-
tional loops in your design that are not recognized as level-sensi-
tive latches.

Common Sequential Statements

This section describes common sequential statements.

Procedures

A procedure is a form of a subprogram that contains local declarations and a
sequence of statements. A procedure can be called from any place within the
architecture. The procedure definition consists of two parts:

• the procedure declaration, which contains the procedure name and the
parameter list required when the procedure is called; the procedure
declaration consists of the procedure name and the formal parameter
list. In the procedure specification, the identifier and optional formal
parameter list follow the reserved word procedure.

• the procedure body, which consists of the local declarations and state-
ments required to execute the procedure; the procedure body defines the
procedure's algorithm composed of sequential statements. When the
procedure is called, execution of the sequence of statements declared
within the procedure body begins. The procedure body consists of the
subprogram declarative part following the reserved word is with the
subprogram statement part placed between the reserved words begin
and end.

The basic syntax for a procedure is:

procedure procedureName (formalParameterList)

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 489

procedure procedureName (formalParameterList) is
procedureDeclarations

begin
sequential statements

end procedure procedureName;

if-then-else Statement

Syntax
if condition1 then

sequential_statement(s)
[elsif condition2 then

sequential_statement(s)]
[else

sequential_statement(s)]
end if;

The else and elsif clauses are optional.

Example
library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (output_signal : out std_logic;

a, b, sel : in std_logic);
end mux;

architecture if_mux of mux is
begin

process (sel, a, b)
begin

if sel = '1' then
output_signal <= a;

elsif sel = '0' then
output_signal <= b;

else
output_signal <= 'X';

end if;
end process ;

end if_mux;

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
490 May 2015

case Statement

Syntax
case expression is

when choice1 => sequential_statement(s)
when choice2 => sequential _statement(s)

-- Other case choices

when choiceN => sequential_statement(s)
end case;

Note: VHDL requires that the expression match one of the given
choices. To create a default, have the final choice be when others =>
sequential_statement(s) or null. (Null means not to do anything.)

Example
library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (output_signal : out std_logic;

a, b, sel : in std_logic);
end mux;

architecture case_mux of mux is
begin

process (sel, a, b)
begin

case sel is
when '1' =>

output_signal <= a;
when '0' =>

output_signal <= b;
when others =>

output_signal <= 'X';
end case;

end process;
end case_mux;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 491

Note: To test the condition of matching a bit vector, such as "0-11",
that contains one or more don’t-care bits, do not use the equality
relational operator (=). Instead, use the std_match function (in the
ieee.numeric_std package), which succeeds (evaluates to true) when-
ever all of the explicit constant bits (0 or 1) of the vector are
matched, regardless of the values of the bits in the don’t-care (-)
positions. For example, use the condition std_match(a, "0-11")
to test for a vector with the first bit unset (0) and the third and
fourth bits set (1).

Loop Statement

Loop statements are used to repeatedly execute a sequence of sequential
statements. The basic syntax for a loop is:

[loop_label :]iteration_scheme loop
sequential statements

[next [label] [when condition];
[exit [label] [when condition];

end loop [loop_label];

Loop labels are optional, but can be useful when writing nested loops. The
next and exit statements are sequential statements that can only be used
within a loop:

• The next statement terminates the remainder of the current loop itera-
tion and causes execution to proceed to the next loop iteration.

• The exit statement terminates the loop and omits the remainder of the
statements. Execution continues with the next statement after the loop
is exited.

There are three loop iteration types:

• basic loop

• while … loop

• for … loop

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
492 May 2015

Basic Loop Statement
The basic loop has no iteration scheme and is executed continuously until it
encounters an exit or next statement. The basic loop must include at least one
wait statement. As an example, assume a 4-bit counter that counts from 0 to
15. When it reaches 15, it begins over from 0. A wait statement is used to
cause the loop to execute every time the clock transitions from 0 to 1.

While-Loop Statement
The while … loop evaluates a true-false condition. When the condition is true,
the loop repeats, otherwise the loop is skipped and execution halted. The
syntax for the while… loop is:

[loop_label :] while condition loop
sequential statements

[next [label] [when condition];
[exit [label] [when condition];

end loop [loop_label];

The condition of the loop is tested prior to each iteration (including the first
iteration). If the result is false, the loop is terminated.

For-Loop Statement
The for ... loop uses an integer iteration scheme to determine the number of
iterations. The syntax is:

[loop_label :] for identifier in range loop
sequential statements

[next [label] [when condition];
[exit [label] [when condition];

end loop [loop_label];

The identifier is automatically declared by the loop itself and does not need to
be declared separately. The value of identifier can only be read within the loop
and is not accessible outside the loop; its value cannot be assigned or
changed in contrast to the while ... loop that can accept variables that are
modified inside the loop.

The range is a computable integer range in one of the following forms, in
which integer_expression must evaluate to an integer:

integer_expression to integer_expression

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 493

integer_expression downto integer_expression

Next and Exit Statements
The next statement causes execution to jump to the next iteration of a loop
statement and then proceed with the next iteration. The next statement
syntax is:

next [label] [when condition];

The when keyword is optional and executes the next statement when its
condition evaluates to the Boolean value TRUE.

The exit statement omits the remaining statements, terminating the loop
entirely and continuing with the next statement after the exited loop. The exit
statement syntax is::

exit [label] [when condition];

The when keyword is optional and executes the next statement when its
condition evaluates to the Boolean value TRUE.

Return Statement

The return statement ends the execution of a subprogram (procedure or
function) in which it appears and causes an unconditional jump to the end of
a subprogram.

return expression;

A return statement can only be used within a procedure or function body.
When a return statement appears within nested subprograms, the return
applies to the innermost subprogram (i.e., the jump is performed to the next
end procedure or end function clause).

Assertion Statement

An assertion statement checks if a given condition is true and, if not,
performs some action.

assert condition
report string
severity severityLevel;

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
494 May 2015

The condition specified in an assert statement must evaluate to a boolean
value (true or false). If it is false, it is said that an assertion violation has
occurred. The expression specified in the report clause is the message of
predefined type string to be reported when the assertion violation occurs.

If the severity clause is present, it must specify an expression of predefined
type severity level which determines the severity level of the assertion viola-
tion. The severity-level type is specified in the standard package and includes
the following values: NOTE, WARNING, ERROR, and FAILURE. If the severity clause
is omitted, it is implic”Asset Staritly assumed to be ERROR.

When an assertion violation occurs, the report is issued and displayed on the
screen. The severity level defines the degree to which the violation of the
assertion affects operation of the corresponding process:

• NOTE – used to pass informative messages

• WARNING – used in unusual conditions in which the operation can be
continued, but with unpredictable results

• ERROR – used when the assertion violation makes continuation of the
operation not feasible

• FAILURE – used when the assertion violation is a fatal error and the
operation must be immediately terminated

Block Statement

A block statement groups concurrent statements with an architecture to
improve readability of the specification.

block_label : block
declarations

begin
concurrent statements

end block block_label;

Each block is assigned a label placed just before the block reserved word. This
same label can be optionally repeated at the end of the block immediately
following the end block reserved words.

A block statement can be preceded by two optional parts: a header and a
declarative part. The declarative part introduces any of the declarations
possible for an architecture including declarations of subprograms, types,

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 495

subtypes, constants, signals, shared variables, files, aliases, components,
attributes, configurations, use clauses and groups. These declarations are
local to the block and are not visible outside of the block.

A block header can also include port and generic declarations (similar to an
entity), as well as port and generic map declarations. The purpose of port
map and generic map statements is to map signals and other objects
declared outside of the block into the ports and generic parameters that have
been declared within of the block.

The statements part may contain any concurrent constructs allowed in an
architecture. In particular, other block statements can be used here. This
way, a kind of hierarchical structure can be introduced into a single architec-
ture body (for additional information, see Configuration Declaration, on
page 546.

Concurrent Signal Assignments

There are three types of concurrent signal assignments in VHDL.

• Simple

• Selected (with-select-when)

• Conditional (when-else)

Use the concurrent signal assignment to model combinational logic. Put the
concurrent signal assignment in the architecture body. You can any number
of statements to describe your hardware implementation. Because all state-
ments are concurrently active, the order you place them in the architecture
body is not significant.

Re-evaluation of Signal Assignments

Every time any signal on the right side of the assignment operator (<=)
changes value (including signals used in the expressions, values, choices, or
conditions), the assignment statement is re-evaluated, and the result is
assigned to the signal on the left side of the assignment operator. You can use
any of the predefined operators to create the assigned value.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
496 May 2015

Simple Signal Assignments

Syntax
signal <= expression;

Example
architecture simple_example of simple is
begin

c <= a nand b;
end simple_example;

Selected Signal Assignments

Syntax
with expression select
signal <= value1 when choice1,

value2 when choice2,
.
.
.
valueN when choiceN;

Example
library ieee;
use ieee.std_logic_1164.all;
entity mux is

port (output_signal : out std_logic;
a, b, sel : in std_logic);

end mux;

architecture with_select_when of mux is
begin

with_sel_select
output_signal <= a when '1',

b when '0',
'X' when others;

end with_select_when;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 497

Conditional Signal Assignments

Syntax
signal <= value1 when condition1 else

value2 when condition2 else
valueN-1 when conditionN-1 else
valueN;

Example
library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (output_signal: out std_logic;

a, b, sel: in std_logic);
end mux;

architecture when_else_mux of mux is
begin
output_signal <= a when sel = '1' else

b when sel = '0' else
'X';

end when_else_mux;

Note: To test the condition of matching a bit vector, such as "0-11",
that contains one or more don’t-care bits, do not use the equality
relational operator (=). Instead, use the std_match function (in the
ieee.numeric_std package), which succeeds (evaluates to true) when-
ever all of the explicit constant bits (0 or 1) of the vector are
matched, regardless of the values of the bits in the don’t-care (-)
positions. For example, use the condition std_match(a, "0-11")
to test for a vector with the first bit unset (0) and the third and
fourth bits set (1).

Resource Sharing

When you have mutually exclusive operators in a case statement, the
synthesis tool shares resources for the operators in the case statements. For
example, automatic sharing of operator resources includes adders, subtrac-
tors, incrementors, decrementors, and multipliers.

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
498 May 2015

Combinational Logic

Combinational logic is hardware with output values based on some function
of the current input values. There is no clock and no saved states. Most
hardware is a mixture of combinational and sequential logic.

Create combinational logic with concurrent signal assignments and/or
processes.

Sequential Logic

Sequential logic is hardware that has an internal state or memory. The state
elements are either flip-flops that update on the active edge of a clock signal,
or level-sensitive latches, that update during the active level of a clock signal.

Because of the internal state, the output values might depend not only on the
current input values, but also on input values at previous times. State
machines are made of sequential logic where the updated state values
depend on the previous state values. There are standard ways of modeling
state machines in VHDL. Most hardware is a mixture of combinational and
sequential logic.

Create sequential logic with processes and/or concurrent signal assign-
ments.

Component Instantiation in VHDL

A structural description of a design is made up of component instantiations
that describe the subsystems of the design and their signal interconnects.
The synthesis tool supports four major methods of component instantiation:

• Simple component instantiation (described below)

• Selected component instantiation

• Direct entity instantiation

• Configurations described in Configuration Specification, on page 542

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 499

Simple Component Instantiation

In this method, a component is first declared either in the declaration region
of the architecture, or in a package of (typically) component declarations, and
then instantiated in the statement region of the architecture. By default, the
synthesis process binds a named entity (and architecture) in the working
library to all component instances that specify a component declaration with
the same name.

Syntax
label : [component] declaration_name

[generic map (actual_generic1, actual_generic2, ...)]
[port map (port1, port2, ...)] ;

The use of the reserved word component is optional in component instantia-
tions.

Example: VHDL 1987
architecture struct of hier_add is
component add

generic (size : natural);
port (a : in bit_vector(3 downto 0);

b : in bit_vector(3 downto 0);
result : out bit_vector(3 downto 0));

end component;

begin
-- Simple component instantiation
add1: add

generic map(size => 4)
port map(a => ain,

b => bin,
result => q);

-- Other code

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
500 May 2015

Example: VHDL 1993
architecture struct of hier_add is
component add

generic (size : natural);
port (a : in bit_vector(3 downto 0);

b : in bit_vector(3 downto 0);
result : out bit_vector(3 downto 0));

end component;

begin
-- Simple component instantiation
add1: component add -- Component keyword new in 1993

generic map(size => 4)
port map(a => ain,

b => bin,
 result => q);

-- Other code

Note: If no entity is found in the working library named the same as the
declared component, all instances of the declared component are
mapped to a black box and the error message “Unbound compo-
nent mapped to black box” is issued.

VHDL Selected Name Support

Selected Name Support (SNS) is provided in VHDL for constants, operators,
and functions in library packages. SNS eliminates ambiguity in a design
referencing elements with the same names, but that have unique function-
ality when the design uses the elements with the same name defined in
multiple packages. By specifying the library, package, and specific element
(constant, operator, or function), SNS designates the specific constant,
operator, or function used. This section discusses all facets of SNS. Complete
VHDL examples are included to assist you in understanding how to use SNS
effectively.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 501

Constants

SNS lets you designate the constant to use from multiple library packages. To
incorporate a constant into a design, specify the library, package, and
constant. Using this feature eliminates ambiguity when multiple library
packages have identical names for constants and are used in an entity-archi-
tecture pair.

The following example has two library packages available to the design
constants. Each library package has a constant defined by the name C1 and
each has a different value. SNS is used to specify the constant (see
work.PACKAGE.C1 in the constants example below).

-- CONSTANTS PACKAGE1
library IEEE;
use IEEE.std_logic_1164.all;
package PACKAGE1 is

constant Cl: std_logic_vector := "10001010";
end PACKAGE1;

-- CONSTANTS PACKAGE2
library IEEE;
use IEEE.std_logic_1164.all;
package PACKAGE2 is

constant C1: std_logic_vector := "10110110";
end PACKAGE2;

-- CONSTANTS EXAMPLE
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity CONSTANTS is
generic (num_bits : integer := 8);

port (a,b: in std_logic_vector (num_bits -1 downto 0);
out1, out2: out std_logic_vector (num_bits -1 downto 0)
);

end CONSTANTS;

architecture RTL of CONSTANTS is
begin

out1 <= a - work.PACKAGE1.Cl; -Example of specifying SNS
out2 <= b - work.PACKAGE2.C1; -Example of specifying SNS

end RTL;

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
502 May 2015

In the above design, outputs out1 and out2 use two C1 constants from two
different packages. Although each output uses a constant named C1, the
constants are not equivalent. For out1, the constant C1 is from PACKAGE1. For
out2, the constant C1 is from PACKAGE2. For example:

out1 <= a - work.PACKAGE1.Cl; is equivalent to out1 <= a - "10001010";

whereas:

out2 <= b - work.PACKAGE2.Cl; is equivalent to out2 <= b - "10110110";

The constants have different values in different packages. SNS specifies the
package and eliminates ambiguity within the design.

Functions and Operators

Functions and operators in VHDL library packages customarily have overlap-
ping naming conventions. For example, the add operator in the IEEE
standard library exists in both the std_logic_signed and std_logic_unsigned
packages. Depending upon the add operator used, different values result.
Defining only one of the IEEE library packages is a straightforward solution
to eliminate ambiguity, but applying this solution is not always possible. A
design requiring both std_logic_signed and std_logic_unsigned package elements
must use SNS to eliminate ambiguity.

Functions
In the following example, multiple IEEE packages are declared in a 256x8
RAM design. Both std_logic_signed and std_logic_unsigned packages are included.
In the RAM definition, the signal address_in is converted from type
std_logic_vector to type integer using the CONV_INTEGER function, but which
CONV_INTEGER function will be called? SNS determines the function to use.
The RAM definition clearly declares the std_logic_unsigned package as the
source for the CONV_INTEGER function.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
use IEEE.numeric_std.all;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 503

entity FUNCTIONS is
port (address : in std_logic_vector(7 downto 0);

data_in : in std_logic_vector(7 downto 0);
data_out : out std_logic_vector(7 downto 0);
we : in std_logic;
clk : in std_logic);

end FUNCTIONS;

architecture RTL of FUNCTIONS is
type mem_type is array (255 downto 0) of

std_logic_vector (7 downto 0);
signal mem: mem_type;
signal address_in: std_logic_vector(7 downto 0);
begin
data_out <= mem(IEEE.std_logic_unsigned.CONV_INTEGER(address_in));

process (clk)
begin

if rising_edge(clk) then
if (we = '1') then

mem(IEEE.std_logic_unsigned.CONV_INTEGER(address_in))
<= data_in;

end if;
address_in <= address;
end if;

end process;
end RTL;

Operators
In this example, comparator functions from the IEEE std_logic_signed and
std_logic_unsigned library packages are used. Depending upon the comparator
called, a signed or an unsigned comparison results. In the assigned outputs
below, the op1 and op2 functions show the valid SNS syntax for operator
implementation.

library IEEE;
use IEEE.std_logic_1164.std_logic_vector;
use IEEE.std_logic_signed.">";
use IEEE.std_logic_unsigned.">";

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
504 May 2015

entity OPERATORS is
port (in1 :std_logic_vector(1 to 4);

in2 :std_logic_vector(1 to 4);
in3 :std_logic_vector(1 to 4);
in4 :std_logic_vector(1 to 4);
op1,op2 :out boolean);

end OPERATORS;

architecture RTL of OPERATORS is
begin

process(in1,in2,in3,in4)
begin

--Example of specifying SNS
op1 <= IEEE.std_logic_signed.">"(in1,in2);

--Example of specifying SNS
op2 <= IEEE.std_logic_unsigned.">"(in3,in4);

end process;
end RTL;

User-defined Function Support

SNS is not limited to predefined standard IEEE packages and packages
supported by the synthesis tool; SNS also supports user-defined packages.
You can create library packages that access constants, operators, and
functions in the same manner as the packages supported by IEEE or the
synthesis tool.

The following example incorporates two user-defined packages in the design.
Each package includes a function named func. In PACKAGE1, func is an XOR
gate, whereas in PACKAGE2, func is an AND gate. Depending on the package
called, func results in either an XOR or an AND gate. The function call uses
SNS to distinguish the function that is called.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 505

-- USER DEFINED PACKAGE1
library IEEE;
use IEEE.std_logic_1164.all;
package PACKAGE1 is

function func(a,b: in std_logic) return std_logic;
end PACKAGE1;

package body PACKAGE1 is
function func(a,b: in std_logic) return std_logic is

begin
return(a xor b);

end func;
end PACKAGE1;

-- USER DEFINED PACKAGE2
library IEEE;
use IEEE.std_logic_1164.all;

package PACKAGE2 is
function func(a,b: in std_logic) return std_logic;

end PACKAGE2;

package body PACKAGE2 is
function func(a,b: in std_logic) return std_logic is

begin
return(a and b);

end func;
end PACKAGE2;

-- USER DEFINED FUNCTION EXAMPLE
library IEEE;
use IEEE.std_logic_1164.all;

entity USER_DEFINED_FUNCTION is
port (in0: in std_logic;

in1: in std_logic;
out0: out std_logic;
out1: out std_logic);

end USER_DEFINED_FUNCTION;

architecture RTL of USER_DEFINED_FUNCTION is
begin

out0 <= work.PACKAGE1.func(in0, in1);
out1 <= work.PACKAGE2.func(in0, in1);

end RTL;

LO

 VHDL Language Support VHDL Language Constructs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
506 May 2015

Demand Loading

In the previous section, the user-defined function example successfully uses
SNS to determine the func function to implement. However, neither PACKAGE1
nor PACKAGE2 was declared as a use package clause (for example,
work.PACKAGE1.all;). How could func have been executed without a use package
declaration? A feature of SNS is demand loading: this loads the necessary
package without explicit use declarations. Demand loading lets you create
designs using SNS without use package declarations, which supports all
necessary constants, operators, and functions.

VHDL Implicit Data-type Defaults VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 507

VHDL Implicit Data-type Defaults

Type default propagation avoids potential simulation mismatches that are the
result of differences in behavior with how initial values for registers are
treated in the synthesis tools and how they are treated in the simulation
tools.

With implicit data-type defaults, when there is no explicit initial-value decla-
ration for a signal being registered, the VHDL compiler passes an init value
through a syn_init property to the mapper, and the mapper then propagates
the value to the respective register. Compiler requirements are based on
specific data types. These requirements can be broadly grouped based on the
different data types available in the VHDL language.

Implicit data-type defaults are enabled on the VHDL panel of the Implementation
Options dialog box or through a -supporttypedflt argument to a set_option
command.

To illustrate the use of implicit data-type defaults, consider the following
example.

library ieee;
use ieee.std_logic_1164.all;

entity top is
port (clk:in std_logic;

a : in integer range 1 to 8;
b : out integer range 1 to 8;
d : out positive range 1 to 7);

end entity top;

architecture rtl of top is
signal a1,a2 : integer range 1 to 8;
signal a3,a4 : positive range 1 to 7;
begin
a1 <= a;

LO

 VHDL Language Support VHDL Implicit Data-type Defaults

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
508 May 2015

a3 <= a;
b <= a2;
d <= a4;

process(clk)
begin

if (rising_edge(clk))then
a2 <= a1;
a4 <= a3;

end if;
end process;

end rtl;

In the above example, two signals (a2 and a4) with different type default
values are registered. Without implicit data-type defaults, if the values of the
signals being registered are not the same, the compiler merges the redundant
logic into a single register as shown in the figure below.

Enabling implicit data-type defaults prevents certain compiler and mapper
optimizations to preserve both registers as shown in the following figure.

VHDL Implicit Data-type Defaults VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 509

Example – Impact on Integer Ranges
The default value for the integer type when a range is specified is the
minimum value of the range specified, and size is the upper limit of that
range. With implicit data-type defaults, the compiler is required to propagate
the minimum value of the range as the init value to the mapper. Consider the
following example:

library ieee;
use ieee.std_logic_1164.all;

entity top is
port (clk,set:in std_logic;

a : in integer range -6 to 8;
b : out integer range -6 to 8);

end entity top;

architecture rtl of top is
signal a1,a2: integer range -6 to 8;
begin
a1 <= a ;

process(clk,set)
begin

if (rising_edge(clk))then
if set = '1' then

a2 <= a;
else

a2 <= a1;

LO

 VHDL Language Support VHDL Implicit Data-type Defaults

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
510 May 2015

end if;
end if;

end process;
b <= a2;
end rtl;

In the example,

signal a1, a2: integer range -6 to 8;

the default value is -6 (FA in 2’s complement) and the range is -6 to 8. With a
total of 15 values, the size of the range can be represented in four bits.

Example – Impact on RAM Inferencing
When inferencing a RAM with implicit data-type defaults, the compiler propa-
gates the type default values as init values for each RAM location. The
mapper must check if the block RAMs of the selected technology support
initial values and then determine if the compiler-propagated init values are to
be considered. If the mapper chooses to ignore the init values, a warning is
issued stating that the init values are being ignored. Consider the following
VHDL design:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity top is
port (clk : in std_logic;

addr : in std_logic_vector (6 downto 0);
din : in positive;
wen : in std_logic;
dout : out positive);

end top;

architecture behavioral of top is
-- RAM
type tram is array(0 to 127) of positive;
signal ram : tram ;
begin
-- Contents of RAM has initial value = 1

process (clk)
begin

if clk'event and clk = '1' then
if wen = '1' then

ram(conv_integer(addr)) <= din_sig;

VHDL Implicit Data-type Defaults VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 511

end if;
dout <= ram(conv_integer(addr));
end if;

end process;
end behavioral;

In the above example:

• The type of signal a1 is bit_vector

• The default value for type integer is 1 when no range is specified

Accordingly, a value of x00000001 is propagated by the compiler to the mapper
with a syn_init property.

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
512 May 2015

VHDL Synthesis Guidelines

This section provides guidelines for synthesis using VHDL. The following
topics are covered:

• General Synthesis Guidelines, on page 512

• VHDL Language Guidelines, on page 513

• Model Template, on page 514

• Constraint Files for VHDL Designs, on page 515

• Creating Flip-flops and Registers Using VHDL Processes, on page 516

• Clock Edges, on page 517

• Defining an Event Outside a Process, on page 518

• Using a WAIT Statement Inside a Process, on page 519

• Level-sensitive Latches Using Concurrent Signal Assignments, on
page 520

• Level-sensitive Latches Using VHDL Processes, on page 521

• Signed mod Support for Constant Operands, on page 524

General Synthesis Guidelines

Some general guidelines are presented here to help you synthesize your
VHDL design.

• Top-level entity and architecture. The synthesis tool chooses the top-
level entity and architecture – the last architecture for the last entity in
the last file compiled. Entity selection can be overridden from the VHDL
panel of the Implementation Options dialog box. Files are compiled in the
order they appear – from top to bottom in the Project view source files
list.

• Simulate your design before synthesis because it exposes logic errors.
Logic errors that are not caught are passed through the synthesis tool,
and the synthesized results will contain the same logic errors.

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 513

• Simulate your design after placement and routing. Have the place-and-
route tool generate a post placement and routing (timing-accurate)
simulation netlist, and do a final simulation before programming your
devices.

• Avoid asynchronous state machines. To use the synthesis tool for
asynchronous state machines, make a netlist of technology primitives
from your target library.

• For modeling level-sensitive latches, it is simplest to use concurrent
signal assignments.

VHDL Language Guidelines

This section discusses VHDL language guidelines.

Processes

• A process must have either a sensitivity list or one wait statement.

• Each sequential process can be triggered from exactly one clock and
only one edge of clock (and optional sets and resets).

• Avoid combinational loops in processes. Make sure all signals assigned
in a combinational process are explicitly assigned values every time the
process executes; otherwise, the synthesis tool needs to insert level-
sensitive latches in your design to hold the last value for the paths that
do not assign values. This might represent a mistake on your part, so
the synthesis tool issues a warning message that level-sensitive latches
are being inserted into your design. You will get an warning message if
you have combinational loops in your design that are not recognized as
level-sensitive latches (for example, if you have an asynchronous state
machine).

Assignments

• Assigning an 'X' or '-' to a signal is interpreted as a “don't care”, so the
synthesis tool creates the hardware that is the most efficient design.

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
514 May 2015

Data Types

• Integers are 32-bit quantities. If you declare a port as an integer data
type, specify a range (for example, my_input: in integer range 0 to 7). Other-
wise, your synthesis result file will contain a 32-bit port.

• Enumeration types are represented as a vector of bits. The encoding can
be sequential, gray, or one hot. You can manually choose the encoding
for ports with an enumeration type.

Model Template

You can place any number of concurrent statements (signal assignments,
processes, component instantiations, and generate statements) in your archi-
tecture body as shown in the following example. The order of these state-
ments within the architecture is not significant, as all can execute concur-
rently.

• The statements between the begin and the end in a process execute
sequentially, in the order you type them from top to bottom.

• You can add comments in VHDL by proceeding your comment text with
two dashes “--”. Any text from the dashes to the end of the line is treated
as a comment, and ignored by the synthesis tool.

-- List libraries/packages that contain definitions you use
library <library_name>;
use <library_name>.<package_name>.all;

-- The entity describes the interface for your design.
entity <entity_name> is

generic (<define_interface_constants_here>);
port (<port_list_information_goes_here>);

end <entity_name>;

-- The architecture describes the functionality (implementation)
-- of your design
architecture <architecture_name> of <entity_name> is

-- Architecture declaration region.
-- Declare internal signals, data types, and subprograms here

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 515

-- If you will create hierarchy by instantiating a
-- component (which is just another architecture), then
-- declare its interface here with a component declaration;
component <entity_name_instantiated_below>

port (<port_list_information_as_defined_in_the_entity>);
end component;

begin -- Architecture body, describes functionality

-- Use concurrent statements here to describe the functionality
-- of your design. The most common concurrent statements are the
-- concurrent signal assignment, process, and component
-- instantiation.

-- Concurrent signal assignment (simple form):
<result_signal_name> <= <expression>;

-- Process:
process <sensitivity list>)
-- Declare local variables, data types,
-- and other local declarations here
begin
-- Sequential statements go here, including:

-- signal and variable assignments
-- if and case statements
-- while and for loops
-- function and procedure calls

end process;

-- Component instantiation
<instance_name> : <entity_name>

generic map (<override values here >)
port map (<port list>);

end <architecture_name>;

Constraint Files for VHDL Designs

In previous versions of the software, all object names output by the compiler
were converted to lower case. This means that any constraints files created by
dragging from the RTL view or through the SCOPE UI contained object names
using only lower case. Case is preserved on design object names. If you use
mixed-case names in your VHDL source, for constraints to be applied
correctly, you must manually update any older constraint files or re-create
constraints in the SCOPE editor.

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
516 May 2015

Creating Flip-flops and Registers Using VHDL Processes

It is easy to create flip-flops and registers using a process in your
VHDL design.

process Template

process (<sensitivity list>)
begin

<sequential statement(s)>
end;

To create a flip-flop:

1. List your clock signal in the sensitivity list. Recall that if the value of any
signal listed in the sensitivity list changes, the process is triggered, and
executes. For example,

process (clk)

2. Check for rising_edge or falling_edge as the first statement inside the
process. For example,

process (clk)
begin

if rising_edge(clk) then
<sequential statement(s)>

or

process (clk)
begin

if falling_edge(clk) then
<sequential statement(s)>

Alternatively, you could use an if clk'event and clk = '1' then statement to test
for a rising edge (or if clk'event and clk = '0' then for a falling edge). Although
these statements work, for clarity and consistency, use the rising_edge
and falling_edge functions from the VHDL 1993 standard.

3. Set your flip-flop output to a value, with no delay, if the clock edge
occurred. For example, q <= d ;.

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 517

Complete Example

library ieee;
use ieee.std_logic_1164.all;

entity dff_or is
port (a, b, clk: in std_logic;

q: out std_logic);
end dff_or;

architecture sensitivity_list of dff_or is
begin

process (clk) -- Clock name is in sensitivity list
begin

if rising_edge(clk) then
q <= a or b;

end if;
end process;

end sensitivity_list;

In this example, if clk has an event on it, the process is triggered and starts
executing. The first statement (the if statement) then checks to see if a rising
edge has occurred for clk. If the if statement evaluates to true, there was a
rising edge on clk and the q output is set to the value of a or b. If the clk
changes from 1 to 0, the process is triggered and the if statement executes,
but it evaluates to false and the q output is not updated. This is the function-
ality of a flip-flop, and synthesis correctly recognizes it as such and connects
the result of the a or b expression to the data input of a D-type flip-flop and
the q signal to the q output of the flip-flop.

Note: The signals you set inside the process will drive the data inputs
of D-type flip-flops.

Clock Edges

There are many ways to correctly represent clock edges within a process
including those shown here.

The typical rising clock edge representation is:

rising_edge(clk)

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
518 May 2015

Other supported rising clock edge representations are:

clk = '1' and clk'event
clk'last_value = '0' and clk'event
clk'event and clk /= '0'

The typical falling clock edge representation is:

falling_edge(clk)

Other supported falling clock edge representations are:

clk = '0' and clk'event
clk'last_value = '1' and clk'event
clk'event and clk /= '1'

Incorrect or Unsupported Representations for Clock Edges

Rising clock edge:

clk = '1'
clk and clk'event -- Because clk is not a Boolean

Falling clock edge:

clk = '0'
not clk and clk'event -- Because clk is not a Boolean

Defining an Event Outside a Process

The 'event attribute can be used outside of a process block. For example, the
process block

process (clk,d)
begin

if (clk='1' and clk'event) then
q <= d;

end if;
end process;

can be replaced by including the following line outside of the process state-
ment:

q <= d when (clk='1' and clk'event);

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 519

Using a WAIT Statement Inside a Process

The synthesis tool supports a wait statement inside a process to create flip-
flops, instead of using a sensitivity list.

Example

library ieee;
use ieee.std_logic_1164.all;

entity dff_or is
port (a, b, clk: in std_logic;

q: out std_logic);
end dff_or;

architecture wait_statement of dff_or is
begin

process -- Notice the absence of a sensitivity list.
begin

-- The process waits here until the condition becomes true
wait until rising_edge(clk);

q <= a or b;
end process;

end wait_statement;

Rules for Using wait Statements Inside a Process

• It is illegal in VHDL to have a process with a wait statement and a sensi-
tivity list.

• The wait statement must either be the first or the last statement of the
process.

Clock Edge Representation in wait Statements

The typical rising clock edge representation is:

wait until rising_edge(clk);

Other supported rising clock edge representations are:

wait until clk = '1' and clk'event
wait until clk'last_value = '0' and clk'event
wait until clk'event and clk /= '0'

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
520 May 2015

The typical falling clock edge representation is:

wait until falling_edge(clk)

Other supported falling clock edge representations are:

wait until clk = '0' and clk'event
wait until clk'last_value = '1' and clk'event
wait until clk'event and clk /= '1'

Level-sensitive Latches Using Concurrent Signal Assignments

To model level-sensitive latches in VHDL, use a concurrent signal assignment
statement with the conditional signal assignment form (also known as when-
else).

Syntax

signal <= value1 when condition1 else
value2 when condition2 else
valueN-1 when conditionN-1 else
valueN;

Example

In VHDL, you are not allowed to read the value of ports of mode out inside of
an architecture that it was declared for. Ports of mode buffer can be read from
and written to, but must have no more than one driver for the port in the
architecture. In the following port statement example, q is defined as mode
buffer.

library ieee;
use ieee.std_logic_1164.all;

entity latchor1 is
port (a, b, clk : in std_logic;

-- q has mode buffer so it can be read inside architecture
q: buffer std_logic);

end latchor1;

architecture behave of latchor1 is
begin

q <= a or b when clk = '1' else q;
end behave;

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 521

Whenever clk, a, or b changes, the expression on the right side re-evaluates. If
clk becomes true (active, logic 1), the value of a or b is assigned to the q
output. When the clk changes and becomes false (deactivated), q is assigned
to q (holds the last value of q). If a or b changes, and clk is already active, the
new value of a or b is assigned to q.

Level-sensitive Latches Using VHDL Processes

Although it is simpler to specify level-sensitive latches using concurrent
signal assignment statements, you can create level-sensitive latches with
VHDL processes. Follow the guidelines given here for the sensitivity list and
assignments.

process Template

process (<sensitivity list>)
begin

<sequential statement(s)>
end process;

Sensitivity List

The sensitivity list specifies the clock signal, and the signals that feed into the
data input of the level-sensitive latch. The sensitivity list must be located
immediately after the process keyword.

Syntax
process (clock_name, signal1, signal2, ...)

Example
process (clk, data)

process Template for a Level-sensitive Latch
process (<clock, data_signals ... > ...)
begin

if (<clock> = <active_value>)
<signals> <= <expression involving data signals>;

end if;
end process ;

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
522 May 2015

All data signals assigned in this manner become logic into data inputs of
level-sensitive latches.

Whenever level-sensitive latches are generated from a process, the synthesis
tool issues a warning message so that you can verify if level-sensitive latches
are really what you intended. Often a thorough simulation of your architec-
ture will reveal mistakes in coding style that can cause the creation of level-
sensitive latches during synthesis.

Example: Creating Level-sensitive Latches that You Want
library ieee;
use ieee.std_logic_1164.all;

entity latchor2 is
port (a, b, clk : in std_logic;

q: out std_logic);
end latchor2;

architecture behave of latchor2 is
begin

process (clk, a, b)
begin

if clk = '1' then
q <= a or b;

end if;
end process;

end behave;

If there is an event (change in value) on either clk, a or b, and clk is a logic 1,
set q to a or b.

What to do when clk is a logic 0 is not specified (there is no else), so when clk is
a logic zero, the last value assigned is maintained (there is an implicit q=q).
The synthesis tool correctly recognizes this as a level-sensitive latch, and
creates a level-sensitive latch in your design. It will issue a warning message
when you compile this architecture, but after examination, this warning
message can safely be ignored.

Example: Creating Unwanted Level-sensitive Latches
This design demonstrates the level-sensitive latch warning caused by a
missed assignment in the when two => case. The message generated is:

"Latch generated from process for signal odd, probably caused by a
missing assignment in an if or case statement".

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 523

This information will help you find a functional error even before simulation.

library ieee;
use ieee.std_logic_1164.all;

entity mistake is
port (inp: in std_logic_vector (1 downto 0);

outp: out std_logic_vector (3 downto 0);
even, odd: out std_logic);

end mistake;

architecture behave of mistake is
constant zero: std_logic_vector (1 downto 0):= "00";
constant one: std_logic_vector (1 downto 0):= "01";
constant two: std_logic_vector (1 downto 0):= "10";
constant three: std_logic_vector (1 downto 0):= "11";

begin
process (inp)
begin

case inp is
when zero =>

outp <= "0001";
even <= '1';
odd <= '0';

when one =>
outp <= "0010";
even <= '0';
odd <= '1';

when two =>
outp <= "0100";
even <= '1';

-- Notice that assignment to odd is mistakenly commented out next.

-- odd <= '0';
when three =>

outp <= "1000";
even <= '0';
odd <= '1';

end case;
end process;

end behave;

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
524 May 2015

Signed mod Support for Constant Operands

The synthesis tool supports signed mod for constant operands. Additionally,
division operators (/, rem, mod), where the operands are compile-time
constants and greater than 32 bits, are supported.

Example of using signed mod operator with constant operands

LIBRARY ieee; USE ieee.std_logic_1164.ALL;
LIBRARY ieee; USE ieee.numeric_std.all;

ENTITY divmod IS
 PORT (tstvec: out signed(7 DOWNTO 0));
END divmod;

ARCHITECTURE structure OF divmod IS
CONSTANT NOMINATOR : signed(7 DOWNTO 0) := "10000001";
CONSTANT DENOMINATOR : signed(7 DOWNTO 0) := "00000011";
CONSTANT RESULT : signed(7 DOWNTO 0) := NOMINATOR mod

DENOMINATOR;
BEGIN

tstvec <= result;

END ARCHITECTURE structure;

Example of a signed division with a constant right operand.

LIBRARY ieee ; USE ieee.std_logic_1164.ALL;
LIBRARY ieee ; USE ieee.numeric_std.all;

ENTITY divmod IS
 PORT (tstvec: out signed(7 DOWNTO 0));
END divmod;

ARCHITECTURE structure OF divmod IS
CONSTANT NOMINATOR : signed(7 DOWNTO 0) := "11111001";
CONSTANT DENOMINATOR : signed(7 DOWNTO 0) := "00000011";
CONSTANT RESULT : signed(7 DOWNTO 0) := NOMINATOR /

DENOMINATOR;
BEGIN

tstvec <= result;

END ARCHITECTURE structure;

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 525

An example where the operands are greater than 32 bits

LIBRARY ieee; USE ieee.std_logic_1164.ALL;
LIBRARY ieee; USE ieee.numeric_std.all;

ENTITY divmod IS
 PORT (tstvec: out unsigned(33 DOWNTO 0));
END divmod;

ARCHITECTURE structure OF divmod IS
CONSTANT NOMINATOR : unsigned(33 DOWNTO 0) :=
"1000000000000000000000000000000000";
CONSTANT DENOMINATOR : unsigned(32 DOWNTO 0) :=
"000000000000000000000000000000011";
CONSTANT RESULT : unsigned(33 DOWNTO 0) := NOMINATOR /

DENOMINATOR;
BEGIN

tstvec <= result;
END ARCHITECTURE structure;

LO

 VHDL Language Support Sets and Resets

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
526 May 2015

Sets and Resets

This section describes VHDL sets and resets, both asynchronous and
synchronous. A set signal is an input to a flip-flop that, when activated, sets
the state of the flip-flop to a logic one. A reset signal is an input to a flip-flop
that, when activated, sets the state of the flip-flop to a logic zero.

The topics include:

• Asynchronous Sets and Resets, on page 526

• Synchronous Sets and Resets, on page 527

Asynchronous Sets and Resets

By definition, asynchronous sets and resets are independent of the clock and
do not require an active clock edge. Therefore, you must include the set and
reset signals in the sensitivity list of your process so they trigger the process
to execute.

Sensitivity List

The sensitivity list is a list of signals (including ports) that, when there is an
event (change in value), triggers the process to execute.

Syntax
process (clk_name, set_signal_name, reset_signal_name)

The signals are listed in any order, separated by commas.

Example: process Template with Asynchronous, Active-high reset, set
process (clk, reset, set)
begin

if reset = '1' then
-- Reset the outputs to zero.

elsif set = '1' then
-- Set the outputs to one.

elsif rising_edge(clk) then -- Rising clock edge clock
-- Clocked logic goes here.

end if;
end process;

Sets and Resets VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 527

Example: D Flip-flop with Asynchronous, Active-high reset, set
library ieee;
use ieee.std_logic_1164.all;

entity dff1 is
port (data, clk, reset, set : in std_logic;

qrs: out std_logic);
end dff1;

architecture async_set_reset of dff1 is
begin

setreset: process(clk, reset, set)
begin

if reset = '1' then
qrs <= '0';

elsif set = '1' then
qrs <= '1';

elsif rising_edge(clk) then
qrs <= data;

end if;
end process setreset;

end async_set_reset;

Synchronous Sets and Resets

Synchronous sets and resets set flip-flop outputs to logic '1' or '0' respectively
on an active clock edge.

Do not list the set and reset signal names in the sensitivity list of a process so
they will not trigger the process to execute upon changing. Instead, trigger
the process when the clock signal changes, and check the reset and set as
the first statements.

RTL View Primitives

The VHDL compiler can detect and extract the following flip-flops with
synchronous sets and resets and display them in the RTL schematic view:

• sdffr – f lip-flop with synchronous reset

• sdffs – flip-flop with synchronous set

• sdffrs – flip-flop with both synchronous set and reset

• sdffpat – vectored flip-flop with synchronous set/reset pattern

LO

 VHDL Language Support Sets and Resets

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
528 May 2015

• sdffre – enabled flip-flop with synchronous reset

• sdffse – enabled flip-flop with synchronous set

• sdffpate – enabled, vectored flip-flop with synchronous set/reset pattern

You can check the name (type) of any primitive by placing the mouse pointer
over it in the RTL view: a tooltip displays the name.

Sensitivity List

The sensitivity list is a list of signals (including ports) that, when there is an
event (change in value), triggers the process to execute.

Syntax
process (clk_signal_name)

Sets and Resets VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 529

Example: process Template with Synchronous, Active-high reset, set
process(clk)
begin

if rising_edge(clk) then
if reset = '1' then

-- Set the outputs to '0'.
elsif set = '1' then

-- Set the outputs to '1'.
else

-- Clocked logic goes here.
end if;

end if;
end process;

Example: D Flip-flop with Synchronous, Active-high reset, set
library ieee;
use ieee.std_logic_1164.all;

entity dff2 is
port (data, clk, reset, set : in std_logic;

qrs: out std_logic);
end dff2;

architecture sync_set_reset of dff2 is
begin

setreset: process (clk)
begin

if rising_edge(clk) then
if reset = '1' then

qrs <= '0';
elsif set = '1' then

qrs <= '1';
else

qrs <= data;
end if;

end if;
end process setreset;

end sync_set_reset;

LO

 VHDL Language Support VHDL State Machines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
530 May 2015

VHDL State Machines

This section describes VHDL state machines: guidelines for using them,
defining state values with enumerated types, and dealing with asynchrony.
The topics include:

• State Machine Guidelines, on page 530

• Using Enumerated Types for State Values, on page 534

• Simulation Tips When Using Enumerated Types, on page 535

• Asynchronous State Machines in VHDL, on page 536

State Machine Guidelines

A finite state machine (FSM) is hardware that advances from state to state at
a clock edge.

The synthesis tool works best with synchronous state machines. You
typically write a fully synchronous design, avoiding asynchronous paths such
as paths through the asynchronous reset of a register. See Asynchronous
State Machines in VHDL, on page 536 for information about asynchronous
state machines.

The following are guidelines for coding FSMs:

• The state machine must have a synchronous or asynchronous reset, to
be inferred. State machines must have an asynchronous or synchro-
nous reset to set the hardware to a valid state after power-up, and to
reset your hardware during operation (asynchronous resets are avail-
able freely in most FPGA architectures).

• The synthesis tool does not infer implicit state machines that are created
using multiple wait statements in a process.

• Separate the sequential process statements from the combinational ones.
Besides making it easier to read, it makes what is being registered very
obvious. It also gives better control over the type of register element
used.

• Represent states with defined labels or enumerated types.

VHDL State Machines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 531

• Use a case statement in a process to check the current state at the clock
edge, advance to the next state, and set the output values. You can also
use if-then-else statements.

• Assign default values to outputs derived from the FSM before the case
statement. This helps prevent the generation of unwanted latches and
makes it easier to read because there is less clutter from rarely used
signals.

• If you do not have case statements for all possible combinations of the
selector, use a when others assignment as the last assignment in your
case statement and set the state vector to some valid state. If your state
vector is not an enumerated type, set the value to X. Assign the state to
X in the default clause of the case statement, to avoid mismatches
between pre- and post-synthesis simulations. See Example: Default
Assignment, on page 534.

• If a state machine defined in the code feeds sequential elements in a
different clock domain, some encoding values can cause metastability.
By default, the synthesis tools choose the optimal encoding value based
on the number of states in the state machine. This can introduce
additional decode logic that could cause metastability when it feeds
sequential elements in a different clock domain. The prevent this
instability, use syn_encoding = "original" to guide the synthesis tool for
these cases.

• Override the default encoding style with the syn_encoding attribute. The
default encoding is determined by the number of states. See
syn_encoding Values, on page 54 for a list of default and other encod-
ings. When you specify a particular encoding style with syn_encoding,
that value is used during the mapping stage to determine encoding
style.

attribute syn_encoding : string;
attribute syn_encoding of <typename> : type is "sequential";

See the Attribute Reference manual, for details about the syntax and
values.

One-hot implementations are not always the best choice for state
machines, even in FPGAs and CPLDs. For example, one-hot state
machines might result in higher speeds in CPLDs, but could cause
fitting problems because of the larger number of global signals. An
example in an FPGA with ineffective one-hot implementation is a state
machine that drives a large decoder, generating many output signals. In

LO

 VHDL Language Support VHDL State Machines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
532 May 2015

a 16-state state machine, for example, the output decoder logic might
reference sixteen signals in a one-hot implementation, but only four
signals in an encoded representation.

In general, do not use the directive syn_enum_encoding to set the encoding
style. Use syn_encoding instead. The value of syn_enum_encoding is used by
the compiler to interpret the enumerated data types but is ignored by
the mapper when the state machine is actually implemented.

The directive syn_enum_encoding affects the final circuit only when you
have turned off the FSM Compiler. Therefore, if you are not using FSM
Compiler or the syn_state_machine attribute, which use syn_encoding, you
can use syn_enum_encoding to set the encoding style. See the Attribute
Reference manual, for details about the syntax and values.

• Implement user-defined enumeration encoding, beyond the one-hot, gray,
and sequential styles. Use the directive syn_enum_encoding to set the state
encoding. See Example: FSM User-Defined Encoding, on page 533.

Example: FSM Coding Style

architecture behave of test is
type state_value is (deflt, idle, read, write);
signal state, next_state: state_value;

begin
-- Figure out the next state

process (clk, rst)
begin

if rst = '0' then
state <= idle;

elsif rising_edge(clk) then
state <= next_state;

end if;
end process;

process (state, enable, data_in)
begin

data_out <= '0';
-- Catch missing assignments to next_state
next_state <= idle;
state0 <= '0';
state1 <= '0';
state2 <= '0';
case state is

when idle =>
if enable = '1' then

VHDL State Machines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 533

state0 <= '1' ;data_out <= data_in(0);
next_state <= read;

else next_state <= idle;
end if;

when read =>
if enable = '1' then

state1 <= '1'; data_out <= data_in(1);
next_state <= write;

else next_state <= read;
end if;

when deflt =>
if enable = '1' then

state2 <= '1' ;data_out <= data_in(2);
next_state <= idle;

else next_state <= write;
end if;

when others => next_state <= deflt;
end case;

end process;
end behave;

Example: FSM User-Defined Encoding

library ieee;
use ieee.std_logic_1164.all;

entity shift_enum is
port (clk, rst : bit;

O : out std_logic_vector(2 downto 0));
end shift_enum;

architecture behave of shift_enum is
type state_type is (S0, S1, S2);
attribute syn_enum_encoding: string;
attribute syn_enum_encoding of state_type : type is "001 010 101";
signal machine : state_type;
begin

process (clk, rst)
begin

if rst = '1' then
machine <= S0;

elsif clk = '1' and clk'event then
case machine is

when S0 => machine <= S1;

LO

 VHDL Language Support VHDL State Machines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
534 May 2015

when S1 => machine <= S2;
when S2 => machine <= S0;

end case;
end if;

end process;

with machine select
O <= "001" when S0,
"010" when S1,
"101" when S2;

end behave;

Example: Default Assignment

The second others keyword in the following example pads (covers) all the bits.
In this way, you need not remember the exact number of X’s needed for the
state variable or output signal.

when others =>
state := (others => 'X');

Assigning X to the state variable (a “don’t care” for synthesis) tells the
synthesis tool that you have specified all the used states in your case state-
ment, and any unnecessary decoding and gates related to other cases can
therefore be removed. You do not have to add any special, non-VHDL direc-
tives.

If you set the state to a used state for the when others case (for example: when
others => state <= delft), the synthesis tool generates the same logic as if you
assign X, but there will be pre- and post-synthesis simulation mismatches
until you reset the state machine. These mismatches occur because all
inputs are unknown at start up on the simulator. You therefore go immedi-
ately into the when others case, which sets the state variable to state1. When
you power up the hardware, it can be in a used state, such as state2, and then
advance to a state other than state1. Post-synthesis simulation behaves more
like hardware with respect to initialization.

Using Enumerated Types for State Values

Generally, you represent states in VHDL with a user-defined enumerated
type.

VHDL State Machines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 535

Syntax

type type_name is (state1_name, state2_name, ... , stateN_name);

Example

type states is (st1, st2, st3, st4, st5, st6, st7, st8);
begin
-- The statement region of a process or subprogram.
next_state := st2;
-- Setting the next state to st2

Simulation Tips When Using Enumerated Types

You want initialization in simulation to mimic the behavior of hardware when
it powers up. Therefore, do not initialize your state machine to a known state
during simulation, because the hardware will not be in a known state when it
powers up.

Creating an Extra Initialization State

If you use an enumerated type for your state vector, create an extra initializa-
tion state in your type definition (for example, stateX), and place it first in the
list, as shown in the example below.

type state is (stateX, state1, state2, state3, state4);

In VHDL, the default initial value for an enumerated type is the leftmost value
in the type definition (in this example, stateX). When you begin the simulation,
you will be in this initial (simulation only) state.

Detecting Reset Problems

In your state machine case statement, create an entry for staying in stateX
when you get in stateX. For example:

when stateX => next_state := stateX;

Look for your design entering stateX. This means that your design is not reset-
ting properly.

LO

 VHDL Language Support VHDL State Machines

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
536 May 2015

Note: The synthesis tool does not create hardware to represent this
initialization state (stateX). It is removed during optimization.

Detecting Forgotten Assignment to the Next State

Assign your next state value to stateX immediately before your state machine
case statement.

Example
next_state := stateX;
case (current_state) is
...

when state3 =>
if (foo = '1') then

next_state := state2;
end if;

...
end case;

Asynchronous State Machines in VHDL

Avoid defining asynchronous state machines in VHDL. An asynchronous
state machine has states, but no clearly defined clock, and has combina-
tional loops. However, if you must use asynchronous state machines, you
can do one of the following:

• Create a netlist of the technology primitives from the target library for
your technology vendor. Any instantiated primitives that are left in the
netlist are not removed during optimization.

• Use a schematic editor for the asynchronous state machine part of your
design.

Do not use the synthesis tool to design asynchronous state machines; the
tool might remove your hazard-suppressing logic when it performs logic
optimization, causing your asynchronous state machine to work incorrectly.

The synthesis tool displays a “found combinational loop” warning message for
an asynchronous FSM when it detects combinational loops in continuous
assignment statements, processes and built-in gate-primitive logic.

VHDL State Machines VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 537

Asynchronous State Machines that Generate Error Messages

In this example, both async1 and async2 will generate combinational loop
errors, because of the recursive definition for output.

library ieee;
use ieee.std_logic_1164.all;

entity async is
-- output is a buffer mode so that it can be read

port (output : buffer std_logic;
g, d : in std_logic);

end async;

-- Asynchronous FSM from concurrent assignment statement
architecture async1 of async is
begin

-- Combinational loop error, due to recursive output definition.
output <= (((((g and d) or (not g)) and output) or d) and

output);
end async1;

-- Asynchronous FSM created within a process
architecture async2 of async is
begin

process(g, d, output)
begin

-- Combinational loop error, due to recursive output definition.
output <= (((((g and d) or (not g)) and output) or d) and
output);

end process;
end async2;

LO

 VHDL Language Support Hierarchical Design Creation in VHDL

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
538 May 2015

Hierarchical Design Creation in VHDL

Creating hierarchy is similar to creating a schematic. You place available
parts from a library onto a schematic sheet and connect them.

To create a hierarchical design in VHDL, you instantiate one design unit
inside of another. In VHDL, the design units you instantiate are called
components. Before you can instantiate a component, you must declare it
(step 2, below).

The basic steps for creating a hierarchical VHDL design are:

1. Write the design units (entities and architectures) for the parts you wish
to instantiate.

2. Declare the components (entity interfaces) you will instantiate.

3. Instantiate the components, and connect (map) the signals (including
top-level ports) to the formal ports of the components to wire them up.

Step 1 – Write Entities and Architectures

Write entities and architectures for the design units to instantiate.

library ieee;
use ieee.std_logic_1164.all;

entity muxhier is
port (outvec: out std_logic_vector (7 downto 0);

a_vec, b_vec: in std_logic_vector (7 downto 0);
sel: in std_logic);

end muxhier;

architecture mux_design of muxhier is
begin
-- <mux functionality>
end mux_design;

Hierarchical Design Creation in VHDL VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 539

library ieee;
use ieee.std_logic_1164.all;

entity reg8 is
port (q: buffer std_logic_vector (7 downto 0);

data: in std_logic_vector (7 downto 0);
clk, rst: in std_logic);

end reg8;

architecture reg8_design of reg8 is -- 8-bit register
begin
-- <8-bit register functionality>
end reg8_design;

library ieee;
use ieee.std_logic_1164.all;

entity rotate is
port (q: buffer std_logic_vector (7 downto 0);

data: in std_logic_vector (7 downto 0);
clk, rst, r_l: in std_logic);

end rotate;

architecture rotate_design of rotate is
begin
-- Rotates bits or loads
-- When r_l is high, it rotates; if low, it loads data
-- <Rotation functionality>
end rotate_design;

Step 2 – Declare the Components

Components are declared in the declarative region of the architecture with a
component declaration statement.

The component declaration syntax is:

component entity_name
port (port_list);

end component;

The entity_name and port_list of the component must match exactly that of the
entity you will be instantiating.

LO

 VHDL Language Support Hierarchical Design Creation in VHDL

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
540 May 2015

Example
architecture structural of top_level_design is
-- Component declarations are placed here in the
-- declarative region of the architecture.

component muxhier -- Component declaration for mux
port (outvec: out std_logic_vector (7 downto 0);

a_vec, b_vec: in std_logic_vector (7 downto 0);
sel: in std_logic);

end component;

component reg8 -- Component declaration for reg8
port (q: out std_logic_vector (7 downto 0);

 data: in std_logic_vector (7 downto 0);
 clk, rst: in std_logic);

end component;

component rotate -- Component declaration for rotate
port (q: buffer std_logic_vector (7 downto 0);

data: in std_logic_vector (7 downto 0);
clk, rst, r_l: in std_logic);

end component;
begin
-- The structural description goes here.
end structural;

Step 3 – Instantiate the Components

Use the following syntax to instantiate your components:

unique_instance_name : component_name
[generic map (override_generic_values)]

port map (port_connections);

You can connect signals either with positional mapping (the same order
declared in the entity) or with named mapping (where you specify the names
of the lower-level signals to connect). Connecting by name minimizes errors,
and especially advantageous when the component has many ports. To use
configuration specification and declaration, refer to Configuration Specifica-
tion and Declaration, on page 542.

Hierarchical Design Creation in VHDL VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 541

Example
library ieee;
use ieee.std_logic_1164.all;

entity top_level is
port (q: buffer std_logic_vector (7 downto 0);

 a, b: in std_logic_vector (7 downto 0);
 sel, r_l, clk, rst: in std_logic);

end top_level;

architecture structural of top_level is
-- The component declarations shown in Step 2 go here.
-- Declare the internal signals here
signal mux_out, reg_out: std_logic_vector (7 downto 0);

begin
-- The structural description goes here.
-- Instantiate a mux, name it inst1, and wire it up.
-- Map (connect) the ports of the mux using positional association.
inst1: muxhier port map (mux_out, a, b, sel);

-- Instantiate a rotate, name it inst2, and map its ports.
inst2: rotate port map (q, reg_out, clk, r_l, rst);

-- Instantiate a reg8, name it inst3, and wire it up.
-- reg8 is connected with named association.
-- The port connections can be given in any order.
-- Notice that the actual (local) signal names are on
-- the right of the '=>' mapping operators, and the
-- formal signal names from the component
-- declaration are on the left.
inst3: reg8 port map (

clk => clk,
data => mux_out,
q => reg_out,
rst => rst);

end structural;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
542 May 2015

Configuration Specification and Declaration

A configuration declaration or specification can be used to define binding
information of component instantiations to design entities (entity-architec-
ture pairs) in a hierarchical design. After the structure of one level of a design
has been fully described using components and component instantiations, a
designer must describe the hierarchical implementation of each component.

A configuration declaration or specification can also be used to define binding
information of design entities (entity-architecture pairs) that are compiled in
different libraries.

This section discusses usage models of the configuration declaration state-
ment supported by the synthesis tool. The following topics are covered:

• Configuration Specification, on page 542

• Configuration Declaration, on page 546

• VHDL Configuration Statement Enhancement, on page 552

Component declarations and component specifications are not required for a
component instantiation where the component name is the same as the
entity name. In this case, the entity and its last architecture denote the
default binding. In direct-entity instantiations, the binding information is
available as the entity is specified, and the architecture is optionally specified.
Configuration declaration and/or configuration specification are required
when the component name does not match the entity name. If configurations
are not used in this case, VHDL simulators give error messages, and the
synthesis tool creates a black box and continues synthesis.

Configuration Specification

A configuration specification associates binding information with component
labels that represent instances of a given component declaration. A configu-
ration specification is used to bind a component instance to a design entity,
and to specify the mapping between the local generics and ports of the
component instance and the formal generics and ports of the entity. Option-
ally, a configuration specification can bind an entity to one of its architec-
tures. The synthesis tool supports a subset of configuration specification
commonly used in RTL synthesis; this section discusses that support.

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 543

The following Backus-Naur Form (BNF) grammar is supported (VHDL-93
LRM pp.73-79):

configuration_specification ::=

 for component_specification binding_indication;

component_specification ::=

instantiation_list : component_name

instantiation_list ::=

instantiation_label {, instantiation_label } | others | all

binding_indication ::= [use entity_aspect]
[generic_map_aspect]
[port_map_aspect]

entity_aspect ::=

entity entity_name [(architecture_identifier)] |
configuration configuration_name

for others: AND_GATE use entity work.AND_GATE(structure);
for all: XOR_GATE use entity work.XOR_GATE;

Example: Configuration Specification

In the following example, two architectures (RTL and structural) are defined
for an adder. There are two instantiations of an adder in design top. A config-
uration statement defines the adder architecture to use for each instantia-
tion.

for L1: XOR_GATE use entity work.XOR_GATE(behavior);

instantiation_label
component_name

entity_name
architecture_identifier

entity_aspect

binding_indication

component_specification

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
544 May 2015

library IEEE;
use IEEE.std_logic_1164.all;

entity adder is
port (a : in std_logic;

b : in std_logic;
cin : in std_logic;

 s : out std_logic;
cout : out std_logic);

end adder;

library IEEE;
use IEEE.std_logic_unsigned.all;

architecture rtl of adder is
signal tmp : std_logic_vector(1 downto 0);
begin

tmp <= ('0' & a) - b - cin;
s <= tmp(0);
cout <= tmp(1);

end rtl;

architecture structural of adder is
begin

s <= a xor b xor cin;
cout <= ((not a) and b and cin) or (a and (not b) and cin)

or (a and b and (not cin)) or (a and b and cin);
end structural;

library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (a : in std_logic_vector(1 downto 0);

b : in std_logic_vector(1 downto 0);
c : in std_logic;
cout : out std_logic;
sum : out std_logic_vector(1 downto 0));

end top;

architecture top_a of top is
component myadder

port (a : in std_logic;
b : in std_logic;
cin : in std_logic;
s : out std_logic;
cout : out std_logic);

end component;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 545

signal carry : std_logic;
for s1 : myadder use entity work.adder(structural);
for r1 : myadder use entity work.adder(rtl);
begin

s1 : myadder port map (a(0), b(0), c, sum(0), carry);
r1 : myadder port map (a(1), b(1), carry, sum(1), cout);

end top_a;

Results

Unsupported Constructs for Configuration Specification

The following configuration specification construct is not supported by the
synthesis tool. An appropriate message is issued in the log file when this
construct is used.

• The VHDL-93 LRM defines entity_aspect in the binding indication as:

entity_aspect ::=

entity entity_name [(architecture_identifier)] |
configuration configuration_name | open

The synthesis tool supports entity_name and configuration_name in the
entity_aspect of a binding indication. The tool does not yet support the
open construct.

for s1 : myadder use entity work.adder(structural); end for;

for r1 : myadder use entity work.adder(rtl); end for;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
546 May 2015

Configuration Declaration

Configuration declaration specifies binding information of component instan-
tiations to design entities (entity-architecture pairs) in a hierarchical design.
Configuration declaration can bind component instantiations in an architec-
ture, in either a block statement, a for…generate statement, or an if…generate
statement. It is also possible to bind different entity-architecture pairs to
different indices of a for...generate statement.

The synthesis tool supports a subset of configuration declaration commonly
used in RTL synthesis. The following Backus-Naur Form (BNF) grammar is
supported (VHDL-93 LRM pp.11-17):

configuration_declaration ::=

configuration identifier of entity_name is

block_configuration

end [configuration] [configuration_simple_name] ;

block_configuration ::=

for block_specification

{ configuration_item }

end for ;

block_specification ::=

achitecture_name | block_statement_label |
generate_statement_label [(index_specification)]

index_specification ::=

discrete_range | static_expression

configuration_item ::=

block_configuration | component_configuration

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 547

component_configuration ::=

for component_specification
[binding_indication ;]
[block_configuration]

end for ;

The BNF grammar for component_specification and binding_indication is described
in Configuration Specification, on page 542.

Configuration Declaration within a Hierarchy

The following example shows a configuration declaration describing the
binding in a 3-level hierarchy, for…generate statement labeled label1, within
block statement blk1 in architecture arch_gen3. Each architecture implementa-
tion of an instance of my_and1 is determined in the configuration declaration
and depends on the index value of the instance in the for…generate statement.

entity and1 is
port(a,b: in bit ; o: out bit);

end;

architecture and_arch1 of and1 is
begin

o <= a and b;
end;

architecture and_arch2 of and1 is
begin

o <= a and b;
end;

architecture and_arch3 of and1 is
begin

o <= a and b;
end;

library WORK; use WORK.all;
entity gen3_config is

port(a,b: in bit_vector(0 to 7);
 res: out bit_vector(0 to 7));

end;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
548 May 2015

library WORK; use WORK.all;
architecture arch_gen3 of gen3_config is
component my_and1 port(a,b: in bit ; o: out bit); end component;
begin

label1: for i in 0 to 7 generate
blk1: block
begin

a1: my_and1 port map(a(i),b(i),res(i));
end block;

end generate;
end;

library work;
configuration config_gen3_config of gen3_config is

for arch_gen3 -- ARCHITECTURE block_configuration "for
-- block_specification"

for label1 (0 to 3) --GENERATE block_config "for
-- block_specification"
for blk1 -- BLOCK block_configuration "for
-- block_specification"
-- {configuration_item}

for a1 : my_and1 -- component_configuration
-- Component_specification "for idList : compName"

use entity work.and1(and_arch1); --
binding_indication

end for; -- a1 component_configuration
end for; -- blk1 BLOCK block_configuration

end for; -- label1 GENERATE block_configuration
for label1 (4) -- GENERATE block_configuration "for

-- block_specification"
for blk1

for a1 : my_and1
use entity work.and1(and_arch3);

end for;
end for;

end for;

for label1 (5 to 7)
for blk1

for a1 : my_and1
use entity work.and1(and_arch2);

end for;
end for;

end for;
end for; -- ARCHITECTURE block_configuration

end config_gen3_config;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 549

Selection with Configuration Declaration

In the following example, two architectures (RTL and structural) are defined
for an adder. There are two instantiations of an adder in design top. A config-
uration declaration defines the adder architecture to use for each instantia-
tion. This example is similar to the configuration specification example.

library IEEE;
use IEEE.std_logic_1164.all;

entity adder is
port (a : in std_logic;

b : in std_logic;
cin : in std_logic;
s : out std_logic;
cout : out std_logic);

end adder;

library IEEE;
use IEEE.std_logic_unsigned.all;

architecture rtl of adder is
signal tmp : std_logic_vector(1 downto 0);
begin

tmp <= ('0' & a) - b - cin;
s <= tmp(0);
cout <= tmp(1);

end rtl;

architecture structural of adder is
begin

s <= a xor b xor cin;
cout <= ((not a) and b and cin) or (a and (not b) and cin) or

(a and b and (not cin)) or (a and b and cin);
end structural;

library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (a : in std_logic_vector(1 downto 0);

b : in std_logic_vector(1 downto 0);
c : in std_logic;
cout : out std_logic;
sum : out std_logic_vector(1 downto 0));

end top;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
550 May 2015

architecture top_a of top is
component myadder

port (a : in std_logic;
b : in std_logic;
cin : in std_logic;
s : out std_logic;
cout : out std_logic);

end component;

signal carry : std_logic;
begin

s1 : myadder port map (a(0), b(0), c, sum(0), carry);
r1 : myadder port map (a(1), b(1), carry, sum(1), cout);

end top_a;

library work;
configuration config_top of top is -- configuration_declaration

for top_a -- block_configuration "for block_specification"
-- component_configuration

for s1: myadder -- component_specification
use entity work.adder (structural); -- binding_indication

end for; -- component_configuration
-- component_configuration

for r1: myadder -- component_specification
use entity work.adder (rtl); -- binding_indication

end for; -- component_configuration
end for; -- block_configuration

end config_top;

Results

for s1 : myadder use entity work.adder (structural); end for;

for r1 : myadder use entity work.adder (rtl); end for;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 551

Direct Instantiation of Entities Using Configuration

In this method, a configured entity (i.e., an entity with a configuration decla-
ration) is directly instantiated by writing a component instantiation state-
ment that directly names the configuration.

Syntax
label : configuration configurationName

[generic map (actualGeneric1, actualGeneric2, ...)]
[port map (port1, port2, ...)] ;

Example – Direct Instantiation Using Configuration Declaration

Unsupported Constructs for Configuration Declaration

The following are the configuration declaration constructs that are not
supported by the synthesis tool. Appropriate messages are displayed in the
log file if these constructs are used.

1. The VHDL-93 LRM defines the configuration declaration as:

configuration_declaration ::=

configuration identifier of entity_name is
configuration_declarative_part
block_configuration

end [configuration] [configuration_simple_name] ;

configuration_declarative_part ::= { configuration_declarative_item }

configuration_declarative_item ::=

use_clause | attribute_specification | group_declaration

The synthesis tool does not support the configuration_declarative_part. It
parses the use_clause and attribute_specification without any warning
message. The group_declaration is not supported and an error message is
issued.

2. VHDL-93 LRM defines entity aspect in the binding indication as:

entity_aspect ::=

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
552 May 2015

entity entity_name [(architecture_identifier)] |
configuration configuration_name | open

block_configuration ::=

for block_specification
{ use_clause }
{ configuration_item }

end for ;

The synthesis tool does not support use_clause in block_configuration. This
construct is parsed and ignored.

VHDL Configuration Statement Enhancement

This section highlights the VHDL configuration statement support and
handling component declarations with corresponding entity descriptions.
Topics include:

• Generic mapping, on page 552

• Port Mapping, on page 553

• Mapping Multiple Entity Names to the Same Component, on page 554

• Generics Assigned to Configurations, on page 555

• Arithmetic Operators and Functions in Generic Maps, on page 560

• Ports in Component Declarations, on page 561

Generic mapping

Generics and ports can have different names and sizes at the entity and
component levels. You use the configuration statement to bind them together
with a configuration specification or a configuration declaration. The binding
priority follows this order:

• Configuration specification

• Component specification

• Component declaration

library ieee;
use ieee.std_logic_1164.all;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 553

entity test is
generic (range1 : integer := 11);

port (a, a1 : in std_logic_vector(range1 - 1 downto 0);
b, b1 : in std_logic_vector(range1 - 1 downto 0);
c, c1 : out std_logic_vector(range1 - 1 downto 0));

end test;

architecture test_a of test is
component submodule1 is
generic (size : integer := 6);

port (a : in std_logic_vector(size -1 downto 0);
b : in std_logic_vector(size -1 downto 0);
c : out std_logic_vector(size -1 downto 0));

end component;

for all : submodule1
use entity work.sub1(rtl)
generic map (size => range1);
begin

UUT1 : submodule1 generic map (size => 4)
port map (a => a,b => b,c => c);

end test_a;

If you define the following generic map for sub1, it takes priority:

entity sub1 is
generic(size: integer:=1);

port (a: in std_logic_vector(size -1 downto 0);
b : in std_logic_vector(size -1 downto 0);
c : out std_logic_vector(size -1 downto 0);

end sub1;

Port Mapping

See Generic mapping, on page 552 for information about using the configura-
tion statement and binding priority.

library ieee;
use ieee.std_logic_1164.all;

entity test is
generic (range1 : integer := 1);

port (ta, ta1 : in std_logic_vector(range1 - 1 downto 0);
tb, tb1 : in std_logic_vector(range1 - 1 downto 0);
tc, tc1 : out std_logic_vector(range1 - 1 downto 0));

end test;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
554 May 2015

architecture test_a of test is
component submodule1
generic (my_size1 : integer := 6; my_size2 : integer := 6);

port (d : in std_logic_vector(my_size1 -1 downto 0);
e : in std_logic_vector(my_size1 -1 downto 0);
f : out std_logic_vector(my_size2 -1 downto 0));

end component;

for UUT1 : submodule1
use entity work1.sub1(rtl)
generic map (size1 => my_size1, size2 => my_size2)
port map (a => d, b => e, c => f);

begin
UUT1 : submodule1 generic map (my_size1 => 1, my_size2 => 1)
port map (d => ta, e => tb,f => tc);
end test_a;

If you define the following port map for sub1, it overrides the previous
definition:

entity sub1 is
generic(size1: integer:=6; size2:integer:=6);
port (a: in std_logic_vector (size1 -1 downto 0);

b : in std_logic_vector (size1 -1 downto 0);
c : out std_logic_vector (size2 -1 downto 0);

end sub1:

Mapping Multiple Entity Names to the Same Component

When a single component has multiple entities, you can use the configuration
statement and the for label clause to bind them. The following is an example:

entity test is
generic (range1 : integer := 1);

port (ta, ta1 : in std_logic_vector(range1 - 1 downto 0);
tb, tb1 : in std_logic_vector(range1 - 1 downto 0);
tc, tc1 : out std_logic_vector(range1 - 1 downto 0));

end test;

architecture test_a of test is
component submodule
generic (my_size1 : integer := 6; my_size2 : integer := 6);

port (d,e : in std_logic_vector(my_size1 -1 downto 0);
f : out std_logic_vector(my_size2 -1 downto 0));

end component;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 555

begin
UUT1 : submodule generic map (1, 1)

port map (d => ta, e => tb, f => tc);
UUT2 : submodule generic map (1, 1) port map

(d => ta1, e => tb1, f => tc1)
end test_a;

configuration my_config of test is
for test_a

for UUT1 : submodule
use entity work.sub1(rtl)
generic map (my_size1, my_size2)
port map (d, e, f);

end for;
for others : submodule

use entity work.sub2(rtl)
generic map (my_size1, my_size2)
port map (d, e, f);

end for;
end for;
end my_config;

You can map multiple entities to the same component, as shown here:

entity sub1 is
generic(size1: integer:=6; size2:integer:=6);
port (a: in std_logic_vector (size1 -1 downto 0);

b : in std_logic_vector (size1 -1 downto 0);
c : out std_logic_vector (size2 -1 downto 0);

end sub1:

entity sub2 is
generic(width1: integer; width2:integer);
port (a1: in std_logic_vector(width1 -1 downto 0);

b1 : in std_logic_vector (width1 -1 downto 0);
c1 : out std_logic_vector (width2 -1 downto 0);

end sub1:

Generics Assigned to Configurations

Generics can be assigned to configurations instead of entities.

Entities can contain more generics than their associated component declara-
tions. Any additional generics on the entities must have default values to be
able to synthesize.

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
556 May 2015

Entities can also contain fewer generics than their associated component
declarations. The extra generics on the component have no affect on the
implementation of the entity.

Following are some examples.

Example1
Configuration conf_module1 contains a generic map on configuration conf_c.
The component declaration for submodule1 does not have the generic
use_extraSYN_ff, however, the entity has it.

library ieee;
use IEEE.std_logic_1164.all;

entity submodule1 is
generic (width : integer := 16;
use_extraSYN_ff : boolean := false);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end submodule1;

architecture rtl of submodule1 is
signal d : std_logic_vector(width - 1 downto 0);
begin
no_resynch : if use_extraSYN_ff = false generate

d <= b;
end generate no_resynch;

resynch : if use_extraSYN_ff = true generate
process (clk)
begin

if falling_edge(clk) then
d <= b;

end if;
end process;

end generate resynch;

process (clk)
begin

if rising_edge(clk) then
c <= d;

end if;
end process;

end rtl;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 557

configuration conf_c of submodule1 is
for rtl
end for;

end configuration conf_c;

library ieee;
use ieee.std_logic_1164.all;

entity module1 is
generic (width: integer := 16);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end module1;

architecture rtl of module1 is
component submodule1
generic (width: integer := 8);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end component;

begin
UUT2 : submodule1 port map (clk => clk,

b => b,
c => c);

end rtl;

library ieee;
configuration conf_module1 of module1 is

for rtl
for UUT2 : submodule1

use configuration conf_c generic map(width => 16,
use_extraSYN_ff => true);

end for;
end for;

end configuration conf_module1;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
558 May 2015

Example2
The component declaration for mod1 has the generic size, which is not in the
entity. A component declaration can have more generics than the entity,
however, extra component generics have no affect on the entity’s implementa-
tion.

library ieee;
use ieee.std_logic_1164.all;

entity module1 is
generic (width: integer := 16;
use_extraSYN_ff : boolean := false);

port (clk : in std_logic;
b : in std_logic_vector (width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end module1;

architecture rtl of module1 is
signal d : std_logic_vector(width - 1 downto 0);
begin

no_resynch : if use_extraSYN_ff = false generate
d <= b;

end generate no_resynch;

resynch : if use_extraSYN_ff = true generate -- insert pipeline
-- registers
process (clk)
begin

if falling_edge(clk) then
d <= b;

end if;
end process;

end generate resynch;

process (clk)
begin

if rising_edge(clk) then
c <= d;

end if;
end process;

end rtl;

configuration module1_c of module1 is
for rtl
end for;

end module1_c;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 559

library ieee;
use ieee.std_logic_1164.all;

entity test is
port (clk : in std_logic;

tb : in std_logic_vector(7 downto 0);
tc : out std_logic_vector(7 downto 0));

end test;

architecture test_a of test is
component mod1
generic (width: integer := 16;
use_extraSYN_ff: boolean := false;
size : integer := 8);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end component;

begin
UUT1 : mod1 generic map (width => 18)

port map (clk => clk,
b => tb,
c => tc);

end test_a;

Configuration test_c of test is
for test_a

for UUT1 : mod1
use configuration module1_c
generic map (width => 8, use_extraSYN_ff => true);

end for;
end for;
end test_c;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
560 May 2015

Arithmetic Operators and Functions in Generic Maps

Arithmetic operators and functions can be used in generic maps. Following is
an example.

Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity sub is
generic (width : integer:= 16);

port (clk : in std_logic;
a : in std_logic_vector (width - 1 downto 0);
y : out std_logic_vector (width - 1 downto 0));

end sub;

architecture rtl1 of sub is
begin

process (clk, a)
begin

if (clk = '1' and clk'event) then
y <= a;

end if;
end process;

end rtl1;

architecture rtl2 of sub is
begin y <= a;
end rtl2;

configuration sub_c of sub is
for rtl1 end for;
end sub_c;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 561

entity test is
generic (mcu_depth : integer:=1;
mcu_width : integer:=16);

port (clk : in std_logic;
a : in std_logic_vector

((mcu_depth*mcu_width)-1 downto 0);
y : out std_logic_vector

((mcu_depth*mcu_width)-1downto 0));
end test;

architecture RTL of test is
constant CWIDTH : integer := 2;
constant size : unsigned := "100";
component sub generic (width : integer);

port (clk : in std_logic;
a : in std_logic_vector (CWIDTH - 1 downto 0);
y : out std_logic_vector (CWIDTH - 1 downto 0));

end component;

begin i_sub : sub
generic map (width => CWIDTH) port map (clk => clk,

a => a,
y => y);

end RTL;

library ieee;
use ieee.std_logic_arith.all;

configuration test_c of test is
for RTL

for i_sub : sub use
configuration sub_c
generic map(width => (CWIDTH ** (conv_integer (size))));

end for;
end for;

end test_c;

Ports in Component Declarations

Entities can contain more or fewer ports than their associated component
declarations. Following are some examples.

Example1
library ieee;
use ieee.std_logic_1164.all;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
562 May 2015

entity module1 is
generic (width: integer := 16; use_extraSYN_ff : boolean := false);

port (clk : in std_logic;
b : in std_logic_vector (width - 1 downto 0);
a : out integer range 0 to 15; --extra output port

on entity
e : out integer range 0 to 15; -- extra output port

on entity
c : out std_logic_vector(width - 1 downto 0));

end module1;

architecture rtl of module1 is
signal d : std_logic_vector(width - 1 downto 0);
begin
e <= width;
a <= width;
no_resynch : if use_extraSYN_ff = false generate

d <= b;
end generate no_resynch;

resynch : if use_extraSYN_ff = true generate
process (clk)
begin

if falling_edge(clk) then
d <= b;

end if;
end process;

end generate resynch;

process (clk)
begin

if rising_edge(clk) then
c <= d;

end if;
end process;

end rtl;

configuration module1_c of module1 is
for rtl
end for;
end module1_c;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 563

library ieee;
use ieee.std_logic_1164.all;

entity test is
port (clk : in std_logic;

tb : in std_logic_vector(7 downto 0);
tc : out std_logic_vector(7 downto 0));

end test;

architecture test_a of test is
component mod1
generic (width: integer := 16);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end component;

begin
UUT1 : mod1 generic map (width => 18)
port map (clk => clk,

b => tb,
c => tc);

end test_a;

Configuration test_c of test is
for test_a

for UUT1 : mod1
use configuration module1_c
generic map (width => 8, use_extraSYN_ff => true);

end for;
end for;
end test_c;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
564 May 2015

In the figure above, the entity module1 has extra ports a and e that are not
defined in the corresponding component declaration mod1. The additional
ports are not connected during synthesis.

Example2
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY sub1 IS
GENERIC(
size1 : integer := 11;
size2 : integer := 12);

PORT (r : IN std_logic_vector(size1 -1 DOWNTO 0);
s : IN std_logic_vector(size1 -1 DOWNTO 0);
t : OUT std_logic_vector(size2 -1 DOWNTO 0));

END sub1;

ARCHITECTURE rtl OF sub1 IS
BEGIN

t <= r AND s;
END ARCHITECTURE rtl;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY test IS
GENERIC (range1 : integer := 12);

PORT (ta0 : IN std_logic_vector(range1 - 1 DOWNTO 0);
tb0 : IN std_logic_vector(range1 - 1 DOWNTO 0);
tc0 : OUT std_logic_vector(range1 - 1 DOWNTO 0));

END test;

ARCHITECTURE test_a OF test IS
COMPONENT submodule
GENERIC (
my_size1 : integer := 4;
my_size2 : integer := 5);

PORT (d : IN std_logic_vector(my_size1 -1 DOWNTO 0);
e : IN std_logic_vector(my_size1 -1 DOWNTO 0);
ext_1 : OUT std_logic_vector(my_size1 -1 DOWNTO 0);
ext_2 : OUT std_logic_vector(my_size1 -1 DOWNTO 0);
f : OUT std_logic_vector(my_size2 -1 DOWNTO 0));

END COMPONENT;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 565

BEGIN
UUT1 : submodule
GENERIC MAP (
my_size1 => range1,
my_size2 => range1)

PORT MAP (ext_1 => open,
ext_2 => open,
d => ta0,
e => tb0,
f => tc0);

END test_a;

CONFIGURATION my_config OF test IS
FOR test_a

FOR UUT1 : submodule
USE ENTITY work.sub1(rtl)
GENERIC MAP (

size1 => my_size1,
size2 => my_size2)

PORT MAP (r => d,
s => e,
t => f);

END FOR;
END FOR; -- test_a

END my_config;

In the figure above, the component declaration has more ports (ext_1 ext_2)
than entity sub1. The component is synthesized based on the number of ports
on the entity.

LO

 VHDL Language Support Scalable Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
566 May 2015

Scalable Designs

This section describes creating and using scalable VHDL designs. You can
create a VHDL design that is scalable, meaning that it can handle a user-
specified number of bits or components.

• Creating a Scalable Design Using Unconstrained Vector Ports, on
page 566

• Creating a Scalable Design Using VHDL Generics, on page 567

• Using a Scalable Architecture with VHDL Generics, on page 568

• Creating a Scalable Design Using Generate Statements, on page 570

Creating a Scalable Design Using Unconstrained Vector Ports

Do not size (constrain) the ports until you need them. This first example is
coding the adder using the - operator, and gives much better synthesized
results than the second and third scalable design examples, which code the
adders as random logic.

Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity addn is
-- Notice that a, b, and result ports are not constrained.
-- In VHDL, they automatically size to whatever is connected
-- to them.

port (result : out std_logic_vector;
cout : out std_logic;
a, b : in std_logic_vector;
cin : in std_logic);

end addn;

architecture stretch of addn is
signal tmp : std_logic_vector (a'length downto 0);

begin
-- The next line works because "-" sizes to the largest operand
-- (also, you need only pad one argument).
tmp <= ('0' & a) - b - cin;

Scalable Designs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 567

result <= tmp(a'length - 1 downto 0);
cout <= tmp(a'length);
assert result'length = a'length;
assert result'length = b'length;
end stretch;

-- Top level design
-- Here is where you specify the size for a, b,
-- and result. It is illegal to leave your top
-- level design ports unconstrained.

library ieee;
use ieee.std_logic_1164.all;

entity addntest is
port (result : out std_logic_vector (7 downto 0);

cout : out std_logic;
a, b : in std_logic_vector (7 downto 0);
cin : in std_logic);

end addntest;

architecture top of addntest is
component addn

port (result : std_logic_vector;
cout : std_logic;
a, b : std_logic_vector;
cin : std_logic);

end component;

begin
test : addn port map (result => result,

cout => cout,
a => a,
b => b,
cin => cin);

end;

Creating a Scalable Design Using VHDL Generics

Create a VHDL generic with default value. The generic is used to represent bus
sizes inside a architecture, or a number of components. You can define more
than one generic per declaration by separating the generic definitions with
semicolons (;).

LO

 VHDL Language Support Scalable Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
568 May 2015

Syntax

generic (generic_1_name : type [:= default_value]) ;

Examples

generic (num : integer := 8) ;
generic (top : integer := 16; num_bits : integer := 32);

Using a Scalable Architecture with VHDL Generics

Instantiate the scalable architecture, and override the default generic value
with the generic map statement.

Syntax

generic map (list_of_overriding_values)

Examples

Generic map construct
generic map (16)
-- These values will get mapped in order given.
generic map (8, 16)

Creating a scalable adder
library ieee;
use ieee.std_logic_1164.all;
entity adder is

generic(num_bits : integer := 4); -- Default adder
-- size is 4 bits

port (a : in std_logic_vector (num_bits downto 1);
b : in std_logic_vector (num_bits downto 1);
cin : in std_logic;
sum : out std_logic_vector (num_bits downto 1);
cout : out std_logic);

end adder;

Scalable Designs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 569

architecture behave of adder is
begin

process (a, b, cin)
variable vsum : std_logic_vector (num_bits downto 1);
variable carry : std_logic;
begin
carry := cin;

for i in 1 to num_bits loop
vsum(i) := (a(i) xor b(i)) xor carry;
carry := (a(i) and b(i)) or (carry and (a(i) or b(i)));

end loop;
sum <= vsum;
cout <= carry;
end process;

end behave;

Scaling the Adder by Overriding the generic Statement
library ieee;
use ieee.std_logic_1164.all;

entity adder16 is
port (a : in std_logic_vector (16 downto 1);

b : in std_logic_vector (16 downto 1);
cin : in std_logic;
sum : out std_logic_vector (16 downto 1);
cout : out std_logic);

end adder16;

architecture behave of adder16 is
-- The component declaration goes here.
-- This allows you to instantiate the adder.
component adder
-- The default adder size is 4 bits.
generic(num_bits : integer := 4);

port (a : in std_logic_vector ;
b : in std_logic_vector;
cin : in std_logic;
sum : out std_logic_vector;
cout : out std_logic);

end component;

begin
my_adder : adder

generic map (16) -- Use a 16 bit adder
port map(a, b, cin, sum, cout);

end behave;

LO

 VHDL Language Support Scalable Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
570 May 2015

Creating a Scalable Design Using Generate Statements

A VHDL generate statement allows you to repeat logic blocks in your design
without having to write the code to instantiate each one individually.

Creating a 1-bit Adder

library ieee;
use ieee.std_logic_1164.all;

entity adder is
port (a, b, cin : in std_logic;

sum, cout : out std_logic);
end adder;

architecture behave of adder is
begin

sum <= (a xor b) xor cin;
cout <= (a and b) or (cin and a) or (cin and b);

end behave;

Instantiating the 1-bit Adder Many Times with a Generate Statement

library ieee;
use ieee.std_logic_1164.all;

entity addern is
generic(n : integer := 8);

port (a, b : in std_logic_vector (n downto 1);
cin : in std_logic;
sum : out std_logic_vector (n downto 1);
cout : out std_logic);

end addern;

architecture structural of addern is
-- The adder component declaration goes here.
component adder

port (a, b, cin : in std_logic;
sum, cout : out std_logic);

end component;

Scalable Designs VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 571

signal carry : std_logic_vector (0 to n);
begin
-- Generate instances of the single-bit adder n times.
-- You need not declare the index 'i' because
-- indices are implicitly declared for all FOR
-- generate statements.

gen: for i in 1 to n generate
add: adder port map(

a => a(i),
b => b(i),
cin => carry(i - 1),
sum => sum(i),
cout => carry(i));

end generate;

carry(0) <= cin;
cout <= carry(n);

end structural;

LO

 VHDL Language Support Instantiating Black Boxes in VHDL

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
572 May 2015

Instantiating Black Boxes in VHDL

Black boxes are design units with just the interface specified; internal infor-
mation is ignored by the synthesis tool. Black boxes can be used to directly
instantiate:

• Technology-vendor primitives and macros (including I/Os).

• User-defined macros whose functionality was defined in a schematic
editor, or another input source (when the place-and-route tool can
merge design netlists from different sources).

Black boxes are specified with the syn_black_box synthesis directive, in
conjunction with other directives. If the black box is a technology-vendor I/O
pad, use the black_box_pad_pin directive instead.

Here is a list of the directives that you can use to specify modules as black
boxes, and to define design objects on the black box for consideration during
synthesis:

• syn_black_box

• black_box_pad_pin

• black_box_tri_pins

• syn_isclock

• syn_tco<n>

• syn_tpd<n>

• syn_tsu<n>

For descriptions of the black-box attributes and directives, see the Attribute
Reference manual.

For information on how to instantiate black boxes and technology-vendor
I/Os, see Defining Black Boxes for Synthesis, on page 302 of the User Guide.

Instantiating Black Boxes in VHDL VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 573

Black-Box Timing Constraints

You can provide timing information for your individual black box instances.
The following are the three predefined timing constraints available for black
boxes.

• syn_tpd<n> – Timing propagation for combinational delay through the
black box.

• syn_tsu<n> – Timing setup delay required for input pins (relative to the
clock).

• syn_tco<n>– Timing clock to output delay through the black box.

Here, n is an integer from 1 through 10, inclusive. See syn_black_box, on
page 47, for details about constraint syntax.

LO

 VHDL Language Support VHDL Attribute and Directive Syntax

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
574 May 2015

VHDL Attribute and Directive Syntax

Synthesis attributes and directives can be defined in the VHDL source code
to control the way the design is analyzed, compiled, and mapped. Attributes
direct the way your design is optimized and mapped during synthesis. Direc-
tives control the way your design is analyzed prior to compilation. Because of
this distinction, directives must be included in your VHDL source code while
attributes can be specified either in the source code or in a constraint file.

The synthesis tool directives and attributes are predefined in the attributes
package in the synthesis tool library. This library package contains the built-
in attributes, along with declarations for timing constraints (including black-
box timing constraints) and vendor-specific attributes. The file is located
here:

installDirectory/lib/vhd/synattr.vhd

There are two ways to specify VHDL attributes and directives:

• Using the attributes Package, on page 574

• Declaring Attributes, on page 575

You can either use the attributes package or redeclare the types of directives
and attributes each time you use them. You typically use the attributes
package.

Using the attributes Package

This is the most typical way to specify the attributes, because you only need
to specify the package once. You specify the attributes package, using the
following code:

library synplify;
use synplify.attributes.all;
-- design_unit_declarations
attribute productname_attribute of object : object_type is value;

The following is an example using syn_noclockbuf from the attributes package:

library synplify;
use synplify.attributes.all;

VHDL Attribute and Directive Syntax VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 575

entity simpledff is
port (q : out bit_vector(7 downto 0);

d : in bit_vector(7 downto 0);
clk : in bit);

// No explicit type declaration is necessary
attribute syn_noclockbuf of clk : signal is true;

-- Other code

Declaring Attributes

The alternative method is to declare the attributes to explicitly define them.
You must do this each time you use an attribute. Here is the syntax for
declaring directives and attributes in your code, without referencing the attri-
butes package:

-- design_unit_declarations
attribute attribute_name : data_type ;
attribute attribute_name of object : object_type is value;

Here is an example using the syn_noclockbuf attribute:

entity simpledff is
port (q : out bit_vector(7 downto 0);

d : in bit_vector(7 downto 0);
clk : in bit);

// Explicit type declaration
attribute syn_noclockbuf : boolean;
attribute syn_noclockbuf of clk : signal is true;

-- Other code

Case Sensitivity

Although VHDL is case-insensitive, directives, attributes, and their values are
case sensitive and must be declared in the code using the correct case. This
rule applies especially for port names in directives.

For example, if a port in VHDL is defined as GIN, the following code does not
work:

attribute black_box_tri_pin : string;
attribute black_box_tri_pin of BBDLHS : component is "gin";

LO

 VHDL Language Support VHDL Synthesis Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
576 May 2015

The following code is correct because the case of the port name is correct:

attribute black_box_tri_pin : string;
attribute black_box_tri_pin of BBDLHS : component is "GIN";

VHDL Synthesis Examples

This section describes the VHDL examples that are provided with the
synthesis tool. The topics include:

• Combinational Logic Examples, on page 576

• Sequential Logic Examples, on page 577

Combinational Logic Examples

The following combinational logic synthesis examples are included in the
installDirectory/examples/vhdl/common_rtl/combinat directory:

• Adders

• ALU

• Bus Sorter (illustrates using procedures in VHDL)

• 3-to-8 Decoders

• 8-to-3 Priority Encoders

• Comparator

• Interrupt Handler (coded with an if-then-else statement for the desired
priority encoding)

• Multiplexers (concurrent signal assignments, case statements, or if-then-
else statements can be used to create multiplexers; the synthesis tool
automatically creates parallel multiplexers when the conditions in the
branches are mutually exclusive)

• Parity Generator

• Tristate Drivers

VHDL Synthesis Examples VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 577

Sequential Logic Examples

The following sequential logic synthesis examples are included in the install-
Directory/examples/vhdl/common_rtl/sequentl directory:

• Flip-flops and level-sensitive latches

• Counters (up, down, and up/down)

• Register file

• Shift register

• State machines

For additional information on synthesizing flip-flops and latches, see:

• Creating Flip-flops and Registers Using VHDL Processes, on page 516

• Level-sensitive Latches Using Concurrent Signal Assignments, on
page 520

• Level-sensitive Latches Using VHDL Processes, on page 521

• Asynchronous Sets and Resets, on page 526

• Synchronous Sets and Resets, on page 527

LO

 VHDL Language Support PREP VHDL Benchmarks

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
578 May 2015

PREP VHDL Benchmarks

PREP (Programmable Electronics Performance) Corporation distributes
benchmark results that show how FPGA vendors compare with each other in
terms of device performance and area.

The following PREP benchmarks are included in the installDirec-
tory/examples/vhdl/common_rtl/prep directory:

• PREP Benchmark 1, Data Path (prep1.vhd)

• PREP Benchmark 2, Timer/Counter (prep2.vhd)

• PREP Benchmark 3, Small State Machine (prep3.vhd)

• PREP Benchmark 4, Large State Machine (prep4.vhd)

• PREP Benchmark 5, Arithmetic Circuit (prep5.vhd)

• PREP Benchmark 6, 16-Bit Accumulator (prep6.vhd)

• PREP Benchmark 7, 16-Bit Counter (prep7.vhd)

• PREP Benchmark 8, 16-Bit Pre-scaled Counter (prep8.vhd)

• PREP Benchmark 9, Memory Map (prep9.vhd)

The source code for the benchmarks can be used for design examples for
synthesis or for doing your own FPGA vendor comparisons.

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 579

C H A P T E R 11

VHDL 2008 Language Support

This chapter describes support for the VHDL 2008 standard in the Synopsys
FPGA synthesis tools. For information on the VHDL standard, see
Chapter 10, VHDL Language Support and the IEEE 1076™-2008 standard.
The following sections describe the current level of VHDL 2008 support.

• Operators and Expressions, on page 580

• Unconstrained Data Types, on page 585

• Unconstrained Record Elements, on page 587

• Predefined Functions, on page 588

• Packages, on page 590

• Generics in Packages, on page 593

• Context Declarations, on page 593

• Case-generate Statements, on page 594

• Else/elsif Clauses, on page 597

• Sequential Signal Assignments, on page 598

• Syntax Conventions, on page 599

LO

 VHDL 2008 Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
580 May 2015

Operators and Expressions

VHDL 2008 includes support for the following operators:

• Logical Reduction operators – the logic operators: and, or, nand, nor, xor,
and xnor can now be used as unary operators

• Condition operator (??) – converts a bit or std_ulogic value to a boolean
value

• Matching Relational operators (?=, ?/=, ?<, ?<=, ?>, ?>=) – similar to the
normal relational operators, but return bit or std_ulogic values in place of
Boolean values

• Bit-string literals – bit-string characters other than 0 and 1 and string
formats including signed/unsigned and string length

• Aggregates (aggregate pattern assignments) are used to group values in
an array or structured expression.

Logical Reduction Operators

The logical operators and, or, nand, nor, xor, and xnor can be used as unary
operators.

Example – Logical Operators

Operators and Expressions VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 581

Condition Operator

The condition operator (??) converts a bit or std_ulogic value to a boolean value.
The operator is implicitly applied in a condition where the expression would
normally be interpreted as a boolean value as shown in the if statement in the
two examples below.

Example – VHDL 2008 Style Conditional Operator

Example – VHDL 1993 Style Conditional Operator
In the VHDL 2008 example, the statement

if sel then

is equivalent to:

if (?? sel) then

The implicit use of the ?? operator occurs in the following conditional expres-
sions:

• after if or elsif in an if statement

• after if in an if-generate statement

• after until in a wait statement

• after while in a while loop

• after when in a conditional signal statement

• after assert in an assertion statement

• after when in a next statement or an exit statement

LO

 VHDL 2008 Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
582 May 2015

Matching Relational Operators

The matching relational operators return a bit or std_ulogic result in place of a
Boolean.

Example – Relational Operators

Bit-string Literals

Bit-string literal support in VHDL 2008 includes:

• Support for characters other than 0 and 1 in the bit string, such as X or
Z.

For example:

X"Z45X" is equivalent to "ZZZZ01000101XXXX"

B"0001-" is equivalent to "0001-"

O"75X" is equivalent to "111101XXX"

• Optional support for a length specifier that determines the length of the
string to be assigned.

Syntax: [length] baseSpecifier "bitStringvalue"

For example:

12X"45" is equivalent to "000001000101"

5O"17" is equivalent to "01111"

• Optional support for a signed (S) or unsigned (U) qualifier that deter-
mines how the bit-string value is expanded/truncated when a length
specifier is used.

Syntax: [length] S|U baseSpecifier "bitStringvalue"

Operators and Expressions VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 583

For example:

12UB"101" is equivalent to "000000000101"

12SB"101" is equivalent to "111111111101"

12UX"96" is equivalent to "000010010110"

12SX"96" is equivalent to "111110010110"

• Additional support for a base specifier for decimal numbers (D). The
number of characters in the bit string can be determined by using the
expression (log2n)+1; where n is the decimal integer.

Syntax: [length] D "bitStringvalue"

For example:

D"10" is equivalent to "1010"

10D"35" is equivalent to "0000100011"

For complete descriptions of bit-string literal requirements, see the VHDL
2008 LRM.

Array Aggregates

Aggregates (aggregate pattern assignments) are used to group values in an
array or structured expression. Earlier versions of VHDL required that an
array aggregate be comprised of only individual elements. VHDL 2008
extends the rules, allowing aggregates to use a mixture of individual elements
and slices of the array.

Example 1: LHS Slices in an Array Aggregate
This example of an array aggregate contains LHS slices of the array.

library ieee;
use ieee.std_logic_1164.all;
entity top is
port

in1: in std_logic_vector(7 downto 0);

../examples/vhdl2008/aggregates/lhs_aggregate.html

LO

 VHDL 2008 Language Support Operators and Expressions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
584 May 2015

out1: out std_logic;
out2: out std_logic_vector(4 downto 0);
out3: out std_logic_vector(1 downto 0)

);
end entity;

architecture structural of top is
begin

(out1, out2, out3) <= in1;
end architecture structural;

Example 2: RHS Slices in an Array Aggregate
This example of an array aggregate contains RHS slices of the array.

library ieee;
use ieee.std_logic_1164.all;
entity top is
port

clk,reset: in std_logic;
out1: out std_logic_vector(7 downto 0);
in1: in std_logic;
in2: in std_logic_vector(4 downto 0);
in3: in std_logic_vector(1 downto 0)

);
end entity;

architecture structural of top is
begin
process(clk,reset)
begin
if(reset='1')then

out1 <= (7 downto 6 => "10" , 5 => '0' , others => '1');
elsif(clk'event and clk='1')then

out1 <= (in1, in2,in3);
end if;
end process;
end architecture structural;

../examples/vhdl2008/aggregates/rhs_aggregate.html

Unconstrained Data Types VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 585

Unconstrained Data Types

VHDL 2008 allows the element types for arrays and the field types for records
to be unconstrained. In addition, VHDL 2008 includes support for partially
constrained subtypes in which some elements of the subtype are constrained,
while others elements are unconstrained. Specifically, VHDL 2008:

• Supports unconstrained arrays of unconstrained arrays (i.e., element
types of arrays can be unconstrained)

• Supports the VHDL 2008 syntax that allows a new subtype to be
declared that constrains any element of an existing type that is not yet
constrained

• Supports the ‘element attribute that returns the element subtype of an
array object

• Supports the new ‘subtype attribute that returns the subtype of an object

Example – Unconstrained Element Types
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

package myTypes is
type memUnc is array (natural range <>) of std_logic_vector;
function summation(varx: memUnc) return std_logic_vector;

end package myTypes;

package body myTypes is
function summation(varx: memUnc) return std_logic_vector is

variable sum: varx’element;
begin

sum := (others => '0');
for I in 0 to varx’length - 1 loop

sum := sum + varx(I);
end loop;

return sum;
end function summation;

end package body myTypes;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use work.myTypes.all;

LO

 VHDL 2008 Language Support Unconstrained Data Types

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
586 May 2015

entity sum is
port (in1: memUnc(0 to 2)(3 downto 0);

out1: out std_logic_vector(3 downto 0));
end sum;

architecture uncbehv of sum is
begin

out1 <= summation(in1);
end uncbehv;

Example – Unconstrained Elements within Nested Arrays
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

package myTypes is
type t1 is array (0 to 1) of std_logic_vector;
type memUnc is array (natural range <>) of t1;
function doSum(varx: memUnc) return std_logic_vector;

end package myTypes;

package body myTypes is
function addVector(vec: t1) return std_logic_vector is

variable vecres: vec’element := (others => '0');
begin

for I in vec’Range loop
vecres := vecres + vec(I);

end loop;
return vecres;

end function addVector;
function doSum(varx: memUnc) return std_logic_vector is

variable sumres: varx’element’element;
begin

if (varx’length = 1) then
return addVector(varx(varx’low));

end if;
if (varx’Ascending) then

sumres := addVector(varx(varx’high)) +
doSum(varx(varx’low to varx’high-1));

else
sumres := addVector(varx(varx’low)) +

doSum(varx(varx’high downto varx’low+1));
end if;
return sumres;

end function doSum;
end package body myTypes;

Unconstrained Record Elements VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 587

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use work.myTypes.all;

entity uncfunc is
port (in1: in memUnc(1 downto 0)(open)(0 to 3);

in2: in memUnc(0 to 2)(open)(5 downto 0);
in3: in memUnc(3 downto 0)(open)(2 downto 0);
out1: out std_logic_vector(5 downto 0);
out2: out std_logic_vector(0 to 3);
out3: out std_logic_vector(2 downto 0));

end uncfunc;

architecture uncbehv of uncfunc is
begin

out1 <= doSum(in2);
out2 <= doSum(in1);
out3 <= doSum(in3);

end uncbehv;

Unconstrained Record Elements

VHDL 2008 allows element types for records to be unconstrained (earlier
versions of VHDL required that the element types for records be fully
constrained). In addition, VHDL 2008 supports the concept of partially
constrained subtypes in which some parts of the subtype are constrained,
while others remain unconstrained.

Example – Unconstrained Record Elements
library ieee;
use ieee.std_logic_1164.all;

entity unctest is
port (in1: in std_logic_vector (2 downto 0);

in2: in std_logic_vector (3 downto 0);
out1: out std_logic_vector(2 downto 0));

end unctest;

LO

 VHDL 2008 Language Support Predefined Functions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
588 May 2015

architecture uncbehv of unctest is
type zRec is record

f1: std_logic_vector;
f2: std_logic_vector;

end record zRec;
subtype zCnstrRec is zRec(f1(open), f2(3 downto 0));
subtype zCnstrRec2 is zCnstrRec(f1(2 downto 0), f2(open));
signal mem: zCnstrRec2;
begin

mem.f1 <= in1;
mem.f2 <= in2;
out1 <= mem.f1 and mem.f2(2 downto 0);

end uncbehv;

Predefined Functions

VHDL 2008 adds the minimum and maximum predefined functions. The
behavior of these functions is defined in terms of the “<” operator for the
operand type. The functions can be binary to compare two elements, or unary
when the operand is an array type.

Example – Minimum/Maximum Predefined Functions
entity minmaxTest is

port (ary1, ary2: in bit_vector(3 downto 0);
minout, maxout: out bit_vector(3 downto 0);
unaryres: out bit);

end minmaxTest;

architecture rtlArch of minmaxTest is
begin

maxout <= maximum(ary1, ary2);
minout <= minimum(ary1, ary2);
unaryres <= maximum(ary1);

end rtlArch;

Predefined Functions VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 589

Generic Types

VHDL 2008 introduces several types of generics that are not present in VHDL
IEEE Std 1076-1993. These types include generic types, generic packages,
and generic subprograms.

Generic Types

Generic types allow logic descriptions that are independent of type. These
descriptions can be declared as a generic parameter in both packages and
entities. The actual type must be provided when instantiating a component or
package.

Example of a generic type declaration:

entity mux is
generic (type dataType);
port (sel: in bit; za, zb: in dataType; res: out dataType);

end mux;

Example of instantiating an entity with a type generic:

inst1: mux generic map (bit_vector(3 downto 0))
port map (selval,in1,in2,out1);

Generic Packages

Generic packages allow descriptions based on a formal package. These
descriptions can be declared as a generic parameter in both packages and
entities. An actual package (an instance of the formal package) must be
provided when instantiating a component or package.

Example of a generic package declaration:

entity mux is generic (
package argpkg is new dataPkg generic map (<>);

);
port (sel: in bit; za, zb: in bit_vector(3 downto 0);

res: out bit_vector(3 downto 0));
end mux;

LO

 VHDL 2008 Language Support Packages

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
590 May 2015

Example of instantiating a component with a package generic:

package memoryPkg is new dataPkg generic map (4, 16);

...

inst1: entity work.mux generic map (4, 16, argPkg => memoryPkg)

Generic Subprograms

Generic subprograms allow descriptions based on a formal subprogram that
provides the function prototype. These descriptions can be declared as a
generic parameter in both packages and entities. An actual function must be
provided when instantiating a component or package.

Example of a generic subprogram declaration:

entity mux is
generic (type dataType; function filter(datain: dataType)

return dataType);
port (sel: in bit; za, zb: in dataType; res: out dataType);

end mux;

Example of instantiating a component with a subprogram generic:

architecture myarch2 of myTopDesign is
function intfilter(din: integer) return integer is
begin

return din + 1;
end function intfilter;

...

begin
inst1: mux generic map (integer, intfilter)

port map (selval,intin1,intin2,intout);

Packages

VHDL 2008 includes several new packages and modifies some of the existing
packages. The new and modified packages are located in the $LIB/vhd2008
folder instead of $LIB/vhd.

Packages VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 591

New Packages

The following packages are supported in VHDL 2008:

• fixed_pkg.vhd, float_pkg.vhd, fixed_generic_pkg.vhd, float_generic_pkg.vhd,
fixed_float_types.vhd – IEEE fixed and floating point packages

• numeric_bit_unsigned.vhd – Overloads for bit_vector to have all operators
defined for ieee.numeric_bit.unsigned

• numeric_std_unsigned.vhd – Overloads for std_ulogic_vector to have all opera-
tors defined for ieee.numeric_std.unsigned

String and text I/O functions in the above packages are not to be supported.
These functions include read(), write().

Modified Packages

The following modified IEEE packages are supported with the exception of the
new string and text I/O functions (the previously supported string and text
I/O functions are unchanged):

• std.vhd – new overloads

• std_logic_1164.vhd – std_logic_vector is now a subtype of std_ulogic_vector;
new overloads

• numeric_std.vhd – new overloads

• numeric_bit.vhd – new overloads

Supported Package Functions

VHDL 2008 supports the following functions in the numeric_std.vhd,
numeric_bit.vhd, and std_logic_1164.vhd packages:

• to_01

• to_string/to_ostring/to_hstring

LO

 VHDL 2008 Language Support Packages

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
592 May 2015

Unsupported Packages/Functions

The following packages and functions are not currently supported:

• string and text I/O functions in the new packages

• The fixed_pkg_params.vhd or float_pkg_params.vhd packages, which were
temporarily supported to allow the default parameters to be changed for
fixed_pkg.vhd and float_pkg.vhd packages, have been obsoleted by the
inclusion of the fixed_generic_pkg.vhd or float_generic_pkg.vhd packages.

Using the Packages

A switch for VHDL 2008 is located in the GUI on the VHDL panel (Implementa-
tion Options dialog box) to enable use of these packages and the ?? operator.

You can also enable the VHDL 2008 packages by including the following
command in the compiler options section of your project file:

set_option -vhdl2008 1

Generics in Packages VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 593

Generics in Packages

In VHDL 2008, packages can include generic clauses. These generic packages
can then be instantiated by providing values for the generics as shown in the
following example.

Example – Including Generics in Packages

Context Declarations

VHDL 2008 provides a new type of design unit called a context declaration. A
context is a collection of library and use clauses. Both context declarations and
context references are supported as shown in the following example.

Example – Context Declaration
In VHDL 2008, a context clause cannot precede a context declaration. The
following code segment results in a compiler error.

library ieee; -- Illegal context clause before a
-- context declaration

context zcontext is
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

end context zcontext;

Similarly, VHDL 2008 does not allow reference to the library name work in a
context declaration. The following code segment also results in a compiler
error.

context zcontext is
use work.zpkg.all; -- Illegal reference to library work

 -- in a context declaration
library ieee;
use ieee.numeric_std.all;

end context zcontext;

LO

 VHDL 2008 Language Support Case-generate Statements

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
594 May 2015

VHDL 2008 supports the following two, standard context declarations in the
IEEE package:

• IEEE_BIT_CONTEXT

• IEEE_STD_CONTEXT

Case-generate Statements

The case-generate statement is a new type of generate statement incorporated
into VHDL 2008. Within the statement, alternatives are specified similar to a
case statement. A static (computable at elaboration) select statement is
compared against a set of choices as shown in the following syntax:

caseLabel: case expression generate
 when choice1 =>
 -- statement list
 when choice2 =>
 -- statement list
 …
 end generate caseLabel;

To allow for configuration of alternatives in case-generate statements, each
alternative can include a label preceding the choice value (e.g., labels L1 and
L2 in the syntax below):

caseLabel: case expression generate
 when L1: choice1 =>
 -- statement list
 when L2: choice2 =>
 -- statement list
 …
 end generate caseLabel;

Example – Case-generate Statement with Alternatives
entity myTopDesign is

generic (instSel: bit_vector(1 downto 0) := "10");
port (in1, in2, in3: in bit; out1: out bit);

end myTopDesign;

Case-generate Statements VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 595

architecture myarch2 of myTopDesign is
component mycomp

port (a: in bit; b: out bit);
end component;

begin
a1: case instSel generate

when "00" =>
inst1: component mycomp port map (in1,out1);

when "01" =>
inst1: component mycomp port map (in2,out1);

when others =>
inst1: component mycomp port map (in3,out1);

end generate;
end myarch2;

Example – Case-generate Statement with Labels for Configuration
entity myTopDesign is
generic (selval: bit_vector(1 downto 0) := "10");

port (in1, in2, in3: in bit; tstIn: in bit_vector(3 downto 0);
out1: out bit);

end myTopDesign;

architecture myarch2 of myTopDesign is
component mycomp

port (a: in bit; b: out bit);
end component;

begin
a1: case selval generate

when spec1: "00" | "11"=> signal inRes: bit;
begin

inRes <= in1 and in3;
inst1: component mycomp port map (inRes,out1);

end;
when spec2: "01" =>

inst1: component mycomp port map (in1, out1);
when spec3: others =>

inst1: component mycomp port map (in3,out1);
end generate;

end myarch2;

entity mycomp is
port (a : in bit;

b : out bit);
end mycomp;

LO

 VHDL 2008 Language Support Matching case and select Statements

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
596 May 2015

architecture myarch of mycomp is
begin

b <= not a;
end myarch;

architecture zarch of mycomp is
begin

b <= '1';
end zarch;

configuration myconfig of myTopDesign is
for myarch2

for a1 (spec1)
for inst1: mycomp use entity mycomp(myarch);
end for;

end for;
for a1 (spec2)

for inst1: mycomp use entity mycomp(zarch);
end for;

end for;
for a1 (spec3)

for inst1: mycomp use entity mycomp(myarch);
end for;

end for;
end for;
end configuration myconfig;

Matching case and select Statements

Matching case and matching select statements are supported – case?
(matching case statement) and select? (matching select statement). The state-
ments use the ?= operator to compare the case selector against the case
options.

Else/elsif Clauses VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 597

Example – Use of case? Statement

Example – Use of select? Statement

Else/elsif Clauses

In VHDL 2008, else and elsif clauses can be included in if-generate statements.
You can configure specific if/else/elsif clauses using configurations by adding a
label before each condition. In the code example below, the labels on the
branches of the if-generate statement are spec1, spec2, and spec3. These labels
are later referenced in the configuration myconfig to specify the appropriate
entity/architecture pair. This form of labeling allows statements to be refer-
enced in configurations.

Example – Else/elsif Clauses in If-Generate Statements

LO

 VHDL 2008 Language Support Sequential Signal Assignments

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
598 May 2015

Sequential Signal Assignments

Earlier versions of VHDL allowed when-else and with-select assignments to
be used only as concurrent statements. VHDL 2008 supports that these
assignments can also be used in a sequential context, such as, inside a
process block.

Using When-Else and With-Select Assignments

Here are examples of when-else and with-select assignments inside a process
block.

Example: When-else in a process block
library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (

in1 : in std_logic;
in2 : in std_logic;
sel : in std_logic;
out1 : out std_logic
);

end entity;

architecture top_in1 of top is
begin

process (in1,in2,sel)
begin

out1 <= in1 when sel = '0' else
in2;

end process;
end architecture;

../examples/vhdl2008/seq_assignments/when-else_assignments.html

Syntax Conventions VHDL 2008 Language Support

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 599

Example: With-select in a process block
entity top is
port
sel : in bit_vector (1 downto 0);
in1: in bit;
in2: in bit;
in3: in bit;
out1: out bit
);
end top;

architecture myarch2 of top is
begin
process(sel,in1,in2,in3)
begin
with sel select out1 <= in1 when "00",

in2 when “01”,
in3 when "10",
in1 xor in2 when "11";

end process;
end myarch2;

Using Output Ports in a Sensitivity List

VHDL 2008 supports the use of output ports in the sensitivity list of a
process block.

Syntax Conventions

The following syntax conventions are supported in VHDL 2008:

• All keyword

• Comment delimiters

• Extended character set

../examples/vhdl2008/seq_assignments/with-select_assignments.html

LO

 VHDL 2008 Language Support Syntax Conventions

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
600 May 2015

All Keyword

VHDL 2008 supports the use of an all keyword in place of the list of input
signals to a process in the sensitivity list.

Example – All Keyword in Sensitivity List

Comment Delimiters

VHDL 2008 supports the /* and */ comment-delimiter characters. All text
enclosed between the beginning /* and the ending */ is treated as a
comment, and the commented text can span multiple lines. The standard
VHDL “--” comment-introduction character string is also supported.

Extended Character Set

The extended ASCII character literals (ASCII values from 128 to 255) are
supported.

Example – Extended Character Set

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 601

C H A P T E R 1 2

RAM and ROM Inference

This chapter provides guidelines and Verilog or VHDL examples for coding
RAMs for synthesis. It covers the following topics:

• Guidelines and Support for RAM Inference, on page 602

• Block RAM Examples, on page 603

• Initial Values for RAMs, on page 615

• RAM Instantiation with SYNCORE, on page 620

• ROM Inference, on page 621

LO

 RAM and ROM Inference Guidelines and Support for RAM Inference

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
602 May 2015

Guidelines and Support for RAM Inference

There are two methods to handle RAMs: instantiation and inference. Many
FPGA families provide technology-specific RAMs that you can instantiate in
your HDL source code. The software supports instantiation, but you can also
set up your source code so that it infers the RAMs. The following table sums
up the pros and cons of the two approaches.

You must structure your source code correctly for the type of RAM you want
to infer. The following table lists the supported technology-specific RAMs that
can be generated by the synthesis tool.

Inference in Synthesis Instantiation

Advantages
Portable coding style
Automatic timing-driven synthesis
No additional tool dependencies

Advantages
Most efficient use of the RAM primitives
of a specific technology
Supports all kinds of RAMs

Limitations
Glue logic to implement the RAM might
result in a sub-optimal implementation
Can only infer synchronous RAMs
No support for address wrapping
Pin name limitations means some pins
are always active or inactive

Limitations
Source code is not portable because it is
technology-dependent
Limited or no access to timing and area
data if the RAM is a black box
Inter-tool access issues, if the RAM is a
black box created with another tool

RAM Type Microsemi

Single Port x

Dual Port x

True Dual Port x

Block RAM Examples RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 603

Block RAM Examples

The examples below show you how to define RAM in the RTL code so that the
synthesis tools can infer block RAM. See the following for details:

• Block RAM Mode Examples, on page 603

• Single-Port Block RAM Examples, on page 607

• Dual-Port Block RAM Examples, on page 609

• True Dual-Port RAM Examples, on page 612

For details about inferring block RAM, see Automatic RAM Inference, on
page 320 in the User Guide.

Block RAM Mode Examples

The coding style supports the enable and reset pins of the block RAM primi-
tive. The tool supports different write mode operations for single-port and
dual-port RAM. This section contains examples of how to specify the
supported block RAM output modes:

• WRITE_FIRST Mode Example, on page 603

• READ_FIRST Mode Example, on page 605

• NO_CHANGE Mode Example, on page 606

WRITE_FIRST Mode Example

This example shows the WRITE_FIRST mode operation with active enable.

module v_rams_02a (clk, we, en, addr, di, dou);
input clk;
input we;
input en;
input [5:0] addr;
input [63:0] di;
output [63:0] dou;
reg [63:0] RAM [63:0];
reg [63:0] dou;

LO

 RAM and ROM Inference Block RAM Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
604 May 2015

always @(posedge clk)
begin
if (en)

begin
if (we)

begin
RAM[addr] <= di;
dou <= di;

end
else

dou <= RAM[addr];
end

end
endmodule

always @(posedge clk)
if (en & we) mem[addr] <= data_in;
endmodule

The following figure shows the RTL view of a WRITE_FIRST mode RAM
with output registered. The Technology view shows that the RAM is
mapped to a block RAM.

RTL View

Block RAM Examples RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 605

READ_FIRST Mode Example

The following piece of code is an example of READ_FIRST mode with both
enable and reset, with reset taking precedence:

module ram_test(data_out, data_in, addr, clk, rst, en, we);
output [7:0]data_out;
input [7:0]data_in;
input [6:0]addr;
input clk, en, rst, we;
reg [7:0] mem [127:0] /* synthesis syn_ramstyle = "block_ram" */;
reg [7:0] data_out;

always@(posedge clk)
if(rst == 1)

data_out <= 0;
else begin

if(en) begin
data_out <= mem[addr];

end
end

always @(posedge clk)
if (en & we) mem[addr] <= data_in;
endmodule

The following figure shows the RTL view of a READ_FIRST RAM with
inferred enable and reset, with reset taking precedence. The Technology
view shows that the inferred RAM is mapped to a block RAM.

RTL View

LO

 RAM and ROM Inference Block RAM Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
606 May 2015

NO_CHANGE Mode Example

This NO_CHANGE mode example has neither enable nor reset. If you register
the read address and the output address, the software infers block RAM.

module ram_test(data_out, data_in, addr, clk, we);
output [7:0]data_out;
input [7:0]data_in;
input [6:0]addr;
input clk,we;
reg [7:0] mem [127:0] /* synthesis syn_ramstyle = "block_ram" */;
reg [7:0] data_out;

always@(posedge clk)
if(we == 1)

data_out <= data_out;
else

data_out <= mem[addr];

always @(posedge clk)
if (we) mem[addr] <= data_in;

endmodule

The next figure shows the RTL view of a NO_CHANGE RAM. The Technology
view shows that the RAM is mapped to block RAM.

RTL View

Block RAM Examples RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 607

Single-Port Block RAM Examples

This section describes the coding style required to infer single-portblock
RAMs. For single-port RAM, the same address is used to index the write-to
and read-from RAM. See the following examples:

• Single-Port Block RAM Examples, on page 607

• Single-Port RAM with RAM Output Registered Examples, on page 608

• Dual-Port Block RAM Examples, on page 609

Single-Port RAM with Read Address Registered Example

In these examples, the read address is registered, but the write address
(which is the same as the read address) is not registered. There is one clock
for the read address and the RAM.

Verilog Example: Read Address Registered

module ram_test(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
input clk, we;
reg [6:0] read_add;
/* The array of an array register ("mem") from which the RAM is
inferred*/
reg [7:0] mem [127:0] ;
assign q = mem[read_add];

always @(posedge clk) begin
read_add <= a;
if(we)

/* Register RAM Data */
mem[a] <= d;

end

endmodule

VHDL Example: READ Address Registered

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

LO

 RAM and ROM Inference Block RAM Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
608 May 2015

entity ram_test is
port (d : in std_logic_vector(7 downto 0);

a : in std_logic_vector(6 downto 0);
we : in std_logic;
clk : in std_logic;
q : out std_logic_vector(7 downto 0));

end ram_test;

architecture rtl of ram_test is
type mem_type is array (127 downto 0) of

std_logic_vector (7 downto 0);
signal mem: mem_type;
signal read_add : std_logic_vector(6 downto 0);
begin

process (clk)
begin

if rising_edge(clk) then
if (we = '1') then

mem(conv_integer(a)) <= d;
end if;
read_add <= a;

end if;
end process;

q <= mem(conv_integer(read_add));
end rtl ;

Single-Port RAM with RAM Output Registered Examples

In this example, the RAM output is registered, but the read and write
addresses are unregistered. The write address is the same as the read
address. There is one clock for the RAM and the output.

Verilog Example: Data Output Registered

module ram_test(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
input clk, we;
/* The array of an array register ("mem") from which the RAM is
inferred */
reg [7:0] mem [127:0] ;
reg [7:0] q;

Block RAM Examples RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 609

always @(posedge clk) begin
q = mem[a];
if(we)

/* Register RAM Data */
mem[a] <= d;

end

endmodule

VHDL Example: Data Output Registered

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ram_test is
port (d: in std_logic_vector(7 downto 0);

a: in integer range 127 downto 0;
we: in std_logic;
clk: in std_logic;

 q: out std_logic_vector(7 downto 0));
end ram_test;

architecture rtl of ram_test is
type mem_type is array (127 downto 0) of

std_logic_vector (7 downto 0);
signal mem: mem_type;
begin

process(clk)
begin

if (clk'event and clk='1') then
q <= mem(a);

if (we='1') then
mem(a) <= d;

end if;
end if;

end process;
end rtl;

Dual-Port Block RAM Examples

The following example or RTL code results in simple dual-port block RAMs
being implemented in supported technologies.

LO

 RAM and ROM Inference Block RAM Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
610 May 2015

Verilog Example: Dual-Port RAM

This Verilog example has two read addresses, both of which are registered,
and one address for write (same as a read address), which is unregistered. It
has two outputs for the RAM, which are unregistered. There is one clock for
the RAM and the addresses.

module dualportram (q1,q2,a1,a2,d,we,clk1) ;
output [7:0]q1,q2;
input [7:0] d;
input [6:0]a1,a2;
input clk1,we;
wire [7:0] q1;
reg [6:0] read_addr1,read_addr2;
reg[7:0] mem [127:0] /* synthesis syn_ramstyle = "no_rw_check" */;
assign q1 = mem [read_addr1];
assign q2 = mem[read_addr2];

always @ (posedge clk1) begin
read_addr1 <= a1;
read_addr2 <= a2;
if (we)

mem[a2] <= d;
end

endmodule

VHDL Example: Dual-Port RAM

The following VHDL example is of READ_FIRST mode for a dual-port RAM:

Library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use IEEE.std_logic_unsigned.all ;

entity Dual_Port_ReadFirst is
generic (data_width: integer :=4;
address_width: integer :=10);

Block RAM Examples RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 611

port (write_enable: in std_logic;
write_clk, read_clk: in std_logic;
data_in: in std_logic_vector (data_width-1 downto 0);
data_out: out std_logic_vector (data_width-1 downto 0);
write_address: in std_logic_vector (address_width-1 downto 0);
read_address: in std_logic_vector (address_width-1 downto 0)
);

end Dual_Port_ReadFirst;

architecture behavioral of Dual_Port_ReadFirst is
type memory is array (2**(address_width-1) downto 0) of

std_logic_vector (data_width-1 downto 0);
signal mem : memory;

signal reg_write_address : std_logic_vector (address_width-1 downto 0);
signal reg_write_enable: std_logic;

attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "block_ram";

begin
register_enable_and_write_address:

process (write_clk,write_enable,write_address,data_in)
begin

if (rising_edge(write_clk)) then
reg_write_address <= write_address;
reg_write_enable <= write_enable;

end if;
end process;

write:
process (read_clk,write_enable,write_address,data_in)
begin

if (rising_edge(write_clk)) then
if (write_enable=’1’) then

mem(conv_integer(write_address))<=data_in;
end if;

end if;
end process;

read:
process (read_clk,write_enable,read_address,write_address)
begin

if (rising_edge(read_clk)) then
if (reg_write_enable=’1’) and (read_address =

reg_write_address) then data_out <= "XXXX";

LO

 RAM and ROM Inference Block RAM Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
612 May 2015

else
data_out<=mem(conv_integer(read_address));

end if;
end if;

end process;

end behavioral;

True Dual-Port RAM Examples

You must use a registered read address when you code the RAM or have
writes to one process. If you have writes to multiple processes, you must use
the syn_ramstyle attribute to infer the RAM.

There are two situations which can result in this error message:

"@E:MF216: ram.v(29)|Found NRAM mem_1[7:0] with multiple
processes"

• An nram with two clocks and two write addresses has syn_ramstyle set to a
value of registers. The software cannot implement this, because there is a
physical FPGA limitation that does not allow registers with multiple
writes.

• You have a registered output for an nram with two clocks and two write
addresses.

Verilog Example: True Dual-Port RAM

The following RTL example shows the recommended coding style for true
dual-port block RAM. It is a Verilog example where the tool infers true dual-
port RAM from a design with multiple writes:

module ram(data0, data1, waddr0, waddr1, we0,we1,
clk0, clk1, q0, q1);

parameter d_width = 8;
parameter addr_width = 8;
parameter mem_depth = 256;
input [d_width-1:0] data0, data1;
input [addr_width-1:0] waddr0, waddr1;
input we0, we1, clk0, clk1;
output [d_width-1:0] q0, q1;

Block RAM Examples RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 613

reg [addr_width-1:0] reg_addr0, reg_addr1;
reg [d_width-1:0] mem [mem_depth-1:0] /* synthesis
syn_ramstyle="no_rw_check" */;
assign q0 = mem[reg_addr0];
assign q1 = mem[reg_addr1];

always @(posedge clk0)
begin

reg_addr0 <= waddr0;
if (we0)

mem[waddr0] <= data0;
end

always @(posedge clk1)
begin

reg_addr1 <= waddr1;
if (we1)

mem[waddr1] <= data1;
end

endmodule

RTL View

LO

 RAM and ROM Inference Block RAM Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
614 May 2015

VHDL Example: True Dual-Port RAM

The following RTL example shows the recommended coding style for true
dual-port block RAM. It is a VHDL example where the tool infers true dual-
port RAM from a design with multiple writes:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity one is
generic (data_width : integer := 4;
address_width :integer := 5);

port (data_a:in std_logic_vector(data_width-1 downto 0);
data_b:in std_logic_vector(data_width-1 downto 0);
addr_a:in std_logic_vector(address_width-1 downto 0);
addr_b:in std_logic_vector(address_width-1 downto 0);
wren_a:in std_logic;
wren_b:in std_logic;
clk:in std_logic;
q_a:out std_logic_vector(data_width-1 downto 0);
q_b:out std_logic_vector(data_width-1 downto 0));

end one;

architecture rtl of one is
type mem_array is array(0 to 2**(address_width) -1) of
std_logic_vector(data_width-1 downto 0);
signal mem : mem_array;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "no_rw_check" ;
signal addr_a_reg : std_logic_vector(address_width-1 downto 0);
signal addr_b_reg : std_logic_vector(address_width-1 downto 0);
begin

WRITE_RAM : process (clk)
begin

if rising_edge(clk) then
if (wren_a = '1') then

mem(to_integer(unsigned(addr_a))) <= data_a;
end if;
if (wren_b='1') then

mem(to_integer(unsigned(addr_b))) <= data_b;
end if;
addr_a_reg <= addr_a;
addr_b_reg <= addr_b;

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 615

end if;
end process WRITE_RAM;

q_a <= mem(to_integer(unsigned(addr_a_reg)));
q_b <= mem(to_integer(unsigned(addr_b_reg)));
end rtl;

Limitations to RAM Inference

RAM inference is only supported for synchronous RAMs.

Initial Values for RAMs

You can specify initial values for a RAM in a data file and then include the
appropriate task enable statement, $readmemb or $readmemh, in the initial state-
ment of the RTL code for the module. The inferred logic can be different due
to the initial statement. The syntax for these two statements is as follows:

$readmemh ("fileName", memoryName [, startAddress [, stopAddress]]);

$readmemb ("fileName", memoryName [, startAddress [, stopAddress]]);

Also, see the following topics:

• Example 1: RAM Initialization, on page 616

• Example 2: Cross-Module Referencing for RAM Initialization, on
page 617

$readmemb Use this with a binary data file.

$readmemh Use this with a hexadecimal data file.

fileName Name of the data file that contains initial values. See
Initialization Data File, on page 618 for format examples.

memoryName The name of the memory.

startAddress Optional starting address for RAM initialization; if omitted,
defaults to first available memory location.

stopAddress Optional stopping address for RAM initialization;
startAddress must be specified

LO

 RAM and ROM Inference Initial Values for RAMs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
616 May 2015

• Initialization Data File, on page 618

• Forward Annotation of Initial Values, on page 620

Example 1: RAM Initialization

This example shows a single-port RAM that is initialized using the $readmemb
binary task enable statement which reads the values specified in the binary
mem.ini file. See Initialization Data File, on page 618 for details of the binary
and hexadecimal file formats.

module ram_inference (data, clk, addr, we, data_out);
input [27:0] data;
input clk, we;
input [10:0] addr;
output [27:0] data_out;
reg [27:0] mem [0:2000] /* synthesis syn_ramstyle = "no_rw_check" */;
reg [10:0] addr_reg;

initial
begin

$readmemb ("mem.ini", mem, 2, 1900) /* Initialize RAM with contents */
/* from locations 2 thru 1900*/;

end

always @(posedge clk)
begin

addr_reg <= addr;
end

always @(posedge clk)
begin

if(we)
begin

mem[addr] <= data;
end

end

assign data_out = mem[addr_reg];
endmodule

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 617

Example 2: Cross-Module Referencing for RAM Initialization

The following example shows how a RAM using cross-module referencing
(XMR) can be accessed hierarchically and initialized with the
$readmemb/$readmemh statement which reads the values specified in the
mem.txt file from the top-level design.

Example2A: XMR for RAM Initialization (Top-Level Module)
This code example implements cross-module referencing of the RAM block
and is initialized with the $readmemb statement in the top-level module.

Example2B: XMR for RAM Initialization (RAM)
Here is the code example of the RAM block to be implemented for cross-
module referencing and initialized.

The following shows the HDL Analyst view of a RAM module that must be
accessed hierarchically to be initialized.

Limitations

XMR for RAM initialization requires that the following conditions be met:

• Variables must be recognized as inferred memories.

• Cross-module referencing of memory variables cannot occur between
HDL languages.

• Cross-module referencing paths must be static and cannot include an
index with a dynamic value.

LO

 RAM and ROM Inference Initial Values for RAMs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
618 May 2015

Initialization Data File

The initialization data file, read by the $readmemb and $readmemh system
tasks, contains the initial values to be loaded into the memory array. This
initialization file can reside in the project directory or can be referenced by an
include path relative to the project directory. The system $readmemb or
$readmemh task first looks in the project directory for the named file and, if
not found, searches for the file in the list of directories on the Verilog tab in
include-path order.

If the initialization data file does not contain initial values for every memory
address, the unaddressed memory locations are initialized to 0. Also, if a
width mismatch exists between an initialization value and the memory width,
loading of the memory array is terminated; any values initialized before the
mismatch is encountered are retained.

Unless an internal address is specified (see Internal Address Format, on
page 619), each value encountered is assigned to a successive word element
of the memory. If no addressing information is specified either with the
$readmem task statement or within the initialization file itself, the default
starting address is the lowest available address in the memory. Consecutive
words are loaded until either the highest address in the memory is reached or
the data file is completely read.

If a start address is specified without a finish address, loading starts at the
specified start address and continues upward toward the highest address in
the memory. In either case, loading continues upward. If both a start address
and a finish address are specified, loading begins at the start address and
continues until the finish address is reached (or until all initialization data is
read).

For example:

initial
begin
//$readmemh ("mem.ini", ram_bank1)

/* Initialize RAM with contents from locations 0 thru 31*/;

//$readmemh ("mem.ini", ram_bank1,0)
/* Initialize RAM with contents from locations 0 thru 31*/;

$readmemh ("mem.ini", ram_bank1, 0, 31)
/* Initialize RAM with contents from locations 0 thru 31*/;

$readmemh ("mem.ini", ram_bank2, 31, 0)
/* Initialize RAM with contents from locations 31 thru 0*/;

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 619

The data initialization file can contain the following:

• White space (spaces, new lines, tabs, and form-feeds)

• Comments (both comment formats are allowed)

• Binary values for the $readmemb task, or hexadecimal values for the
$readmemh tasks

In addition, the data initialization file can include any number of hexadecimal
addresses (see Internal Address Format, on page 619).

Binary File Format
The binary data file mem.ini that corresponds to the example in Example 1:
RAM Initialization, on page 616 looks like this:

1111111111111111111100110111 /* data for address 0 */
1111111111111111111101100111 /* data for address 1 */
1111111111111111111111000010
1111111111111111111100100001
1111111111111111111101110000
1111111111111111111011100110
... /* continues until Address 1999 */

Hex File Format
If you use $readmemh instead of $readmemb, the hexadecimal data file for the
example in Example 1: RAM Initialization, on page 616 looks like this:

FFFFF37 /* data for address 0 */
FFFFF63 /* data for address 1 */
FFFFFC2
FFFFF21
.../* continues until Address 1999 */

Internal Address Format
In addition to the binary and hex formats described above, the initialization
file can include embedded hexadecimal addresses. These hexadecimal
addresses must be prefaced with an at sign (@) as shown in the example
below.

LO

 RAM and ROM Inference RAM Instantiation with SYNCORE

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
620 May 2015

FFFFF37 /* data for address 0 */
FFFFF63 /* data for address 1 */
@0EA /* memory address 234
FFFFFC2 /* data for address 234*/
FFFFF21 /* data for address 235*/
...
@0A7 /* memory address 137
FFFFF77 /* data for address 137*/
FFFFF7A /* data for address 138*/
...

Either uppercase or lowercase characters can be used in the address. No
white space is allowed between the @ and the hex address. Any number of
address specifications can be included in the file, and in any order. When the
$readmemb or $readmemh system task encounters an embedded address speci-
fication, it begins loading subsequent data at that memory location.

When addressing information is specified both in the system task and in the
data file, the addresses in the data file must be within the address range
specified by the system task arguments; otherwise, an error message is
issued, and the load operation is terminated.

Forward Annotation of Initial Values

Initial values for RAMs and sequential shift components are forward
annotated to the netlist. The compiler currently generates netlist (srs) files
with seqshift, ram1, ram2, and nram components. If initial values are specified in
the HDL code, the synthesis tool attaches an attribute to the component in
the srs file.

RAM Instantiation with SYNCORE

The SYNCORE Memory Compiler in the IP Wizard helps you generate HDL
code for your specific RAM implementation requirements. For information on
using the SYNCORE Memory Compiler, see Specifying RAMs with SYNCore,
on page 409 in the User Guide.

ROM Inference RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 621

ROM Inference

As part of BEST (Behavioral Extraction Synthesis Technology) feature, the
synthesis tool infers ROMs (read-only memories) from your HDL source code,
and generates block components for them in the RTL view.

The data contents of the ROMs are stored in a text file named rom.info. To
quickly view rom.info in read-only mode, synthesize your HDL source code,
open an RTL view, then push down into the ROM component.

Generally, the Synopsys FPGA synthesis tool infers ROMs from HDL source
code that uses case statements, or equivalent if statements, to make 16 or
more signal assignments using constant values (words). The constants must
all be the same width.

Another requirement for ROM inference is that values must be specified for at
least half of the address space. For example, if the ROM has 5 address bits,
then the address space is 32 and at least 16 of the different addresses must
be specified.

Verilog Example

module rom(z,a);
output [3:0] z;
input [4:0] a;
reg [3:0] z;

always @(a) begin
case (a)

5'b00000 : z = 4'b0001;
5'b00001 : z = 4'b0010;
5'b00010 : z = 4'b0110;
5'b00011 : z = 4'b1010;
5'b00100 : z = 4'b1000;
5'b00101 : z = 4'b1001;
5'b00110 : z = 4'b0000;
5'b00111 : z = 4'b1110;
5'b01000 : z = 4'b1111;
5'b01001 : z = 4'b1110;
5'b01010 : z = 4'b0001;
5'b01011 : z = 4'b1000;
5'b01100 : z = 4'b1110;
5'b01101 : z = 4'b0011;
5'b01110 : z = 4'b1111;

LO

 RAM and ROM Inference ROM Inference

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
622 May 2015

5'b01111 : z = 4'b1100;
5'b10000 : z = 4'b1000;
5'b10001 : z = 4'b0000;
5'b10010 : z = 4'b0011;
default : z = 4'b0111;

endcase
end
endmodule

VHDL Example

library ieee;
use ieee.std_logic_1164.all;

entity rom4 is
port (a : in std_logic_vector(4 downto 0);

z : out std_logic_vector(3 downto 0));
end rom4;

architecture behave of rom4 is
begin

process(a)
begin

if a = "00000" then
z <= "0001";

elsif a = "00001" then
z <= "0010";

elsif a = "00010" then
z <= "0110";

elsif a = "00011" then
z <= "1010";

elsif a = "00100" then
z <= "1000";

elsif a = "00101" then
z <= "1001";

elsif a = "00110" then
z <= "0000";

elsif a = "00111" then
z <= "1110";

elsif a = "01000" then
z <= "1111";

elsif a = "01001" then
z <= "1110";

elsif a = "01010" then
z <= "0001";

elsif a = "01011" then

ROM Inference RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 623

z <= "1000";
elsif a = "01100" then

z <= "1110";
elsif a = "01101" then

z <= "0011";
elsif a = "01110" then

z <= "1111";
elsif a = "01111" then

z <= "1100";
elsif a = "10000" then

z <= "1000";
elsif a = "10001" then

z <= "0000";
elsif a = "10010" then

z <= "0011";
else

z <= "0111";
end if;

end process;
end behave;

LO

 RAM and ROM Inference ROM Inference

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
624 May 2015

ROM Table Data (rom.info File)

Note: This data is for viewing only.

ROM work.rom4(behave)-z_1[3:0]
address width: 5
data width: 4
inputs:
0: a[0]
1: a[1]
2: a[2]
3: a[3]
4: a[4]
outputs:
0: z_1[0]
1: z_1[1]
2: z_1[2]
3: z_1[3]

data:
00000 -> 0001
00001 -> 0010
00010 -> 0110
00011 -> 1010
00100 -> 1000
00101 -> 1001
00110 -> 0000
00111 -> 1110
01000 -> 1111
01001 -> 1110
01010 -> 0001
01011 -> 1000
01100 -> 1110
01101 -> 0011
01110 -> 0010
01111 -> 0010
10000 -> 0010
10001 -> 0010
10010 -> 0010
default -> 0111

ROM Inference RAM and ROM Inference

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 625

ROM Initialization with Generate Block

The software supports conditional ROM initialization with the generate block,
as shown in the following example:

generate
if (INIT) begin

initial
begin

$readmemb("init.hex",mem);
end

end
endgenerate

LO

 RAM and ROM Inference ROM Inference

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
626 May 2015

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 627

C H A P T E R 1 3

IP and Encryption Tools

This chapter describes the SYNCore IP functionality that is bundled with the
synthesis tools, and supported IP encryption standards.

• SYNCore FIFO Compiler, on page 628

• SYNCore RAM Compiler, on page 645

• SYNCore Byte-Enable RAM Compiler, on page 655

• SYNCore ROM Compiler, on page 660

• SYNCore Adder/Subtractor Compiler, on page 666

• SYNCore Counter Compiler, on page 678

• Encryption Scripts, on page 683

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
628 May 2015

SYNCore FIFO Compiler

The SYNCore synchronous FIFO compiler offers an IP wizard that generates
Verilog code for your FIFO implementation. This section describes the
following:

• Synchronous FIFOs, on page 628

• FIFO Read and Write Operations, on page 629

• FIFO Ports, on page 631

• FIFO Parameters, on page 633

• FIFO Status Flags, on page 635

• FIFO Programmable Flags, on page 638

For further information, refer to the following:

• Specifying FIFOs with SYNCore, on page 404 of the User Guide, for infor-
mation about using the wizard to generate FIFOs

• Launch SYNCore Command, on page 228 and SYNCore FIFO Wizard, on
page 230 for descriptions of the interface

Synchronous FIFOs

A FIFO is a First-In-First-Out memory queue. Different control logic manages
the read and write operations. A FIFO also has various handshake signals for
interfacing with external user modules.

The SYNCore FIFO compiler generates synchronous FIFOs with symmetric
ports and one clock controlling both the read and write operations. The FIFO
is symmetric because the read and write ports have the same width.

When the Write_enable signal is active and the FIFO has empty locations, data
is written into FIFO memory on the rising edge of the clock. A Full status flag
indicates that the FIFO is full and that no more write operations can be
performed. See FIFO Write Operation, on page 629 for details.

When the FIFO has valid data and Read_enable is active, data is read from the
FIFO memory and presented at the outputs. The FIFO Empty status flag
indicates that the FIFO is empty and that no more read operations can be
performed. See FIFO Read Operation, on page 630 for details.

SYNCore FIFO Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 629

The FIFO is not corrupted by an invalid request: for example, if a read request
is made while the FIFO is empty or a write request is received when the FIFO
is full. Invalid requests do not corrupt the data, but they cause the corre-
sponding read or write request to be ignored and the Overflow or Underflow flags
to be asserted. You can monitor these status flags for invalid requests. These
and other flags are described in FIFO Status Flags, on page 635 and FIFO
Programmable Flags, on page 638.

At any point in time, Data count reflects the available data inside the FIFO. In
addition, you can use the Programmable Full and Programmable Empty status flags
for user-defined thresholds.

FIFO Read and Write Operations

This section describes FIFO behavior with read and write operations.

FIFO Write Operation

When write enable is asserted and the FIFO is not full, data is added to the
FIFO from the input bus (Din) and write acknowledge (Write_ack) is asserted. If
the FIFO is continuously written without being read, it will fill with data. The
status outputs are asserted when the number of entries in the FIFO is greater
than or equal to the corresponding threshold, and should be monitored to
avoid overflowing the FIFO.

When the FIFO is full, any attempted write operation fails and the overflow
flag is asserted.

The following figure illustrates the write operation. Write acknowledge
(Write_ack) is asserted on the next rising clock edge after a valid write opera-
tion. When Full is asserted, there can be no more legal write operations. This
example shows that asserting Write_enable when Full is high causes the asser-
tion of Overflow.

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
630 May 2015

FIFO Read Operation

When read enable is asserted and the FIFO is not empty, the next data word
in the FIFO is driven on the output bus (Dout) and a read valid is asserted. If
the FIFO is continuously read without being written, the FIFO will empty. The
status outputs are asserted when the number of entries in the FIFO are less
than or equal to the corresponding threshold, and should be monitored to
avoid underflow of the FIFO. When the FIFO is empty, all read operations fail
and the underflow flag is asserted.

If read and write operation occur simultaneously during the empty state, the
write operation will be valid and empty, and is de-asserted at the next rising
clock edge. There cannot be a legal read operation from an empty FIFO, so
the underflow flag is asserted.

The following figure illustrates a typical read operation. If the FIFO is not
empty, Read_ack is asserted at the rising clock edge after Read_enable is
asserted and the data on Dout is valid. When Empty is asserted, no more read
operations can be performed. In this case, initiating a read causes the asser-
tion of Underflow on the next rising clock edge, as shown in this figure.

Clock

Write_enable

Din

Write_ack

Overflow

Full

D D DD D D D D D D D

Clock

Read_enable

Dout

Read_ack

Underflow

Empty

D D D D D D

SYNCore FIFO Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 631

FIFO Ports

The following figure shows the FIFO ports.

Port Name Description

Almost_empty Almost empty flag output (active high). Asserted when the FIFO
is almost empty and only one more read can be performed. Can
be active high or active low.

Almost_full Almost full flag output (active high). Asserted when only one
more write can be performed into the FIFO. Can be active high or
active low.

AReset Asynchronous reset input. Resets all internal counters and FIFO
flag outputs.

Clock Clock input for write and read. Data is written/read on the
rising edge.

Data_cnt Data word count output. Indicates the number of words in the
FIFO in the read clock domain.

Din [width:0] Data input word to the FIFO.

Dout [width:0] Data output word from the FIFO.

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
632 May 2015

Empty FIFO empty output (active high). Asserted when the FIFO is
empty and no additional reads can be performed. Can be active
high or active low.

Full FIFO full output (active high). Asserted when the FIFO is full and
no additional writes can be performed. Can be active high or
active low.

Overflow FIFO overflow output flag (active high). Asserted when the FIFO
is full and the previous write was rejected. Can be active high or
active low.

Prog_empty Programmable empty output flag (active high). Asserted when
the words in the FIFO exceed or equal the programmable empty
assert threshold. De-asserted when the number of words is more
than the programmable full negate threshold. Can be active high
or active low.

Prog_empty_
thresh

Programmable FIFO empty threshold input. User-programmable
threshold value for the assertion of the Prog_empty flag. Set
during reset.

Prog_empty_
thresh_assert

Programmable FIFO empty threshold assert input. User-
programmable threshold value for the assertion of the
Prog_empty flag. Set during reset.

Prog_empty_
thresh_negate

Programmable FIFO empty threshold negate input. User
programmable threshold value for the de-assertion of the
Prog_full flag. Set during reset.

Prog_full Programmable full output flag (active high). Asserted when the
words in the FIFO exceed or equal the programmable full assert
threshold. De-asserted when the number of words is less than
the programmable full negate threshold. Can be active high or
active low.

Prog_full_thresh Programmable FIFO full threshold input. User-programmable
threshold value for the assertion of the Prog_full flag. Set during
reset.

Prog_full_thresh_
assert

Programmable FIFO full threshold assert input. User-
programmable threshold value for the assertion of the Prog_full
flag. Set during reset.

Prog_full_thresh_
negate

Programmable FIFO full threshold negate input. User-
programmable threshold value for the de-assertion of the
Prog_full flag. Set during reset.

Port Name Description

SYNCore FIFO Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 633

FIFO Parameters

Read_ack Read acknowledge output (active high). Asserted when valid data
is read from the FIFO. Can be active high or active low.

Read_enable Read enable output (active high). If the FIFO is not empty, data
is read from the FIFO on the next rising edge of the read clock.

Underflow FIFO underflow output flag (active high). Asserted when the
FIFO is empty and the previous read was rejected.

Write_ack Write Acknowledge output (active high). Asserted when there is a
valid write into the FIFO. Can be active high or active low.

Write_enable Write enable input (active high). If the FIFO is not full, data is
written into the FIFO on the next rising edge.

Parameter Description

AEMPTY_FLAG_SENSE FIFO almost empty flag sense
0 Active Low
1 Active High

AFULL_FLAG_SENSE FIFO almost full flag sense
0 Active Low
1 Active High

DEPTH FIFO depth

EMPTY_FLAG_SENSE FIFO empty flag sense
0 Active Low
1 Active High

FULL_FLAG_SENSE FIFO full flag sense
0 Active LowOVERFLOW_
1 Active High

OVERFLOW_FLAG_
SENSE

FIFO overflow flag sense
0 Active Low
1 Active High

Port Name Description

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
634 May 2015

PEMPTY_FLAG_
SENSE

FIFO programmable empty flag sense
0 Active Low
1 Active High

PFULL_FLAG_SENSE FIFO programmable full flag sense
0 Active Low
1 Active High

PGM_EMPTY_
ATHRESH

Programmable empty assert threshold for
PGM_EMPTY_TYPE=2

PGM_EMPTY_
NTHRESH

Programmable empty negate threshold for
PGM_EMPTY_TYPE=2

PGM_EMPTY_THRESH Programmable empty threshold for
PGM_EMPTY_TYPE=1

PGM_EMPTY_TYPE Programmable empty type. See Programmable Empty,
on page 641 for details.
1 Programmable empty with single threshold constant.
2 Programmable empty with multiple threshold
constant
3 Programmable empty with single threshold input
4 Programmable empty with multiple threshold input

PGM_FULL_ATHRESH Programmable full assert threshold for
PGM_FULL_TYPE=2

PGM_FULL_NTHRESH Programmable full negate threshold for
PGM_FULL_TYPE=2

PGM_FULL_THRESH Programmable full threshold for PGM_FULL_TYPE=1

PGM_FULL_TYPE Programmable full type. See Programmable Full, on
page 639 for details.
1 Programmable full with single threshold constant
2 Programmable full with multiple threshold constant
3 Programmable full with single threshold input
4 Programmable full with multiple threshold input

RACK_FLAG_SENSE FIFO read acknowledge flag sense
0 Active Low
1 Active High

Parameter Description

SYNCore FIFO Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 635

FIFO Status Flags

You can set the following status flags for FIFO read and write operations.

• Full/Almost Full Flags, on page 635

• Empty/Almost Empty Flags, on page 636

• Handshaking Flags, on page 636

• Programmable full and empty flags, which are described in Program-
mable Full, on page 639 and Programmable Empty, on page 641.

Full/Almost Full Flags

These flags indicate the status of the FIFO memory queue for write opera-
tions:

The following figure displays the behavior of these flags. In this example,
asserting Wriite_enable when Almost_full is high causes the assertion of Full on
the next rising clock edge.

UNDERFLOW_FLAG_
SENSE

FIFO underflow flag sense
0 Active Low
1 Active High

WACK_FLAG_SENSE FIFO write acknowledge flag sense
0 Active Low
1 Active High

WIDTH FIFO data input and data output width

Full Indicates that the FIFO memory queue is full and no more writes can
be performed until data is read. Full is synchronous with the clock
(Clock). If a write is initiated when Full is asserted, the write does not
succeed and the overflow flag is asserted.

Almost_full The almost full flag (Almost_full) indicates that there is one location left
and the FIFO will be full after one more write operation. Almost full is
synchronous to Clock. This flag is guaranteed to be asserted when the
FIFO has one remaining location for a write operation.

Parameter Description

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
636 May 2015

Empty/Almost Empty Flags

These flags indicate the status of the FIFO memory queue for read operations:

The following figure illustrates the behavior of the FIFO with one word
remaining.

Handshaking Flags

You can specify optional Read_ack, Write_ack, Overflow, and Underflow
handshaking flags for the FIFO.

Empty Indicates that the memory queue for the FIFO is empty and no more
reads can be performed until data is written. The output is active
high and is synchronous to the clock. If a read is initiated when the
empty flag is true, the underflow flag is asserted.

Almost_
empty

Indicates that the FIFO will be empty after one more read operation.
Almost_empty is active high and is synchronous to the clock. The flag is
guaranteed to be asserted when the FIFO has one remaining location
for a read operation.

Clock

Write_enable

Din

Write_ack

Full

D D DD D D D D D D D

Almost_full

Clock

Read_en

Read_ack

Almost_empty

Empty

SYNCore FIFO Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 637

Read_ack Asserted at the completion of each successful read operation. It
indicates that the data on the Dout bus is valid. It is an optional port
that is synchronous with Clock and can be configured as active high or
active low.
Read_ack is deasserted when the FIFO is underflowing, which indicates
that the data on the Dout bus is invalid. Read_ack is asserted at the next
rising clock edge after read enable. Read_enable is asserted when the
FIFO is not empty.

Clock

Read_ack

Overflow

Dout

Write_en

Read_en
Din

Write_ack

Full

Empty

Underflow

D D D D DD D DD D D D D

D D DD D D D D

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
638 May 2015

FIFO Programmable Flags

The FIFO supports completely programmable full and empty flags to indicate
when the FIFO reaches a predetermined user-defined fill level. See the
following:

Both flags support various implementation options. You can do the following:

• Set a constant value

• Set dedicated input ports so that the thresholds can change dynamically
in the circuit

• Use hysteresis, so that each flag has different assert and negative values

Write_ack Asserted at the completion of each successful write operation. It
indicates that the data on the Din port has been stored in the FIFO. It is
synchronous with the clock, and can be configured as active high or
active low.
Write_ack is deasserted for a write to a full FIFO, as illustrated in the
figure. Write_ack is deasserted one clock cycle after Full is asserted to
indicate that the last write operation was valid and no other write
operations can be performed.

Overflow Indicates that a write operation was unsuccessful because the FIFO
was full. In the figure, Full is asserted to indicate that no more writes
can be performed. Because the write enable is still asserted and the
FIFO is full, the next cycle causes Overflow to be asserted. Note that
Write_ack is not asserted when FIFO is overflowing. When the write
enable is deasserted, Overflow deasserts on the next clock cycle.

Underflow Indicates that a read operation was unsuccessful, because the read
was attempted on an empty FIFO. In the figure, Empty is asserted to
indicate that no more reads can be performed. As the read enable is
still asserted and the FIFO is empty, the next cycle causes Underflow to
be asserted. Note that Read_ack is not asserted when FIFO is
underflowing. When the read enable is deasserted, the Underflow flag
deasserts on the next clock cycle.

Prog_full Indicates that the FIFO has reached a user-defined full threshold. See
Programmable Full, on page 639 for more information.

Prog_empty Indicates that the FIFO has reached a user-defined empty threshold.
See Programmable Empty, on page 641 for more information.

SYNCore FIFO Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 639

Programmable Full

The Prog_full flag (programmable full) is asserted when the number of entries
in the FIFO is greater than or equal to a user-defined assert threshold. If the
number of words in the FIFO is less than the negate threshold, the flag is de-
asserted. The following is the valid range of threshold values:

Prog_full has four threshold types:

• Programmable Full with Single Threshold Constant, on page 639

• Programmable Full with Multiple Threshold Constants, on page 640

• Programmable Full with Single Threshold Input, on page 640

• Programmable Full with Multiple Threshold Inputs, on page 641

Programmable Full with Single Threshold Constant
PGM_FULL_TYPE = 1

This option lets you set a single constant value for the threshold. It requires
significantly fewer resources when the FIFO is generated. This figure illus-
trates the behavior of Prog_full when configured as a single threshold constant
with a value of 6.

Assert
threshold
value

Depth / 2 to Max of Depth
For multiple threshold types, the assert value should always be
larger than the negate value in multiple threshold types.

Negate
threshold
value

Depth / 2 to Max of Depth

Clock

Prog_full

Data_cnt

Write_en

Write_ack

62 41 3 50 5 4

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
640 May 2015

Programmable Full with Multiple Threshold Constants
PGM_FULL_TYPE = 2

The programmable full flag is asserted when the number of words in the FIFO
is greater than or equal to the full threshold assert value. If the number of
FIFO words drops to less than the full threshold negate value, the program-
mable full flag is de-asserted. Note that the negate value must be set to a
value less than the assert value. The following figure illustrates the behavior
of Prog_full configured as multiple threshold constants with an assert value of
6 and a negate value of 4.

Programmable Full with Single Threshold Input
PGM_FULL_TYPE = 3

This option lets you specify the threshold value through an input port
(Prog_full_thresh) during the reset state, instead of using constants. The
following figure illustrates the behavior of Prog_full configured as a single
threshold input with a value of 6.

Clock

Prog_full

Data_cnt

Write_en

Write_ack

62 41 3 50 245 3

Clock

Prog_full

Data_cnt

Write_en

Write_ack

62 41 3 50 5 4

SYNCore FIFO Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 641

Programmable Full with Multiple Threshold Inputs
PGM_FULL_TYPE = 4

This option lets you specify the assert and negate threshold values dynami-
cally during the reset stage using the Prog_full_thresh_assert and
Prog_full_thresh_negate input ports. You must set the negate value to a value
less than the assert value.

The programmable full flag is asserted when the number of words in the FIFO
is greater than or equal to the Prog_full_thresh_assert value. If the number of
FIFO words goes below Prog_full_thresh_negate value, the programmable full
flag is deasserted. The following figure illustrates the behavior of Prog_full
configured as multiple threshold inputs with an assert value of 6 and a
negate value of 4.

Programmable Empty

The programmable empty flag (Prog_empty) is asserted when the number of
entries in the FIFO is less than or equal to a user-defined assert threshold. If
the number of words in the FIFO is greater than the negate threshold, the flag
is deasserted. The following is the valid range of threshold values:

There are four threshold types you can specify:

• Programmable Empty with Single Threshold Constant, on page 642

Assert
threshold
value

1 to Max of Depth / 2
For multiple threshold types, the assert value should always be
lower than the negate value in multiple threshold types.

Negate
threshold
value

1 to Max of Depth / 2

Clock

Prog_full

Data_cnt

Write_en

Write_ack

62 41 3 50 245 3

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
642 May 2015

• Programmable Empty with Multiple Threshold Constants, on page 642

• Programmable Empty with Single Threshold Input, on page 643

• Programmable Empty with Multiple Threshold Inputs, on page 643

Programmable Empty with Single Threshold Constant
PGM_EMPTY_TYPE = 1

This option lets you specify an empty threshold value with a single constant.
This approach requires significantly fewer resources when the FIFO is gener-
ated. The following figure illustrates the behavior of Prog_empty configured as
a single threshold constant with a value of 3.

Programmable Empty with Multiple Threshold Constants
PGM_EMPTY_TYPE = 2

This option lets you specify constants for the empty threshold assert value
and empty threshold negate value. The programmable empty flag asserts and
deasserts in the range set by the assert and negate values. The assert value
must be set to a value less than the negate value. When the number of words
in the FIFO is less than or equal to the empty threshold assert value, the
Prog_empty flag is asserted. When the number of words in FIFO is greater than
the empty threshold negate value, Prog_empty is deasserted.

The following figure illustrates the behavior of Prog_empty when configured as
multiple threshold constants with an assert value of 3 and a negate value of
5.

Clock

Prog_empty

Data_cnt

Read_en

62 51 3 40 245 3

SYNCore FIFO Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 643

Programmable Empty with Single Threshold Input
PGM_EMPTY_TYPE = 3

This option lets you specify the threshold value dynamically during the reset
state with the Prog_empty_thresh input port, instead of with a constant. The
Prog_empty flag asserts when the number of FIFO words is equal to or less
than the Prog_empty_thresh value and deasserts when the number of FIFO
words is more than the Prog_empty_thresh value. The following figure illus-
trates the behavior of Prog_empty when configured as a single threshold input
with a value of 3.

Programmable Empty with Multiple Threshold Inputs
PGM_EMPTY_TYPE = 4

This option lets you specify the assert and negate threshold values dynami-
cally during the reset stage using the Prog_empty_thresh_assert and
Prog_empty_thresh_negate input ports instead of constants. The programmable
empty flag asserts and deasserts according to the range set by the assert and
negate values. The assert value must be set to a value less than the negate
value.

Clock

Prog_empty

Data_cnt

Read_en

32 41 3 60 2675 7 458

Clock

Prog_empty

Data_cnt

Read_en

62 51 3 40 245 3

LO

 IP and Encryption Tools SYNCore FIFO Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
644 May 2015

When the number of FIFO words is less than or equal to the empty threshold
assert value, Prog_empty is asserted. If the number of FIFO words is greater
than the empty threshold negate value, the flag is deasserted. The following
figure illustrates the behavior of Prog_empty configured as multiple threshold
inputs, with an assert value of 3 and a negate value of 5.

Clock

Prog_empty

Data_cnt

Read_en

32 41 3 60 2675 7 458

SYNCore RAM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 645

SYNCore RAM Compiler

The SYNCore RAM Compiler generates Verilog code for your RAM implemen-
tation. This section describes the following:

• Single-Port Memories, on page 645

• Dual-Port Memories, on page 647

• Read/Write Timing Sequences, on page 652

For further information, refer to the following:

• Specifying RAMs with SYNCore, on page 409 of the User Guide, for infor-
mation about using the wizard to generate FIFOs

• Launch SYNCore Command, on page 228 and SYNCore FIFO Wizard, on
page 230 for descriptions of the interface

Single-Port Memories

For single-port RAM, it is only necessary to configure Port A. The following
diagrams show the read-write timing for single-port memories. See Specifying
RAMs with SYNCore, on page 409 in the User Guide for a procedure.

LO

 IP and Encryption Tools SYNCore RAM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
646 May 2015

Single-Port Read

ADDR

CLK

QOUT

MEM1

MEM0

MEM3

MEM2

MEM4

00 01 02 03

XX F0 F1 F2 F3

F0

F1

F3

F2

F4

SYNCore RAM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 647

Single-Port Write

Dual-Port Memories

SYNCore dual-port memory includes the following common configurations:

• One read access and one write access

• Two read accesses and one write access

• Two read accesses and two write accesses

The following diagrams show the read-write timing for dual-port memories.
See Specifying RAMs with SYNCore, on page 409 in the User Guide for a
procedure to specify a dual-port RAM with SYNCore.

WREN

CLK

QOUT

MEM1

MEM3

MEM2

MEM4

MEM0

DATA

ADDR 00 0201

7A FC 7F FF

F1

F0 7AXX

F0

FF7FF2

7A

F3

F4

FF7F

LO

 IP and Encryption Tools SYNCore RAM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
648 May 2015

Dual-Port Single Read

RADDR

CLK

QOUT

MEM1

MEM0

MEM3

MEM2

MEM4

00 03 02 01

XX F0 F3 F2 F1

F0

F1

F3

F2

F4

SYNCore RAM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 649

Dual-Port Single Write

WREN

CLK

QOUT

MEM1

MEM3

MEM2

MEM4

MEM0

DATA

WADDR

RADDR

F1

F0 7A FFXX

00 0201

FF7FF2

7A

7A FC 7F FF

F3

F4

00 03 02

7F

F0

LO

 IP and Encryption Tools SYNCore RAM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
650 May 2015

Dual-Port Read

ADDR_A

CLK

QOUT_A

MEM1

MEM0

MEM3

MEM2

MEM4

ADDR_B

QOUT_B

00 01 02 03

XX F0 F1 F2 F3

F0

F1

F3

F2

F4

00 03 02 01

XX F0 F3 F2 F1

SYNCore RAM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 651

Dual-Port Write

WREN_A

CLK

QOUT_A

MEM1

MEM3

MEM2

MEM4

DATA_A

ADDR_A

ADDR_B

DATA_B

WREN_B

QOUT_B

MEM0

7A FC 7F FF

00 0201

04 4A 4F F4

00 03 02

F1

F0 7A 7F FFXX

FF7FF2

7A

F3

F4

XX F0 04

F0 7A

F3 XX

LO

 IP and Encryption Tools SYNCore RAM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
652 May 2015

Read/Write Timing Sequences

The waveforms in this section describe the behavior of the RAM when both
read and write are enabled and the address is the same operation. The
waveforms show the behavior when each of the read-write sequences is
enabled. The waveforms are merged with the simple waveforms shown in the
previous sections. See the following:

• Read Before Write, on page 652

• Write Before Read, on page 653

• No Read on Write, on page 654

Read Before Write

CLK

ADDR

DATA

WEN

QOUT

MEM0

MEM1

MEM2

MEM3

MEM4

00

FA FB FC

A0 A1 A2 FC A3 FD

A0

A1

A2 FC

FDA3

A4 FE

FE

FEA4

FD

01 02 03 04

SYNCore RAM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 653

Write Before Read

CLK

ADDR

DATA

WEN

QOUT

MEM0

MEM1

MEM2

MEM3

MEM4

00 01 02 03 04

FA FB FC FD FE

A0 A1 FC FD FE

A0

A1

A2

A3

A4

FC

FD

FE

LO

 IP and Encryption Tools SYNCore RAM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
654 May 2015

No Read on Write

CLK

ADDR

DATA

WEN

QOUT

MEM0

MEM1

MEM2

MEM3

MEM4

00

FA FB

A4

04

FE

03

FDFC

FD

FC

A3

A2

A1

A0

A1A0

0201

FE

SYNCore Byte-Enable RAM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 655

SYNCore Byte-Enable RAM Compiler

The SYNCore byte-enable RAM compiler generates SystemVerilog code
describing byte-enabled RAMs. The data width of each byte is calculated by
dividing the total data width by the write enable width. The byte-enable RAM
compiler supports both single- and dual-port configurations.

This section describes the following:

• Functional Overview, on page 655

• Read Operation, on page 656

• Write Operation, on page 657

• Parameter List, on page 659

For further information, refer to the following:

• Specifying Byte-Enable RAMs with SYNCore, on page 416 of the user
guide for information on using the wizard to generate single- or dual-
port RAM configurations.

• SYNCore Byte-Enable RAM Wizard, on page 244 for descriptions of the
interface.

Functional Overview

The SYNCore byte-enable RAM component supports bit/byte-enable RAM
implementations using blockRAM and distributed memory. For each configu-
ration, design optimizations are made for optimum use of core resources. The
timing diagram that follow illustrate the supported signals for byte-enable
RAM configurations.

Byte-enable RAM can be configured in both single- and dual-port configura-
tions. In the dual-port configuration, each port is controlled by different
clock, enable, and control signals. User configuration controls include
selecting the enable level, reset type, and register type for the read data
outputs and address inputs.

Reset applies only to the output read data registers; default value of read data
on reset can be changed by user while generating core. Reset option is
inactive when output read data is not registered.

LO

 IP and Encryption Tools SYNCore Byte-Enable RAM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
656 May 2015

Read/Write Timing Sequences

The waveforms in this section describe the behavior of the byte-enable RAM
for both read and write operations.

Read Operation

On each active edge of the clock when there is a change in address, data is
valid on the same clock or next clock (depending on latency parameter values
for read address and read data ports). Active reset ignores any change in
input address, and data and output data are initialized to user-defined values
set by parameters RST_RDATA_A and RST_RDATA_B for port A and port B,
respectively.

The following waveform shows the read sequence of the byte-enable RAM
component with read data registered in single-port mode.

As shown in the above waveform, output read data changes on the same
clock following the input address changed. When the address changes from
'h00 to 'h01, read data changes to 50 on the same clock, and data will be
valid on the next clock edge.

The following waveform shows the read sequence with both the read data and
address registered in single-port mode.

SYNCore Byte-Enable RAM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 657

As shown in the above waveform, output read data changes on the next clock
edge after the input address changes. When the address changes from 'h00 to
'h01, read data changes to 50 on the next clock, and data is valid on the next
clock edge.

Note: The read sequence for dual-port mode is the same as single port;
read/write conflicts occurring due to accessing the same location
from both ports are the user’s responsibility.

Write Operation

The following waveform shows a write sequence with read-after write in
single-port mode.

LO

 IP and Encryption Tools SYNCore Byte-Enable RAM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
658 May 2015

On each active edge of the clock when there is a change in address with an
active enable, data is written into memory on the same clock. When enable is
not active, any change in address or data is ignored. Active reset ignores any
change in input address and data.

The width of the write enable is controlled by the WE_WIDTH parameter. Input
data is symmetrically divided and controlled by each write enable. For
example, with a data width of 32 and a write enable width of 4, each bit of the
write enable controls 8 bits of data (32/4=8). The byte-enable RAM compiler
will error for wrong combination data width and write enable values.

The above waveform shows a write sequence with all possible values for write
enable followed by a read:

• Value for parameter WE_WIDTH is 2 and DATA_WIDTH is 8 so each write
enable controls 4 bits of input data.

• WenA value changes from 1 to 2, 2 to 0, and 0 to 3 which toggles all
possible combinations of write enable.

The first sequence of address, write enable changes to perform a write
sequence and the data patterns written to memory are 00, aa, ff. The read
data pattern reflects the current content of memory before the write.

The second address sequence is a read (WenA is always zero). As shown in the
read pattern, only the respective bits of data are written according to the write
enable value.

SYNCore Byte-Enable RAM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 659

Note: The write sequence for dual-port mode is the same as single port;
conflicts occurring due to writing the same location from both
ports are the user’s responsibility.

Parameter List

The following table lists the file entries corresponding to the byte-enable RAM
wizard parameters.

 Name Description Default Value Range

ADDR_WIDTH Bit/byte enable RAM
address width

2 multiples of 2

DATA_WIDTH Data width for input
and output data,
common to both Port A
and Port B

8 2 to 256

WE_WIDTH Write enable width,
common to both Port A
and Port B

2

CONFIG_PORT Selects single/dual
port configuration

1 (single port) 0 = dual-port
1 = single-port

RST_TYPE_A/B Port A/B reset type
selection

1 (synchronous) 0 = no reset
1 = synchronous

RST_RDATA_A/B Default data value for
Port A/B on active
reset

All 1’s decimal value

WEN_SENSE_A/B Port A/B write enable
sense

1 (active high) 0 = active low
1 = active high

RADDR_LTNCY_A/B Optional read address
register select Port
A/B

1 0 = no latency
1 = one cycle latency

RDATA_LTNCY_A/B Optional read data
register select Port
A/B

1 0 = no latency
1 = one cycle latency

LO

 IP and Encryption Tools SYNCore ROM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
660 May 2015

SYNCore ROM Compiler

The SYNCore ROM Compiler generates Verilog code for your ROM implemen-
tation. This section describes the following:

• Functional Overview, on page 660

• Single-Port Read Operation, on page 661

• Dual-Port Read Operation, on page 662

• Parameter List, on page 663

• Clock Latency, on page 664

For further information, refer to the following:

• Specifying ROMs with SYNCore, on page 422 of the User Guide, for infor-
mation about using the wizard to generate ROMs

• Launch SYNCore Command, on page 228 and SYNCore ROM Wizard, on
page 247 for descriptions of the interface

Functional Overview

The SYNCore ROM component supports ROM implementations using block
ROM or logic memory. For each configuration, design optimizations are made
for optimum usage of core resources. Both single- and dual-port memory
configurations are supported. Single-port ROM allows read access to memory
through a single port, and dual-port ROM allows read access to memory
through two ports. The following figure illustrates the supported signals for
both configurations.

SYNCore ROM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 661

In the single-port (Port A) configuration, signals are synchronized to ClkA;
ResetA can be synchronous or asynchronous depending on parameter selec-
tion. The read address (AddrA) and/or data output (DataA) can be registered to
increase memory performance and improve timing. Both the read address
and data output are subject to clock latency based on the ROM configuration
(see Clock Latency, on page 664). In the dual-port configuration, all Port A
signals are synchronized to ClkA, and all PortB signals are synchronized to
ClkB. ResetA and ResetB can be synchronous or asynchronous depending on
parameter selection, and both data outputs can be registered and are subject
to the same clock latencies. Registering the data output is recommended.

Note: When the data output is unregistered, the data is immediately
set to its predefined reset value concurrent with an active reset
signal.

Single-Port Read Operation

For single-port ROM, it is only necessary to configure Port A (see Specifying
ROMs with SYNCore, on page 422 in the User Guide). The following diagram
shows the read timing for a single-port ROM.

LO

 IP and Encryption Tools SYNCore ROM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
662 May 2015

On every active edge of the clock when there is a change in address with an
active enable, data will be valid on the same clock or next clock (depending on
latency parameter values). When enable is inactive, any address change is
ignored, and the data port maintains the last active read value. An active
reset ignores any change in input address and forces the output data to its
predefined initialization value. The following waveform shows the functional
behavior of control signals in single-port mode.

When reset is active, the output data holds the initialization value (i.e., 255).
When reset goes inactive (and enable is active), data is read form the
addressed location of ROM. Reset has priority over enable and always sets
the output to the predefined initialization value. When both enable and reset
are inactive, the output holds its previous read value.

Note: In the above timing diagram, reset is synchronous. Clock latency
varies according to the implementation and parameters as
described in Clock Latency, on page 664.

Dual-Port Read Operation

Dual-port ROMs allow read access to memory through two ports. For dual-
port ROM, both port A and port B must be configured (see Specifying ROMs
with SYNCore, on page 422 in the User Guide). The following diagram shows
the read timing for a dual-port ROM.

SYNCore ROM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 663

When either reset is active, the corresponding output data holds the initial-
ization value (i.e., 255). When a reset goes inactive (and its enable is active),
data is read form the addressed location of ROM. Reset has priority over
enable and always sets the output to the predefined initialization value. When
both enable and reset are inactive, the output holds its previous read value.

Note: In the above timing diagram, reset is synchronous. Clock latency
varies according to the implementation and parameters as
described in Clock Latency, on page 664.

Parameter List

The following table lists the file entries corresponding to the ROM wizard
parameters.

 Name Description Default Value Range

ADD_WIDTH ROM address width
value. Default
value is 10

10 --

DATA_WIDTH Read Data width,
common to both
Port A and Port B

8 2 to 256

CONFIG_PORT Parameter to select
Single/Dual
configuration

dual (Dual Port) dual (Dual), single (Single).

LO

 IP and Encryption Tools SYNCore ROM Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
664 May 2015

Clock Latency

Clock latency varies with both the implementation and latency parameter
values according to the following table. Note that the table reflects the values
for Port A – the same values apply for Port B in dual-port configurations.

RST_TYPE_A Port A reset type
selection
(synchronous,
asynchronous)

1 - asynchronous 1(asyn), 0 (sync)

RST_TYPE_B Port B reset type
selection
(synchronous,
asynchronous)

1 - asynchronous 1 (asyn), 0 (sync)

RST_DATA_A Default data value
for Port A on active
Reset

‘1’ for all data bits 0 – 2^DATA_WIDTH - 1

RST_DATA_B Default data value
for Port A on active
Reset

‘1’ for all data bits 0 – 2^DATA_WIDTH - 1

EN_SENSE_A Port A enable sense 1 – active high 0 - active low, 1- active high

EN_SENSE_B Port B enable sense 1 – active high 0 - active low, 1- active high

ADDR_LTNCY_A Optional address
register select Port
A

1- address registered 1(reg), 0(no reg)

ADDR_LTNCY_B Optional address
register select Port
B

1- address registered 1(reg), 0(no reg)

DATA_LTNCY_A Optional data
register select Port
A

1- data registered 1(reg), 0(no reg)

DATA_LTNCY_B Optional data
register select Port
B

1- data registered 1(reg), 0(no reg)

INIT_FILE Initial values file
name

init.txt --

SYNCore ROM Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 665

Implementation
Type/Target

Parameter Value Latency

block_rom DATA_LTNCY_A = 0
ADDR_LTNCY_A = 1

1 ClkA cycle

DATA_LTNCY_A = 1
ADDR_LTNCY_A = 0

1 ClkA cycle

DATA_LTNCY_A = 1
ADDR_LTNCY_A = 1

2 ClkA cycles

logic DATA_LTNCY_A = 0
ADDR_LTNCY_A = 0

0 ClkA cycles

DATA_LTNCY_A = 0
ADDR_LTNCY_A = 1

1 ClkA cycle

DATA_LTNCY_A = 1
ADDR_LTNCY_A = 0

1 ClkA cycle

DATA_LTNCY_A = 1
ADDR_LTNCY_A = 1

2 ClkA cycles

LO

 IP and Encryption Tools SYNCore Adder/Subtractor Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
666 May 2015

SYNCore Adder/Subtractor Compiler

The SYNCore adder/subtractor compiler generates Verilog code for a parame-
trizable, pipelined adder/subtractor. This section describes the functionality
of this block in detail.

Functional Description

The adder/subtractor has a single clock that controls the entire pipeline
stages (if used) of the adder/subtractor.

As its name implies, this block just adds/subtracts the inputs and provides
the output result. One of the inputs can be configured as a constant. The
data inputs and outputs of the adder/subtractor can be pipelined; the
pipeline stages can be 0 or 1, and can be configured individually. The
individual pipeline stage registers include their own reset and enable ports.

The reset to all of the pipeline registers can be configured either as synchro-
nous or asynchronous using the RESET_TYPE parameter. The reset type of the
pipeline registers cannot be configured individually.

SYNCore Adder/Subtractor Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 667

SYNCore adder/subtractor has ADD_N_SUB parameter, which can take three
values ADD, SUB, or DYNAMIC. Based on this parameter value, the
adder/subtractor can be configured as follows.

• Adder

• Subtractor

• Dynamic Adder and Subtractor

Adder

Based on the parameter CONSTANT_PORT, the adder can be configured in two
ways.

• CONSTANT_PORT='0' – adder with two input ports (port A and port B)

• CONSTANT_PORT='1' – adder with one constant port

Adder with Two Input Ports (Port A and Port B)

In this mode, port A and port B values are added. Optional pipeline stages
can also be inserted at port A, port B or at both port A and port B. Optionally,
pipeline stages can also be added at the output port. Depending on pipeline
stages, a number of the adder configurations are given below.

Adder with No Pipeline Stages – In this mode, the port A and port B inputs
are added. The adder is purely combinational, and the output changes
immediately with respect to the inputs.

Adder with Pipeline Stages at Input Only – In this mode, the port A and
port B inputs are pipelined and added. Because there is no pipeline stage at
the output, the result is valid at each rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘0’

LO

 IP and Encryption Tools SYNCore Adder/Subtractor Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
668 May 2015

Adder with Pipeline Stages at Input and Output – In this mode, the port A
and port B inputs are pipelined and added, and the result is pipelined. The
result is valid only on the second rising edge of the clock.

Adder with a Port Constant

In this mode, port A is added with a constant value (the constant value can be
passed though the parameter CONSTANT_VALUE). Optional pipeline stages can
also be inserted at port A, Optionally, pipeline stages can also be added at the
output port. Depending on the pipeline stages, a number of the adder config-
urations are given below (here CONSTANT_VALUE=’3’)

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

SYNCore Adder/Subtractor Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 669

Adder with No Pipeline Stages – In this mode, input port A is added with a
constant value. The adder is purely combinational, and the output changes
immediately with respect to the input.

Adder with Pipeline Stage at Input Only – In this mode, input port A is
pipelined and added with a constant value. Because there is no pipeline stage
at the output, the result is valid at each rising edge of the clock.

Adder with Pipeline Stages at Input and Output – In this mode, input port
A is pipelined and added with a constant value, and the result is pipelined.
The result is valid only on the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

LO

 IP and Encryption Tools SYNCore Adder/Subtractor Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
670 May 2015

Subtractor

Based on the parameter CONSTANT_PORT, the subtractor can be configure in
two ways.

CONSTANT_PORT='0' – subtractor with two input ports (port A and port B)

CONSTANT_PORT='1' – subtractor with one constant port

Subtractor with Two Input Ports (Port A and Port B)

In this mode, port B is subtracted from port A. Optional pipeline stages can
also be inserted at port A, port B, or both ports. Optionally, pipeline stages
can also be added at the output port. Depending on the pipeline stages, a
number of the subtractor configurations are given below.

Subtractor with No Pipeline Stages – In this mode, input port B is
subtracted from port A, and the subtractor is purely combinational. The
output changes immediately with respect to the inputs.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTB_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

SYNCore Adder/Subtractor Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 671

Subtractor with Pipeline Stages at Input Only – In this mode, input port B
and input PortA are pipelined and then subtracted. Because there is no
pipeline stage at the output, the result is valid at each rising edge of the
clock.

Subtractor with Pipeline Stages at Input and Output – In this mode, input
PortA and PortB are pipelined and then subtracted, and the result is
pipelined. The result is valid only at the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

LO

 IP and Encryption Tools SYNCore Adder/Subtractor Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
672 May 2015

Subtractor with a Port Constant

In this mode, a constant value is subtracted from port A (the constant value
can be passed though the parameter CONSTANT_VALUE). Optional pipeline
stages can also be inserted at port A, Optionally, pipeline stages can also be
added at the output port. Depending on pipeline stages, a number of the
subtractor configurations are given below (here CONSTANT_VALUE=’1’).

Subtractor with No Pipeline Stages – In this mode, a constant value is
subtracted from port A. The subtractor is purely combinational, and the
output changes immediately with respect to the input.

Subtractor with Pipeline Stages at Input Only – In this mode, a constant
value is subtracted from pipelined input port A. Because there is no pipeline
stage at the output, the output is valid at each rising edge of the clock.

Subtractor with Pipeline Stages at Input and Output – In this mode, a
constant value is subtracted from pipelined port A, and the output is
pipelined. The result is valid only at the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

SYNCore Adder/Subtractor Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 673

Dynamic Adder/Subtractor

In dynamic adder/subtractor mode, port PortADDnSUB controls
adder/subtractor operation.

PortADDnSUB='0 ' – adder operation

PortADDnSUB='1 ' – subtractor operation

Based on the parameter CONSTANT_PORT the dynamic adder/subtractor can
be configured in one of two ways:

CONSTANT_PORT='0 ' – dynamic adder/subtractor with two input ports

CONSTANT_PORT='1 ' – dynamic adder/subtractor with one constant port

Dynamic Adder/Subtractor with Two Input Ports (Port A and Port B)

In this mode, the addition and subtraction is dynamic based on the value of
input port PortADDnSUB. Optional pipeline stages can also be inserted at Port
A, Port B, or both Port A and Port B. Optionally, pipeline stages can also be
added at the output port. Depending on pipeline stages, some of the dynamic
adder/subtractor configurations are given below.

Dynamic Adder/Subtractor with No Pipeline Registers – In this mode, the
dynamic adder/subtractor is a purely combinational, and output changes
immediately with respect to the inputs.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

LO

 IP and Encryption Tools SYNCore Adder/Subtractor Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
674 May 2015

Dynamic Adder/Subtractor with Pipeline Stages at Input Only – In this
mode, input port A and port B are pipelined and then added/subtracted
based on the value of port PortADDnSUB. Because there is no pipeline stage at
the output port, the result immediately changes with respect to the
PortADDnSUB signal.

Dynamic Adder/Subtractor with Pipeline Stages at Input and Output – In
this mode, input port A and port B are pipelined and then added/subtracted
based on the value of port PortADDnSUB. Because the output port is pipelined,
the result is valid only on the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTB_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

SYNCore Adder/Subtractor Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 675

Dynamic Adder/Subtractor with a Port Constant

In this mode, a constant value is either added or subtracted from port A
based on input port value PortADDnSUB (the constant value can be passed
though the parameter CONSTANT_VALUE). Optional pipeline stages can also be
inserted at port A, Optionally, pipeline stages can also be added at the output
port. Depending on the pipeline stages, a number of the dynamic
adder/subtractor configurations are given below (here CONSTANT_VALUE=’1’).

Dynamic Adder/Subtractor with No Pipeline Registers – In this mode,
dynamic adder/subtractor is a purely combinational, and the output change
immediately with respect to the input.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

LO

 IP and Encryption Tools SYNCore Adder/Subtractor Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
676 May 2015

Dynamic Adder/Subtractor with Pipeline Stages at Input Only – In this
mode, a constant value is either added or subtracted from the pipelined
version of port A based on the value of port PortADDnSUB. Because there is no
pipeline stage on the output port, the result changes immediately with
respect to the PortADDnSUB signal.

Dynamic Adder/Subtractor with Pipeline Stages at Input and Output – In
this mode, a constant value is either added or subtracted from the pipelined
version of port A based on the value of port PortADDnSUB. Because the output
port is pipelined, the result is valid only on the second rising edge of the
clock.

Dynamic Adder/Subtractor with Carry Input

The following waveform shows the behavior of the dynamic adder/subtractor
with a carry input (the carry input is assumed to be 0).

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

SYNCore Adder/Subtractor Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 677

Dynamic Adder/Subtractor with Complete Control Signals

The following waveform shows the complete signal set for the dynamic
adder/subtractor. The enable and reset signals are always present in all of
the previous cases.

LO

 IP and Encryption Tools SYNCore Counter Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
678 May 2015

SYNCore Counter Compiler

The SYNCore counter compiler generates Verilog code for your up, down, and
dynamic (up/down) counter implementation. This section describes the
following:

• Functional Overview, on page 678

• UP Counter Operation, on page 679

• Down Counter Operation, on page 679

• Dynamic Counter Operation, on page 680

For further information, refer to the following:

• Specifying Counters with SYNCore, on page 434 of the User Guide, for
information about using the wizard to generate a counter core.

• Launch SYNCore Command, on page 228 and SYNCore Counter Wizard,
on page 255 for descriptions of the interface and generating the core.

Functional Overview

The SYNCore counter component supports up, down, and dynamic
(up/down) counter implementations using DSP blocks or logic elements. For
each configuration, design optimizations are made for optimum use of core
resources.

As its name implies, the COUNTER block counts up (increments) or down
(decrements) by a step value and provides an output result. You can load a
constant or a variable as an intermediate value or base for the counter. Reset
to the counter on the PortRST input is active high and can be can be config-
ured either as synchronous or asynchronous using the RESET_TYPE param-
eter. Count enable on the PortCE input must be value high to enable the
counter to increment or decrement.

SYNCore Counter Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 679

UP Counter Operation

In this mode, the counter is incremented by the step value defined by the
STEP parameter. When reset is asserted (when PostRST is active high), the
counter output is reset to 0. After the assertion of PortCE, the counter starts
counting upwards coincident with the rising edge of the clock. The following
waveform is with a constant STEP value of 5 and no load value.

Note: Counter core can be configured to use a constant or dynamic
load value in Up Counter mode (for the counter to load the Port-
LoadValue, PortCE must be active). This functionality is explained
in Dynamic Counter Operation, on page 680.

Down Counter Operation

In this mode, the counter is decremented by the step value defined by the
STEP parameter. When reset is asserted (when PostRST is active high), the
counter output is reset to 0. After the assertion of PortCE, the counter starts
counting downwards coincident with the rising edge of the clock. The
following waveform is with a constant STEP value of 5 and no load value.

Parameters: MODE= ‘Up’
LOAD= ‘0’

Parameters: MODE= ‘Down’
LOAD= ‘0’

LO

 IP and Encryption Tools SYNCore Counter Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
680 May 2015

Note: Counter core can be configured to use a constant or dynamic
load value in Down Counter mode (for the counter to load the
PortLoadValue, PortCE must be active). This functionality is
explained in Dynamic Counter Operation, on page 680.

Dynamic Counter Operation

In this mode, the counter is incremented or decremented by the step value
defined by the STEP parameter; the count direction (up or down) is controlled
by the PortUp_nDown input (1 = up, 0 = down).

Dynamic Up/Down Counters with Constant Load Value*

On de-assertion of PortRST, the counter starts counting up or down based on
the PortUp_nDown input value. The following waveform is with STEP value of 5
and a LOAD_VALUE of 80. When PortLoad is asserted, the counter loads the
constant load value on the next active edge of clock and resumes counting in
the specified direction.

Parameters: MODE= ‘Dynamic’
LOAD= ‘1’

SYNCore Counter Compiler IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 681

Note: *For counter to load the PortLoadValue, PortCE must be active.

Dynamic Up/Down Counters with Dynamic Load Value*

On de-assertion of PortRST, the counter starts counting up or down based on
the PortUp_nDown input value. The following waveform is with STEP value of 5
and a LOAD_VALUE of 80. When PortLoad is asserted, the counter loads the
constant load value on the next active edge of clock and resumes counting in
the specified direction.

In this mode, the counter counts up or down based on the PortUp_nDown input
value. On the assertion of PortLoad, the counter loads a new PortLoadValue and
resumes up/down counting on the next active clock edge. In this example, a
variable PortLoadValue of 8 is used with a counter STEP value of 5.

Parameters: MODE= ‘Dynamic’
LOAD= ‘2’

LO

 IP and Encryption Tools SYNCore Counter Compiler

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
682 May 2015

Note: * For counter to load the PortLoadValue, PortCE should be
active.

Encryption Scripts IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 683

Encryption Scripts

There are two FPGA encryption methods available to Synopsys FPGA
synthesis tool users: IEEE 1735-2014 and OpenIP. With both encryption
methods, the IP vendor can encrypt their IP from their own website. From the
synthesis tool, the synthesis user has access to the IP that the vendor makes
available for download and evaluation within a synthesis design.

Each encryption method has corresponding scripts that the user can run.
The following sections provide an overview of encryption and decryption
methodologies and descriptions of the two encryption scripts:

• Encryption and Decryption Methodologies, on page 683

• The encryptP1735 Script, on page 684 (for IEEE 1735-2014 encryption)

• The encryptIP Script, on page 688 (for OpenIP encryption)

Encryption and Decryption Methodologies

This section describes common encryption schemes. There are two major
classes of encryption/decryption algorithms: symmetric, and asymmetric.

• Symmetric Encryption
With this kind of encryption, a special number is used as a key to
encrypt the files. The same key is used to decrypt the file, so the
software must have access to the same key.

The supported algorithms are:

– Data Encryption Standard (DES)

– Triple DES

– Advanced Encryption Standard (AES)

• Asymmetric Encryption
This encryption scheme uses different keys to encode and decode data.
The EDA tool vendor generates the keys and makes a public key to

Source data Encrypted data

LO

 IP and Encryption Tools Encryption Scripts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
684 May 2015

everyone who needs it for encryption. The public key cannot be used for
decryption. The EDA tool uses the private key to decrypt the data. The
asymmetric encryption cipher used is RSA.

The encryptP1735 Script

The encryptP1735 script is available to IP vendors who wish to provide IP to
their synthesis users. The script is a Perl script that uses the IEEE 1735-
2014 standard to let IP vendors encrypt modules or components, which can
then be downloaded for evaluation or use by a Synopsys FPGA user. The
script can be run according to any of three use models to encrypt the associ-
ated RTL files (see Encrypting IP with the encryptP1735.pl Script, on
page 446 of the User Guide.

You run the script with the encryptP1735 command, the complete syntax for
which is described in encryptP1735, on page 32 in the Command Reference
manual.

The following sections describe details of the encrypP1735 script files:

• Input Files for the IEEE 1735-2014 Encryption Script, on page 684

• Public Keys Repository File, on page 685

• Pragmas for the IEEE 1735-2014 Encryption Script, on page 685

• Adding Multiple Keys, on page 686

• Limitations, on page 688

Input Files for the IEEE 1735-2014 Encryption Script

The encryptP1735 encryption script reads an HDL file, with or without encryp-
tion attributes, according to the selected use model. Additionally, the script
reads the keys repository file that contains the public keys for the IP
consumer tools.

Source data Encrypted data

Public key

Private key

Encryption Scripts IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 685

Public Keys Repository File

The encryptP1735 encryption script requires public keys from the default
keys.txt file from the directory installLocation/lib to create the decryption
envelope. This file includes public keys for each of the tools that require a key
block in the encrypted file. The public keys file includes a Synopsys synthesis
tool public key; the file can be expanded by the user to include public keys for
other tools.

Pragmas for the IEEE 1735-2014 Encryption Script

The header blocks in the encryptP1735.pl script support the pragmas described
in the following table.

Pragma Keyword Description

begin Opens a new encryption envelope

end Closes an encryption envelope

begin_protected Opens a new decryption envelope

end_protected Closes a decryption envelope

author Identifies the author of an envelope

author_info Specifies additional author information

encoding Specifies the coding scheme for the encrypted data

data_keyowner Identifies the owner of the data encryption key

data_method Identifies the data encryption algorithm

data_keyname Specifies the name of the data encryption key

data_block Begins an encoded block of encrypted data

encrypt_agent Identifies the encryption service

encrypt_agent_info Specifies additional encryption-agent information

key_keyowner Identifies the owner of the key encryption key

key_method Specifies the key encryption algorithm

key_keyname Specifies the name of the key encryption key

key_public_key Specifies the public key for key encryption

LO

 IP and Encryption Tools Encryption Scripts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
686 May 2015

Adding Multiple Keys

It may become necessary to add multiple keys to the RTL to support how
multiple vendors access to the same RTL. Multiple vendor access is done by
editing the Synopsys synthesis tool public key included in the
install/lib/keys.txt key file shown below:

// Use verilog pragma syntax in this file

`pragma protect version=1
`pragma protect author="default"
`pragma protect author_info="default"

`pragma protect key_keyowner="Synopsys", key_keyname="SYNP05_001", key_method="rsa"
`pragma protect key_public_key

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAybsQaMidiCHZyh14wbXn
UpP8lK+jJY5oLpGqDfSW5PMXBVp0WFd1d32onXEpRkwxEJLlK4RgS43d0FG2ZQ1l
irdimRKNnUtPxsrJzbMr74MQkwmG/X7SEe/lEqwK9Uk77cMEncLycI5yX4f/K9Q9
WS5nLD+Nh6BL7kwR0vSevfePC1fkOa1uC7b7Mwb1mcqCLBBRP9/eF0wUIoxVRzjA
+pJvORwhYtZEhnwvTblBJsnyneT1LfDi/D5WZoikTP/0KBiP87QHMSuVBydMA7J7
g6sxKB92hx2Dpv1ojds1Y5ywjxFxOAA93nFjmLsJq3i/P0lv5TmtnCYX3Wkryw4B
eQIDAQAB

// Add additional public keys below this line
// Add additional public keys above this line

`pragma protect data_keyowner="default-ip-vendor"
`pragma protect data_keyname="default-ip-key"
`pragma protect data_method="aes128-cbc"

// End of file

The file is expanded to include public keys for other tools. Please add any
other key between the lines:

// Add additional public keys below this line

// Add additional public keys above this line

The following is an example of an expanded public keys file that contains
dummy keys with key_keyname ="DUMMY":

// Use verilog pragma syntax in this file

key_block Begins an encoded block of key data

version P1735 encryption version

comment Uninterrupted documentation string

Pragma Keyword Description

Encryption Scripts IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 687

`pragma protect version=1
`pragma protect author="default"
`pragma protect author_info="default"

`pragma protect key_keyowner="Synopsys", key_keyname="SYNP05_001", key_method="rsa"
`pragma protect key_public_key

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAybsQaMidiCHZyh14wbXn
UpP8lK+jJY5oLpGqDfSW5PMXBVp0WFd1d32onXEpRkwxEJLlK4RgS43d0FG2ZQ1l
irdimRKNnUtPxsrJzbMr74MQkwmG/X7SEe/lEqwK9Uk77cMEncLycI5yX4f/K9Q9
WS5nLD+Nh6BL7kwR0vSevfePC1fkOa1uC7b7Mwb1mcqCLBBRP9/eF0wUIoxVRzjA
+pJvORwhYtZEhnwvTblBJsnyneT1LfDi/D5WZoikTP/0KBiP87QHMSuVBydMA7J7
g6sxKB92hx2Dpv1ojds1Y5ywjxFxOAA93nFjmLsJq3i/P0lv5TmtnCYX3Wkryw4B
eQIDAQAB

// Add additional public keys below this line

`pragma protect key_keyowner="Synopsys", key_keyname="DUMMY", key_method="rsa"
`pragma protect key_public_key

…AAAAAAAA…

// Add additional public keys above this line

`pragma protect data_keyowner="default-ip-vendor"
`pragma protect data_keyname="default-ip-key"
`pragma protect data_method="aes128-cbc"

// End of file

If you are using a partial file with all pragmas use model, the keyowner entries
also must be edited:

`protect key_keyowner="Synopsys", key_keyname="SYNP05_001", key_method="rsa", key_block
`protect key_keyowner=" Synopsys", key_keyname=" DUMMY", key_method="rsa", key_block
`protect data_keyowner="ip-vendor-a", data_keyname="fpga-ip", data_method="des-cbc"

Be sure to include the below and above entries within your RTL to be able to
generate the decryption envelope properly. It is very important that you follow
this process when using the partial file with all pragmas use model. If you are
using the full-file use model or partial file with minimal pragmas use model,
editing the RTL is unnecessary when adding additional keys to the default
public key to create expanded keys.

Note: The expanded key shown is only an example and is not intended
be used with the encryptP1735.pl script; the actual key must be
obtained from a valid EDA vendor and added to the keys.txt file.

LO

 IP and Encryption Tools Encryption Scripts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
688 May 2015

Limitations

The encryptP1735.pl script does not run correctly when used with the default
Windows command shell due to the shell's limited Perl support. To run the
script from a Windows platform, use a freeware windows shell such as Cygwin
32-bit version 2011 or later with OpenSSL and Perl instead.

However, the script works correctly on a Linux 64-bit platform.

The encryptIP Script

The encryptIP Perl script is a Synopsys FPGA IP script that is provided to IP
vendors who wish to provide IP to synthesis users. The script uses the
OpenIP scheme to encrypt modules or components, which can then be
downloaded for evaluation or use by the Synopsys FPGA user. You can
download the encryptIP Perl script from SolvNet
(https://solvnet.synopsys.com/retrieve/032343.html).

You run the script with the encryptIP command, the complete syntax for which
is described in encryptIP, on page 27 in the Command Reference manual.

For details, see the following:

• The encryptIP Script Run, on page 688

• Pragmas Used in the encryptIP Script, on page 690

The encryptIP Script Run

The following example describes the various steps that the encryptIP script
executes. For descriptions of the pragmas used in the encryptIP script, see
Pragmas Used in the encryptIP Script, on page 690.

1. For each RTL file, the script creates a data block using symmetric
algorithm and your own session key.

You can use any of the CBC encryption modes listed in encryptIP, on
page 27 in the Command Reference manual. The initialization vector is a
constant, and the block is encoded in base 64. The following excerpt
uses the data encryption key ABCDEFG:

https://solvnet.synopsys.com/retrieve/032343.html

Encryption Scripts IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 689

%%% protect data_block
UWhcm3CPmGz27DXAWQZF8rY7hSsvLwedXiP59HYZHJfoMIMkJ0W+6H7vmJEXZ/

dTxnAgGB2YJCF7lsaZ6x6kRisdtBtIo8+0Glskcykt7FtpAjpz24cJ9hoSYMu
HCmG70dHDNzTHWjkwBs2fxo5S6559d3pW+SDutrvrsHntyvHYiqxUZPsGce
ZZQJpqQIpqo24uFCVHNSX/URvL47CUBWoKB2XEpyRv5Zgd1F52YjBLIpET
+kBEzutAorF5rD9eZSALSo0kvVb7MPXFxmfCF8wHwTnRtkPthNCMq0t3iCgf9EH

2. The script precedes the data block with a small data block header that
describes the data method:

%%% protect data_method=aes128-cbc
%%% protect data_block
UWhcm3CPmGz27DXAWQZF8rY7hSsvLwedXiP59HYZHJfoMIMkJ0W+6H7vmJEXZ/

dTxnAgGB2YJCF7lsaZ6x6kRisdtBtIo8+0Glskcykt7FtpAjpz24cJ9hoSYMu
HCmG70dHDNzTHWjkwBs2fxo5S6559d3pW+SDutrvrsHntyvHYiqxUZPsGce
ZZQJpqQIpqo24uFCVHNSX/URvL47CUBWoKB2XEpyRv5Zgd1F52YjBLIpET
+kBEzutAorF5rD9eZSALSo0kvVb7MPXFxmfCF8wHwTnRtkPthNCMq0t3iCgf9EH

3. The script then prepares a key block for the Synplify tool, which
contains your session key and Synopsys-specific directives. Note that
the data_decrypt_key is required.

output_method=blackbox (Your IP will be a black box in the output netlist)
data_decrypt_key=ABCDEFG (Session key you used to encrypt your data block)

See encryptIP, on page 27 in the Command Reference manual for infor-
mation about output methods.

4. Use Synplify Public key (Synopsys has an executable that returns this
key) and RSA2048 asymmetric encryption to create a key block. Encode
it in base64.

%%% protect key_block
U9n263KwF7RWb8GSz7C+700tKshqQgTmb8UdRxISekIJDfonqfqzjzEQ+xQ4

wyh65wo6X56Jm+ClaVuZjgQKK0c4y47nyA1iWcuq1Nh6KeuUscxp+nL6yT9Am
+nv+c57jSCMG0QsFbRBAIhdlohQAbYbSIuFxdLFEFxW4znF3+YDAsMHeIs
1tqxKqhQzYQ2fGJdQz0NVRi1hFjx/RpGmoXmzvSTX2xsre+ZNDh3r9qvj37
QGwLH2erPt/iXcUVnlnPCOaV5z8M1YLrKY8ui7KBs/HhyP7L2mAMPQAFY3i
DhycUcJ5sirBgKZycpkhP8jQ02yjTZMb7z9KyYTHrzDdA==

%%% protect key_block
+700tKshqQgTmb8UdRU9n263KwF7RWb8GSz7Cwo6X56Jm+ClxISekIJDfon

qfqzjzEQ+xQ4wyh657nyA1iWcuq1Nh6KeuUscxp+nL6yT9AaVuZjG0QsFb
RBAIhdlohQAbYbgQKK0c4y4m+nv+c57jSCMxW4znF3+YDAsMHeIs1tqx
KqhQzYQ2fGJdQz0NXmzvSTX2xsre+ZNVRi1hFjSIuFxdLFEFx/RpGmo9qvj
37QGwLH2erPt/iXcUVnlnPCO7KBs/HhyP7L2mAMPQAFY3iDhycUcJaV5z8MD
h3r1YLrKY8ui8jQ02yjTZMb7z9pkhPYTHrzDdAKy5sirBgKZyc==

LO

 IP and Encryption Tools Encryption Scripts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
690 May 2015

5. The script adds a small key block header to each key block.

%%% protect key_keyowner=Synopsys
%%% protect key_keyname=SYNP05_001
%%% protect key_block
U9n263KwF7RWb8GSz7C+700tKshqQgTmb8UdRxISekIJDfonqfqzjzEQ+xQ4

6. Your final encrypted IP key and data blocks looks like this:

%%% protect protected_file 1.0
<optional unencrypted HDL>
%%% protect begin_protected
%%% protect key_keyowner=Synopsys
%%% protect key_keyname=SYNP05_001

%%% protect key_block
U9n263KwF7RWb8GSz7C+700tKshqQgTmb8UdRxISekIJDfonqfqzjzEQ+xQ4

wyh65wo6X56Jm+ClaVuZjgQKK0c4y47nyA1iWcuq1Nh6KeuUscxp+nL6yT9Am
+nv+c57jSCMG0QsFbRBAIhdlohQAbYbSIuFxdLFEFxW4znF3+YDAsMHeIs
1tqxKqhQzYQ2fGJdQz0NVRi1hFjx/RpGmoXmzvSTX2xsre+ZNDh3r9qvj37
QGwLH2erPt/iXcUVnlnPCOaV5z8M1YLrKY8ui7KBs/HhyP7L2mAMPQAFY3i
DhycUcJ5sirBgKZycpkhP8jQ02yjTZMb7z9KyYTHrzDdA==

<other key blocks>

%%% protect data_method=aes128-cbc
%%% protect data_block
UWhcm3CPmGz27DXAWQZF8rY7hSsvLwedXiP59HYZHJfoMIMkJ0W+6H7vmJEXZ/

dTxnAgGB2YJCF7lsaZ6x6kRisdtBtIo8+0Gls/kcykt7FtpAjpz24cJ9ho
SYMuHCmG70dHDNzTHWjkwBs2fxo5S6559d3pW+SDutrvrsHntyv
HYiqxUZPsGceZZQJpqQIpqo24uFCVHNSX/URvL47CUBWoKB2XEpyRv5Zg
…

%%% protect end_protected
<optional unencrypted HDL>

Pragmas Used in the encryptIP Script

The header blocks in the encryptIP script use the pragmas described in the
following tables. Note the following:

• The %%% protect directive must be placed at the exact beginning of a line.

• Exactly one white-space character must separate the %%% from the
command that follows

The following table describes the general pragmas used:

Encryption Scripts IP and Encryption Tools

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 691

The following table describes the data block pragmas:

The following table describes the key block pragmas:

%%% protect protected_file 1.0 Line 1 of protected file

%%% protect begin_protected Begin protected section

%%% protect end_protected Ends protected section

%%% protect comment comment Single line plain-text comment

%%% protect begin_comment Begin block of plain-text comments

%%% protect end_comment End block of plain-text block comments

%%% protect author=string Arbitrary string

%%% protect data_method=string For all supported FPGA vendors, one of the
DES encryption methods described in The
encryptP1735 Script, on page 684.

%%% protect data_block Immediately precedes encrypted data block

%%% protect key_keyowner=string Arbitrary string

%%% protect key_keyname=string Name recognized by the Synplify software to
select key block

%%% protect key_method=string Encryption algorithm. Currently we support
“rsa”

w %%% protect key_block Immediately precedes encrypted data block

LO

 IP and Encryption Tools Encryption Scripts

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
692 May 2015

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 693

C H A P T E R 1 4

Scripts

This chapter describes Tcl scripts.

• synhooks File Syntax, on page 694

• Tcl Script Examples, on page 696

LO

 Scripts synhooks File Syntax

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
694 May 2015

synhooks File Syntax

The Tcl hooks commands provide an advanced user with callbacks to
customize a design flow or integrate with other products. To enable these
callbacks, set the environment variable SYN_TCL_HOOKS to the location of the
Tcl hooks file(synhooks.tcl), then customize this file to get the desired custom-
ization behavior. For more information on creating scripts using synhooks.tcl,
see Automating Flows with synhooks.tcl, on page 481.

Tcl Callback Syntax Function

proc syn_on_set_project_template
{projectPath} {yourDefaultProjectSettings}

Called when creating a new project.
projectPath is the path name to the
project being created.

proc syn_on_new_project {projectPath}
{yourCode}

Called when creating a new project.
projectPath is the path name to the
project being created.

proc syn_on_open_project {projectPath}
{yourCode}

Called when opening a project.
projectPath is the path name to the
project being created.

proc syn_on_close_project {projectPath}
{yourCode}

Called after closing a project.
projectPath is the path name to the
project being created.

proc syn_on_start_application
{applicationName version currentDirectory}
{yourCode}

Called when starting the application.
• applicationName is the name of the

software. For example synplify_pro.
• version is the name of the version of

the software. For example 8.4

• currentDirectory is the name of the
software installation directory. For
example
C:\synplify_pro\bin\synplify_pro.exe.

proc syn_on_exit_application
{applicationName version}
{yourCode}

Called when exiting the application.
• applicationName is the name of the

software. For example synplify_pro.
• version is the name of the version of

the software. For example 8.4.

synhooks File Syntax Scripts

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 695

Tcl Hook Command Example

Create a modifier key (ctrl-F8) to get all the selected files from a project browser
and project directory.

set sel_files [get_selected_files]
while {[expr [llength $sel_files] > 0]} {

set file_name [lindex $sel_files 0]
puts $file_name

set sel_files [lrange $sel_files 1 end]
}

proc syn_on_start_run {runName
projectPath implementationName}
{yourCode}

Called when starting a run.
• runName is the name of the run. For

example compile or synthesis.
• projectPath is the location of the

project.
• implementationName is the name of the

project implementation. For example,
rev_1.

proc syn_on_end_run {runName
projectPath implementationName}
{yourCode}

Called at the end of a run.
• runName is the name of the run. For

example, compile or synthesis.
• projectPath is the location of the

project.
• implementationName is the name of the

project implementation. For example,
rev_1.

proc syn_on_press_ctrl_F8 {}
{yourCode}

Called when Ctrl-F8 is pressed. See Tcl
Hook Command Example below.

proc syn_on_press_ctrl_F9 {}
{yourCode}

Called when Ctrl-F9 is pressed.

proc syn_on_press_ctrl_F8 {}
{yourCode

Called when Ctrl-F11 is pressed.

Tcl Callback Syntax Function

LO

 Scripts Tcl Script Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
696 May 2015

Tcl Script Examples

This section provides the following examples of Tcl scripts:

• Using Target Technologies, on page 696

• Different Clock Frequency Goals, on page 696

• Setting Options and Timing Constraints, on page 697

Using Target Technologies
Run synthesis multiple times without exiting, while trying different
target technologies. View the implementations in the HDL Analyst tool.

Open a new project
project -new

Set the design speed goal to 33.3 MHz.
set_option -frequency 33.3

Add a Verilog file to the source file list.
add_file -verilog "D:/test/simpletest/prep2_2.v"

Create a new Tcl variable, called $try_these, used to synthesize
the design using different target technologies.

set try_these {

ProASIC3 ProASIC3E Fusion # list of technologies
}

Loop through synthesis for each target technology.
foreach technology $try_these {

impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}

Different Clock Frequency Goals
Run synthesis six times on the same design using different clock
frequency goals. Check to see what the speed/area tradeoffs are for
the different timing goals.

Tcl Script Examples Scripts

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 697

Load an existing Project. This Project was created from an
interactive session by saving the Project file, after adding all the
necessary files and setting options in the Project -> Options for
implementation dialog box.

project -load "design.prj"

Create a Tcl variable, called $try_these, that will be used to
synthesize the design with different frequencies.

set try_these {
20.0
24.0
28.0
32.0
36.0
40.0

}

Loop through each frequency, trying each one
foreach frequency $try_these {

Set the frequency from the try_these list
set_option -frequency $frequency

Since I want to keep all Log Files, save each one. Otherwise
the default Log File name "<project_name>.srr" is used, which is
overwritten on each run. Use the name "<$frequency>.srr" obtained from
the
$try_these Tcl variable.

project -log_file $frequency.srr

Run synthesis.
project -run

Display the Log File for each synthesis run
open_file -edit_file $frequency.srr
}

Setting Options and Timing Constraints
Set a number of options and use timing constraints on the design.

Open a new Project
project -new

Set the target technology, part number, package, and speed grade options.
set_option -technology PROASIC3E

LO

 Scripts Tcl Script Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
698 May 2015

set_option -part A2F200M3F
set_option -package PQFP208
set_option -speed_grade -2

Load the necessary VHDL files. Add the top-level design last.
add_file -vhdl "statemach.vhd"
add_file -vhdl "rotate.vhd"
add_file -vhdl "memory.vhd"
add_file -vhdl "top_level.vhd"

Add a timing Constraint file and vendor-specific attributes.
add_file -constraint "design.fdc"

The top level file ("top_level.vhd") has two different designs, of
which the last is the default entity. Try the first entity (design1)
for this run. In VHDL, you could also specify the top level architecture
using <entity>.<arch>

set_option -top_module design1

Turn on the Symbolic FSM Compiler to re-encode the state machine
into one-hot.

set_option -symbolic_fsm_compiler true

Set the design frequency.
set_option -frequency 30.0

Save the existing Project to a file. The default synthesis Result File
is named "<project_name>.<ext>". To name the synthesis Result File
something other than "design.xnf", use project -result_file "<name>.xnf"

project -save "design.prj"

Synthesize the existing Project
project -run

Open an RTL View
open_file -rtl_view

Open a Technology View
open_file -technology_view

--
This constraint file, "design.fdc," is read by "test3.tcl"
with the add_file -constraint "design.fdc" command. Constraint files
are for timing constraints and synthesis attributes.
--
Timing Constraints:
--
The default design frequency goal is 30.0 MHz for four clocks. Except
that clk_fast needs to run at 66.0 MHz. Override the 30.0 MHz default

Tcl Script Examples Scripts

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 699

for clk_fast.
create_clock {clk_fast} -freq 66.0

The inputs are delayed by 4 ns
set_input_delay -default 4.0

except for the "sel" signal, which is delayed by 8 ns
set_input_delay {sel} 8.0

The outputs have a delay off-chip of 3.0 ns
set_output_delay -default 3.0

LO

 Scripts Tcl Script Examples

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
700 May 2015

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 701

A P P E N D I X A

Designing with Microsemi

The following topics describe how to design and synthesize with the
Microsemi technology:

• Basic Support for Microsemi Designs, on page 702

• Microsemi Components, on page 705

• Output Files and Forward-annotation for Microsemi, on page 721

• Optimizations for Microsemi Designs, on page 724

• Integration with Microsemi Tools and Flows, on page 733

• Microsemi Device Mapping Options, on page 735

• Microsemi Tcl set_option Command Options, on page 737

• Microsemi Attribute and Directive Summary, on page 740

LO

 Designing with Microsemi Basic Support for Microsemi Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
702 May 2015

Basic Support for Microsemi Designs

This section describes the use of the synthesis tool with Microsemi devices. It
describes

• Microsemi Device-specific Support, on page 702

• Microsemi Features, on page 702

• Synthesis Constraints and Attributes for Microsemi, on page 703

Microsemi Device-specific Support

The synthesis tool creates technology-specific netlists for a number of
Microsemi families of FPGAs. New devices are added on an ongoing basis. For
the most current list of supported devices, check the Device panel of the
Implementation Options dialog box (see Device Panel, on page 194).

The following technologies are supported:

After synthesis, the synthesis tool generates EDIF netlists as well as a
constraint file that is forward annotated as input into the Microsemi Libero
tool.

Microsemi Features

The synthesis tool contains the following Microsemi-specific features:

• Direct mapping to Microsemi c-modules and s-modules

• Timing-driven mapping, replication, and buffering

FPGAs Technology Families

Mixed-Signal • SmartFusion2 and SmartFusion
• Fusion

Low-Power • IGLOO Series (IGLOO2, IGLOOE, IGLOO+, and IGLOO)
• ProASIC3 Series (ProASIC3L, ProASIC3E, and ProASIC3)

Rad-Tolerant FPGAs RT ProASIC3

Basic Support for Microsemi Designs Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 703

• Inference of counters, adders, and subtractors; module generation

• Automatic use of clock buffers for clocks and reset signals

• Automatic I/O insertion. See I/O Insertion, on page 726 for more infor-
mation.

Synthesis Constraints and Attributes for Microsemi

The synthesis tools let you specify timing constraints, general HDL attributes,
and Microsemi-specific attributes to improve your design. You can manage
the attributes and constraints in the SCOPE interface. Microsemi has
vendor-specific I/O standard constraints it supports for synthesis. For a list
of supported I/O standards, see Microsemi I/O Standards, on page 703.

Microsemi I/O Standards

The following table lists the supported I/O standards for the ProASIC3L,
ProASIC3E, Fusion, IGLOOe ProASIC3, IGLOO, and IGLOO+ families. Some
I/O standards have associated modifiers you can set, such as slew, termi-
nation, drive, power, and Schmitt, which allow the software to infer the
correct buffer types.

ProASIC3L,
ProASIC3E,
IGLOOe, Fusion

IGLOO, IGLOO+,
ProASIC3

GTL25 LVCMOS_12

GTL+25 LVCMOS_15

GTL33 LVCMOS_18

GTL+33 LVCMOS_33

HSTL_Class_I LVCMOS_5

HSTL_Class_II LVDS

LVCMOS_12 LVPECL

LVCMOS_15 LVTTL

LVCMOS_18 PCI

LVCMOS_33 PCIX

LO

 Designing with Microsemi Basic Support for Microsemi Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
704 May 2015

See Also:

• Industry I/O Standards, on page 186 for a list of industry I/O
standards.

• Microsemi Attribute and Directive Summary, on page 740 for a list of
Microsemi attributes and directives.

LVCMOS_5

LVDS

LVPECL

LVTTL

PCI

PCIX

SSTL_2_Class_I

SSTL_2_Class_II

SSTL_3_Class_I

SSTL_3_Class_II

ProASIC3L,
ProASIC3E,
IGLOOe, Fusion

IGLOO, IGLOO+,
ProASIC3

Microsemi Components Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 705

Microsemi Components

The following topics describe how the synthesis tools handle various
Microsemi components, and show you how to work with or manipulate them
during synthesis to get the results you need:

• Macros and Black Boxes in Microsemi Designs, on page 705

• DSP Block Inference, on page 707

• Microsemi RAM Implementations, on page 710

• Instantiating RAMs with SYNCORE, on page 720

Macros and Black Boxes in Microsemi Designs

You can instantiate Smartgen1 macros or other Microsemi macros like gates,
counters, flip-flops, or I/Os by using the supplied Microsemi macro libraries
to pre-define the Microsemi macro black boxes. For certain technologies, the
following macros are also supported:

• MACC and RAM Timing Models

• SIMBUF Macro

• MATH18X18 Block

• Microsemi Fusion Analog Blocks

• SmartFusion Macros

• SmartFusion2 MACC Block

For general information on instantiating black boxes, see Instantiating Black
Boxes in VHDL, on page 572, and Instantiating Black Boxes in Verilog, on
page 368. For specific procedures about instantiating macros and black
boxes and using Microsemi black boxes, see the following sections in the User
Guide:

• Defining Black Boxes for Synthesis, on page 302

• Using Predefined Microsemi Black Boxes, on page 492

• Using Smartgen Macros, on page 493

1. Smartgen macros now replace the ACTgen macros. ACTgen macros were available in the
previous Designer 6.x place-and-route tool.

LO

 Designing with Microsemi Microsemi Components

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
706 May 2015

MACC and RAM Timing Models

MACC and RAM timing models are supported in SmartFusion2 and IGLOO2.
Timing analysis considers the timing arcs for RAM and MACC.

SIMBUF Macro

The synthesis software supports instantiation of the SIMBUF macro. The
SIMBUF macro provides the flexibility to probe signals without using physical
locations, such as possible from the Identify tool. The Resource Summary will
report the number of SIMBUF instantiations in the IO Tile section of the log
file.

SIMBUF macros are supported for ProASIC3, ProASIC3E, ProASIC3L, IGLOO,
IGLOOe, IGLOO+, SmartFusion, and Fusion devices.

MATH18X18 Block

The synthesis software supports instantiation of the MATH18X18 block. The
MATH18X18 block is useful for mapping arithmetic functions.

Microsemi Fusion Analog Blocks

Microsemi Fusion has several analog blocks built into the ProASIC3/3E
device. The synthesis tool treats them as black boxes. The following is a list of
the available analog blocks.

• AB

• NVM

• XTLOSC

• RCOSC

• CLKSRC

• NGMUX

• VRPSM

• INBUF_A

• INBUF_DA

• OUTBUF_A

Microsemi Components Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 707

• CLKDIVDLY

• CLKDIVDLY1

SmartFusion Macros

The synthesis software supports the following SmartFusion macros:

• FAB_CCC

• FAB_CCC_DYN

SmartFusion2 MACC Block

SmartFusion2 devices support bit-signed 18x18 multiply-accumulate blocks.
This architecture provides dedicated components called SmartFusion2 MACC
blocks, for which DSP-related operations can be performed like multiplication
followed by addition, multiplication followed by subtraction, and multipli-
cation with accumulate. For more information, see DSP Block Inference, on
page 707.

DSP Block Inference

This feature allows the synthesis tools to infer DSP or MATH18x18 blocks for
SmartFusion2 devices. The following structures are supported:

• DOTP Support

MACC block, when configured in DOTP mode, has two independent
signed 9-bit x 9-bit multipliers followed by addition. The sum of the dual
independent 9x9 multiplier (DOTP) result is stored in the upper 35 bits
of the 44-bit output. In DOTP mode, the MACC block implements the
following equation:

P = D + (CARRYIN + C) + 512 * ((AL * BH)+ (AH * BL)), when SUB = 0

P = D + (CARRYIN + C) - 512 * ((AL * BH) + (AH * BL)), when SUB = 1

Below is an example RTL which infers MACC block in DOTP mode after
synthesis:

module dotp_add_unsign_syn (ina, inb, inc, ind, ine, dout);

parameter widtha = 6;
parameter widthb = 7;

LO

 Designing with Microsemi Microsemi Components

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
708 May 2015

parameter widthc = 7;
parameter widthd = 8;
parameter widthe = 30;
parameter width_out = 44;

input [widtha-1:0] ina;
input [widthb-1:0] inb;
input [widthc-1:0] inc;
input [widthd-1:0] ind;
input [widthe-1:0] ine;
output reg [width_out-1:0] dout;

always @(ina or inb or inc or ind or ine) begin

dout <= (ina * inb) + (inc * ind) + ine ;

end

endmodule

MACC block does not support DOTP mode when:

– Width of the multiplier inputs is greater than 9-bits for signed.

– Width of the multiplier inputs is greater than 8-bits for unsigned.

– Width of the non-multiplier inputs is greater than 36-bits.

• Multipliers

• Mult-adds — Multiplier followed by an Adder

• Mult-subs — Multiplier followed by a Subtractor

• Wide multiplier inference

A multiplier is treated as wide, if any of its inputs is larger than 18 bits
signed or 17 bits unsigned. The multiplier can be configured with only
one input that is wide, or else both inputs are wide. Depending on the
number of wide inputs for signed or unsigned multipliers, the synthesis
software uses the cascade feature to determine how many math blocks
to use and the number of Shift functions it needs.

• MATH block inferencing across hierarchy

This enhancement to MATH block inferencing allows packing input
registers, output registers, and any adders or subtractors into different
hierarchies. This helps to improve QoR by packing logic more efficiently
into MATH blocks.

Microsemi Components Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 709

By default, the synthesis software maps the multiplier to DSP blocks if all
inputs to the multiplier are more than 2-bits wide; otherwise, the multiplier is
mapped to logic. You can override this default behavior using the syn_multstyle
attribute. See syn_multstyle, on page 125 for details.

The following conditions also apply:

• Signed and unsigned multiplier inferencing is supported.

• Registers at inputs and outputs of multiplier/multiplier-adder/multi-
plier-subtractor are packed into DSP blocks.

• Synthesis software fractures multipliers larger than 18X18 (signed) and
17X17 (unsigned) into smaller multipliers and packs them into DSP
blocks.

• When multadd/multsub are fractured, the final adder/subtractor are
packed into logic.

DSP Cascade Chain Inference

The MATH18x18 block cascade feature supports the implementation of multi-
input Mult-Add/Sub for devices with MATH blocks. The software packs logic
into MATH blocks efficiently using hard-wired cascade paths, which improves
the QoR for the design.

Prerequisites include the following requirements:

• The input size for multipliers is not greater than 18x18 bits (signed) and
17x17 bits (unsigned).

• Signed multipliers have the proper sign-extension.

• All multiplier output bits feed the adder.

• Multiplier inputs and outputs can be registered or not.

Multiplier-Accumulators (MACC) Inference

The Multiplier-Accumulator structures use internal paths for adder feedback
loops inside the MATH18x18 block instead of connecting it externally.

Prerequisites include the following requirements:

• The input size for multipliers is not greater than 18x18 bits (signed) and
17x17 bits (unsigned).

• Signed multipliers have the proper sign-extension.

LO

 Designing with Microsemi Microsemi Components

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
710 May 2015

• All multiplier output bits feed the adder.

• The output of the adder must be registered.

• The registered output of the adder feeds back to the adder for accumula-
tion.

• Since the Microsemi MATH block contains one multiplier, only Multi-
plier-Accumulator structures with one multiplier can be packed inside
the MATH block.

The other Multiplier-Accumulator structure supported is with Synchronous
Loadable Register.

Prerequisites include the following requirements:

• All the requirements mentioned above apply for this structure as well.

• For the Loading Multiplier-Accumulator structure, new Load data
should be passed to input C.

• The LoadEn signal should be registered.

DSP Limitations
Currently, DSP inferencing does not support the following functions:

• Overflow extraction

• Arithmetic right shift for operand C

Note: For more information about Microsemi DSP math blocks along
with a comprehensive set of examples, see the Inferring Microsemi
RTAX-DSP MATH Blocks application note on SolvNet.

Microsemi RAM Implementations

Refer to the following topics for Microsemi RAM implementations:

• RAM Primitives Support in RTG4

• RAM Inference Enhancement for SmartFusion2/IGLOO2/RTG4

• RAM Read Enable Extraction

• ProASIC3/3E/3L and IGLOO+/IGLOO/IGLOOe

Microsemi Components Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 711

• SmartFusion2

RAM Primitives Support in RTG4

The tool supports the following RAM primitives in the RTG4 device:

RAM1K18_RT
• Infer RAM1K18_RT for single-port, two-port, and dual-port synchronous

read/write memory.

• Read-before-write in dual-port mode for single-port and dual-port
synchronous memory.

• Read-enable extraction.

Limitation

Read-enable extraction for wide RAMs is not supported currently.

RAM64x18_RT
Infer RAM64x18_RT for single-port, two-port, and three-port
synchronous/asynchronous read and synchronous write memory.

RAM Inference Enhancement for SmartFusion2/IGLOO2/RTG4

RAM inference is enhanced for SmartFusion2, IGLOO2, and RTG4 by using
the BLK pin to reduce power consumption.

Earlier, the tool fractured wide RAMs by splitting the data width to improve
timing. Now, by default the tool fractures the wide RAMs on the address width
using the BLK pin on RAM to reduce power consumption.

This feature is supported on single-port and true-dual port modes of RAM.

Limitation

Fracturing RAMs in simple-dual port mode using BLK pins on address width
is not supported currently.

LO

 Designing with Microsemi Microsemi Components

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
712 May 2015

RAM Read Enable Extraction

RAM Read Enable extraction currently supports RAMs for output registers,
with an enable. This feature is available for ProASIC3E devices only.

The following example contains a RAM with read enable.

`timescale 100 ps/100 ps
/* Synchronous write and read RAM */

module test (dout, addr, din, we, clk, ren);

parameter data_width = 8;
parameter address_width = 4;
parameter ram_size = 16;

output [data_width-1:0] dout;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input we, clk, ren;

reg [data_width-1:0] mem [ram_size-1:0];
reg [data_width-1:0] dout;

always @(posedge clk) begin
if(we)

mem[addr] <= din;
if (ren)
dout = mem[addr];

end

endmodule

Microsemi Components Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 713

ProASIC3/3E/3L and IGLOO+/IGLOO/IGLOOe

The synthesis software extracts single-port and dual-port versions of the
following RAM configurations:

The architecture of the inferred RAM for the ProASIC3/3E/3L or
IGLOO+/IGLOO/IGLOOe, can be registers, block_ram, rw_check, or no_rw_check.
You set these values in the SCOPE interface using the syn_ramstyle attribute.

The following is an example of the RAM4K9 configuration:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity ramtest is
port (q : out std_logic_vector(9 downto 0);

d : in std_logic_vector(9 downto 0);
addr : in std_logic_vector(9 downto 0);
we : in std_logic;
clk : in std_logic);

end ramtest;

architecture rtl of ramtest is

RAM4K9 Synchronous write, synchronous read, transparent output

RAM512X18 Synchronous write, synchronous read, registered output

LO

 Designing with Microsemi Microsemi Components

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
714 May 2015

type mem_type is array (1023 downto 0) of std_logic_vector
(9 downto 0);

signal mem : mem_type;
signal read_addr : std_logic_vector(9 downto 0);

begin

q <= mem(conv_integer(read_addr));

process (clk) begin
if rising_edge(clk) then

if (we = '1') then
read_addr <= addr;
mem(conv_integer(read_addr)) <= d;

end if;
end if;

end process;

end rtl;

The following is an example of the RAM512X18 configuration:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity ramtest is
port (q : out std_logic_vector(3 downto 0);

d : in std_logic_vector(3 downto 0);
addr : in std_logic_vector(2 downto 0);
we : in std_logic;
clk : in std_logic);

end ramtest;

Microsemi Components Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 715

architecture rtl of ramtest is
type mem_type is array (7 downto 0) of

std_logic_vector (3 downto 0);
signal mem : mem_type;
signal read_addr : std_logic_vector(2 downto 0);
begin
q <= mem(conv_integer(read_addr));
process (clk) begin

if rising_edge(clk) then
if (we = '1') then

read_addr <= addr;
mem(conv_integer(read_addr)) <= d;

end if;
end if;

end process;
end rtl;

SmartFusion2

SmartFusion2 devices support two types of RAM macros: RAM1K18 and
RAM64X18. The synthesis software extracts the RAM structure from the RTL
and infers RAM1K18 or RAM64X18 based on the size of the RAM.

LO

 Designing with Microsemi Microsemi Components

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
716 May 2015

The default criteria for specifying the macro is described in the table below for
the following RAM types.

You can override the default behavior by applying the syn_ramstyle attribute to
control how the memory gets mapped. To map to

• RAM1K18 set syn_ramstyle = "lsram"

• RAM64X18 set syn_ramstyle = "uram"

• Registers set syn_ramstyle = "registers"

The value you set for this attribute always overrides the default behavior.

Three Port RAM inference support

Example 1) Three Port RAM Verilog Example—Synchronous Read

module
ram_infer15_rtl(clk,dinc,douta,doutb,wrc,rda,rdb,addra,addrb,addrc
);
input clk;
input [17:0] dinc;

True Dual-Port Synchronous
Read Memory

The synthesis tool maps to RAM1K18, regardless of
its memory size.

Simple Dual-Port or Single-Port
Synchronous Memory

If the size of the memory is:
• 4608 bits or greater, the synthesis tool maps to

RAM1K18.
• Greater than 12 bits and less than 4608 bits, the

synthesis tool maps to RAM64X18.
• Less than or equal to 12 bits, the synthesis tool

maps to registers.

Simple Dual-Port or Single-Port
Asynchronous Memory

When the size of the memory is 12 bits or greater,
the synthesis tool maps to RAM64x18. Otherwise, it
maps to registers.

Three Port RAM Inference
Support

This feature is supported on SmartFusion2 and
IGLOO2 devices only.
RAM64x18 is a 3-port memory providing one Write
port and two Read ports.
Write operation is synchronous while read
operations can be asynchronous or synchronous.
The tool infers RAM64X18 for such structures.

Microsemi Components Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 717

input wrc,rda,rdb;
input [5:0] addra,addrb,addrc;
output [17:0] douta,doutb;
reg [17:0] douta,doutb;
reg [17:0] mem [0:63];
always@(posedge clk)
begin
if(wrc)
mem[addrc] <= dinc;
end

always@(posedge clk)
begin
douta <= mem[addra];
end

always@(posedge clk)
begin
doutb <= mem[addrb] ;
end
endmodule

LO

 Designing with Microsemi Microsemi Components

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
718 May 2015

RTL view:

The tool infers one RAM64X18.

Microsemi Components Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 719

Example 2) Three Port RAM VHDL Example—Asynchronous Read

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity ram_singleport_noreg is
port (d : in std_logic_vector(7 downto 0);
addw : in std_logic_vector(6 downto 0);
addr1 : in std_logic_vector(6 downto 0);
addr2 : in std_logic_vector(6 downto 0);
we : in std_logic;
clk : in std_logic;
q1 : out std_logic_vector(7 downto 0);
q2 : out std_logic_vector(7 downto 0));
end ram_singleport_noreg;
architecture rtl of ram_singleport_noreg is
type mem_type is array (127 downto 0) of
std_logic_vector (7 downto 0);
signal mem: mem_type;
begin
process (clk)
begin
if rising_edge(clk) then
if (we = '1') then
mem(conv_integer (addw)) <= d;
end if;
end if;
end process;
q1<= mem(conv_integer (addr1));
q2<= mem(conv_integer (addr2));
end rtl;

LO

 Designing with Microsemi Microsemi Components

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
720 May 2015

RTL View:

The tool infers one RAM64X18.

Instantiating RAMs with SYNCORE

The SYNCORE Memory Compiler is available under the IP Wizard to help you
generate HDL code for your specific RAM implementation requirements. For
information on using the SYNCORE Memory Compiler, see Specifying RAMs
with SYNCore, on page 409 in the User Guide.

Output Files and Forward-annotation for Microsemi Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 721

Output Files and Forward-annotation for
Microsemi

After synthesis, the software generates a log file and output files for
Microsemi. The following describe some of the reports with Microsemi-specific
information, or files that forward annotate information for the Microsemi P&R
tools.

• VM Flow Support, on page 721

• Forward-annotating Constraints for Placement and Routing, on
page 722

• Synthesis Reports, on page 723

VM Flow Support

The tool generates a Verilog output netlist (.vm) for SmartFusion2 and
IGLOO2 for P&R flow. After synthesis, the tool:

• Writes a separate SDC file (*_vm.sdc).

• Write a separate TCL file (*_partition_vm.tcl) to forward-annotate the
timestamps on instances in incremental compile point flow.

• Forward-annotates properties like RTL attributes in .vm netlist and
constraints in SDC file.

By default, the tool generates a .edn netlist. You can change the netlist from
EDIF to Verilog.

To select Verilog output netlist, go to Implementation Options->Implementation
Results->Result Format. Select vm from the drop-down menu, click OK, and
save the project.

LO

 Designing with Microsemi Output Files and Forward-annotation for Microsemi

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
722 May 2015

Forward-annotating Constraints for Placement and Routing

For Microsemi Fusion, IGLOO, ProASIC3, and SmartFusion technology
families, the synthesis tool forward annotates timing constraints to
placement and routing through an Microsemi constraint (filename_sdc.sdc)
file. These timing constraints include clock period, max delay, multiple-cycle
paths, input and output delay, and false paths. During synthesis, the
Microsemi constraint file is generated using synthesis tool attributes and
constraints.

By default, Microsemi constraint files are generated. You can disable this
feature in the Project view. To do this, bring up the Implementation Options
dialog box (Project -> Implementation Options), then, on the Implementation Results
panel, disable Write Vendor Constraint File.

Output Files and Forward-annotation for Microsemi Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 723

Forward-annotated Constraints

The constraint file generated for Microsemi’s place-and-route tools has an
_sdc.sdc file extension. Constraints files that properly specify either
Synplify-style timing constraints or Synopsys SDC timing constraints can be
forward annotated to support the Microsemi P&R tool.

Synthesis Reports

The synthesis tool generates a resource usage report, a timing report, and a
net buffering report for the Microsemi designs that you synthesize.To view the
synthesis reports, click View Log.

Synthesis Microsemi

create_clock create_clock
The create_clock constraint is allowed for all NGT families.
No wildcards are accepted. The pin or port must exist in
the design.
The -name argument is not supported as that would
define a virtual clock. However, for backward
compatibility, a -name argument does not generate an
error or warning when encountered in an .sdc file.

set_max_delay set_max_delay
The set_max_delay constraint is allowed for all NGT
families. Wildcards are accepted.

set_multicycle_path set_multicycle_path
You must specify at least one of the -from or -to
arguments, however, it is best to specify both. Wildcards
are accepted.
Multicycle constraints with -from and/or -to arguments
only are supported for Microsemi ProASIC3/3E
technologies. Multicycle constraints with a -through
argument are not supported for any NGT family.

set_false_path set_false_path
Only false path constraints with a -through argument are
supported for NGT families. False path constraints with
either -from and/or -to arguments are not supported for
any NGT family. Wildcards are accepted.

LO

 Designing with Microsemi Optimizations for Microsemi Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
724 May 2015

Optimizations for Microsemi Designs

The synthesis tools offer various optimizations for Microsemi designs. The
following describe the optimizations in more detail:

• The syn_maxfan Attribute in Microsemi Designs, on page 724

• Promote Global Buffer Threshold, on page 725

• I/O Insertion, on page 726

• Number of Critical Paths, on page 726

• Retiming, on page 727

• Update Compile Point Timing Data Option, on page 727

• Operating Condition Device Option, on page 729

• Radiation-tolerant Applications, on page 731

The syn_maxfan Attribute in Microsemi Designs

The syn_maxfan attribute is used to control the maximum fanout of the design,
or an instance, net, or port. The limit specified by this attribute is treated as a
hard or soft limit depending on where it is specified. The following rules
described the behavior:

• Global fanout limits are usually specified with the fanout guide options
(Project->Implementation Options->Device), but you can also use the
syn_maxfan attribute on a top-level module or view to set a global soft
limit. This limit may not be honored if the limit degrades performance.
To set a global hard limit, you must use the Hard Limit to Fanout option.

• A syn_maxfan attribute can be applied locally to a module or view. In this
case, the limit specified is treated as a soft limit for the scope of the
module. This limit overrides any global fanout limits for the scope of the
module.

• When a syn_maxfan attribute is specified on an instance that is not of
primitive type inferred by Synopsys FPGA compiler, the limit is consid-
ered a soft limit which is propagated down the hierarchy. This attribute
overrides any global fanout limits.

• When a syn_maxfan attribute is specified on a port, net, or register (or any
primitive instance), the limit is considered a hard limit. This attribute

Optimizations for Microsemi Designs Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 725

overrides any other global fanout limits. Note that the syn_maxfan attri-
bute does not prevent the instance from being optimized away and that
design rule violations resulting from buffering or replication are the
responsibility of the user.

Promote Global Buffer Threshold

The Promote Global Buffer Threshold option is for the SmartFusion, Fusion,
IGLOO, and ProASIC3 technology families only. This option is for both ports
and nets.

The Tcl command equivalent is set_option -globalthreshold value, where the value
refers to the minimum number of fanout loads. The default value is 1.

Only signals with fanout loads larger than the defined value are promoted to
global signals. The synthesis tool assigns the available global buffers to drive
these signals using the following priority:

1. Clock

2. Asynchronous set/reset signal

3. Enable, data

SmartFusion2 Global Buffer Promotion

The synthesis software inserts the global buffer (CLKINT) on clock,
asynchronous set/reset, and data nets based on a threshold value.
SmartFusion2 devices have specific threshold values that cannot be changed
for the different types of nets in the design. Inserting global buffers on nets
with fanout greater than the threshold can help reduce the route delay during
place and route.

The threshold values for SmartFusion2 devices are the following:

Net Global buffer inserted for threshold value > or =

Clock 2

Asynchronous Set/Reset 12

Data 5000

LO

 Designing with Microsemi Optimizations for Microsemi Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
726 May 2015

To override these default option settings you can:

• Use the syn_noclockbuf attribute on a net that you do not want a global
buffer inserted, even though fanout is greater than the threshold.

• Use syn_insert_buffer="CLKINT" so that the tool inserts a global buffer on
the particular net, which is less than the threshold value. You can
specify CLKINT, RCLKINT, CLKBUF, or CLKBIBUF as values for
SmartFusion2 and IGLOO2 devices.

I/O Insertion

The Synopsys FPGA synthesis tool inserts I/O pads for inputs, outputs, and
bidirectionals in the output netlist unless you disable I/O insertion. You can
control I/O insertion with the Disable I/O Insertion option (Project->Implementation
Options->Device).

If you do not want to automatically insert any I/O pads, check the Disable I/O
Insertion box (Project->Implementation Options->Device). This is useful to see how
much area your blocks of logic take up, before synthesizing an entire FPGA. If
you disable automatic I/O insertion, you will not get any I/O pads in your
design unless you manually instantiate them yourself.

If you disable I/O insertion, you can instantiate the Microsemi I/O pads you
need directly. If you manually insert I/O pads, you only insert them for the
pins that require them.

Number of Critical Paths

The Max number of critical paths in SDF option (Project->Implementation Options->
Device) is only available for the SmartFusion, Fusion, IGLOO, and ProASIC3
technology families. It lets you set the maximum number of critical paths in a
forward-annotated constraint (sdf) file. The sdf file displays a prioritized list
of the worst-case paths in a design. Microsemi Designer prioritizes routing to
ensure that the worst-case paths are routed efficiently.

The default value for the number of critical paths that are forward annotated
is 4000. Various design characteristics affect this number, so experiment
with a range of values to achieve the best circuit performance possible.

Optimizations for Microsemi Designs Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 727

Retiming

Retiming is the process of automatically moving registers (register balancing)
across combinational gates to improve timing, while ensuring identical logic
behavior. Currently retiming is available for the SmartFusion, Fusion,
IGLOO, and ProASIC3 technology families.

You enable/disable global retiming with the Retiming device mapping option
(Project view or Device panel). You can use the syn_allow_retiming attribute to
enable or disable retiming for individual flip-flops. See syn_allow_retiming, on
page 43 and the User Guide for more information.

Update Compile Point Timing Data Option

In SmartFusion, Fusion, IGLOO, and ProASIC3 design families, the Synopsys
FPGA compile-point synthesis flow lets you break down a design into smaller
synthesis units, called compile points, making incremental synthesis possible.
See Synthesizing Compile Points, on page 387 in the User Guide.

LO

 Designing with Microsemi Optimizations for Microsemi Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
728 May 2015

The Update Compile Point Timing Data option controls whether or not changes to a
locked compile point force remapping of its parents, taking into account the
new timing model of the child.

Note: To simplify this description, the term child is used here to refer to
a compile point that is contained inside another; the term parent
is used to refer to the compile point that contains the child.
These terms are thus not used here in their strict sense of direct,
immediate containment: If a compile point A is nested in B,
which is nested in C, then A and B are both considered children
of C, and C is a parent of both A and B. The top level is consid-
ered the parent of all compile points.

Disabled

When the Update Compile Point Timing Data option is disabled (the default), only
(locked) compile points that have changed are remapped, and their
remapping does not take into account changes in the timing models of any of
their children. The old (pre-change) timing model of a child is used, instead,
to map and optimize its parents.

An exceptional case occurs when the option is disabled and the interface of a
locked compile point is changed. Such a change requires that the immediate
parent of the compile point be changed accordingly, so both are remapped. In
this exceptional case, however, the updated timing model (not the old model)
of the child is used when remapping this parent.

Enabled

When the Update Compile Point Timing Data option is enabled, locked compile-
point changes are taken into account by updating the timing model of the
compile point and resynthesizing all of its parents (at all levels), using the
updated model. This includes any compile point changes that took place prior
to enabling this option, and which have not yet been taken into account
(because the option was disabled).

Optimizations for Microsemi Designs Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 729

The timing model of a compile point is updated when either of the following is
true:

• The compile point is remapped, and the Update Compile Point Timing Data
option is enabled.

• The interface of the compile point is changed.

Operating Condition Device Option

You can specify an operating condition for certain Microsemi technologies:

• ProASIC3/3E/3L

• IGLOO+/IGLOO/IGLOOe

• SmartFusion, FUSION

Different operating conditions cause differences in device performance. The
operating condition affects the following:

• optimization, if you have timing constraints

• timing analysis

• timing reports

To set an operating condition, select the value for Operating Conditions from the
menu on the Device tab of the Implementation Options dialog box.

LO

 Designing with Microsemi Optimizations for Microsemi Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
730 May 2015

To set an operating condition in a project or Tcl file, use the command:

set_option -opcond value

where value can be specified like the following typical operating conditions:

For Example
The Microsemi operating condition can contain any of the following specifica-
tions:

• MIL—military

• COM—commercial

Default Typical timing

MIL-WC Worst-case Military timing

MIL-TC Typical-case Military timing

MIL-BC Best-case Military timing

Automotive-WC Worst-case Automotive timing

Optimizations for Microsemi Designs Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 731

• IND—Industrial

• TGrade1

• TGrade2

as well as, include one of the following designations:

• WC—worst case

• BC—best case

• TC—typical case

For specific operating condition values for your required technology, see the
Device tab on the Implementation Options dialog box.

Even when a particular operating condition is valid for a family, it may not be
applicable to every part/package/speed-grade combination in that family.
Consult Microsemi's documentation or software for information on valid
combinations and more information on the meaning of each operating
condition.

Radiation-tolerant Applications

You can specify the radiation-resistant design technique to use on an object
for a design with the syn_radhardlevel attribute. This attribute can be applied to
a module/architecture or a register output signal (inferred register in VHDL),
and is used in conjunction with the Microsemi macro files supplied with the
software.

Values for syn_radhardlevel are as follows:

Value Description

none Standard design techniques are used.

cc Combinational cells with feedback are used to implement storage rather
than flip-flop or latch primitives.

tmr Triple module redundancy or triple voting is used to implement registers.
Each register is implemented by three flip-flops or latches that “vote” to
determine the state of the register.

tmr_cc Triple module redundancy is used where each voting register is composed
of combinational cells with feedback rather than flip-flop or latch primitives

LO

 Designing with Microsemi Optimizations for Microsemi Designs

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
732 May 2015

For details, see:

• Working with Radhard Designs, on page 493

• syn_radhardlevel, on page 174

Integration with Microsemi Tools and Flows Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 733

Integration with Microsemi Tools and Flows

The following describe how the synthesis tools support various tools and
flows for Microsemi designs:

• Compile Point Synthesis, on page 733

• Incremental Synthesis Flow, on page 734

• Microsemi Place-and-Route Tools, on page 734

Compile Point Synthesis

Compile-point synthesis is available only for the Microsemi SmartFusion,
SmartFusion2, Fusion, IGLOO+/IGLOO/IGLOOe/IGLOO2, and
ProASIC3/3E/3L technology families. The compile-point synthesis flow lets
you achieve incremental design and synthesis without having to write and
maintain sets of complex, error-prone scripts to direct synthesis and keep
track of design dependencies. See Synthesizing Compile Points, on page 388
for a description, and Working with Compile Points, on page 369 in the User
Guide for a step-by-step explanation of the compile-point synthesis flow.

In device technologies that can take advantage of compile points, you break
down your design into smaller synthesis units or compile points, in order to
make incremental synthesis possible. A compile point is a module that is
treated as a block for incremental mapping: When your design is resynthe-
sized, compile points that have already been synthesized are not resynthe-
sized, unless you have changed:

• the HDL source code in such a way that the design logic is changed,

• the constraints applied to the compile points, or

• the device mapping options used in the design.

(For details on the conditions that necessitate resynthesis of a compile point,
see Compile Point Basics, on page 370, and Update Compile Point Timing
Data Option, on page 727.)

LO

 Designing with Microsemi Integration with Microsemi Tools and Flows

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
734 May 2015

Incremental Synthesis Flow

Microsemi IGLOO2 and SmartFusion2 Technologies

The synthesis tool provides timestamps for each manual compile point in the
*_partition.tcl file. You can use the timestamps to check whether the compile
point was resynthesized in an incremental run of the tool.

To run this flow:

1. Define compile point constraint on the modules in the design. For
example:

define_compile_point {viewName} -type {locked, partition}
-cpfile {fileName}

2. Run the standard synthesis flow. The synthesis tool writes the
timestamps for each compile point in the designName_partition.tcl file. For
example:

set_partition_info -name partitionName -timestamp timestamp

For an incremental synthesis run, only affected compile points display
new timestamps, while unaffected compile points retain the same
timestamps.

Check the Compile Point Summary report available in the log file.

Microsemi Place-and-Route Tools

You can run place and route automatically after synthesis. For details on how
to set options, see Running P&R Automatically after Synthesis, on page 504
in the User Guide.

For details about the place-and-route tools, refer to the Microsemi documen-
tation.

Microsemi Device Mapping Options Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 735

Microsemi Device Mapping Options

You select device mapping options for Microsemi technologies, select Project ->
Implementation Options->Device and set the options.

Option For details, see ...

Conservative Register Optimization See the Microsemi Tcl set_option
Command Options, on page 737 for
more information about the
preserve_registers option.

Disable I/O Insertion I/O Insertion, on page 726.

Fanout Guide Setting Fanout Limits, on page 352 of
the User Guide and The syn_maxfan
Attribute in Microsemi Designs, on
page 724.

Hard Limit to Fanout Setting Fanout Limits, on page 352 of
the User Guide and The syn_maxfan
Attribute in Microsemi Designs, on
page 724.

Max number of critical paths in SDF
(certain technologies)

Number of Critical Paths, on page 726.

Operating Conditions (certain technologies) Operating Condition Device Option, on
page 729

Promote Global Buffer Threshold Controlling Buffering and Replication,
on page 354 of the User Guide and
Promote Global Buffer Threshold, on
page 725.

LO

 Designing with Microsemi Microsemi Device Mapping Options

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
736 May 2015

Read Write Check on RAM Lets the synthesis tool insert bypass logic
around the RAM to prevent a simulation
mismatch between the RTL and post-
synthesis simulations. The synthesis
software globally inserts bypass logic
around the RAM that read and write to
the same address simultaneously.
Disable this option, when you cannot
simultaneously read and write to the
same RAM location and want to minimize
overhead logic.
For details about using this option in
conjunction with the syn_ramstyle
attribute, see syn_ramstyle, on page 177.

Retiming Retiming, on page 340 of the User Guide
and Retiming, on page 727.

Resolve Mixed Drivers When a net is driven by a VCC or GND
and active drivers, enable this option to
connect the net to the VCC or GND driver.

Update Compile point Timing Data Update Compile Point Timing Data
Option, on page 727

Option For details, see ...

Microsemi Tcl set_option Command Options Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 737

Microsemi Tcl set_option Command
Options

You can use the set_option Tcl command to specify the same device mapping
options as are available through the Implementation Options dialog box displayed
in the Project view with Project -> Implementation Options (see Implementation
Options Command, on page 193).

This section describes the Microsemi-specific set_option Tcl command options.
These include the target technology, device architecture, and synthesis styles.

The table below provides information on specific options for Microsemi archi-
tectures. For a complete list of options for this command, refer to set_option,
on page 58. You cannot specify a package (-package option) for some
Microsemi technologies in the synthesis tool environment. You must use the
Microsemi back-end tool for this.

.

Option Description

-technology keyword Sets the target technology for the implementation.
Keyword must be one of the following Microsemi
architecture names:
FUSION, IGLOO, IGLOOE, IGLOO+, ProASIC3,
ProASIC3E, ProASIC3L, SmartFusion, and
SmartFusion2.

-part partName Specifies a part for the implementation. Refer to the
Implementation Options dialog box for available choices.

-package packageName Specifies the package. Refer to Project-> Implementation
Options->Device for available choices.

-speed_grade value Sets the speed grade for the implementation. Refer to
the Implementation Options dialog box for available
choices.

-disable_io_insertion 1|0 Prevents (1) or allows (0) insertion of I/O pads during
synthesis. The default value is false (enable I/0 pad
insertion). For additional information about disabling
I/O pads, see I/O Insertion, on page 726.

LO

 Designing with Microsemi Microsemi Tcl set_option Command Options

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
738 May 2015

-fanout_guide value Sets the fanout limit guideline for the current project.
If you want to set a hard limit, you must also set the
-maxfan_hard option to true. For more information
about fanout limits, see The syn_maxfan Attribute in
Microsemi Designs, on page 724.

-globalthreshold value Sets the minimum fanout load value. This option
applies only to the SmartFusion, Fusion,
IGLOO+/IGLOO/IGLOOe, and ProASIC3/3E/3L
technologies. For more information, see Promote
Global Buffer Threshold, on page 725.

-maxfan_hard 1 Specifies that the specified -fanout_guide value is a hard
fanout limit that the synthesis tool must not exceed.
To set a guideline limit, see the -fanout_guide option.
For more information about fanout limits, see The
syn_maxfan Attribute in Microsemi Designs, on
page 724.

-opcond value Sets the operating condition for device performance in
the areas of optimization, timing analysis, and timing
reports. This option applies only to the SmartFusion,
Fusion, IGLOO+/IGLOO/IGLOOe, and
ProASIC3/3E/3L technologies. Values are Default,
MIL-WC, IND-WC, COM-WC, and Automotive-WC. See
Operating Condition Device Option, on page 729 for
more information.

-preserve_registers 1|0 When enabled, the software uses less restrictive
register optimizations during synthesis if area is not
as great a concern for your device. The default for this
option is disabled (0).

-resolve_multiple_driver
1|0

When a net is driven by a VCC or GND and active
drivers, enable this option to connect the net to the
VCC or GND driver.

-report_path value Sets the maximum number of critical paths in a
forward-annotated SDF constraint file. This option
applies only to the SmartFusion, Fusion, IGLOO2,
IGLOO+/IGLOO/IGLOOe, and ProASIC3/3E/3L
technologies. For information about setting critical
paths, see Number of Critical Paths, on page 726.

Option Description

Microsemi Tcl set_option Command Options Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 739

-retiming 1|0 SmartFusion, Fusion, IGLOO2,
GLOO+/IGLOO/IGLOOe, and ProASIC3/3E/3L
When enabled (1), registers may be moved into
combinational logic to improve performance. The
default value is 0 (disabled). For additional
information about retiming, see Retiming, on
page 727

-RWCheckOnRam 1 | 0 If read or write conflicts exist for the RAM, enable this
option to insert bypass logic around the RAM to
prevent simulation mismatch. Disabling this option
does not generate bypass logic.
For more information about using this option in
conjunction with the syn_ramstyle attribute, see
syn_ramstyle, on page 177.

-update_models_cp 1|0 SmartFusion, Fusion, IGLOO2,
IGLOO+/IGLOO/IGLOOe, and ProASIC3/3E/3L
Determines whether (1) or not (0) changes to a locked
compile point force remapping of its parents, taking
into account the new timing model of the child. See
Update Compile Point Timing Data Option, on
page 727, for details.

Option Description

LO

 Designing with Microsemi Microsemi Attribute and Directive Summary

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
740 May 2015

Microsemi Attribute and Directive Summary

The following table summarizes the synthesis and Microsemi-specific attri-
butes and directives available with the Microsemi technology. Complete
descriptions and examples are in Attributes and Directives Summary, on
page 13.

Attribute/Directive Description

alsloc Forward annotates the relative placements of
macros and IP blocks to Microsemi Designer.

alspin Assigns scalar or bus ports to Microsemi I/O pin
numbers.

alspreserve Specifies that a net be preserved, and prevents it
from being removed during place-and-route
optimization.

black_box_pad_pin (D) Specifies that a pin on a black box is an I/O pad. It
is applied to a component, architecture, or module,
with a value that specifies the set of pins on the
module or entity.

black_box_tri_pins (D) Specifies that a pin on a black box is a tristate pin. It
is applied to a component, architecture, or module,
with a value that specifies the set of pins on the
module or entity.

full_case (D) Specifies that a Verilog case statement has covered
all possible cases.

loop_limit (D) Specifies a loop iteration limit for for loops.

parallel_case (D) Specifies a parallel multiplexed structure in a Verilog
case statement, rather than a priority-encoded
structure.

syn_allow_retiming Specifies whether registers can be moved during
retiming.

syn_black_box (D) Defines a black box for synthesis.

syn_encoding Specifies the encoding style for state machines.

syn_enum_encoding (D) Specifies the encoding style for enumerated types
(VHDL only).

(D) indicates directives; all others are attributes.

Microsemi Attribute and Directive Summary Designing with Microsemi

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 741

syn_global_buffers Sets the number of global buffers to use in a
ProASIC3/3E/3L.

syn_hier Controls the handling of hierarchy boundaries of a
module or component during optimization and
mapping.

syn_insert_buffer Inserts a clock buffer according to the specified
value.

syn_insert_pad Removes an existing I/O buffer from a port or net
when I/O buffer insertion is enabled.

syn_isclock (D) Specifies that a black-box input port is a clock, even
if the name does not indicate it is one.

syn_keep (D) Prevents the internal signal from being removed
during synthesis and optimization.

syn_maxfan Overrides the default fanout guide for an individual
input port, net, or register output.

syn_multstyle Determines how multipliers are implemented for
Microsemi devices.

syn_netlist_hierarchy Determines whether the EDIF output netlist is flat or
hierarchical.

syn_noarrayports Prevents the ports in the EDIF output netlist from
being grouped into arrays, and leaves them as
individual signals.

syn_noclockbuf Turns off the automatic insertion of clock buffers.

syn_noprune (D) Controls the automatic removal of instances that
have outputs that are not driven.

syn_pad_type Specifies an I/O buffer standard.

syn_preserve (D) Prevents sequential optimizations across a flip-flop
boundary during optimization, and preserves the
signal.

syn_probe Adds probe points for testing and debugging.

syn_radhardlevel Specifies the radiation-resistant design technique to
apply to a module, architecture, or register.

Attribute/Directive Description

(D) indicates directives; all others are attributes.

LO

 Designing with Microsemi Microsemi Attribute and Directive Summary

© 2015 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
742 May 2015

syn_ramstyle Specifies the implementation to use for an inferred
RAM. You apply syn_ramstyle globally, to a module,
or to a RAM instance.

syn_reference_clock Specifies a clock frequency other than that implied
by the signal on the clock pin of the register.

syn_replicate Controls replication.

syn_resources Specifies resources used in black boxes.

syn_sharing (D) Specifies resource sharing of operators.

syn_shift_resetphase Allows you to remove the flip-flop on the inactive
clock edge, built by the reset recovery logic for an
FSM when a single event upset (SEU) fault occurs.

syn_state_machine (D) Determines if the FSM Compiler extracts a structure
as a state machine.

syn_tco<n> (D) Defines timing clock to output delay through the
black box. The n indicates a value between 1 and 10.

syn_tpd<n> (D) Specifies timing propagation for combinational delay
through the black box. The n indicates a value
between 1 and 10.

syn_tristate (D) Specifies that a black-box pin is a tristate pin.

syn_tsu<n> (D) Specifies the timing setup delay for input pins,
relative to the clock. The n indicates a value between
1 and 10.

translate_off/translate_on
(D)

Specifies sections of code to exclude from synthesis,
such as simulation-specific code.

Attribute/Directive Description

(D) indicates directives; all others are attributes.

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015

A P P E N D I X C

Example Code

This appendix contains the code samples that are referenced by the
corresponding chapter.

config_generate_cfg1 config cfg1;

 design work2.top;
 instance top.blk1.inst liblist work1;
 endconfig

Back

config_generate_sub `define REGR_MODULE_DEFINE(x) `ifdef
SYNTHESIS x `else x``_rtl `endif

 module `REGR_MODULE_DEFINE(sub) (
 input [3:0] in1,
 input clk,
 output reg [3:0] out1);

 reg [3:0] temp;
 reg [3:0] temp1;

 always @ (posedge clk)
 begin
 temp1 <= in1;
 temp <= {in1[0],in1[3],in1[2],in1[1]};
 out1 <= temp&temp1;

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 744

 end

 endmodule

Back

config_generate_top `define REGR_MODULE_DEFINE(x) `ifdef
SYNTHESIS x `else x``_rtl `endif

 module `REGR_MODULE_DEFINE(top) (
 input [3:0] in1,in2,
 input clk,
 output [3:0] out1
);
 generate
 begin:blk1
 `REGR_MODULE_DEFINE(sub) inst (in1,clk,out1);
 assign out2 = in2;
 assign inst.temp1 = in2;
 end:blk1
 endgenerate

 endmodule

Back

Example - Constant function

 module ram
 // Verilog 2001 ANSI parameter declaration syntax
 #(parameter depth= 129,
 parameter width=16)
 // Verilog 2001 ANSI port declaration syntax
 (input clk, we,
 // Calculate addr width using Verilog 2001 constant function
 input [clogb2(depth)-1:0] addr,
 input [width-1:0] di,
 output reg [width-1:0] do);
 function integer clogb2;
 input [31:0] value;
 for (clogb2=0; value>0; clogb2=clogb2+1)
 value = value>>1;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 745

 endfunction
 reg [width-1:0] mem[depth-1:0];
 always @(posedge clk) begin
 if (we)
 begin
 mem[addr]<= di;
 do<= di;
 end
 else
 do<= mem[addr];
 end
 endmodule

Back

Example - Constant math function counter

 module top
 #(parameter COUNT = 256)
 //Input
 (input clk,
 input rst,
 //Output
 //Function used to compute width based on COUNT value of counter:
 output [$clog2(COUNT)-1:0] dout);
 reg[$clog2(COUNT)-1:0]count;
 always@(posedge clk)
 begin
 if(rst)
 count = ‘b0;
 else
 count = count + 1’b1;
 end
 assign dout = count;
 endmodule

Back

Example - Constant math function RAM

 module top

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 746

 #
 (parameter DEPTH = 256,
 parameter WIDTH = 16)
 (
 //Input
 input clk,
 input we,
 input rst,
 //Function used to compute width of address based on depth of RAM:
 input [$clog2(DEPTH)-1:0] addr,
 input [WIDTH-1:0] din,
 //Output
 output reg[WIDTH-1:0] dout);
 reg[WIDTH-1:0] mem[(DEPTH-1):0];
 always @ (posedge clk)
 if (rst == 1)
 dout = 0;
 else
 dout = mem[addr];
 always @(posedge clk)
 if (we) mem[addr] = din;
 endmodule

Back

Example Configuration 1 -- Multiple Configurations

 config cfg1;

 design work123.top;
 default liblist work123;

 instance top.inst1 use cfg1.cfg:config;
 instance top.inst3 use cfg2.cfg:config;

 endconfig

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 747

Configuration 2 -- Multiple Configurations

 config cfg;

 design work123.sub1;

 default liblist lib3;

 cell sub2 liblist work123 lib3;

 endconfig

Back

Example Configuration 3 -- Multiple Configurations

 config cfg;

 design work123.sub3;

 default liblist lib88;

 instance sub3.inst4 liblist lib6 lib7;

 endconfig

Back

Example Submodule 1_1 -- Multiple Configurations

 module sub1 (input [31:0] in1,input [31:0] in2, output [31:0]
out1, output [31:0] out2);
 sub2 inst2 (in1,in2,out1,out2);
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 748

Example Submodule 1_2 -- Multiple Configurations

 module sub1 (input [31:0] in1,input [31:0] in2, output [31:0]
out1,output [31:0] out2);
 sub2 inst2 (in1,in2,out1,out2);
 endmodule

Back

Submodule 2_1 -- Multiple Configurations

 module sub2 (input [31:0] in1,input [31:0] in2, output [31:0]
out1, output [31:0] out2);
 assign out1 = in1 & in2;
 assign out2 = in1 | in2;
 endmodule

Back

Example 2_2 -- Multiple Configurations

 module sub2 (input [31:0] in1,input [31:0] in2, output [31:0]
out1,output [31:0] out2);
 assign out1 = in1 ;
 assign out2 = in2 ;
 endmodule

Back

Example 3_1 -- Multiple Configurations

 module sub3 (input [31:0] in1,input [31:0] in2, output [31:0]
out1, output [31:0] abc);
 sub4 inst4 (in1,in2,out1,abc);
 endmodule

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 749

Example Submodule 3_2 -- Multiple Configurations

 module sub3 (input [31:0] in1,input [31:0] in2, output [31:0]
out1, output [31:0] xyz);
 sub4 inst4 (in1,in2,out1,xyz);
 endmodule

Back

Examples Submodules 4_1 -- Multiple Configurations

 module sub4 (input [31:0] in1,input [31:0] in2, output [31:0]
out1, output [31:0] out2);
 assign out1 = in1 & in2;
 assign out2 = in1 | in2;
 endmodule

Back

Example Submodule 4_2 -- Multiple Configurations

 module sub4 (input [31:0] in1,input [31:0] in2, output [31:0]
out1,output [31:0] out2);
 assign out1 = ~in1;
 assign out2 = ~in2;
 endmodule

Back

Example Top Module -- Multiple Configurations

 module top (input [31:0] in1,input [31:0] in2, output [31:0] out1,
output [31:0] out2, output [31:0] out3, output [31:0] out4);

 sub1 inst1 (in1,in2,out1,out2);

 sub3 inst3 (in1,in2,out3,out4);

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 750

 endmodule

Back

Example - Asynch FSM with continuous assignment

 module async1 (out, g, d);
 output out;
 input g, d;
 assign out = g & d | !g & out | d &out;
 endmodule

Back

Example - Asynch FSM with always block

 module async2 (out, g, d);
 output out;
 input g, d;
 reg out;
 always @(g or d or out)
 begin
 out = g & d | !g & out | d & out;
 end
 endmodule

Back

Example - FSM coding style

 module FSM1 (clk, rst, enable, data_in, data_out, state0, state1,
 state2);
 input clk, rst, enable;
 input [2:0] data_in;
 output data_out, state0, state1, state2;
 /* Defined state labels; this style preferred over `defines*/
 parameter deflt=2’bxx;
 parameter idle=2’b00;
 parameter read=2’b01;
 parameter write=2’b10;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 751

 reg data_out, state0, state1, state2;
 reg [1:0] state, next_state;
 /* always block with sequential logic*/
 always @(posedge clk or negedge rst)
 if (!rst) state <= idle;
 else state <= next_state;
 /* always block with combinational logic*/
 always @(state or enable or data_in) begin
 /* Default values for FSM outputs*/
 state0 <= 1’b0;
 state1 <= 1’b0;
 state2 <= 1’b0;
 data_out <= 1’b0;
 case (state)
 idle : if (enable) begin
 state0 <= 1’b1;
 data_out <= data_in[0];
 next_state <= read;
 end
 else begin
 next_state <= idle;
 end
 read : if (enable) begin
 state1 <= 1’b1;
 data_out <= data_in[1];
 next_state <= write;
 end
 else begin
 next_state <= read;
 end
 write : if (enable) begin
 state2 <= 1’b1;
 data_out <= data_in[2];
 next_state <= idle;
 end
 else begin
 next_state <= write;
 end
 /* Default assignment for simulation */
 default : next_state <= deflt;
 endcase
 end

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 752

 endmodule

Back

Example – Downward Read Cross-Module Reference

 module top
 (input a,
 input b,
 output c,
 output d
);
 sub inst1 (.a(a), .b(b), .c(c));
 assign d = inst1.a;
 endmodule
 module sub
 (input a,
 input b,
 output c
);
 assign c = a & b;
 endmodule

Back

Example – Downward Write Cross-Module Reference

 module top
 (input a,
 input b,
 output c,
 output d
);
 sub inst1 (.a(a), .b(b), .c(c), .d(d));
 assign top.inst1.d = a;
 endmodule
 module sub
 (input a,
 input b,
 output c,
 output d

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 753

);

 assign c = a & b;
 endmodule

Back

Example – Upward Read Cross-Module Reference

 module top
 (input a,
 input b,
 output c,
 output d
);
 sub inst1 (.a(a), .b(b), .c(c), .d(d));
 endmodule
 module sub
 (input a,
 input b,
 output c,
 output d
);
 assign c = a & b;
 assign d = top.a;
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 754

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 755

A P P E N D I X C

Example Code

This appendix contains the code samples that are referenced by the
corresponding chapter.

Example - Initializing Unpacked Array to Default Value

 parameter WIDTH = 2;
 typedef reg [WIDTH-1:0] [WIDTH-1:0] MyReg;
 module top (
 input logic Clk,
 input logic Rst,
 input MyReg DinMyReg,
 output MyReg DoutMyReg);
 MyReg RegMyReg;

 always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 RegMyReg <= ‘{default:0};
 DoutMyReg <= ‘{default:0};
 end
 else begin
 RegMyReg <= DinMyReg;
 DoutMyReg <= RegMyReg;
 end
 end
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 756

Example - Initializing Unpacked Array Under Reset Condition

 parameter WIDTH = 2;
 typedef reg [WIDTH-1:0] [WIDTH-1:0] MyReg;
 module top (
 input logic Clk,
 input logic Rst,
 input MyReg DinMyReg,
 output MyReg DoutMyReg);
 MyReg RegMyReg;

 always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 RegMyReg <= ‘{2’d0, 2’d0};
 DoutMyReg <= ‘{2’d0, 2’d0};
 end
 else begin
 RegMyReg <= DinMyReg;
 DoutMyReg <= RegMyReg;
 end
 end
 endmodule

Back

Example - Aggregate Assignment in Compilation Unit

 // Start of compilation unit
 parameter WIDTH = 2;
 typedef struct packed {
 int r;
 longint g;
 byte b;
 int rr;
 longint gg;
 byte bb;
 } MyStruct [WIDTH-1:0];
 const MyStruct VarMyStruct = ‘{int:1,longint:10,byte:8’h0B} ;
 const MyStruct ConstMyStruct =
 ‘{int:1,longint:$bits(VarMyStruct[0].r),byte:8’hAB} ;

 module top (

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 757

 input logic Clk,
 input logic Rst,
 input MyStruct DinMyStruct,
 output MyStruct DoutMyStruct);
 MyStruct StructMyStruct;

 always@(posedge Clk, posedge Rst)
 begin
 if(Rst) begin
 StructMyStruct <= VarMyStruct;
 DoutMyStruct <= ConstMyStruct;
 end
 else begin
 StructMyStruct <= DinMyStruct;
 DoutMyStruct <= StructMyStruct;
 end
 end
 endmodule

Back

Example - Aggregate Assignment in Package

 package MyPkg;
 parameter WIDTH = 2;
 typedef struct packed {
 int r;
 longint g;
 byte b;
 int rr;
 longint gg;
 byte bb;
 } MyStruct [WIDTH-1:0];
 const MyStruct VarMyStruct = ‘{int:1,longint:10,byte:8’h0B} ;
 const MyStruct ConstMyStruct =
 ‘{int:1,longint:$bits(VarMyStruct[0].r),byte:8’hAB} ;
 endpackage : MyPkg
 import MyPkg::*;

 module top (
 input logic Clk,
 input logic Rst,

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 758

 input MyStruct DinMyStruct,
 output MyStruct DoutMyStruct);
 MyStruct StructMyStruct;

 always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 StructMyStruct <= VarMyStruct;
 DoutMyStruct <= ConstMyStruct;
 end
 else begin
 StructMyStruct <= DinMyStruct;
 DoutMyStruct <= StructMyStruct;
 end
 end
 endmodule

Back

Example - Initializing Specific Data Type

 parameter WIDTH = 2;
 typedef struct packed {
 byte r;
 byte g;
 byte b; }
 MyStruct [WIDTH-1:0];
 module top (
 input logic Clk,
 input logic Rst,
 input MyStruct DinMyStruct,
 output MyStruct DoutMyStruct);
 MyStruct StructMyStruct;

 always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 StructMyStruct <= ‘{byte:0,byte:0};
 DoutMyStruct <= ‘{byte:0,byte:0};
 end
 else begin
 StructMyStruct <= DinMyStruct;
 DoutMyStruct <= StructMyStruct;
 end

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 759

 end
 endmodule

Back

Example -- Aggregate on Ports (Submodule)

 module sub
 #(
 parameter logic signed [8:1] ParamMyLogic = 8’d12,
 parameter logic signed [1:8] ParamMyLogic_Neg = -8’d11
)
 (
 input clk,
 input rst,
 input logic signed d1[3:0],
 input logic signed d2[3:0],
 output logic signed q1[3:0],
 output logic signed q2[3:0],
 inout temp[1:0]
);
 assign temp[1]=d2[0];

 always_ff@(posedge clk or posedge rst)
 begin
 if(rst)
 begin
 q1 <= ‘{default:0};
 q2 <= ‘{default:0};
 end
 else
 begin
 q1 <= {d1[3:1],temp[1]};
 q2 <= {d2[3:1],temp[1]};
 end
 end

 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 760

Example -- Aggregate on Ports (Top-Level Module)

 `include “sub.v”

 module top
 (
 input clk,
 input rst,
 input logic signed d1 [3:0],
 input logic signed d2 [3:0],
 output logic signed q1 [3:0],
 output logic signed q2[3:0]

);

 wire temp2[1:0];

 //Named mapping
 sub
 #(.ParamMyLogic(255),.ParamMyLogic_Neg(-1))
 u2

(.clk(clk),.rst(rst),.d1(‘{d1[3],d1[2],d1[1],d1[0]}),.d2(‘{d2[3],d
2[2],d2[1],d2[0]}),.q1(q1),.q2(q2),.temp(temp2)); //unpacked
elements of port d1 & d2 are passed as aggregates to the sub
module.

 endmodule

Back

Example - Including Block Name with end Keyword

 module src (in1,in2,out1,out2);
 input in1,in2;
 output reg out1,out2;
 reg a,b;
 always@(in1,in2)
 begin : foo_in
 a = in1 & in2;
 b = in2 | in1;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 761

 end : foo_in
 always@(a,b)
 begin : foo_value
 out1 = a;
 out2 = b;
 end : foo_value
 endmodule

Back

Example - always_comb Block

 module test01 (a, b, out1);
 input a,b;
 output out1;
 reg out1;
 always_comb
 begin
 out1 = a & b;
 end
 endmodule

Back

Example - always_ff Block

 module Test01 (a,b,clk,out1);
 input a,b,clk;
 output out1;
 reg out1;
 always_ff@(posedge clk)
 out1 <= a & b;
 endmodule

Back

Example - always_latch Block

 module Test01 (a,b,clk,out1);
 input a,b,clk;

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 762

 output out1;
 reg out1;

 always_latch
 begin
 if(clk)
 begin
 out1 <= a & b;
 end
 end
 endmodule

Back

Example - Local Variable in Unnamed Block

 module test(in1,out1);
 input [2:0] in1;
 output [2:0] out1;
 integer i;
 wire [2:0] count;
 reg [2:0] temp;
 assign count = in1;

 always @ (count)
 begin // unnamed block
 integer i; //local variable
 for (i=0; i < 3; i = i+1)
 begin : foo
 temp = count + 1;
 end
 end
 assign out1 = temp;
 endmodule

Back

Example - Compilation Unit Access

 //$unit_4_state begin
 logic foo_logic = 1’b1;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 763

 //$unit_4_state ends
 module test (
 input logic data1,
 input clk,
 output logic out1,out1_local);
 //local variables
 logic foo_logic = 1’b0;
 ///////
 always @(posedge clk)
 begin
 out1 <= data1 ^ $unit::foo_logic; //Referencing
 //the compilation unit value.
 out1_local <= data1 ^ foo_logic; //Referencing the
 //local variable.
 end
 endmodule

Back

Example - Compilation Unit Constant Declaration

 //$unit begin
 const bit foo_bit = “11”;
 const byte foo_byte = 8’b00101011;
 //$unit ends
 module test (clk, data1, data2, out1, out2);
 input clk;
 input bit data1;
 input byte data2;
 output bit out1;
 output byte out2;

 always @(posedge clk)
 begin
 out1 <= data1 | foo_bit;
 out2 <= data2 & foo_byte;
 end
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 764

Example - Compilation Unit Function Declaration

 parameter fact = 2;
 function automatic [63:0] factorial;
 input [31:0] n;
 if (n==1)
 return (1);
 else
 return (n * factorial(n-1));
 endfunction

 module src (input [1:0] a, input [1:0] b, output logic [2:0] out);
 always_comb
 begin
 out = a + b + factorial(fact);
 end
 endmodule

Back

Example - Compilation Unit Net Declarations

 //$unit
 wire foo = 1’b1;
 //End of $unit
 module test (
 input data,
 output dout);
 assign dout = data * foo;
 endmodule

Back

Example - Compilation Unit Scope Resolution

 //$unit begins
 parameter width = 4;
 //$unit ends
 module test (data,clk,dout);
 parameter width = 8; // local parameter
 input logic [width-1:0] data;
 input clk;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 765

 output logic [width-1:0] dout;

 always @(posedge clk)
 begin
 dout <= data;
 end
 endmodule

Back

Example - Compilation Unit Task Declaration

 parameter FACT_OP = 2;
 task automatic factorial(input integer operand,
 output [1:0] out1);
 integer nFuncCall = 0;
 begin
 if (operand == 0)
 begin
 out1 = 1;
 end
 else
 begin
 nFuncCall++;
 factorial((operand-1), out1);
 out1 = out1 * operand;
 end
 end
 endtask

 module src (input [1:0] a, input [1:0] b, output logic [2:0] out);
 logic [1:0] out_tmp;
 always_comb
 factorial(FACT_OP,out_tmp);
 assign out = a + b + out_tmp;
 endmodule

Back

Example - Compilation Unit User-defined Datatype Declaration

 //$unit begins

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 766

 typedef struct packed {
 int a;
 int b;} my_struct;
 //End of $unit
 module test (p,q,r);
 input my_struct p;
 input my_struct q;
 output int r;
 assign r = p.a * q.b;
 endmodule

Back

Example - Compilation Unit Variable Declaration

 //$unit begins
 logic foo_logic = 1’b1;
 //$unit ends
 module test (
 input logic data1,
 input clk,
 output logic out1);

 always @(posedge clk)
 begin
 out1 <= data1 ^ foo_logic;
 end
 endmodule

Back

Example - Multi-dimensional Packed Array with Whole Assignment

 module test (
 input [1:0] [1:0] sel,
 input [1:0] [1:0] data1,
 input [1:0] [1:0] data2,
 input [1:0] [1:0] data3,
 output reg [1:0] [1:0] out1,
 output reg [1:0] [1:0] out2,
 output reg [1:0] [1:0] out3);

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 767

 always @(sel,data1,data2)
 begin
 out1 = (sel[1]==11)? data1 : {11,11};
 out2 = (sel[1]==2’b11)? data2 : {11,10};
 out3 = data3;
 end
 endmodule

Back

Example - Multi-dimensional Packed Array with Partial Assignment

 module test (
 input [7:0] datain,
 input [1:0][2:0][3:0] datain2,
 output [1:0][1:0][1:0] array_out,
 output [23:0] array_out2,
 output [3:0] array_out2_first_element,
 array_out2_second_element, array_out2_zero_element,
 output [1:0] array_out2_first_element_partial_slice);
 assign array_out = datain;
 assign array_out2 = datain2;
 assign array_out2_zero_element = datain2[1][0];
 assign array_out2_first_element = datain2[1][1];
 assign array_out2_second_element = datain2[1][2];
 assign array_out2_first_element_partial_slice =
 datain2[0][0][3-:2];
 endmodule

Back

Example - Multi-dimensional Packed Array with Arithmetic Ops

 module test (
 input signed [1:0][2:0] a, b,
 output signed [1:0] [2:0] c, c_bar, c_mult, c_div, c_per,
 output signed [1:0][2:0] d, d_bar, d_mult, d_div, d_per,
 output signed e, e_bar, e_mult, e_div, e_per);
 assign c = a + b;
 assign d = a[1] + b[1];
 assign e = a[1][2] + a[1][1] + a[1][0] + b[1][2] + b[1][1]

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 768

 + b[1][0];
 assign c_bar = a - b;
 assign d_bar = a[1] - b[1];
 assign e_bar = a[1][2] - a[1][1] - a[1][0] - b[1][2]
 - b[1][1] - b[1][0];
 assign c_mult = a * b;
 assign d_mult = a[1] * b[1];
 assign e_mult = a[1][2] * a[1][1] * a[1][0] * b[1][2] *
 b[1][1] * b[1][0];
 assign c_div = a / b;
 assign d_div = a[1] / b[1];
 assign e_div = a[1][2] / b[1][1];
 assign c_per = a % b;
 assign d_per = a[1] % b[1];
 assign e_per = a[1][2] % b[1][1];
 endmodule

Back

Example - Packed/Unpacked Array with Partial Assignment

 module test (
 input [1:0] sel [1:0],
 input [63:0] data [3:0],
 input [63:0] data2 [3:0],
 output reg [15:0] out1 [3:0],
 output reg [15:0] out2 [3:0]);

 always @(sel, data)
 begin
 out1 = (sel[1]==2’b00)? data[3][63-:16] :
 ((sel[1]==2’b01)? data[2][47-:16] :
 ((sel[0]==2’b10)? data[1][(63-32)-:16] :
 data[0][(63-48)-:16]));
 out2[3][15-:16] = data2[3][63-:16];
 out2[2][15-:16] = data2[3][47-:16];
 out2[1][15-:16] = data2[3][(63-32)-:16];
 out2[0][15-:8] = data2[3][(63-48)-:8];
 end
 endmodule

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 769

Example - Multi-dimensional Array of Packed Structures Using
Anonymous Type

 module mda_str (
 input struct packed {
 logic [47:0] dest_addr;
 logic [47:0] src_addr;
 logic [7:0] type_len;
 logic [63:0] data;
 logic [2:0] crc;
 } [1:0][3:0] str_pkt_in,
 input sel1,
 input [1:0] sel2,
 output struct packed {
 logic [47:0] dest_addr;
 logic [47:0] src_addr;
 logic [7:0] type_len;
 logic [63:0] data;
 logic [2:0] crc;
 } str_pkt_out
);
 always_comb
 begin
 str_pkt_out = str_pkt_in[sel1][sel2];
 end
 endmodule

Back

Example - Multi-dimensional Array of Packed and Unpacked Structures
Using typedef

 typedef struct {
 byte r;
 byte g;
 byte b;
 } [2:0] struct_im_t [0:1];
 module mda_str (
 input struct_im_t a,
 input struct_im_t b,
 output struct_im_t c,
 input [7:0] alpha,

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 770

 input [7:0] beta
);
 typedef struct {
 shortint r;
 shortint g;
 shortint b;
 } [2:0] struct_im_r_t [0:1];
 struct_im_r_t temp;
 integer i,j;

 always_comb
 begin
 for(i=0;i<2;i=i+1)
 for(j=0;j<3;j=j+1)
 begin
 temp[i][j].r = a[i][j].r * alpha + b[i][j].r * beta;
 temp[i][j].g = a[i][j].g * alpha + b[i][j].g * beta;
 temp[i][j].b = a[i][j].b * alpha + b[i][j].b * beta;
 c[i][j].r = temp[i][j].r[15:8];
 c[i][j].g = temp[i][j].g[15:8];
 c[i][j].b = temp[i][j].b[15:8];
 end
 end
 endmodule

Back

Example - Multi-dimensional Array of Unpacked Structures Using
typedef

 typedef struct {
 byte r;
 byte g;
 byte b;
 } struct_im_t [2:0][1:0];
 module mda_str (
 input struct_im_t a,
 input struct_im_t b,
 output struct_im_t c,
 input [7:0] alpha,
 input [7:0] beta
);

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 771

 typedef struct {
 shortint r;
 shortint g;
 shortint b;
 } struct_im_r_t [2:0][1:0];
 struct_im_r_t temp;
 integer i,j;

 always_comb
 begin
 for(i=0;i<3;i=i+1)
 for(j=0;j<2;j=j+1)
 begin
 temp[i][j].r = a[i][j].r * alpha + b[i][j].r * beta;
 temp[i][j].g = a[i][j].g * alpha + b[i][j].g * beta;
 temp[i][j].b = a[i][j].b * alpha + b[i][j].b * beta;
 c[i][j].r = temp[i][j].r[15:8];
 c[i][j].g = temp[i][j].g[15:8];
 c[i][j].b = temp[i][j].b[15:8];
 end
 end
 endmodule

Back

Example - Multi-dimensional Array of Packed Structures Using typedef

 typedef struct packed {
 logic [47:0] dest_addr;
 logic [47:0] src_addr;
 logic [7:0] type_len;
 logic [63:0] data;
 logic [3:0] crc;
 } [1:0][1:0] str_pkt_mp_t;
 typedef struct packed {
 logic [47:0] dest_addr;
 logic [47:0] src_addr;
 logic [7:0] type_len;
 logic [63:0] data;
 logic [3:0] crc;
 } str_pkt_t;

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 772

 module mda_str (
 input str_pkt_mp_t pkt_mp_in,
 input sel1,
 input sel2,
 output str_pkt_t pkt_out
);
 always_comb
 begin
 pkt_out = pkt_mp_in[sel1][sel2];
 end
 endmodule

Back

Example - Array Querying Function with Data Type as Input

 //Data type
 typedef bit [1:2][4:1]bit_dt[3:2][4:1];
 module top
 (
 //Output
 output byte q1_left,
 output byte q1_low);
 assign q1_left = $left(bit_dt);
 assign q1_low = $low(bit_dt);
 endmodule

Back

Example - Array Querying Function $dimensions and
$unpacked_dimensions Used on a Mixed Array

 module top
 (
 //Input
 input bit [1:2][4:1]d1[3:2][4:1],
 //Output
 output byte q1_dimensions,
 output byte q1_unpacked_dimensions);
 assign q1_dimensions = $dimensions(d1);
 assign q1_unpacked_dimensions = $unpacked_dimensions(d1);

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 773

 endmodule

Back

Example - Array Querying Function $left and $right Used on Packed
2D-data Type

 module top
 (
 //Input
 input logic[1:0][3:1]d1,
 //Output
 output byte q1_left,
 output byte q1_right,
 output byte q1_leftdimension
);
 assign q1_left = $left(d1);
 assign q1_right = $right(d1);
 assign q1_leftdimension =$left(d1,2); // Dimension expression
 // returns value of the second dimension[3:1]
 endmodule

Back

Example - Array Querying Function $low and $high Used on Unacked
3D-data Type

 module top
 (
 //Input
 input logic d1[2:1][1:5][4:8],
 //Output
 output byte q1_low,
 output byte q1_high,
 output byte q1_lowdimension
);
 assign q1_low = $low(d1);
 assign q1_high = $high(d1);
 assign q1_lowdimension = $low(d1,3); // Dimension expression
 // returns value for the third dimension (i.e.,[4:8])
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 774

Example - Array Querying Function $size and $increment Used on a
Mixed Array

 module top
 (
 //Input
 input byte d1[4:1],
 //Output
 output byte q1_size,
 output byte q1_increment);
 assign q1_size = $size(d1);
 assign q1_increment = $increment(d1);
 endmodule

Back

Example - Instantiating an interface Construct

 //TECHPUBS The following example defines, accesses, and
instantiates an interface construct.
 interface intf(input a, input b); //define the interface
 logic a1, b1;
 assign a1 = a;
 assign b1 = b;
 modport write (input a1, input b1); //define the modport
 endinterface

 module leaf(intf.write foo, output logic q); //access the intf
interface
 assign q = foo.a1 + foo.b1;
 endmodule

 module top(input a, input b, output q);
 intf inst_intf (a,b); //instantiate the intf interface
 leaf leaf_inst (inst_intf.write,q);
 endmodule

Back

Example - Type Casting of Aggregate Data Types

 //Data type

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 775

 typedef logic Logic_3D_dt [15:0][1:0][1:0];
 typedef logic Logic_1D_dt [64:1];
 module top (
 //Inputs
 input Logic_3D_dt Logic_3D,
 //Outputs
 output longint arith
);
 //Constant delcaration
 const Logic_1D_dt Logic_1DConst = ‘{default:1’b1};
 //Arithmetic Operation
 assign arith = longint’(Logic_3D) + longint’(Logic_1DConst);
 endmodule

Back

Example - Bit-stream Casting

 typedef struct {
 bit start_bit = 0;
 byte data_bits;
 bit stop_bit = 1; }
 uart_format_dt;
 typedef logic tx_format_dt[9:0] ;
 module top (
 //Inputs
 input byte data,
 //Outputs
 output tx_format_dt tx_data
);
 uart_format_dt uart_data;
 assign uart_data.data_bits = data;
 assign tx_data = tx_format_dt’(uart_data);
 endmodule

Back

Example - Sign Casting

 module top (
 //Inputs
 input integer Integer,

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 776

 input shortint Shortint,
 //Outputs
 output longint arith
);
 //Arithmetic operation
 assign arith = unsigned’(Integer) * unsigned’(Shortint);
 endmodule

Back

Example - Size Casting

 module top (
 //Inputs
 input longint Longint,
 input byte Byte,
 //Outputs
 output shortint arith1
);
 //Arithmetic operation
 assign arith1 = 10’(Byte + Longint);
 endmodule

Back

Example - Type Casting of Singular Data Types

 typedef logic [31:0] unsigned_32bits;
 typedef logic [15:0] unsigned_16bits;
 module top (
 //Inputs
 input integer Integer,
 input shortint Shortint,
 //Outputs
 output longint arith
);
 //Arithmetic operation
 assign arith = unsigned_32bits’(Integer) *
unsigned_16bits’(Shortint) ;
 endmodule

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 777

Example - Basic Packed Union (arithmetic operation)

 typedef union packed
 {
 logic [3:0][0:3]u1;
 shortint u2;
 bit signed [1:2][8:1]u3;
 }union_dt; // Union data type

 module top
 (input union_dt d1,
 input union_dt d2,
 output union_dt q1,
 output union_dt q2
);
 assign q1.u2 = d1.u1 + d2.u2;
 assign q2.u1 = d1.u2 - d1.u1[2][1];
 endmodule

Back

Example - Array of Packed Union

 typedef int int_dt;
 typedef union packed
 {
 int_dt u1;
 bit [0:3][1:8]u2;
 }union_dt;
 module top
 (input union_dt [1:0] d1, //Array of union
 input union_dt [1:0] d2, //Array of union
 output union_dt q1,
 output union_dt q2
);
 assign q1.u1 = d1[1].u1 ^ d2[0].u1;
 assign q2.u2 = ~(d1[0].u2 | d2[1].u1);
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 778

Example - Basic Packed Union (logical operation)

 typedef int unsigned UnsignInt_dt;
 typedef union packed
 {
 int u1;
 UnsignInt_dt u2;
 }union_dt; //Union data type

 module top
 (input union_dt d1,
 input union_dt d2,
 output union_dt q1,
 output union_dt q2
);
 assign q1.u1 = d1.u1 ^ d2.u1;
 assign q2.u2 = d1.u2 | d2.u1;
 endmodule

Back

Example - Nested Packed Union

 typedef union packed
 {
 byte u1;
 bit[1:0][4:1]u2;
 union packed
 {
 logic[8:1]nu1;
 byte unsigned nu2;
 }NstUnion; //Nested Union
 }NstUnion_dt;

 module top
 (input NstUnion_dt d1,
 input NstUnion_dt d2,
 output NstUnion_dt q1,
 output NstUnion_dt q2
);
 assign q1 = d1.NstUnion.nu1 & d2.u2[1];

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 779

 assign q2.u1 = d2.NstUnion.nu2 |~ d1.u1;
 endmodule

Back

Example - State-machine Design

 module enum_type_check (clk, rst, same, statemachine1_is_five,
 statemachine2_is_six, statemachine1, statemachine2, both);
 input clk, rst;
 output reg same, statemachine1_is_five, statemachine2_is_six;
 output int statemachine1, statemachine2, both;
 enum {a[0:3] = 4} my,my1;

 always@(posedge clk or posedge rst)
 begin
 if (rst)
 begin
 my <= a0;
 end
 else
 case(my)
 a0 :begin
 my <= a1;
 end
 a1 :begin
 my <= a2;
 end
 a2 :begin
 my <= a3;
 end
 a3 :begin
 my <= a0;
 end
 endcase
 end

 always@(posedge clk or posedge rst)
 begin
 if (rst)
 begin
 my1 <= a0;

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 780

 end
 else
 case(my1)
 a0 :begin
 my1 <= a3;
 end
 a1 :begin
 my1 <= a0;
 end
 a2 :begin
 my1 <= a1;
 end
 a3 :begin
 my1 <= a2;
 end
 endcase
 end

 always@(posedge clk)
 begin
 statemachine1 <= my;
 statemachine2 <= my1;
 both <= my + my1;
 if (my == my1)
 same <= 1’b1;
 else
 same <= 0;
 if (my == 5)
 statemachine1_is_five <= 1’b1;
 else
 statemachine1_is_five <= 1’b0;
 if (my1 == 6)
 statemachine2_is_six <= 1’b1;
 else
 statemachine2_is_six <= 1’b0;
 end
 endmodule

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 781

Example – Type Parameter of Language-Defined Data Type

 //Compilation Unit
 module top
 #(
 parameter type PTYPE = shortint,
 parameter type PTYPE1 = logic[3:2][4:1] //parameter is of
 //2D logic type
)
 (
 //Input Ports
 input PTYPE din1_def,
 input PTYPE1 din1_oride,
 //Output Ports
 output PTYPE dout1_def,
 output PTYPE1 dout1_oride
);
 sub u1_def //Default data type
 (
 .din1(din1_def),
 .dout1(dout1_def)
);
 sub #
 (
 .PTYPE(PTYPE1) //Parameter type is override by 2D Logic
)
 u2_oride
 (
 .din1(din1_oride),
 .dout1(dout1_oride)
);
 endmodule
 //Sub Module
 module sub
 #(
 parameter type PTYPE = shortint //parameter is of shortint type
)
 (
 //Input Ports
 input PTYPE din1,
 //Output Ports
 output PTYPE dout1

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 782

);
 always_comb
 begin
 dout1 = din1 ;
 end
 endmodule

Back

Example – Type Local Parameter

 //Compilation Unit
 module sub
 #(
 parameter type PTYPE1 = shortint, //Parameter is of shortint type
 parameter type PTYPE2 = longint //Parameter is of longint type
)
 (
 //Input Ports
 input PTYPE1 din1,
 //Output Ports
 output PTYPE2 dout1
);
 //Localparam type definitation
 localparam type SHORTINT_LPARAM = PTYPE1;
 SHORTINT_LPARAM sig1;
 assign sig1 = din1;
 assign dout1 = din1 * sig1;
 endmodule

Back

Example – Type Parameter of User-Defined Data Type

 //Compilation Unit
 typedef logic [0:7]Logic_1DUnpack[2:1];
 typedef struct {
 byte R;
 int B;
 logic[0:7]G;
 } Struct_dt;
 module top

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 783

 #(
 parameter type PTYPE = Logic_1DUnpack,
 parameter type PTYPE1 = Struct_dt
)
 (
 //Input Ports
 input PTYPE1 din1_oride,
 //Output Ports
 output PTYPE1 dout1_oride
);
 sub #
 (
 .PTYPE(PTYPE1) //Parameter type is override by a structure type
)
 u2_oride
 (
 .din1(din1_oride),
 .dout1(dout1_oride)
);
 endmodule
 //Sub Module
 module sub
 #(
 parameter type PTYPE = Logic_1DUnpack // Parameter 1D
 // logic Unpacked data type
)
 (
 //Input Ports
 input PTYPE din1,
 //Output Ports
 output PTYPE dout1
);
 always_comb
 begin
 dout1.R = din1.R;
 dout1.B = din1.B ;
 dout1.G = din1.G ;
 end
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 784

Example – Parameter of Type enum

 typedef enum {s1,s2,s3=24,s4=15,s5} enum_dt;
 module sub
 #(parameter enum_dt ParamEnum = s4)
 (input clk,
 input rst,
 input enum_dt d1,
 output enum_dt q1);

 always_ff@(posedge clk)
 begin
 if(rst)
 begin
 q1 <= ParamEnum;
 end
 else
 begin
 q1 <= d1;
 end
 end
 endmodule

Back

Example – Parameter of Type longint Unpacked Array

 module sub
 #(parameter longint ParamMyLongint [0:1] =’{64’d1124,64’d1785})
 (input clk,
 input rst,
 input longint d1 [0:1],
 output longint q1 [0:1]);

 always_ff@(posedge clk)
 begin
 if(rst)
 begin
 q1 <= ParamMyLongint;
 end
 else

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 785

 begin
 q1 <= d1;
 end
 end
 endmodule

Back

Example – Parameter of Type longint

 module sub
 #(parameter longint ParamLongint = 64’d25)
 (input clk,
 input rst,
 input longint d1 ,
 output longint q1);

 always_ff@(posedge clk)
 begin
 if(rst)
 begin
 q1 <= ParamLongint;
 end
 else
 begin
 q1 <= d1;
 end
 end
 endmodule

Back

Example – Parameter of Type structure

 typedef byte unsigned Byte_dt;
 typedef struct packed
 {shortint R;
 logic signed [4:3] G;
 bit [15:0] B;
 Byte_dt Y;
 }Struct_dt;

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 786

 module sub
 #(parameter Struct_dt ParamStruct =’{16’d128,2’d2,12’d24,8’d123})
 (
 //Input
 input clk,
 input rst,
 input Struct_dt d1,
 //Output
 output Struct_dt q1);

 always_ff@(posedge clk or posedge rst)
 begin
 if(rst)
 begin
 q1 <= ParamStruct;
 end
 else
 begin
 q1 <= d1 ;
 end
 end
 endmodule

Back

Example - Simple typedef Variable Assignment

 module src (in1,in2,out1,out2);
 input in1,in2;
 output reg out1,out2;
 typedef int foo;
 foo a,b;

 assign a = in1; assign b = in2;
 always@(a,b)
 begin
 out1 = a;
 out2 = b;
 end
 endmodule

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 787

Example - Using Multiple typedef Assignments

 module src (in1,in2,in3,in4,out1,out2,out3);
 input [3:0] in1,in2;
 input in3,in4;
 output reg [3:0] out1;output reg out2,out3;
 typedef bit signed [3:0] foo1;
 typedef byte signed foo2;
 typedef int foo3;
 struct {
 foo1 a;
 foo2 b;
 foo3 c;
 } foo;

 always@(in1,in2,in3,in4)
 begin
 foo.a = in1 & in2;
 foo.b = in3 | in4;
 foo.c = in3 ^ in4;
 end

 always@(foo.a,foo.b,foo.c)
 begin
 out1 = foo.a;
 out2 = foo.b;
 out3 = foo.c;
 end
 endmodule

Back

Example -- Enumerated Type Methods

 module enum_methods (clk, rst ,out);
 input clk,rst;
 output logic [2:0] out;

 enum bit [3:0] {s0,s1,s2,s3,s4} machine;

 always@(posedge clk or posedge rst)

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 788

 begin
 if (rst)
 begin
 machine <= s1;
 out <= 3’b000;
 end
 else
 case(machine)
 s0 :begin
 machine <= machine.next();
 out <= 3’b101;
 end
 s1 :begin
 machine <= machine.next(2);
 out <= 3’b010;
 end
 s2 :begin
 machine <= machine.last();
 out <= 3’b011;
 end
 s3 :begin
 machine <= machine.prev();
 out <= 3’b111;
 end
 s4 :begin
 machine <= machine.first();
 out <= 3’b001;
 end
 endcase
 end

 endmodule

Back

Example - Extern Module Instantiation

 extern module top (input logic clock, load,
 input reset, input logic [3:0] d,
 output logic [3:0] cnt);
 module top (.*);
 always @(posedge clock or posedge reset)

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 789

 begin
 if (reset)
 cnt <= 0;
 else if (load)
 cnt <= d;
 else cnt <= cnt + 1;
 end
 endmodule

Back

Example - Extern Module Reference

 extern module counter (clock, load, reset, d, cnt);
 module top (clock, load, reset, d, cnt);
 input logic clock, load;
 input reset;
 input logic [3:0] d;
 output logic [3:0] cnt;
 counter cnt1 (.clock(clock), .load(load), .reset(reset),
 .d(d), .cnt(cnt));
 endmodule
 module counter (clock, load, reset, d, cnt);
 input logic clock, load;
 input reset;
 input logic [3:0] d;
 output logic [3:0] cnt;
 always @(posedge clock or posedge reset)
 begin
 if (reset)
 cnt <= 0;
 else if (load)
 cnt <= d;
 else cnt <= cnt + 1;
 end
 endmodule

Back

Example - $bits System Function

 module top (input logic Clk,

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 790

 input logic Rst,
 input logic [7:0] LogicIn,
 output logic [$bits(LogicIn)-1:0] LogicOut,
 output logic [7:0] LogicConstSize);
 logic [7:0] logic_const = 8’d0;

 always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 LogicConstSize <= ‘d0;
 LogicOut <= logic_const;
 end
 else begin
 LogicConstSize <= $bits(logic_const);
 LogicOut <= $bits(LogicIn)-1 ^ LogicIn;
 end
 end
 endmodule

Back

Example - $bits System Function within a Function

 module top (input logic Clk,
 input logic Rst,
 input logic [7:0] LogicIn,
 output logic [$bits(LogicIn)-1:0] LogicOut,
 output logic [7:0] LogicSize);
 function logic [$bits(LogicIn)-1:0]
 incr_logic (logic [7:0] a);
 incr_logic = a + 1;
 endfunction

 always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 LogicSize <= ‘d0;
 LogicOut <= ‘d0;
 end
 else begin
 LogicSize <= $bits(LogicIn);
 LogicOut <= incr_logic(LogicIn);
 end
 end

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 791

 endmodule

Back

Example – Accessing Variables Declared in a generate-case

 module test #(
 parameter mod_sel = 1,
 mod_sel2 = 3)
 (input [7:0] a1,
 input [7:0] b1,
 output [7:0] c1,
 input [1:0][3:1] a2,
 input [1:0][3:1] b2,
 output [1:0][3:1] c2);
 typedef logic [7:0] my_logic1_t;
 typedef logic [1:0][3:1] my_logic2_t;
 generate
 case(mod_sel)
 0:
 begin:u1
 my_logic1_t c1;
 assign c1 = a1 + b1;
 end
 1:
 begin:u1
 my_logic2_t c2;
 assign c2 = a2 + b2;
 end
 default:
 begin:def
 my_logic1_t c1;
 assign c1 = a1 + b1;
 end
 endcase
 endgenerate
 generate
 case(mod_sel2)
 0:
 begin:u2
 my_logic1_t c1;
 assign c1 = a1 + b1;

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 792

 end
 1:
 begin:u2
 my_logic2_t c2;
 assign c2 = a2 + b2;
 end
 default:
 begin:def2
 my_logic1_t c1;
 assign c1 = a1 * b1;
 end
 endcase
 endgenerate
 assign c2 = u1.c2;
 assign c1 = def2.c1;
 endmodule

Back

Example – Shift Register Using generate-for

 module sh_r #(
 parameter width = 8,
 pipe_num = 3)
 (input clk,
 input[width-1:0]din,
 output[width-1:0] dout);
 genvar i;
 generate
 for(i=0;i<pipe_num;i=i+1)
 begin:u
 reg [width-1:0] sh_r;
 if(i==0)
 begin
 always @ (posedge clk)
 sh_r <= din;
 end
 else
 begin
 always @ (posedge clk)
 sh_r <= u[i-1].sh_r;
 end

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 793

 end
 endgenerate
 assign dout = u[pipe_num-1].sh_r;
 endmodule

Back

Example Accessing Variables Declared in a generate-if

 module test #(
 parameter width = 8,
 sel = 0)
 (input [width-1:0] a,
 input [width-1:0] b,
 input clk,
 output [(2*width)-1:0] c,
 output bit_acc,
 output [width-3:0] prt_sel);
 genvar i;
 reg [width-1:0] t_r;
 generate
 if(sel == 0)
 begin:u
 wire [width-1:0] c;
 wire [width-1:0] t;
 assign {c,t} = {~t_r,a|b};
 end
 else
 begin:u
 wire [width-1:0] c;
 wire [width-1:0] t;
 assign {c,t} = {~t_r,a^b};
 end
 endgenerate
 always @ (posedge clk)
 begin
 t_r <= u.t;
 end
 assign c = u.c;
 assign bit_acc = u.t[0];
 assign prt_sel = u.t[width-1:2];
 endmodule

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 794

Back

Example - Do-while with case Statement

 module src (out, a, b, c, d, sel);
 output [3:0] out;
 input [3:0] a, b, c, d;
 input [3:0] sel;
 reg [3:0] out;
 integer i;

 always @ (a or b or c or d or sel)
 begin
 i=0;
 out = 3’b000;
 do
 begin
 case (sel)
 4’b0001: out[i] = a[i];
 4’b0010: out[i] = b[i];
 4’b0100: out[i] = c[i];
 4’b1000: out[i] = d[i];
 default: out = ‘bx;
 endcase
 i= i+1;
 end
 while (i < 4);
 end
 endmodule

Back

Example - Do-while with if-else Statement

 module src (out, a, b, c, d, sel);
 output [3:0] out;
 input [3:0] a, b, c, d;
 input [3:0] sel;
 reg [3:0] out;
 integer i;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 795

 always @ (a or b or c or d or sel)
 begin
 i=0;
 out = 4’b0000;
 do
 begin
 if(sel == 4’b0001) out[i] = a[i];
 else if(sel == 4’b0010) out[i] = b[i];
 else if(sel == 4’b0100) out[i] = c[i];
 else if(sel == 4’b1000) out[i] = d[i];
 else out = ‘bx;
 i= i+1;
 end
 while (i < 4);
 end
 endmodule

Back

Example - Simple do-while Loop

 module src (in1,in2,out);
 input [7:0] in1,in2;
 output reg [7:0] out;
 integer i;

 always @ (in1,in2)
 begin
 i = 0;
 do
 begin
 out[i] = in1[i] + in2[i];
 i = i+1;
 end
 while (i < 8);
 end
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 796

Example - Simple for Loop

 module simpleloop (output reg [7:0]y, input [7:0]i, input clock);
 always@(posedge clock)
 begin : loop
 for (int count=0; count < 8; count=count+1) // SV code
 y[count]=i[count];
 end
 endmodule

Back

Example - For Loop with Two Variables

 module twovarinloop (in1, in2, out1, out2);
 parameter p1 = 3;
 input [3:0] in1;
 input [3:0] in2;
 output [3:0] out1;
 output [3:0] out2;
 reg [3:0] out1;
 reg [3:0] out2;

 always @*
 begin
 for (int i = 0, int j = 0; i <= p1; i++)
 begin
 out1[i] = in1[i];
 out2[j] = in2[j];
 j++;
 end
 end
 endmodule

Back

Example - Inside operator with array of parameter at LHS operator

 module top
 (
 //Input
 input byte din1,

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 797

 //Output
 output logic dout
);

 parameter byte param1[1:0] = ‘{8’d12,8’d111};
 assign dout = (din1) inside {param1,121,-16};
 endmodule

Back

Example - Inside operator with dynamic input at LHS operator

 module top
 (
 //Input
 input byte din,
 //Output
 output logic dout
);

 assign dout = din inside {8’d2, -8’d3, 8’d5};
 endmodule

Back

Example - Inside operator with dynamic input at LHS and RHS
operators

 module top
 (
 //Input
 input byte din1,
 input byte din2,
 //Output
 output logic dout
);

 assign dout = (din1) inside {din2,105,-121,-116};
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 798

Example - Inside operator with expression at LHS operator

 module top
 (
 //Input
 input byte din1,
 input byte din2,
 //Output
 output logic dout
);

 assign dout = (din1 | din2) inside {14,17,2,20};
 endmodule

Back

Example - Constant Declarations

 package my_pack;
 const logic foo_logic = 1’b1;
 endpackage
 import my_pack::*;

 module test (
 input logic inp,
 input clk,
 output logic out);

 always @(posedge clk)
 begin
 out <= inp ^ foo_logic;
 end
 endmodule

Back

Example - Direct Reference Using Scope Resolution Operator (::)

 package mypack;
 logic foo_logic = 1’b1;
 endpackage
 module test (

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 799

 input logic data1,
 input clk,
 output logic out1);

 always @(posedge clk)
 begin
 out1 <= data1 ^ mypack::foo_logic;
 end
 endmodule

Back

Example - Function Declarations

 package automatic_func;
 parameter fact = 2;
 function automatic [63:0] factorial;
 input [31:0] n;
 if (n==1)
 return (1);
 else
 return (n * factorial(n-1));
 endfunction
 endpackage

 import automatic_func::*;
 module src (input [1:0] a, input [1:0] b,
 output logic [2:0] out);
 always_comb
 begin
 out = a + b + factorial(fact);
 end
 endmodule

Back

Example - Importing Specific Package Items

 package mypack;
 logic foo_logic = 1’b1;
 endpackage
 module test (

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 800

 input logic data1,
 input clk,
 output logic out1);
 import mypack::foo_logic;

 always @(posedge clk)
 begin
 out1 <= data1 ^ foo_logic;
 end
 endmodule

Back

Example - Import Statements from Other Packages

 package param;
 parameter fact = 2;
 endpackage
 package automatic_func;
 import param::*;
 function automatic [63:0] factorial;
 input [31:0] n;
 if (n==1)
 return (1);
 else
 return (n * factorial(n-1));
 endfunction
 endpackage

 import automatic_func::*;
 import param::*;
 module src (input [1:0] a, input [1:0] b,
 output logic [2:0] out);
 always_comb
 begin
 out = a + b + factorial(fact);
 end
 endmodule

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 801

Example - Parameter Declarations

 package mypack;
 parameter a_width = 4;
 parameter b_width = 4;
 localparam product_width = a_width+b_width;
 endpackage
 import mypack::*;

 module test (
 input [a_width-1:0] a,
 input [b_width-1:0] b,
 output [product_width-1:0] c);
 assign c = a * b;
 endmodule

Back

Example - Scope Resolution

 //local parameter overrides package parameter value (dout <=
data[7:0];)
 package mypack;
 parameter width = 4;
 endpackage

 import mypack::*;
 module test (data,clk,dout);
 parameter width = 8; // local parameter
 input logic [width-1:0] data;
 input clk;
 output logic [width-1:0] dout;

 always @(posedge clk)
 begin
 dout <= data;
 end
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 802

Example - Task Declarations

 package mypack;
 parameter FACT_OP = 2;
 task automatic factorial(input integer operand,
 output [1:0] out1);
 integer nFuncCall = 0;
 begin
 if (operand == 0)
 begin
 out1 = 1;
 end
 else
 begin
 nFuncCall++;
 factorial((operand-1), out1);
 out1 = out1 * operand;
 end
 end
 endtask
 endpackage
 import mypack::*;

 module src (input [1:0] a, input [1:0] b,
 output logic [2:0] out);
 logic [1:0] out_tmp;

 always_comb
 factorial(FACT_OP,out_tmp);
 assign out = a + b + out_tmp;
 endmodule

Back

Example - User-defined Data Types (typedef)

 package mypack;
 typedef struct packed {
 int a;
 } my_struct;
 endpackage
 import mypack::my_struct;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 803

 module test (inp1,inp2,out);
 input my_struct inp1;
 input my_struct inp2;
 output int out;
 assign out = inp1.a * inp2.a;
 endmodule

Back

Example - Wildcard (*) Import Package Items

 package mypack;
 logic foo_logic = 1’b1;
 endpackage
 module test (
 input logic data1,
 input clk,
 output logic out1);
 import mypack::*;

 always @(posedge clk)
 begin
 out1 <= data1 ^ foo_logic;
 end
 endmodule

Back

Example – Packed type inputs/outputs with LHS operator

 module streaming
 (
 input byte a,
 output byte str_rev,
 output byte str
);

 assign {>>{str}} = a;
 assign {<<{str_rev}} = a;

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 804

 endmodule

Back

Example – Packed type inputs/outputs with RHS operator

 module streaming
 (
 input longint a,
 output longint str_rev,
 output longint str
);

 assign str_rev = {<< {a}};
 assign str = {>> {a}};

 endmodule

Back

Example – Slice-size streaming with LHS slice operation

 module streaming
 (
 input logic a[1:8],
 output logic signed [1:4] str_rev[1:2],
 output logic signed [1:4] str[1:2]
);

 assign {>>4{str}} = a;
 assign {<<4{str_rev}} = a;

 endmodule

Back

Example – Slice-size streaming with RHS operator

 typedef shortint shortint_dt [2:1];
 typedef byte byte_dt [1:2][3:2];
 typedef struct {
 logic [3:0] a [2:1];

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 805

 byte b;
 shortint c[4:2]; }
 struct_dt;
 module streaming (
 input shortint_dt a,
 input byte_dt b,
 output struct_dt c_pack,
 output struct_dt c_unpack);
 assign c_pack = {<< 5 {a}};
 assign c_unpack = {<< 2 {b}};
 endmodule

Back

Example – Unpacked type inputs/outputs with RHS operator

 typedef logic [5:0]my_dt [1:0];

 module streaming
 (
 input logic [5:0] a[1:0], //same layout - size same as the output
 input logic [3:0] b[2:0], //different layout - same size as output
 input logic [2:0]c[1:0], //different layout and size
 output my_dt str_rev1,
 output my_dt str_rev_difflay,
 output my_dt str_rev_less
);

 assign str_rev1 = {<<{a}};
 assign str_rev_difflay = {<< {b}};
 assign str_rev_less = {<< {c,2’b11}};

 endmodule

Back

Example -- $typeof Operator

 module top #(parameter type mtype = logic signed [7:0]) (input
mtype din,output mtype dout);//input & output ports are defined as
type mtype

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 806

 parameter type mtype1 = $typeof(din);//parameter mtype1 is
created after $typeof operator is applied to input port din

 mtype1 sig1;//sig1 signal is created which is of type mtype1

 always_comb
 begin
 for(int i=0;i<=7;i++)
 begin
 sig1[i] = din[i];
 end

 end

 assign dout = sig1;

 endmodule

Back

Example - Priority case

 module src (out, a, b, c, d, sel);
 output out;
 input a, b, c, d;
 input [3:0] sel;reg out;

 always @ (a,b,c,d,sel)
 begin
 priority case (sel)
 4’b0000: out = c;
 4’b0001: out = b;
 4’b0100: out = d;
 4’b1000: out = a;
 endcase
 end
 endmodule

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 807

Example - Unique case

 module src (out, a, b, c, d, sel);
 output out;
 input a, b, c, d;
 input [3:0] sel;
 reg out;

 always @ (a,b,c,d,sel)
 begin
 unique case (sel)
 4’b0001: out = c;
 4’b0010: out = b;
 4’b0100: out = d;
 4’b1000: out = a;
 endcase
 end
 endmodule

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 808

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015

A P P E N D I X C

Example Code

This appendix contains the code samples that are referenced by the
corresponding chapter.

Example - Direct Instantiation Using Configuration Declaration

 --Entity to be instantiated using the configuration
 library ieee;
 use ieee.std_logic_1164.all;
 entity module0 is
 generic (SIZE : integer := 10);
 port (l : in std_logic_vector(SIZE-1 downto 0);
 m : in std_logic_vector(SIZE-1 downto 0);
 out1 : out std_logic_vector(SIZE-1 downto 0));
 end entity module0;
 architecture behv of module0 is
 begin
 out1 <= l xor m;
 end behv;
 -- Configuration for the entity module0
 configuration conf_sub of module0 is
 for behv
 end for;
 end conf_sub;
 -- Module in which the entity module0 is instantiated
 -- using the configuration
 library ieee;
 use ieee.std_logic_1164.all;
 entity top is

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 810

 port (in0 : in std_logic_vector(31 downto 0);
 in1 : in std_logic_vector(31 downto 0);
 out1 : out std_logic_vector(31 downto 0));
 end entity top;
 architecture behv of top is
 begin
 U0: configuration conf_sub
 generic map (SIZE => 32)
 port map (l => in0,
 m => in1,
 out1 => out1);
 end behv;

Back

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 811

A P P E N D I X C

Example Code

This appendix contains the code samples that are referenced by the
corresponding chapter.

Example - Context declaration

 context zcontext is
 library ieee;
 use ieee.std_logic_1164.all;
 end context zcontext;

 context work.zcontext;
 use ieee.numeric_std.all;

 entity myTopDesign is
 port (in1: in std_logic_vector(1 downto 0);
 out1: out std_logic_vector(1 downto 0));
 end myTopDesign;

 architecture myarch2 of myTopDesign is
 begin
 out1 <= in1;
 end myarch2;

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 812

Example - Unconstrained element types

 library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_signed.all;
 package myTypes is
 type memUnc is array (natural range <>) of std_logic_vector;
 function summation(varx: memUnc) return std_logic_vector;
 end package myTypes;
 package body myTypes is
 function summation(varx: memUnc) return std_logic_vector is
 variable sum: varx’element;
 begin
 sum := (others => ‘0’);
 for I in 0 to varx’length - 1 loop
 sum := sum + varx(I);
 end loop;
 return sum;
 end function summation;
 end package body myTypes;
 library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_signed.all;
 use work.myTypes.all;
 entity sum is
 port (in1: memUnc(0 to 2)(3 downto 0);
 out1: out std_logic_vector(3 downto 0));
 end sum;
 architecture uncbehv of sum is
 begin
 out1 <= summation(in1);
 end uncbehv;

Back

Example - Unconstrained elements within nested arrays

 library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_signed.all;
 package myTypes is
 type t1 is array (0 to 1) of std_logic_vector;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 813

 type memUnc is array (natural range <>) of t1;
 function doSum(varx: memUnc) return std_logic_vector;
 end package myTypes;
 package body myTypes is
 function addVector(vec: t1) return std_logic_vector is
 variable vecres: vec’element := (others => ‘0’);
 begin
 for I in vec’Range loop
 vecres := vecres + vec(I);
 end loop;
 return vecres;
 end function addVector;
 function doSum(varx: memUnc) return std_logic_vector is
 variable sumres: varx’element’element;
 begin
 if (varx’length = 1) then
 return addVector(varx(varx’low));
 end if;
 if (varx’Ascending) then
 sumres := addVector(varx(varx’high)) +
 doSum(varx(varx’low to varx’high-1));
 else
 sumres := addVector(varx(varx’low)) +
 doSum(varx(varx’high downto varx’low+1));
 end if;
 return sumres;
 end function doSum;
 end package body myTypes;
 library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_signed.all;
 use work.myTypes.all;
 entity uncfunc is
 port (in1: in memUnc(1 downto 0)(open)(0 to 3);
 in2: in memUnc(0 to 2)(open)(5 downto 0);
 in3: in memUnc(3 downto 0)(open)(2 downto 0);
 out1: out std_logic_vector(5 downto 0);
 out2: out std_logic_vector(0 to 3);
 out3: out std_logic_vector(2 downto 0));
 end uncfunc;
 architecture uncbehv of uncfunc is
 begin

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 814

 out1 <= doSum(in2);
 out2 <= doSum(in1);
 out3 <= doSum(in3);
 end uncbehv;

Back

Example - Unconstrained record elements

 library ieee;
 use ieee.std_logic_1164.all;
 entity unctest is
 port (in1: in std_logic_vector (2 downto 0);
 in2: in std_logic_vector (3 downto 0);
 out1: out std_logic_vector(2 downto 0));
 end unctest;
 architecture uncbehv of unctest is
 type zRec is record
 f1: std_logic_vector;
 f2: std_logic_vector;
 end record zRec;
 subtype zCnstrRec is zRec(f1(open), f2(3 downto 0));
 subtype zCnstrRec2 is zCnstrRec(f1(2 downto 0), f2(open));
 signal mem: zCnstrRec2;
 begin
 mem.f1 <= in1;
 mem.f2 <= in2;
 out1 <= mem.f1 and mem.f2(2 downto 0);
 end uncbehv;

Back

Example - all keyword

 entity mycomp is
 port (a, c: in bit; b: out bit);
 end mycomp;

 architecture myarch of mycomp is
 begin
 process (all)
 begin

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 815

 b <= not a or c;
 end process;
 end myarch;

Back

Example 1: VHDL 2008 Style Conditional Operator

 entity condOpTest is
 port (
 sel, in1, in2: in bit;
 res: out bit
);
 end condOpTest;
 architecture rtlArch of condOpTest is
 begin
 process(in1,in2,sel)
 begin
 if sel then
 res <= in2;
 else
 res <= in1;
 end if;
 end process;
 end rtlArch;

Back

Example 2: VHDL 1993 Style Conditional Operator

 entity condOpTest is
 port (
 sel, in1, in2: in bit;
 res: out bit
);
 end condOpTest;
 architecture rtlArch of condOpTest is
 begin
 process(in1,in2,sel)
 begin
 if sel = ‘1’ then

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 816

 res <= in2;
 else
 res <= in1;
 end if;
 end process;
 end rtlArch;

Back

Example 1: Logical Operators

 entity reductionOpTest is
 port (
 invec: in bit_vector(2 downto 0);
 nandout, xorout, xnorout, norout, orout, andout: out bit
);
 end reductionOpTest;

 architecture rtlArch of reductionOpTest is
 begin
 nandout <= nand invec;
 xorout <= xor invec;
 xnorout <= xnor invec;
 norout <= nor invec;
 orout <= or invec;
 andout <= and invec;
 end rtlArch;

Back

Example: Relational Operator

 entity relOpTest is
 port (
 in1, in2: in bit;
 res_eq, res_lteq: out bit
);
 end relOpTest;
 architecture rtlArch of relOpTest is
 begin
 res_eq <= in1 ?= in2;

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 817

 res_lteq <= in1 ?<= in2;
 end rtlArch;

Back

Example - Including generics in packages

 -- Generic Package Declaration
 package myTypesGeneric is
 generic
 (width: integer := 7; testVal: bit_vector(3 downto 0) := “0011”;
 dfltVal: bit_vector(3 downto 0) := “1110”
);
 subtype nvector is bit_vector(width-1 downto 0);
 constant resetVal: bit_vector(3 downto 0) := dfltVal;
 constant myVal: bit_vector(3 downto 0) := testVal;
 end package myTypesGeneric;

 -- Package instantiation
 package myTypes is new work.myTypesGeneric
 generic map
 (width => 4, dfltVal => “0110”
);

 library IEEE;
 package my_fixed_pkg is new IEEE.fixed_generic_pkg
 generic map
 (fixed_round_style => IEEE.fixed_float_types.fixed_round,
 fixed_overflow_style => IEEE.fixed_float_types.fixed_saturate,
 fixed_guard_bits => 3,
 no_warning => false
);

 use work.myTypes.all;
 use work.my_fixed_pkg.all;

 entity myTopDesign is
 port (in1: in nvector; out1: out nvector;
 insf: in sfixed(3 downto 0);
 outsf: out sfixed(3 downto 0);
 out2, out3, out4: out bit_vector(3 downto 0)
);

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 818

 end myTopDesign;

 architecture myarch2 of myTopDesign is
 begin
 out1 <= in1;
 out2 <= resetVal;
 out3 <= myVal;
 outsf <= insf;
 end myarch2;

Back

Example: Minimum Maximum Predefined Functions

 entity minmaxTest is
 port (ary1, ary2: in bit_vector(3 downto 0);
 minout, maxout: out bit_vector(3 downto 0);
 unaryres: out bit
);
 end minmaxTest;
 architecture rtlArch of minmaxTest is
 begin
 maxout <= maximum(ary1, ary2);
 minout <= minimum(ary1, ary2);
 unaryres <= maximum(ary1);
 end rtlArch;

Back

Example - Case-generate statement with alternatives

 entity myTopDesign is
 generic (instSel: bit_vector(1 downto 0) := “10”);
 port (in1, in2, in3: in bit; out1: out bit);
 end myTopDesign;
 architecture myarch2 of myTopDesign is
 component mycomp
 port (a: in bit; b: out bit);
 end component;
 begin

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 819

 a1: case instSel generate
 when “00” =>
 inst1: component mycomp port map (in1,out1);
 when “01” =>
 inst1: component mycomp port map (in2,out1);
 when others =>
 inst1: component mycomp port map (in3,out1);
 end generate;
 end myarch2;

Back

Example - Case-generate statement with labels for configuration

 entity myTopDesign is
 generic (selval: bit_vector(1 downto 0) := “10”);
 port (in1, in2, in3: in bit; tstIn: in bit_vector(3 downto 0);
 out1: out bit);
 end myTopDesign;
 architecture myarch2 of myTopDesign is
 component mycomp
 port (a: in bit; b: out bit);
 end component;
 begin
 a1: case selval generate
 when spec1: “00” | “11”=> signal inRes: bit;
 begin
 inRes <= in1 and in3;
 inst1: component mycomp port map (inRes,out1);
 end;
 when spec2: “01” =>
 inst1: component mycomp port map (in1, out1);
 when spec3: others =>
 inst1: component mycomp port map (in3,out1);
 end generate;
 end myarch2;
 entity mycomp is
 port (a : in bit;
 b : out bit);
 end mycomp;
 architecture myarch of mycomp is

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 820

 begin
 b <= not a;
 end myarch;
 architecture zarch of mycomp is
 begin
 b <= ‘1’;
 end zarch;
 configuration myconfig of myTopDesign is
 for myarch2
 for a1 (spec1)
 for inst1: mycomp use entity mycomp(myarch);
 end for;
 end for;
 for a1 (spec2)
 for inst1: mycomp use entity mycomp(zarch);
 end for;
 end for;
 for a1 (spec3)
 for inst1: mycomp use entity mycomp(myarch);
 end for;
 end for;
 end for;
 end configuration myconfig;

Back

Example - Else/elsif clauses in if-generate statements

 entity myTopDesign is
 generic (genval: bit_vector(1 downto 0) := “01”);
 port (in1, in2, in3: in bit; out1: out bit);
 end myTopDesign;

 architecture myarch2 of myTopDesign is

 component mycomp
 port (a: in bit;
 b: out bit);
 end component;

 begin

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 821

 a1:
 if spec1: genval=”10” generate
 inst1: mycomp port map (in1,out1);
 elsif spec2: genval=”11” generate
 inst1: component mycomp port map (in2,out1);
 else spec3: generate
 inst1: component mycomp port map (in3,out1);
 end generate;
 end myarch2;

 library ieee;
 use ieee.std_logic_1164.all;

 entity mycomp is
 port (a: in bit;
 b : out bit);
 end entity mycomp;

 architecture myarch1 of mycomp is
 begin
 b <= ‘1’ xor a;
 end myarch1;

 architecture myarch2 of mycomp is
 begin
 b <= ‘1’ xnor a;
 end myarch2;

 architecture myarch3 of mycomp is
 signal temp : bit := ‘1’;
 begin
 b <= temp xor not(a);
 end myarch3;

 configuration myconfig of myTopDesign is
 for myarch2
 for a1 (spec1)
 for inst1: mycomp
 use entity mycomp(myarch1);
 end for;
 end for;

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 822

 for a1 (spec2)
 for inst1: mycomp
 use entity mycomp(myarch2);
 end for;
 end for;
 for a1 (spec3)
 for inst1: mycomp
 use entity mycomp(myarch3);
 end for;
 end for;
 end for;
 end configuration myconfig;

Back

Example - Use of case? statement

 library ieee;
 use ieee.std_logic_1164.all;
 entity myTopDesign is
 port (in1, in2: in bit;
 sel: in std_logic_vector(2 downto 0);
 out1: out bit);
 end myTopDesign;
 architecture myarch2 of myTopDesign is
 begin
 process(all)
 begin
 a1: case? sel is
 when “1--” =>
 out1 <= in1;
 when “01-” =>
 out1 <= in2;
 when others =>
 out1 <= in1 xor in2;
 end case?;
 end process;
 end myarch2;

Back

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 823

Example - Use of select? Statement

 library ieee;
 use ieee.std_logic_1164.all;
 entity myTopDesign is
 port (in1, in2: in bit;
 sel: in std_logic_vector(2 downto 0);
 out1: out bit);
 end myTopDesign;
 architecture myarch2 of myTopDesign is
 begin
 with sel select?
 out1 <=
 in1 when “1--”,
 in2 when “01-”,
 in1 xor in2 when others;
 end myarch2;

Back

Example - extended character set

 library ieee;
 use ieee.std_logic_1164.all;
 entity get_version is
 port (ver : out string(16 downto 1));
 end get_version;
 architecture behv of get_version is
 constant version : string (16 downto 1) := “version ©«ãëïõü»”;
 -- Above string includes extended ASCII characters that
 -- fall between 127-255
 begin
 ver <= version;
 end behv;

Back

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 824

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 825

A P P E N D I X C

Example Code

This appendix contains the code samples that are referenced by the
corresponding chapter.

Example 1A: XMR for RAM Initialization

 (Top-Level Module)

 //Top
 module top (input[27:0] data, input clk, we, input[10:0] addr,
 output[27:0] data_out);
 ram_inference ram_inst (.*);
 initial
 begin
 $readmemb (“mem.txt”, top.ram_inst.mem, 0, 10);
 end
 endmodule

Back

Example 1B: XMR for RAM Initialization (RAM)

 //RAM
 module ram_inference (input[27:0] data, input clk, input[10:0]
 addr, output[27:0] data_out);
 reg[27:0] mem[0:2000] /*synthesis syn_ramstyle = “no_rw_check”*/;
 reg [10:0] addr_reg;
 always @(posedge clk)
 begin

LO

Appendix C: Example Code

Synplify Pro for Microsemi Edition Reference Manual © 2015 Synopsys, Inc.
May 2015 826

 addr_reg <= addr;
 end
 always @(posedge clk)
 begin
 if(we)
 begin
 mem[addr] <= data;
 end
 end
 assign data_out = mem[addr_reg];
 endmodule

Back

Synplify Pro for Microsemi Edition Reference Manual, May 2015 827

Index

Symbols
`ifdef 372
_ta.srm file 259
.* connection (SystemVerilog) 437
.adc file 250
.areasrr file 256
.edf file 257
.fse file 256
.info file 256
.ini file 250
.name connection (SystemVerilog) 436
.prj file 250
.sap

annotated properties for analyst 257
.sar file 258
.sdc file 250
.srd file 258
.srm file 258
.srr file 261

watching selected information 50
.srs file 258

initial values (Verilog) 620
.sv file 251

SystemVerilog source file 251
.ta file

See timing report file 259
.v file 251
.vhd file 251
.vhm file 261
.vm file 261
$bits system function 448

A
adc file (analysis design constraint) 250
adder

SYNCore 666
aggregate expressions 408
all keyword, VHDL 2008 600

Allow Docking command 51
Alt key, selecting columns in Text Editor 67
always blocks

Verilog 337
combinational logic 349
event control 350
flip-flops 354
level-sensitive latches 355
multiple event control arguments 337

always_comb (SystemVerilog) 424
always_ff (SystemVerilog) 427
always_latch (SystemVerilog) 426
analysis design constraint file (.adc) 250
Analyst toolbar 84
annotated properties for analyst

.sap 257

.timing annotated properties (.tap) 260
archive file (.sar) 258
arithmetic operators

Verilog 284
arrow keys, selecting objects in Hierarchy

Browser 125
arrow pointers for push and pop 123
assignment operators

VHDL 470
assignment statement

combinational logic (Verilog) 351
level-sensitive latches (Verilog) 355
VHDL 513

asynchronous clock report
description 274

asynchronous sets and resets
Verilog 358
VHDL 526

asynchronous state machines
Verilog 366
VHDL 536

attributes
specifying in the source code 377

 Index

828 Synplify Pro for Microsemi Edition Reference Manual, May 2015

syntax, Verilog 377
syntax, VHDL 574

attributes (Microsemi) 740
Attributes demo 70
Attributes panel, SCOPE 178
auto constraints 157

Maximize option 99
automatic task declaration 315

B
batch mode 29
bit-stream casting 395
bit-string literals 582
black box constraints

VHDL 573
black boxes

See also macros, macro libraries
instantiating, Verilog 368
instantiating, VHDL 572
Microsemi 705
Verilog 368
VHDL 572

block name on end (SystemVerilog) 421
block RAM

dual-port RAM examples 609
NO_CHANGE mode example 606
READ_FIRST mode example 605
single-port RAM examples 607
WRITE_FIRST mode example 603

block RAMs
syn_ramstyle attribute 742

built-in gate primitives (Verilog) 287
bus_dimension_separator_style command

244
bus_naming_style command 244
buttons and options, Project view 98

C
c_diff command (collections) 170
c_intersect command (collections) 170
c_print command (collections) 170
c_sub command (collections) 170
c_symdiff command (collections) 170
c_union command (collections) 170
callback functions, customizing flow 694
case statement

VHDL 490

casting
static 395

casting types 395
cck.rpt file (constraint checking report) 256
check boxes, Project view 98
clock buffering report, log file (.srr) 263
clock edges (VHDL) 517
clock frequency goals, tradeoffs using differ-

ent 696
clock groups

Clock Relationships (timing report) 270
clock groups, SCOPE 163
clock paths, ignoring 193
clock pin drivers, selecting all 63
clock relationships, timing report 270
clock report

asynchronous 267
detailed 272

Clock Tree, HDL Analyst tool 63
clocks

asynchronous report 274
declared clock 269
defining 63
derived clock 269
edges in VHDL 517
inferred clock 269
system clock 270

Clocks panel, SCOPE 161
collection commands

SCOPE 169
Collections panel, SCOPE 169
color coding

log file (.srr) 266
Text Editor 67

combinational logic
always_comb block (SystemVerilog) 424
Verilog 348
VHDL 498

combinational loop errors in state machines
537

combined data, port types (Verilog) 299
commands

Tcl hooks 694
comma-separated sensitivity list (Verilog) 300
commenting out code (Text Editor) 68
comments

Verilog 343
VHDL 514

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 829

compile points
Microsemi 733
updating data (Microsemi) 727

Compile Points panel, SCOPE 181
compiler report, log file (.srr) 263
compilers 30
components, VHDL. See VHDL components
concurrent signal assignments (VHDL) 495
condition operator

VHDL 2008 581
conditional signal assignments (VHDL) 497
configuration statement

VHDL 552
VHDL generic mapping 552
VHDL multiple entities 554
VHDL port mapping 553

configuration, VHDL
declaration 546
specification 542

constant function
syntax restrictions 334

constant function (Verilog 2001) 302
constant math function 312
constants (SystemVerilog) 401
constants, VHDL 475

SNS (Selected Name Support) 501
Constraint Check command 275
constraint checking report 275
constraint file

define_compile_point 246
define_current_design 247

constraint files 141
.sdc 250
automatic. See auto constraints
fdc and sdc precedence order 145
Microsemi 722
SCOPE spreadsheet 160
SCOPE spreadsheet (Legacy) 207
tcl script examples 697

constraint files (.sdc)
creating 83

constraint priority 145
constraints

auto constraints. See auto constraints
FPGA timing 210
non-DC 151
priority 145
report file 275
styles 143

types 140
constructs

interface 392, 440
union (SystemVerilog) 394

context declarations
VHDL 2008 593

context help editor 68
context of filtered schematic, displaying 129
context sensitive help

using the F1 key 27
continuous assignments (Verilog)

combinational logic 351
continuous assignments, Verilog

level-sensitive latches 355
copying

for pasting 91
counter compiler

SYNCore 678
create_clock timing constraint 212
create_generated_clock timing constraint 214
critical paths 134

analyzing 135
finding 135
setting maximum (Microsemi) 726

cross-clock paths, timing analysis 270
cross-hair mouse pointer 79
cross-module referencing

Verilog 318
crossprobing 115

definition 115
Ctrl key

avoiding docking 82
multiple selection 78
zooming using the mouse wheel 80

customization
callback functions 694

cutting (for pasting) 83

D
D flip-flop, active-high reset, set (VHDL)

asynchronous 527
synchronous 529

data objects (SystemVerilog) 400
data type conversion 395
data types

in SystemVerilog parameters 403
data types (SystemVerilog) 387
data types (VHDL) 465

 Index

830 Synplify Pro for Microsemi Edition Reference Manual, May 2015

data types, VHDL
guidelines 514

declared clock 269
declaring and assigning objects (VHDL) 469
default assignment (VHDL) 534
default propagation 507
define_clock

forward-annotation, Microsemi 723
define_compile_point

Tcl 246
define_current_design

Tcl 247
define_false_path

forward-annotation, Microsemi 723
define_multicycle_path

forward-annotation, Microsemi 723
define_path_delay

forward-annotation, Microsemi 723
defining I/O standards 179
delay paths

POS 200
Delay Paths panel, SCOPE 176
deleting

See removing
derived clock 269
design flow

customizing with callback functions 694
design size, schematic sheet

setting 118
device options (Microsemi) 735
directives

black box instantiation (VHDL) 572
specifying 377
syntax, Verilog 377
syntax, VHDL 574

directives (Microsemi) 740
directory

examples delivered with synthesis tool
32

Dissolve Instances command 132
docking 51

avoiding 82
docking GUI entities

toolbar 82
do-while loops (SystemVerilog) 420
DSP blocks

inferencing 707
dual-port RAM examples 609

dynamic range assignment (VHDL) 470

E
edf file 257
edif file (.edf) 257
editor view

context help 68
else/elsif clauses

VHDL 2008 597
encoding

enumeration, default (VHDL) 514
state machine

FSM Compiler 73
FSM Explorer 75, 100
guidelines

Verilog 363
encryption

asymmetric 683
methodologies 683
symmetric 683

encryption algorithms 683
encryptIP script 688

execution 688
encryptP1735 script 684

multiple keys 686
public keys 685

enumerated types (SystemVerilog) 388
enumerated types (VHDL) 534
enumeration encoding, default (VHDL) 514
errors, warnings, notes, and messages report

log file (.srr) 265
events, defining outside process (VHDL) 518
examples

Interactive Attribute Examples 70
examples delivered with synthesis tool, direc-

tory 32
exit statement 493
Explorer, FSM

enabling 100
overview 75

exponential operator 293
extra initialization state, creating (VHDL) 535

F
factorials

calculating 315
failures, timing (definition) 136

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 831

false paths
architectural 193
clocks as from/to points 202
code-introduced 193
defined 193
POS 200
priority 194

fanout
Microsemi 724

FDC
create_clock constraint 212
create_generated_clock 214
reset_path 217
set_clock_groups 219
set_clock_latency 223
set_clock_route_delay 225
set_clock_uncertainty 226
set_false_path 228
set_input_delay 230
set_max_delay 232
set_multicycle_path 235
set_output_delay 238
set_reg_input_delay 241
set_reg_output_delay 242

fdc
constraint priority 145
precedence over sdc 145

fdc constraints 146
generation process 144

fdc file
relationship with other constraint files

141
FIFO compiler

SYNCore 628
FIFO flags

empty/almost empty 636
full/almost full 635
handshaking 636
programmable 638
programmable empty 641
programmable full 639

files
.adc 250
.areasrr 256
.edf 257
.fdc 250
.fse 256
.info 256
.ini 250
.prj 28, 250

.sar 258

.sdc 250

.srm 258, 259

.srr 261
watching selected information 50

.srs 258

.ta 259

.v 251

.vhd 251

.vhm 261

.vm 261
compiler output (.srs) 258
constraint (.adc) 250
constraint (.sdc) 250
creating 83
customized timing report (.ta) 259
design component info (.info) 256
edif (.edf) 257
initialization (.ini) 250
log (.srr) 261

watching selected information 50
mapper output (.srm) 258, 259
output

See output files
project (.prj) 28, 250
RTL view (.srs) 258
srr 261

watching selected information 50
state machine encoding (.fse) 256
Synopsys archive file (.sar) 258
synthesis output 256
Technology view (.srm) 258, 259
Verilog (.v) 251
VHDL (.vhd) 251

files for synthesis 250
filtered schematic

compared with unfiltered 102
filtering 128

commands 128
compared with flattening 132
FSM states and transitions 65
paths from pins or ports 136

filtering critical paths 135
finding

critical paths 135
information on synthesis tool 34

GUI 27
finite state machines

See state machines
Fix gated clock conversion report

 Index

832 Synplify Pro for Microsemi Edition Reference Manual, May 2015

log file (.srr) 265
Flatten Current Schematic command 132
Flatten Schematic command 132
flattening

commands 130
compared with filtering 132
selected instances 131

flip-flops
Verilog 354

flip-flops (VHDL) 516
Float command

Watch window popup menu 51
floating

toolbar 82
floating toolbar popup menu 82
forgotten assignment to next state, detecting

(VHDL) 536
for-loop statement 492
forward annotation

initial values 620
Forward Annotation of Initial Values

Verilog 620
forward-annotation

Microsemi 722
FPGA timing constraints 210
frequency

cross-clock paths 271
Frequency (Mhz) option, Project view 99
from points

clocks 201
multiple 197
objects 196

fse file 256
FSM coding style

Verilog 364
VHDL 532

FSM Compiler option, Project view 99
FSM Compiler, enabling and disabling

globally
with GUI 99

locally, for specific register 74
FSM default state assignment (Verilog) 364
FSM encoding file (.fse) 256
FSM Explorer

enabling 100
overview 75

FSM Explorer option, Project view 100
FSM toolbar 87

FSM Viewer 64
FSMs (finite state machines)

See state machines
functions

Verilog constant math 312
Verilog signed 312
Verilog unsigned 312
VHDL 2008 predefined 588

functions, selected name support (VHDL) 502

G
gate primitives, Verilog 287
generate statement

VHDL 570
Generated Clocks panel, SCOPE 167
generic technology library 255
generics

VHDL 2008 packages 593
graphical user interface (GUI), overview 35
GTECH library. See generic technology li-

brary
gtech.v library 255
gui

synthesis software 25
GUI (graphical user interface), overview 35

H
HDL Analyst tool 101

accessing commands 103
analyzing critical paths 134
Clock Tree 63
crossprobing 115
filtering designs 128
finding objects 113
hierarchical instances. See hierarchical

instances
object information 104
preferences 118
push/pop mode 121
ROM table viewer 621
schematic sheet size 118
schematics, filtering 128
schematics, multiple-sheet 118
status bar information 104
title bar information 118

HDL Analyst toolbar
See Analyst toolbar

HDL Analyst views 102

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 833

See also RTL view, Technology view
HDL files, creating 83
header, timing report 268
help

online
accessing 27

hidden hierarchical instances 108
are not flattened 132

Hide command
floating toolbar popup menu 82
Log Watch window popup menu 51
Tcl Window popup menu 54

hierarchical design, creating
Verilog 370
VHDL 538

hierarchical instances 107
compared with primitive 106
display in HDL Analyst 107
hidden 108
opaque 107
transparent 107

hierarchical project management views 39
hierarchical schematic sheet, definition 118
hierarchy

flattening
compared with filtering 132

pushing and popping 121
schematic sheets 118
Verilog 370

hierarchy (VHDL) 538
Hierarchy Browser 124

changing size in view 59
Clock Tree 63
finding schematic objects 113
moving between objects 63
RTL view 59
symbols (legend) 63
Technology view 61
trees of objects 62

hierarchy separator 243

I
I/O constraints

multiple on same port 173
I/O insertion (Microsemi) 726
I/O Standards panel, SCOPE 179
I/Os

See also ports

Identify Instrumentor
launching 88

IEEE 1364 Verilog 95 standard 252
ieee library (VHDL) 476
if-then-else statement (VHDL) 489
ignored language constructs (Verilog) 285
ignored language constructs (VHDL) 464
Implementation Directory 44
Implementation Results 44
indenting a block of text 67
indenting text (Text Editor) 67
inferencing

DSP blocks 707
inferred clock 269
info file (design component info) 256
ini file 250
init values

in RAMs 510
initial value data file

Verilog 618
Initial Values

forward annotation 620
initial values

$readmemb 615
$readmemh 615
registers (Verilog) 338
Verilog 338

initial values (Verilog)
netlist file (.srs) 620

initialization file (.ini) 250
input files 250

.adc 250

.ini 250

.sdc 250

.sv 251

.v 251

.vhd 251
Inputs/Outputs panel, SCOPE 171
inserting

bookmarks (Text Editor) 67
level-sensitive latches in design,

warning 349, 513
instances

hierarchical
dissolving 126
making transparent 126

hierarchical. See hierarchical instances
primitive. See primitive instances

 Index

834 Synplify Pro for Microsemi Edition Reference Manual, May 2015

instantiating black boxes (Verilog) 368
instantiating black boxes (VHDL) 572
instantiating components (VHDL) 479, 498
instantiating gate primitives, Verilog 287
integer data type (VHDL) 467
Interactive Attribute Examples 70
interface construct 392, 440
interface information, timing report 271
isolating paths from pins or ports 136

K
keyboard shortcuts 90

arrow keys (Hierarchy Browser) 125
keyword completion, Text Editor 67
keywords

all (VHDL 2008) 600
completing in Text Editor 67
SystemVerilog 459

L
language

guidelines (Verilog) 337
language constructs (Verilog) 284
language constructs (VHDL) 462, 464
language guidelines (VHDL) 513
latches

always blocks (Verilog) 355
concurrent signal assignment (VHDL)

520
continuous assignments (Verilog) 355
error message (VHDL) 522
in timing analysis 134
level-sensitive

Verilog 355
process blocks (VHDL) 521
SystemVerilog always_latch 426

Launch Identify Instrumentor icon 88
legacy sdc file. See sdc files, difference be-

tween legacy and Synopsys standard
level-sensitive latches

Verilog 355
VHDL

unwanted 522
level-sensitive latches (VHDL)

using concurrent signal assignments
520

using processes 521

libraries
general technology 254
macro, built-in 251, 477
technology-independent 254
Verilog

macro 368
VHDL

attributes and constraints 252, 477
IEEE, supported 462

libraries (VHDL) 475
library and package rules, VHDL 478
library packages (VHDL), accessing 478
library statement (VHDL) 478
license

specifying in batch mode 29
limitations

SystemVerilog 385
linkerlog file 256
literal

bit string 582
literals

SystemVerilog 387
localparams

Verilog 2001 312
log file (.srr) 261

watching selected information 50
log file report 261

clock buffering 263
compiler 263
errors, warnings, notes, and messages

265
fix gated clock conversion 265
mapper 263
net buffering 264
resource usage 265
retiming 265
summary of compile points 264
timing 264

Log Watch Configuration dialog box 52
Log Watch window 50

Output Windows 58
positioning commands 51

logical operators
VHDL 2008 580

loop statement 491

M
macromodule 284

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 835

macros
libraries 251, 477
MATH18X18 block 706
Microsemi 705
SIMBUF 706

mapper output file (.srm) 258, 259
mapper report

log file (.srr) 263
margin, slack 135
message viewer

description 54
Messages Tab 54
Microsemi

attributes 740
black boxes 705
compile point synthesis 733
compile point timing data 727
device options 735
directives 740
features 702
forward-annotation, constraints 722
I/O insertion 726
macros 705
MATH18X18 block 706
Operating Condition Device Option 729
product families 702
reports 723
retiming 727
SIMBUF macro 706
Tcl implementation options 737

Microsemi implementing RAM 710
model template, VHDL 514
modules, Verilog 342
mouse button operations 78
mouse operations 75
Mouse Stroke Tutor 77
mouse wheel operations 80
Move command

floating toolbar window 82
Log Watch window popup menu 51
Tcl window popup menu 54

moving between objects in the Hierarchy
Browser 63

moving GUI entities
toolbar 82

multicycle paths
clocks as from/to points 201
examples 191
POS 200

using different start/end clocks 190
multidimensional array

syntax restrictions 334
Verilog 2001 316

multiple target technologies, synthesizing
with Tcl script 696

multiple-sheet schematics 118
multiplexer (Verilog) 350
multipliers

DSP blocks 707
multisheet schematics

transparent hierarchical instances 120

N
naming

objects (VHDL) 469
naming rules 242
navigating

among hierarchical levels
by pushing and popping 121
with the Hierarchy Browser 124

among the sheets of a schematic 118
nesting design details (display) 126
net buffering report, log file 264
netlist file 261

initial values (Verilog) 620
nets (SystemVerilog) 402
next statement 493
numeric_bit IEEE package (VHDL) 476
numeric_std IEEE package (VHDL) 477

O
object information

status bar, HDL Analyst tool 104
viewing in HDL Analyst tool 104

objects
crossprobing 115
dissolving 126
making transparent 126

objects (VHDL)
naming 469

objects, schematic
See schematic objects

Online help
F1 key 27

online help
accessing 27

 Index

836 Synplify Pro for Microsemi Edition Reference Manual, May 2015

opaque hierarchical instances 107
are not flattened 132

operators
exponential 293
set membership (SystemVerilog) 412
streaming (SystemVerilog) 411
type (SystemVerilog) 416
Verilog 284
VHDL

assignment 470
Selected Name Support (SNS) 503
sharing in case statements 497
SNS 503

VHDL 2008 condition 581
VHDL 2008 logical 580
VHDL 2008 relational 582

operators (SystemVerilog) 407
operators (VHDL) 482
optimization

state machines 73
options

Project view 98
Frequency (Mhz) 99
FSM Compiler 99
FSM Explorer 100
Resource Sharing 100
Retiming 100

setting with set_option Tcl command
697

options (Microsemi) 737
output files 256

.areasrr 256

.edf 257

.info 256

.sar 258

.srm 258, 259

.srr 261
watching selected information 50

.srs 258

.ta 259

.vhm 261

.vm 261
netlist 261
See also files

Output Windows 58
overriding parameter value, Verilog 345
Overview of the Synopsys FPGA Synthesis

Tools 24

P
packages 434

VHDL 2008 590
VHDL 2008 generics 593

packages, VHDL 475
parameter data types

SystemVerilog 403
partitioning of schematics into sheets 118
pasting 83
path delays

clocks as from/to points 202
performance summary, timing report 268
pins

displaying
on transparent instances 111

displaying on technology-specific
primitives 111

isolating paths from 136
Place and Route constraint file (Microsemi)

722
pointers, mouse

cross-hairs 79
push/pop arrows 123

popping up design hierarchy 121
popup menus

floating toolbar 82
Log Watch window 51, 52
Log Watch window positioning 51
Tcl window 54

ports (VHDL) 472
ports connections (SystemVerilog) 436
POS

interface 199
precedence of constraint files 145
predefined enumeration types (VHDL) 465
predefined functions

VHDL 2008 588
predefined packages (VHDL) 476
preferences

HDL Analyst tool 118
Project view display 80

PREP benchmarks
Verilog 369
VHDL 578

primitive instances 106
primitives

pin names in Technology view 111
primitives, Verilog 287

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 837

private key 684
prj file 28, 250
process keyword (VHDL) 486
process template (VHDL)

modeling combinational logic 486
process template, VHDL 516
Process View 46
processes, VHDL 513
Product of Sums

See POS
project files (.prj) 28, 250
project results

Implementation Directory 44
Process View 46
Project Status View 40

Project Results View 40
Project Status View 40
Project toolbar 82
Project view 36

buttons and options 98
options 98
Synplify Pro 36

Project window 36
project_name_cck.rpt file 275
Promote Global Buffer Threshold (Microsemi)

725
public key 683
push/pop mode, HDL Analyst tool 121

R
RAM implementations

Microsemi 710
RAMs

initial values (Verilog) 615
RAMs, inferring

advantages 602
registers (VHDL) 516
Registers panel, SCOPE 174
relational operators

VHDL 2008 582
removing

bookmark (Text Editor) 67
window (view) 82

reports
constraint checking (cck.rpt) 275

reset_path timing constraint 217
resets

Verilog 357
VHDL 526

detecting problems 535
resolving conflicting timing constraints 203
resource library (VHDL), creating 478
resource sharing

VHDL 497
Resource Sharing option, Project view 100
resource usage report, log file 265
retiming

report, log file 265
retiming (Microsemi) 727
Retiming option, Project view 100
ROM compiler

SYNCore 660
ROM inference examples 621
ROM initialization

with rom.info file 624
with Verilog generate block 625

rom.info file 621
RTL view 59

displaying 85
file (.srs) 258
primitives

Verilog 360
VHDL 527

rules
library and package, VHDL 478

S
scalable adder, creating (Verilog) 345
scalable architecture, using (VHDL) 568
scalable designs (VHDL) 566
scaling by overriding parameter value, Verilog

with # 345
with defparam 345

schematic objects
crossprobing 115
definition 104
dissolving 126
finding 113
making transparent 126
status bar information 104

schematic sheets 118
hierarchical (definition) 118
navigating among 118
setting size 118

schematics

 Index

838 Synplify Pro for Microsemi Edition Reference Manual, May 2015

configuring amount of logic on a sheet
118

crossprobing 115
filtered 102
filtering commands 128
flattening compared with filtering 132
flattening selectively 131
hierarchical (definition) 118
multiple-sheet 118
multiple-sheet. See also schematic

sheets
object information 104
partitioning into sheets 118
sheet connectors 105
sheets

navigating among 118
size, setting 118

size in view, changing 59
unfiltered 102
unfiltering 129

SCOPE
Attributes panel 178
clock groups 163
Clocks panel 161
Collections panel 169
Compile Points panel 181
Delay Paths panel 176
for legacy sdc 148
Generated Clocks panel 167
I/O Standards panel 179
Inputs/Outputs panel 171
Registers panel 174
TCL View 184

SCOPE spreadsheet
starting 160

SCOPE timing constraints summary 161
sdc

fdc precedence 145
SCOPE for legacy files 148

sdc file
difference between legacy and

Synopsys standard 143
sdc2fdc utility 149
Search SolvNet

using 72
Selected Name Support (SNS), VHDL 500
selecting

text column (Text Editor) 67
selecting multiple objects using the Ctrl key

78

sensitivity list (VHDL) 487
sequential elements

naming 243
sequential logic

SystemVerilog
sequential logic 427

VHDL
examples 577

sequential logic (Verilog) 353
sequential logic (VHDL) 498
set and reset signals (VHDL) 526
set modules command (collections) 170
set modules_copy command (collections) 170
set_clock_groups timing constraint 219
set_clock_latency timing constraint 223
set_clock_route_delay timing constraint 225
set_clock_uncertainty timing constraint 226
set_false_path timing constraint 228
set_hierarchy_separator command 243
set_input_delay timing constraint 230
set_max_delay timing constraint 232
set_multicycle_path timing constraint 235
set_output_delay timing constraint 238
set_reg_input_delay timing constraint 241
set_reg_output_delay timing constraint 242
set_rtl_ff_names 151
set_rtl_ff_names command 243
sets and resets

VHDL 526
sets and resets (Verilog) 357
sheet connectors 105
Shift key 82
shortcuts

keyboard
See keyboard shortcuts

sign casting 395
signal assignments

Verilog, always blocks 354
VHDL

conditional 497
simple and selected 496

signal assignments (VHDL) 470
concurrent 495

signed arithmetic (VHDL) 467
signed functions 312
signed multipliers (Verilog) 336
signed signals, Verilog 2001 301, 314

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 839

SIMBUF macro 706
simple component instantiation (VHDL) 499
simple gates, Verilog 287
simple signal assignments, VHDL 496
simulation

using enumerated types, VHDL 535
single-port RAM examples 607
size casting 395
slack

cross-clock paths 271
defined 269
margin

definition 136
setting 135

SNS (Selected Name Support), VHDL 503
constants 501
demand loading 506
functions and operators 502
user-defined function support 504

SolvNet
search 72

source files
See also files
adding to VHDL design library 476
creating 83

srd file 258
srm file 258, 259
srr file 261

watching selected information 50
srs file 258

initial values (Verilog) 620
standard IEEE package (VHDL) 476
standards, supported

Verilog 252
VHDL 252

starting Synplify 29
starting Synplify Pro 29
state machines

asynchronous
Verilog 366
VHDL 526

encoding
displaying 65
FSM Compiler 73
FSM Explorer 75, 100
syn_encoding attribute

Verilog 364
VHDL 531

encoding file (.fse) 256
enumerated type, VHDL 534
filtering states and transitions 65
optimization 73
state encoding, displaying 65
SystemVerilog example with

enumerated types 390
Verilog 364, 365

state machines (Verilog) 363
state machines (VHDL) 530
state values (FSM), Verilog 365
static casting 395
status bar information, HDL Analyst tool 104
std IEEE library (VHDL) 476
std_logic_1164 IEEE package (VHDL) 476
std_logic_arith IEEE package (VHDL) 477
std_logic_signed IEEE package (VHDL) 477
std_logic_unsigned IEEE package (VHDL) 477
streaming operator

SystemVerilog 411
structural designs, Verilog 370
structural netlist file (.vhm) 261
structural netlist file (.vm) 261
subtractor

SYNCore 666
summary of compile points report

log file (.srr) 264
supported language constructs (Verilog) 284
supported language constructs (VHDL) 462
supported standards

Verilog 252
VHDL 252

symbols
Hierarchy Browser (legend) 63

syn_encoding attribute
FSM encoding style

Verilog 364
VHDL 531

syn_enum_encoding directive
not for FSM encoding 532

syn_maxfan
fanout limits (Microsemi) 724

syn_reference_clock attribute
effect on multiple I/O constraints 174

SYN_TCL_HOOKS variable 694
synchronous FSM from concurrent assign-

ment statement (VHDL) 537
synchronous sets and resets

 Index

840 Synplify Pro for Microsemi Edition Reference Manual, May 2015

Verilog 359
synchronous sets and resets (VHDL) 527
SYNCore

adder/subtractor 666
byte-enable RAM compiler

byte-enable RAM compiler
SYNCore 655

counter compiler 678
FIFO compiler 628
RAM compiler

RAM compiler
SYNCore 645

ROM compiler 660
SYNCore adder/subtractor

adders 667
dynamic adder/subtractor 673
functional description 666
subtractors 670

SYNCore FIFOs
definition 628
parameter definitions 633
port list 631
read operations 630
status flags 635
write operations 629

SYNCore ROMs
clock latency 664
dual-port read 662
parameter list 663
single-port read 661

synhooks.tcl file 694
Synopsys FPGA Synthesis Tools

overview 24
Synopsys standard sdc file. See sdc files, dif-

ference between legacy and Synopsys
standard

Synplify Pro synthesis tool
overview 20

Synplify Pro tool
Project view 36
user interface 25

synplify_pro command-line command 29
syntax

bus dimension separator 244
bus naming 244

syntax restrictions
constant function 334
multidimensional array 334

synthesis

attributes and directives (VHDL) 574
attributes and directives, Verilog 377
examples, VHDL 576
guidelines

Verilog 329
guidelines (VHDL) 512
log file (.srr) 261

watching selected information 50
synthesis macro, Verilog 372
synthesis software

flow 30
gui 25

system clock 270
SystemVerilog 392, 434, 440

.* connection 437

.name connection 436
$bits system function 448
always_comb 424
always_ff 427
always_latch 426
block name on end 421
constants 401
data objects 400
data types 387
do-while loops 420
enumerated types 388
interface construct 392, 440
keywords 459
limitations 385
literals 387
nets 402
operators 407
packages 434
procedural blocks 423
type casting 390
typedef 388
unnamed blocks 421
variables 401

SystemVerilog keywords
context help 68

T
ta file (customized timing report) 259
task declaration

automatic 315
Tcl commands

collections 169
constraint files 147
pasting 54

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 841

syntax for Tcl hooks 694
Tcl Script window

Output Windows 58
Tcl scripts

examples 696
Tcl shell command

sdc2fdc 149
TCL View, SCOPE 184
Tcl window

popup menu commands 54
popup menus 54

Technical Resource Center
description 100

Technology view 60
displaying 85
file (.srm) 258, 259

template, module (Verilog) 342
Text Editor

features 67
indenting a block of text 67
opening 66
selecting text column 67
view 66

text editor
completing keywords 67

Text Editor view 66
text macro

Verilog 373
through constraints

point-to-point delays 176
through points

clocks 202
lists, multiple 199
lists, single 198
multiple 199
product of sums UI 199
single 198
specifying for timing exceptions 198

timing analysis of critical paths (HDL Analyst
tool) 134

timing analyst
cross-clock paths 270

timing annotated properties (.tap) 260
timing constraints

conflict resolution 203
constraint priority 203
create_clock 212
create_generated_clock 214
FPGA 210

reset_path 217
See also FPGA timing constraints
See constraints
set_clock_groups 219
set_clock_latency 223
set_clock_route_delay 225
set_clock_uncertainty 226
set_false_path 228
set_input_delay 230
set_max_delay 232
set_multicycle_path 235
set_output_delay 238
set_reg_input_delay 241
set_reg_output_delay 242

timing exceptions
False Paths panel 193
multicycle paths 190
priority 203
specifying paths/points 193

timing failures, definition 136
timing report 267

clock relationships 270
customized (.ta file) 259
detailed clock report 272
file (.ta) 259
header 268
interface information 271
performance summary 268

timing reports
asynchronous clocks 274
log file (.srr) 264

title bar information, HDL Analyst tool 118
to points

clocks 201
multiple 197
objects 196

toolbars 82
FSM 87
moving and docking 82

transparent hierarchical instances 108
lower-level logic on multiple sheets 120
operations resulting in 127
pins and pin names 111

trees of objects, Hierarchy Browser 62
trees, browser, collapsing and expanding 63
tristates, Verilog 287
type casting 395

SystemVerilog 390
typedef (SystemVerilog) 388

 Index

842 Synplify Pro for Microsemi Edition Reference Manual, May 2015

U
unfiltered schematic, compared with filtered

102
unfiltering schematic 129
union construct (SystemVerilog) 394
unnamed blocks (SystemVerilog) 421
unsigned arithmetic (VHDL) 467
unsigned functions 312
unsupported language constructs

VHDL
configuration declaration 551
configuration specification 545

unsupported language constructs (VHDL) 463
use statement (VHDL) 478
user interface

Synplify Pro tool 25
user interface, overview 35
user-defined enumeration data types (VHDL)

466
user-defined functions, SNS (VHDL) 504
using the mouse 75
utilities

sdc2fdc 149

V
v file 251
variables

SystemVerilog 401
variables (VHDL) 474
vendor technologies

Microsemi 701
vendor-specific Tcl commands 694
Verilog

’ifdef 372
always blocks 337

combinational logic 349
event control 350
level-sensitive latches 355
multiple event control arguments 337

asynchronous sets and resets 358
asynchronous state machines 366
attribute syntax 377
black boxes 368
built-in gate primitives 287
combinational logic 348
combined data, port types 299
comma-separated sensitivity list 300

comments, syntax 343
constant function (Verilog 2001) 302
continuous assignments 351, 355
cross-module referencing 318
directive syntax 377
flip-flops using always blocks 354
Forward Annotation of Initial Values

620
gate primitives 287
generic technology library 255
hierarchical design 370
hierarchy 370
ignored language constructs 285
ignoring code with ‘ifdef 372
initial value data file 618
initial values 338
initial values for RAMs 615
initial values for registers 338
instantiating

black boxes 368
gate primitives 287

language
constructs 284

language guidelines 337
level-sensitive latches 355
localparams (Verilog 2001) 312
module template 342
multidimensional array (Verilog 2001)

316
multiplexer 350
netlist file 261
operators 284
overriding parameter value

with # 345
with defparam 345

PREP benchmarks 369
primitives 287
ROM inference 621
scalable adder, creating 345
scalable modules 343
scaling by overriding parameter value

with # (example) 345
with defparam (example) 345

sequential logic 353, 355
sets and resets 357
signal assignments always blocks 354
signed multipliers 336
signed signals (Verilog 2001)

301, 312, 314
simple gates 287

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 843

source files (.v) 251
state machines 363
state values (FSM) 365
structural netlist file (.vm) 261
structural Verilog 370
supported language constructs 284
supported standards 252
synchronous sets and resets 359
synthesis macro 372
synthesis text macro 372
text macro 373
tristate gates 287
wildcard (*) in sensitivity list 298, 300

Verilog 2001 252
constant statement 302
localparams 312
multidimensional array 316
signed signals 301, 312, 314

Verilog 2001 support 298
Verilog 95 252
Verilog language support 283, 381
Verilog source file (.v) 251
Verilog synthesis guidelines 329
vhd file 251
vhd source file 251
VHDL

accessing packages 478
adding source files to design library 476
assignment operators 470
assignments 513
asynchronous FSM created with

process 537
asynchronous sets and resets 526
asynchronous state machines 536
attribute syntax 574
attributes package 574
black boxes 572
case statement 490
clock edges 517
clock edges, wait statements 519
combinational logic

definition 498
examples 576

comments, syntax 514
compiling design units into libraries 476
component instantiation 498
concurrent signal assignments 495
conditional signal assignments 497
configuration

declaration 546

specification 542
configuration statement 552
constants 475

SNS (Selected Name Support) 501
D flip-flop with active-high reset, set

asynchronous 527
synchronous 529

data types 465
guidelines 514

declaring and assigning objects 469
default assignment 534
demand loading 506
design libraries 476
detecting reset problems 535
directive syntax 574
dynamic range assignment 470
enumerated types as state values 534
enumeration encoding, default 514
events, defining outside process 518
flip-flops 516
forgotten assignment to next state,

detecting 536
FSM coding style 532
generics for scalable designs 567
hierarchical designs 538
if-then-else statement 489
ignored language constructs 464
initialization state, extra 535
instantiating

black boxes 572
components 479, 498

instantiating components 479
integer data type 467
language

constructs 462, 464
guidelines 513
support 461

latch error, example 522
level-sensitive latches

concurrent signal assignment 520
process blocks 521
unwanted 522

libraries 475
attributes, supplied with synthesis tool

252, 477
library and package rules 478
library packages

accessing 478
attributes package 574

 Index

844 Synplify Pro for Microsemi Edition Reference Manual, May 2015

IEEE support 462
predefined 476

library statement 478
model template 514
naming objects 469
object naming syntax 469
operators 482
packages 475
ports 472
predefined enumeration types 465
predefined packages 476
PREP benchmarks 578
process keyword 486
process template 516

modeling combinational logic 486
processes 513

creating flip-flops and registers 516
registers 516
reset signals 526
resource library, creating 478
resource sharing 497
RTL view primitives 527
scalable architecture, using 568
scalable design

creating using generate statements 570
creating using generics 567
creating using unconstrained vector

ports 566
scalable designs 566

generate statement 570
generics 567
unconstrained vector ports 566

Selected Name Support (SNS) 500
selected signal assignments 496
sensitivity list 487
sequential logic 498

examples 577
sequential statements 488
set signals 526
sharing operators in case statements

497
signal assignments 470

concurrent 495
conditional 497
selected 496
simple 496

signals 472
simple component instantiation 499
simple signal assignments 496

simulation using enumerated types 535
SNS 500

constants 501
demand loading 506
functions and operators 502
user-defined function support 504

source files (.vhd) 251
state machines 530
statements

case 490
generate 570
if-then-else 489
library 478
use 478
wait 519

structural netlist file (.vhm) 261
supported language constructs 462
supported standards 252
synchronous FSM from concurrent

assignment statement 537
synchronous sets and resets 527
synthesis

attributes and directives 574
examples 576
guidelines 512

unsupported language constructs 463
configuration declaration 551
configuration specification 545

use statement 478
user-defined enumeration data types

466
variables 474
wait statement inside process 519

VHDL 2008 579
enabling 592
operators 580
packages 590

VHDL assignment
dynamic range 470

VHDL components
configuration declarations 546
creating resource library 479
instantiating 479, 498
specifying configurations 543
vendor macro libraries 479

VHDL generic mapping
configuration statement 552

VHDL libraries
compiling design units 476

 Index

Synplify Pro for Microsemi Edition Reference Manual, May 2015 845

VHDL multiple entities
configuration statement 554

VHDL port mapping
configuration statement 553

VHDL source file (.vhd) 251
vhm file 261
views 49

FSM 64
managing 81
Project 36
removing 82
RTL 59
Technology 60

vm file 261

W
wait statement, inside process (VHDL) 519
Watch Window. See Log Watch window
while-loop statement 492
wildcards

Verilog sensitivity list 298, 300
window

Project 36
windows 49

closing 92
log watch 50
removing 82

Z
zoom

using the mouse wheel and Ctrl key 80

 Index

846 Synplify Pro for Microsemi Edition Reference Manual, May 2015

	Reference Manual
	Contents
	Product Overview
	Synopsys FPGA and Prototyping Products
	FPGA Implementation Tools
	Identify Tool Set
	Synphony Model Compiler
	Rapid Prototyping

	Overview of the Synthesis Tools
	Common Features
	BEST Algorithms
	Graphic User Interface
	Projects and Implementations

	Starting the Synthesis Tool
	Logic Synthesis Overview
	Synthesizing Your Design

	Getting Help

	User Interface Overview
	The Project View
	Project Management View

	The Project Results View
	Project Status Tab
	Implementation Directory
	Process View

	Other Windows and Views
	Dockable GUI Entities
	Watch Window
	Tcl Script and Messages Windows
	Tcl Script Window
	Message Viewer
	Output Windows (Tcl Script and Watch Windows)
	RTL View
	Technology View
	Hierarchy Browser
	FSM Viewer Window
	Text Editor View
	Context Help Editor Window
	Interactive Attribute Examples
	Search SolvNet

	FSM Compiler
	When to Use FSM Compiler
	Where to Use FSM Compiler (Global and Local Use)

	FSM Explorer
	Using the Mouse
	Mouse Operation Terminology
	Using Mouse Strokes
	Using the Mouse Buttons
	Using the Mouse Wheel

	User Interface Preferences
	Managing Views

	Toolbars
	Project Toolbar
	Analyst Toolbar
	Text Editor Toolbar
	FSM Viewer Toolbar
	Tools Toolbar

	Keyboard Shortcuts
	Buttons and Options

	HDL Analyst Tool
	HDL Analyst Views and Commands
	Filtered and Unfiltered Schematic Views
	Accessing HDL Analyst Commands

	Schematic Objects and Their Display
	Object Information
	Sheet Connectors
	Primitive and Hierarchical Instances
	Transparent and Opaque Display of Hierarchical Instances
	Hidden Hierarchical Instances
	Schematic Display

	Basic Operations on Schematic Objects
	Finding Schematic Objects
	Selecting and Unselecting Schematic Objects
	Crossprobing Objects
	Dragging and Dropping Objects

	Multiple-sheet Schematics
	Controlling the Amount of Logic on a Sheet
	Navigating Among Schematic Sheets
	Multiple Sheets for Transparent Instance Details

	Exploring Design Hierarchy
	Pushing and Popping Hierarchical Levels
	Navigating With a Hierarchy Browser
	Looking Inside Hierarchical Instances

	Filtering and Flattening Schematics
	Commands That Result in Filtered Schematics
	Combined Filtering Operations
	Returning to The Unfiltered Schematic
	Commands That Flatten Schematics
	Selective Flattening
	Filtering Compared to Flattening

	Timing Information and Critical Paths
	Timing Reports
	Critical Paths and the Slack Margin Parameter
	Examining Critical Path Schematics

	Constraints
	Constraint Types
	Constraint Files
	Timing Constraints
	FDC Constraints
	Methods for Creating Constraints
	Constraint Translation
	sdc2fdc Conversion

	Constraint Checking
	Database Object Search
	Forward Annotation
	Auto Constraints

	SCOPE Constraints Editor
	SCOPE User Interface
	SCOPE Tabs
	Clocks
	Generated Clocks
	Collections
	Inputs/Outputs
	Registers
	Delay Paths
	Attributes
	I/O Standards
	Compile Points
	TCL View

	Industry I/O Standards
	Industry I/O Standards

	Delay Path Timing Exceptions
	Multicycle Paths
	False Paths

	Specifying From, To, and Through Points
	Timing Exceptions Object Types
	From/To Points
	Through Points
	Product of Sums Interface
	Clocks as From/To Points

	Conflict Resolution for Timing Exceptions
	SCOPE User Interface (Legacy)

	Constraint Syntax
	FPGA Timing Constraints
	create_clock
	create_generated_clock
	reset_path
	set_clock_groups
	set_clock_latency
	set_clock_route_delay
	set_clock_uncertainty
	set_false_path
	set_input_delay
	set_max_delay
	set_multicycle_path
	set_output_delay
	set_reg_input_delay
	set_reg_output_delay
	Naming Rule Syntax Commands

	Design Constraints
	define_compile_point
	define_current_design
	define_io_standard

	Input and Result Files
	Input Files
	HDL Source Files

	Libraries
	The Generic Technology Library

	Output Files
	Log File
	Timing Reports
	Timing Report Header
	Performance Summary
	Clock Relationships
	Interface Information
	Detailed Clock Report
	Asynchronous Clock Report

	Constraint Checking Report

	Verilog Language Support
	Support for Verilog Language Constructs
	Data Types
	Built-in Gate Primitives
	Port Definitions
	Statements
	Blocks
	Compiler Directives
	Operators
	Procedural Assignments

	Verilog 2001 Support
	Combined Data, Port Types (ANSI C-style Modules)
	Comma-separated Sensitivity List
	Wildcards (*) in Sensitivity List
	Signed Signals
	Inline Parameter Assignment by Name
	Constant Function
	Localparam
	Configuration Blocks
	Localparams
	$signed and $unsigned Built-in Functions
	$clog2 Constant Math Function
	Generate Statement
	Automatic Task Declaration
	Multidimensional Arrays
	Variable Partial Select
	Cross-Module Referencing
	ifndef and elsif Compiler Directives

	Verilog Synthesis Guidelines
	General Synthesis Guidelines
	Library Support in Verilog
	Constant Function Syntax Restrictions
	Multi-dimensional Array Syntax Restrictions
	Signed Multipliers in Verilog
	Verilog Language Guidelines: always Blocks
	Initial Values in Verilog
	Cross-language Parameter Passing in Mixed HDL
	Library Directory Specification for the Verilog Compiler

	Verilog Module Template
	Scalable Modules
	Creating a Scalable Module
	Using Scalable Modules
	Using Hierarchical defparam

	Combinational Logic
	Combinational Logic Examples
	always Blocks for Combinational Logic
	Continuous Assignments for Combinational Logic
	Signed Multipliers

	Sequential Logic
	Sequential Logic Examples
	Flip-flops Using always Blocks
	Level-sensitive Latches
	Sets and Resets
	SRL Inference

	Verilog State Machines
	State Machine Guidelines
	State Values
	Asynchronous State Machines

	Instantiating Black Boxes in Verilog
	PREP Verilog Benchmarks
	Hierarchical or Structural Verilog Designs
	Using Hierarchical Verilog Designs
	Creating a Hierarchical Verilog Design
	synthesis Macro
	text Macro

	Verilog Attribute and Directive Syntax
	Attribute Examples Using Verilog 2001 Parenthetical Comments

	SystemVerilog Language Support
	Feature Summary
	SystemVerilog Limitations

	Unsized Literals
	Data Types
	Typedefs
	Enumerated Types
	Struct Construct
	Union Construct
	Static Casting

	Arrays
	Arrays
	Arrays of Structures
	Array Querying Functions

	Data Declarations
	Constants
	Variables
	Nets
	Data Types in Parameters
	Type Parameters

	Operators and Expressions
	Operators
	Aggregate Expressions
	Streaming Operator
	Set Membership Operator
	Set Membership Case Inside Operator
	Type Operator
	$typeof Operator

	Procedural Statements and Control Flow
	Do-While Loops
	For Loops
	Unnamed Blocks
	Block Name on end Keyword
	Unique and Priority Modifiers

	Processes
	always_comb
	always_latch
	always_ff

	Tasks and Functions
	Implicit Statement Group
	Formal Arguments
	endtask/endfunction Names

	Hierarchy
	Compilation Units
	Packages
	Port Connection Constructs
	Extern Module

	Interface
	Interface Construct
	Modports
	Limitations and Non-Supported Features

	System Tasks and System Functions
	$bits System Function
	Array Querying Functions

	Generate Statement
	Conditional Generate Constructs

	Assertions
	SVA System Functions

	Keyword Support

	VHDL Language Support
	Language Constructs
	Supported VHDL Language Constructs
	Unsupported VHDL Language Constructs
	Partially-supported VHDL Language Constructs
	Ignored VHDL Language Constructs

	VHDL Language Constructs
	Data Types
	Physical Types
	Arrays
	Declaring and Assigning Objects in VHDL
	Ranges
	Dynamic Range Assignments
	Null Ranges
	Signals and Ports
	Variables
	VHDL Constants
	Aliases
	Libraries and Packages
	Literals
	Operators
	Large Time Resolution
	VHDL Process
	Common Sequential Statements
	Concurrent Signal Assignments
	Resource Sharing
	Combinational Logic
	Sequential Logic
	Component Instantiation in VHDL
	VHDL Selected Name Support
	User-defined Function Support
	Demand Loading

	VHDL Implicit Data-type Defaults
	VHDL Synthesis Guidelines
	General Synthesis Guidelines
	VHDL Language Guidelines
	Model Template
	Constraint Files for VHDL Designs
	Creating Flip-flops and Registers Using VHDL Processes
	Clock Edges
	Defining an Event Outside a Process
	Using a WAIT Statement Inside a Process
	Level-sensitive Latches Using Concurrent Signal Assignments
	Level-sensitive Latches Using VHDL Processes
	Signed mod Support for Constant Operands

	Sets and Resets
	Asynchronous Sets and Resets
	Synchronous Sets and Resets

	VHDL State Machines
	State Machine Guidelines
	Using Enumerated Types for State Values
	Simulation Tips When Using Enumerated Types
	Asynchronous State Machines in VHDL

	Hierarchical Design Creation in VHDL
	Configuration Specification and Declaration
	Configuration Specification
	Configuration Declaration
	VHDL Configuration Statement Enhancement

	Scalable Designs
	Creating a Scalable Design Using Unconstrained Vector Ports
	Creating a Scalable Design Using VHDL Generics
	Using a Scalable Architecture with VHDL Generics
	Creating a Scalable Design Using Generate Statements

	Instantiating Black Boxes in VHDL
	Black-Box Timing Constraints

	VHDL Attribute and Directive Syntax
	VHDL Synthesis Examples
	Combinational Logic Examples
	Sequential Logic Examples

	PREP VHDL Benchmarks

	VHDL 2008 Language Support
	Operators and Expressions
	Logical Reduction Operators
	Condition Operator
	Matching Relational Operators
	Bit-string Literals
	Array Aggregates

	Unconstrained Data Types
	Unconstrained Record Elements
	Predefined Functions
	Generic Types

	Packages
	New Packages
	Modified Packages
	Supported Package Functions
	Unsupported Packages/Functions
	Using the Packages

	Generics in Packages
	Context Declarations
	Case-generate Statements
	Matching case and select Statements
	Else/elsif Clauses
	Sequential Signal Assignments
	Using When-Else and With-Select Assignments
	Using Output Ports in a Sensitivity List

	Syntax Conventions
	All Keyword
	Comment Delimiters
	Extended Character Set

	RAM and ROM Inference
	Guidelines and Support for RAM Inference
	Block RAM Examples
	Block RAM Mode Examples
	Single-Port Block RAM Examples
	Single-Port RAM with Read Address Registered Example
	Single-Port RAM with RAM Output Registered Examples
	Dual-Port Block RAM Examples
	True Dual-Port RAM Examples

	Initial Values for RAMs
	Example 1: RAM Initialization
	Example 2: Cross-Module Referencing for RAM Initialization
	Initialization Data File
	Forward Annotation of Initial Values

	RAM Instantiation with SYNCORE
	ROM Inference

	IP and Encryption Tools
	SYNCore FIFO Compiler
	Synchronous FIFOs
	FIFO Read and Write Operations
	FIFO Ports
	FIFO Parameters
	FIFO Status Flags
	FIFO Programmable Flags

	SYNCore RAM Compiler
	Single-Port Memories
	Dual-Port Memories
	Read/Write Timing Sequences

	SYNCore Byte-Enable RAM Compiler
	Functional Overview
	Read/Write Timing Sequences
	Parameter List

	SYNCore ROM Compiler
	Functional Overview
	Single-Port Read Operation
	Dual-Port Read Operation
	Parameter List
	Clock Latency

	SYNCore Adder/Subtractor Compiler
	Functional Description
	Adder
	Subtractor
	Dynamic Adder/Subtractor

	SYNCore Counter Compiler
	Functional Overview
	UP Counter Operation
	Down Counter Operation
	Dynamic Counter Operation

	Encryption Scripts
	Encryption and Decryption Methodologies
	The encryptP1735 Script
	The encryptIP Script

	Scripts
	synhooks File Syntax
	Tcl Script Examples
	Using Target Technologies
	Different Clock Frequency Goals
	Setting Options and Timing Constraints

	Designing with Microsemi
	Basic Support for Microsemi Designs
	Microsemi Device-specific Support
	Microsemi Features
	Synthesis Constraints and Attributes for Microsemi

	Microsemi Components
	Macros and Black Boxes in Microsemi Designs
	DSP Block Inference
	Microsemi RAM Implementations
	Instantiating RAMs with SYNCORE

	Output Files and Forward-annotation for Microsemi
	VM Flow Support
	Forward-annotating Constraints for Placement and Routing
	Synthesis Reports

	Optimizations for Microsemi Designs
	The syn_maxfan Attribute in Microsemi Designs
	Promote Global Buffer Threshold
	I/O Insertion
	Number of Critical Paths
	Retiming
	Update Compile Point Timing Data Option
	Operating Condition Device Option
	Radiation-tolerant Applications

	Integration with Microsemi Tools and Flows
	Compile Point Synthesis
	Incremental Synthesis Flow
	Microsemi Place-and-Route Tools

	Microsemi Device Mapping Options
	Microsemi Tcl set_option Command Options
	Microsemi Attribute and Directive Summary

