Improving the Performance of your DC-DC Forward Converter using I²MOS™ MOSFET Technology

Microsemi Space Forum 2015

Al Ortega, Marketing Manager
Contents

- I²MOS Advantages
- Single Event Effect Tests
- DC- DC Design performance advantages
 - Efficiency
 - Avalanche Energy
- Summary
I²MOS advantages

- Highest available SEE performance, 85-90 MeV at full rated BVDss
- Highest Avalanche capability: 5X greater than competition
- TID (Total Ionizing Dose) Rating: 100Krad-500Krad (depending on specific device)
- Commerce Rating: 9A515.e
 - Most Euro countries will not need a license!
- Competitive pricing on new designs
I²MOS FOM versus Competition

![Graph showing I²MOS FOM vs. Voltage (V) compared to competition](image-url)
SEE results - Microsemi vs. Competitor

SEE Response - R6, 150V, N, MR
- **Kr Ion;** LET=39±5%; 50±5%µm; 410±5%MeV
- **Xe Ion;** LET=61±5%; 66±7.5%µm; 825±5%MeV
- **Au Ion;** LET=90±5%; 80±5%µm; 1470±5%MeV

SEE Response - 150V, N
- **Kr Ion;** LET=35.1; 517MeV; 62.6µm
- **Xe Ion;** LET=56.6; 1023MeV; 80.7µm

SEE Response - R6, 200V, N, MR
- **Xe Ion;** LET=42±5%; 205±5%µm; 2450±5%MeV

SEE Response - 200V, N
- **Kr Ion;** LET=31.6; 733MeV; 90.6µm
- **Xe Ion;** LET=53.7; 1279MeV; 100.7µm
I²MOS™ MOS P/N Structure

<table>
<thead>
<tr>
<th>MRH</th>
<th>BVDSS/1</th>
<th>Channel</th>
<th>ID @ 25C</th>
<th>Package</th>
<th>Screening</th>
<th>RAD LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(V)</td>
<td>(A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>N</td>
<td>22</td>
<td>U3</td>
<td>S</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Microsemi	20= 200V	N	U3= SMD0.5	S= JANS	R= 100K
Rad- Hard	10= 100V	P	T2= TO- 39	V= JANTXV	G= 500K
MOSFET	13= 130V		T3= TO- 257	C= EDU	
	06= 60V		U5= LCC-18		
	03= 30V		C= die		
Phase 1: I²MOS™ portfolio, N- Ch, Sz 3

<table>
<thead>
<tr>
<th>Bvds (V)</th>
<th>Similar JEDEC Number</th>
<th>Industry Equivalent</th>
<th>MSC p/n</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2N7589U3</td>
<td>IRHNJ67134</td>
<td>MRH15N19U3</td>
</tr>
<tr>
<td>200</td>
<td>2N7591U3</td>
<td>IRHNJ67230</td>
<td>MRH20N16U3</td>
</tr>
<tr>
<td>250</td>
<td>2N7593U3</td>
<td>IRHNJ67234</td>
<td>MRH25N15U3</td>
</tr>
</tbody>
</table>

Phase 2: I²MOS™ portfolio, N- Ch, Sz 5.5

<table>
<thead>
<tr>
<th>Bvds (V)</th>
<th>Similar JEDEC Number</th>
<th>Industry Equivalent</th>
<th>RH2 Base MSC p/n</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2N7582T1</td>
<td>IRHMS67164</td>
<td>MRH15N45T1</td>
<td>TO-254</td>
</tr>
<tr>
<td>150</td>
<td>2N7581U2</td>
<td>IRHNA67164</td>
<td>MRH15N56U1</td>
<td>SMD-2</td>
</tr>
<tr>
<td>200</td>
<td>2N7584T1</td>
<td>IRHMS67260</td>
<td>MRH20N45T1</td>
<td>TO-254</td>
</tr>
<tr>
<td>200</td>
<td>2N7583U2</td>
<td>IRHNA67260</td>
<td>MRH20N56U1</td>
<td>SMD-2</td>
</tr>
<tr>
<td>250</td>
<td>2N7586T1</td>
<td>IRHMS67264</td>
<td>MRH25N45T1</td>
<td>TO-254</td>
</tr>
<tr>
<td>250</td>
<td>2N7585U2</td>
<td>IRHNA67264</td>
<td>MRH25N56U1</td>
<td>SMD-2</td>
</tr>
</tbody>
</table>
Efficiency Performance of I²MOS

DC-DC Forward Converter (Resonant Reset Topology)
MRH25N15U3 vs. IRHNJ67234
DC-DC Criteria

- Create a Circuit to Reveal Differences in MOSFET Power Losses
- Parallel-Inductor Isolated Forward DC-DC Converter
- Improved Efficiency
 - Resonant Transformer Reset
 - Lower DC Losses in Inductors and Schottky Rectifiers
- Use \(V_{dd} = 50Vdc \)
 - Peak of Resonant Reset Voltage Will Be: \(V_{dd} + (I_d(pk) \times L_m / C_r) \)
 - \(L_m \) is Power Transformer Magnetizing Inductance (~120uH)
 - \(C_r \) is the Resonance Capacitance = \(C_{oss} || C_j (N_s/N_p) \times (~810pF) \)
 - Worst Case Resonance Peak at \(f_{sw} = 350kHz \) and \(V_{out} = 5.0Vdc \) (~120Vpk)
Efficiency Test Criteria

- **Voltage De-Rating = 50%**
 - Use Microsemi MRH25N15U3 and IR IRHNJ67234, 250V devices. (200V Device May Be Used For Higher Efficiency With Lower Voltage Margin.)

- **100W Maximum Output Power**
 - 20A Maximum Output Current
 - 66W For Vout = 3.3Vdc
 - 100W For Vout = 5.0Vdc
Efficiency Test Circuit Schematic
Efficiency Test Circuit Features

- Circuit Used For Power Switch Efficiency Comparison:
 - Circuit Uses U3 Packages For All Power Functions
 - Small Size
 - Ease of Thermal Management
 - Output Uses Paralleled Output Stage For Increased Efficiency
 - Schottkies and Inductors Share Current ~50:50
 - DC Power Losses Reduced by ~1/4 - 1/3!
 - Optimized for 3.3Vdc < V_{out} < 5Vdc
 - Optimized For 1A < I_{out} < 20A
 - Optimized For 350kHz < f_{sw} < 500kHz
 - Uses COTS Micrel MIC4424 Gate Driver IC
 - Rad-Hard Equivalents Available from Intersil
Efficiency Test Parameters

- DC Output \((V_{\text{out}}) \) Set By Varying Input Duty Cycle
 - Duty Cycle = Desired \(V_{\text{out}} \times \left(\frac{N_s}{N_p} \right) / V_{\text{dd}} \)

- Efficiency:
 \[
 \eta = \frac{P_{\text{out}}}{\left(P_{\text{in}} + P_{\text{bias}} \right)} = \frac{V_{\text{out}} \times I_{\text{out}}}{\left(V_{\text{dd}} \times I_{\text{dd}} \right) + \left(V_{\text{bias}} \times I_{\text{bias}} \right)}
 \]
 - \(I_{\text{out}} \) = Set, Varied from 1A to 20A
 - \(V_{\text{dd}} \) = Set, Constant = 50Vdc
 - \(V_{\text{bias}} \) = Set, Constant = 12Vdc
 - \(V_{\text{out}} \) is Set By Varying the Input Duty Cycle
 - \(I_{\text{dd}} \) and \(I_{\text{bias}} \) Are Measured at Each Operating Point
MOSFET Losses

- Key Contributors to Power MOSFET Switch Losses:
 - DC Losses: $I_d(rms)^2 \times R_{ds(on)} \times D$
 - AC Losses: Gate + Switching
 - Gate Input Losses: $Q_{gt} \times V_{bias} \times f_{sw}$
 - Drain Switching Losses: $\sim V_{dd} \times I_d(rms) \times (t_r + t_f) \times f_{sw} / 2$ + $(C_{oss} \times V_{dd}^2 \times f_{sw})$
Forward Converter Design Parameters

- Duty Cycle = \(D = \left(\frac{V_{out}}{V_{in}} \right) \times \left(\frac{N_s}{N_p} \right) = \frac{t_{on}}{t_{off}} \)
- \(I_d(pk) = \left(\frac{I_d(avg)}{D} \right) + (0.5 \times \left(\frac{V_{dd} \times t_{on}}{L_m} \right)) \)
- \(V_{res(pk)} = V_{dd} + I_d(pk) \times \left(\frac{L_m}{C_r} \right)^{0.5} \)
- \(t_{res} = \pi \times \left(\frac{L_m \times C_r}{0.5} \right) \)
- \(C_r = C_{oss} + \left(\frac{C_j}{(N_p/N_s)} \right) \)
 - \(C_j \) is the Output Schottky Junction Capacitance

![Diagram showing waveforms for Forward Converter Design Parameters](image)
Measured Drain-Source Voltages

\[V_{out} = 5.0\text{Vdc}, \quad I_{out} = 1\text{Adc}, \quad f_{sw} = 350\text{kHz} \]

\[V_{DS(pk)} = 122\text{V} \]

\[V_{out} = 5.0\text{Vdc}, \quad I_{out} = 20\text{Adc}, \quad f_{sw} = 350\text{kHz} \]

\[V_{DS(pk)} = 148\text{V} \]
Efficiency Parameters

- From Data Sheet Parameters:
 - **$R_{ds(ON)}$**
 - MRH25N15U3 – 175mΩ max.
 - IRHNJ67234 – 210mΩ max.
 - IR Device 20% Higher Than Microsemi
 - **Q_{gt}**
 - MRH25N15U3 – 32nC typ. (est. 40nC max.)
 - IRHNJ67234 – 50nC max. (est. 40nC typ.)
 - **C_{oss}**
 - IRHNJ67234 – 187pF typ.
Efficiency Data - +3.3Vout, 350 Khz.

At higher currents the improvement in conduction losses provide an advantage.
Efficiency Data, Vout = 5.0V, 350 Khz.

At higher currents the improvement in conduction losses is slightly better at 5.0Vout vs. 3.3Vout.
Efficiency Data, +3.3Vout, 500 Khz.

At 500 Khz. There are more switching losses in both parts but I²MOS part maintains the advantage.
Efficiency Data, 5.0Vout, 500 Khz.

- Efficiency improvements @ higher currents when Vout = 5.0V
Avalanche Energy Performance

MRH25N15U3 vs. IRHNJ67234
Avalanche Basics

- Avalanche Performance Indicates Ruggedness of MOSFET
 - Energy Handling Capability
 - Repetitive
 - Single Pulse
 - Specified in Joules (V * I * t)

- “Unconstrained” Inductors Cause Excursions to $V_{BR}(DSS)$
 - Energy $\sim (L * I_d(pk)^2 / 2) * (1 - (V_{dd} / V_{BR}(DSS)))$
 - Junction Dissipates Enormous Instantaneous Power
 - If $V_{BR}(DSS) = 250V$ and $I_d(pk) = 10A$, $P_{inst} = 2500W!$

- The Greater the Avalanche Energy Rating, The Better
Data sheet Specs & Avalanche Test Circuit

<table>
<thead>
<tr>
<th>Part #</th>
<th>Eas (mJ)</th>
<th>Ear (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRH25N15U3</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>IRHNJ67234</td>
<td>7.5</td>
<td>56</td>
</tr>
</tbody>
</table>
Avalanche Test PCB

Board Size = 5.8 x 4.1 x 0.063”, 4 Layer FR-4, Double Sided
Avalanche Test Procedure

Avalanche Test Has Two Regions:

1. Turn ON Device Under Test (DUT)
 Ramp Inductor Current to Desired $I_d(pk)$ during ON Time (t_{on})

 $$I_d(pk) = \frac{V_{dd} \cdot t_{on}}{L}$$

2. Turn OFF DUT
 Drain Voltage “Flys” to VBR(DSS)

 Avalanche Time (t_{av}) = $L \cdot I_d(pk) / (V_{BR(DSS)} - V_{dd})$

 Avalanche Energy (E_{av}) = $V_{BR(DSS)} \cdot I_d(pk) \cdot t_{av}$

ON Time Adjusted to Obtain Desired $I_d(pk)$ and Thus E_{av}

Vds “Ringout” Due to Residual Energy in L and L-Coss Resonant Circuit

Ideal Waveforms
Measured Avalanche Performance

MRH25N15U3, 7.5mJ

$V_{BR(DSS)} = 283V$, $I_d(pk) = 12A$, $t_{on} = 29.5us$

MRH25N15U3, 15mJ

$V_{BR(DSS)} = 304V$, $I_d(pk) = 11A$, $t_{on} = 71.5us$
Measured Avalanche Performance

MRH25N15U3, 300mJ

\[V_{BR(DSS)} = 314V, \; I_d(pk) = 15A, \; t_{on} = 750\mu s \]

MRH25N15U3, 300mJ (Expanded)

\[V_{BR(DSS)} = 314V, \; I_d(pk) = 15A, \; t_{on} = 750\mu s \]
Measured Avalanche Performance

IRHNJ67234, 7.5mJ

$V_{BR(DSS)} = 300V$, $I_d(pk) = 10A$, $t_{on} = 24.5\text{us}$

IRHNJ67234, 56mJ

$V_{BR(DSS)} = 302V$, $I_d(pk) = 16.7A$, $t_{on} = 120\text{us}$
Summary

Efficiency
- MRH25N15U3 *Demonstrated More Efficient* Than IR IRHNJ67234
 - By up to 2.75%
- MGN25N15U3 Efficiency holds up over the full current range of 5A – 20A. Especially at higher load currents
- IRHNJ67234 Efficiency decreases due to higher conduction Losses
 - Useful Output Current Range Must Be De-Rated to 18A
- Increased Losses Mean More Aggressive Thermal Management Required (Bigger Heat Sink for Lower θ_{JA})

Avalanche Capability
- Microsemi MRH25N15U3 *Demonstrated 2X Repetitive Avalanche Capability* Over IR IRHNJ67234
- Microsemi MRH25N15U3 *Demonstrated 5.4X Single Event Avalanche Capability* Over IR IRHNJ67234
Thank You

Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.