Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.
Contents

1 Revision History ... 1
 1.1 Revision 3.0 .. 1
 1.2 Revision 2.0 .. 1
 1.3 Revision 1.0 .. 1

2 Introduction ... 2

3 Hardware Implementation ... 3
 3.1 Design Description .. 3
 3.2 Inputs and Outputs .. 3
 3.3 Configuration Parameters .. 4
 3.4 Timing Diagrams ... 4
 3.5 Resource Utilization ... 5
Figures

| Figure 1 | Block Diagram | 3 |
| Figure 2 | Timing Diagram | 4 |
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Inputs and Outputs</td>
<td>3</td>
</tr>
<tr>
<td>Table 2</td>
<td>Configuration Parameter</td>
<td>4</td>
</tr>
<tr>
<td>Table 3</td>
<td>Resource Utilization on PolarFire</td>
<td>5</td>
</tr>
<tr>
<td>Table 4</td>
<td>Resource Utilization on SmartFusion2</td>
<td>5</td>
</tr>
</tbody>
</table>
The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 3.0
The resource utilization reports were updated. For more information, see Resource Utilization, page 5.

1.2 Revision 2.0
The following is a summary of changes made in this revision.
• Updated Figure 1, page 3 and Table 1, page 3. For more information, see Figure 1, page 3.

1.3 Revision 1.0
The first publication of this document.
2 Introduction

Image Enhancement IP enables you to adjust the brightness, contrast and color balance of a final video Image according to personal preferences. These calculations are done in the RGB domain.

The inputs to Image Enhancement IP in terms of brightness and contrast are as follows:

\[
R_{\text{CONST}} = \frac{R_{\text{gain}} \times \text{contrast factor}}{10}
\]

\[
G_{\text{CONST}} = \frac{G_{\text{gain}} \times \text{contrast factor}}{10}
\]

\[
B_{\text{CONST}} = \frac{B_{\text{gain}} \times \text{contrast factor}}{10}
\]

\[
\text{COMMON CONST} = 128 \times (\text{brightness} - ((128 \times \text{contrast factor})/10))
\]

where,

\[
\text{contrast factor} = \frac{325 \times (\text{contrast} + 128)}{387 - \text{contrast}} \times 32
\]

\(R_{\text{gain}}, G_{\text{gain}}, \text{ and } B_{\text{gain}}\) are the red, green, and blue gain values.

The output RGB values are calculated from the above inputs based on the following equations:

\[
R_{\text{out}} = \text{COMMON CONST} + R_{\text{CONST}} \times R_{\text{in}}
\]

\[
G_{\text{out}} = \text{COMMON CONST} + G_{\text{CONST}} \times G_{\text{in}}
\]

\[
B_{\text{out}} = \text{COMMON CONST} + B_{\text{CONST}} \times B_{\text{in}}
\]

Where,

\(R_{\text{in}}, G_{\text{in}}, \text{ and } B_{\text{in}}\) are the red, green and blue values of input data.

\(R_{\text{out}}, G_{\text{out}}, \text{ and } B_{\text{out}}\) are the red, green and blue values of output data.
3 Hardware Implementation

This section describes the design description and inputs and outputs of the Image Enhancement IP.

3.1 Design Description

The following figure shows the block diagram of the Image Enhancement IP.

Figure 1 • Block Diagram

When the ENABLE_I and DATA_VALID_I signal goes high the R, G and B values of the output is computed from the inputs according to the formula given in introduction section. DATA_O is valid when DATA_VALID_O (which is equivalent to DATA_VALID_I with two clock cycle delay) goes high.

3.2 Inputs and Outputs

The following table lists the input and output ports of the Image Enhancement IP.

Table 1 • Inputs and Outputs

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Direction</th>
<th>Width</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESETN_I</td>
<td>Input</td>
<td>1 bit</td>
<td>Active low asynchronous reset signal to design</td>
</tr>
<tr>
<td>SYS_CLK_I</td>
<td>Input</td>
<td>1 bit</td>
<td>System clock</td>
</tr>
<tr>
<td>DATA_VALID_I</td>
<td>Input</td>
<td>1 bit</td>
<td>Input data valid signal This signal is asserted high when the data is valid</td>
</tr>
<tr>
<td>ENABLE_I</td>
<td>Input</td>
<td>1 bit</td>
<td>Enable signal Should be '1' to enable image enhancement operation</td>
</tr>
</tbody>
</table>
3.3 Configuration Parameters

The following table lists the configuration parameters used in the hardware implementation of the Image Enhancement. These parameters are generic and can be varied based on the application requirement.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_PIXEL_WIDTH</td>
<td>Bit width of each pixel</td>
</tr>
</tbody>
</table>

3.4 Timing Diagrams

The following figure shows the timing diagram of the Image Enhancement IP.

Figure 2 • Timing Diagram
3.5 Resource Utilization

The Image Enhancement IP is implemented on SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) device (M2S150T-1152 FC package) and PolarFire® FPGA (MPF300TS-1FCG1152E package).

Table 3 • Resource Utilization on PolarFire

<table>
<thead>
<tr>
<th>Resource</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFFs</td>
<td>173</td>
</tr>
<tr>
<td>4-input LUTs</td>
<td>139</td>
</tr>
<tr>
<td>MACC</td>
<td>3</td>
</tr>
<tr>
<td>RAM1Kx18</td>
<td>0</td>
</tr>
<tr>
<td>RAM64x18</td>
<td>0</td>
</tr>
</tbody>
</table>

1. For G_PIXEL_WIDTH = 8.

Table 4 • Resource Utilization on SmartFusion2

<table>
<thead>
<tr>
<th>Resource</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFFs</td>
<td>173</td>
</tr>
<tr>
<td>4-input LUTs</td>
<td>141</td>
</tr>
<tr>
<td>MACC</td>
<td>3</td>
</tr>
<tr>
<td>RAM1Kx18</td>
<td>0</td>
</tr>
<tr>
<td>RAM64x18</td>
<td>0</td>
</tr>
</tbody>
</table>

1. For G_PIXEL_WIDTH = 8.