Power Matters.[™]

Space Power Development – Expanding Heritage with New Technology

Microsemi Space Forum 2015

Pat Franks, Director of Engineering

Microsemi

Agenda

- Some topics arising from SPM's Custom Space Power Development Programs
 - Mitigation of SEE effects in PWM Controllers
 - An Introduction of SiC Technology to Space
 - Evolution of Intelligent Power Management
 - A complimentary venture in Aviation

Mitigation of SEE effects in PWM Controllers

PWM UC1846 Controller Radiation Issues

5.1V VIN Reference 15 2 VREE Regulator Sync 10 U.V. Rт Lockout Osc Vc Ст F/F 11 A Out UC1846 C/S- 3 **Output Stage** SR Com C/S+ 4 UC1847 Output Inverted Л 14 B Out 0.5V 12 Gnd 0.5mA Current Limit Δ Adjust NI 5 Shutdown E/A ≥ 6k INV 350mV Comp SCR SEE activates the SCR latch

BLOCK DIAGRAM

INTERNAL VREF DRIFT

Drift of the internal VREF is mitigated by using an external temperature compensated RADHARD voltage reference to maintain tight regulation.

PLCC-20, LC	C-20	PACKAGE PIN FUNCTION				
(TOP VIEW)		FUNCTION	PIN			
Q, L Package	s	N/C	1			
		C/L SS	2			
		VREF	3			
		C/S-	4			
		C/S+	5			
321	20 19	N/C	6			
	181	E/A+	7			
4		E/A-	8			
[5]	171	Comp	9			
(6	16)	Ст	10			
7	15	N/C	11			
8	14	RT	12			
9 10 11		Sync	13			
		A Out	14			
		Gnd	15			
		N/C	16			
		Vc	17			
		B Out	18			
		VIN	19			
		Shutdown	20			

UC1846 SEU

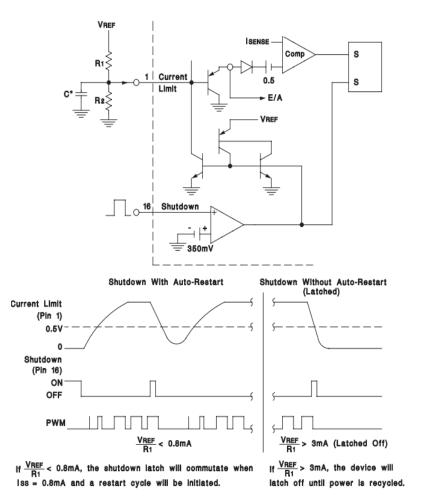
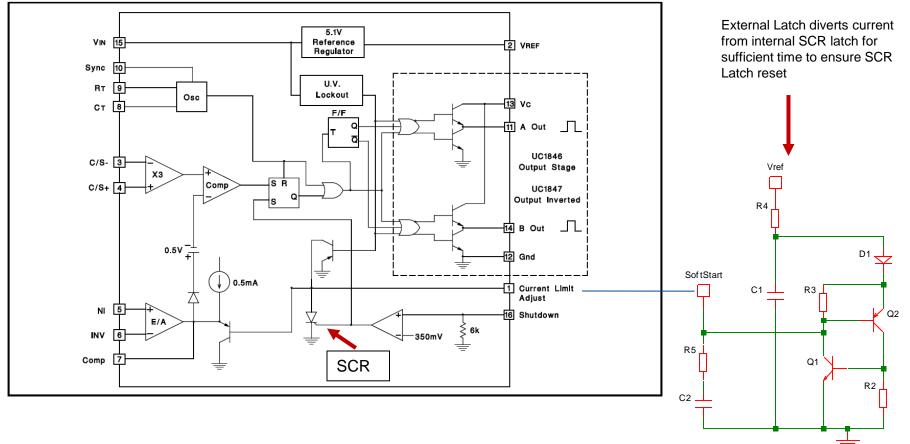


Figure 7. Soft-Start and Shutdown/Restart Functions

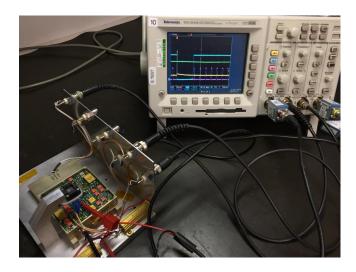
The UC1846 PWM IC has long space heritage. This PWM has been tested for single event transient performance by Lockheed and others and SEU performance reports are provided by Lockheed and NASA.

The conclusion is that SEE activates the SCR latch. The SCR latch is specified to remain latched as long as greater than 3 milliamp anode current is provided via pin 1, the Current Limit Adjust / Soft Start pin of the IC.

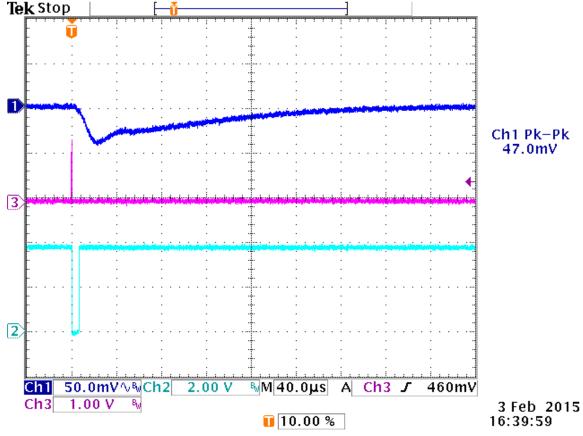

It has been demonstrated by SEE testing, circuit simulation and electrical test, that eliminating the anode current to the SCR latch, allows the SCR to reset in the order of micro seconds.

Solutions rely on eliminating the anode current to the SCR latch.

UC1846 SEU MITIGATION


BLOCK DIAGRAM

Customer would not approve our Heritage circuit without validation!!



UC1846 SEU -LAB ELECTRICAL VERIFICATION

Output Voltage at max load

Ch1: Output Voltage at max load Ch2: PWM- pin 1. Ch3: applied pulse to PWM- pin 16 (SD).

Customer still not convinced!!

UC1846 SEU – SEE TESTING AT LBNL

Lawrence Berkeley National Laboratory

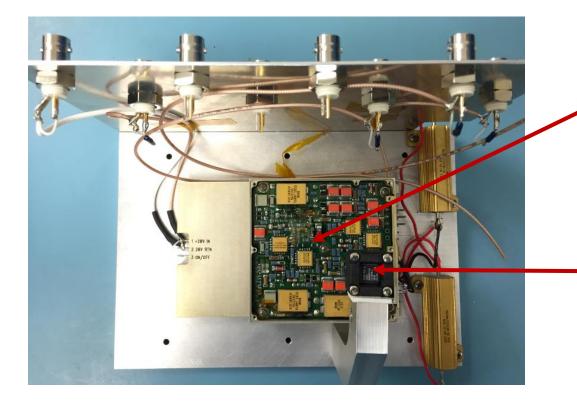
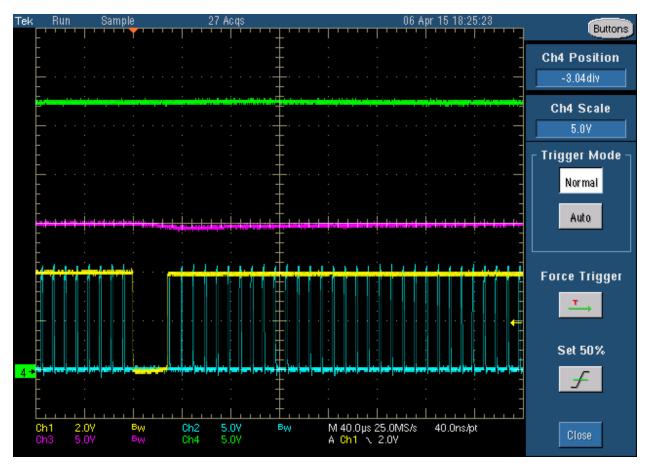

UC1846 SEU -LAB RADIATION VERIFICATION

Table 5.2-1 10 MeV/n Heavy Ion Species Used During Characterization Testing

lon Name	Symbol	Mass/ion/ charge state	Energy (MeV)	Linear Energy Transfer (LET ₀)	Range (µm-Si)
		charge state	(1110 17)	(MeV/(mg/cm ²))	(µm or)
Argon	Ar	⁴⁰ Ar ⁺¹¹	400.00	9.74	130.1
Vanadium	V	⁵¹ V ⁺¹⁴	508.27	14.59	113.4
Copper	Cu	⁶⁵ Cu ⁺¹⁸	659.19	21.17	108.0
Krypton	Kr	⁸⁶ Kr ⁺²⁴	906.45	30.23	113.1
Silver	Ag	¹⁰⁷ Ag ⁺²⁹	1039.42	48.15	90.0
Xenon	Xe	¹²⁴ Xe ⁺³⁴	1232.55	58.78	90.0

UC1846 SEU – SEE TESTING



Heritage DC-DC Converter "Host" Power Supply Mitigation Circuit Identical to Customer's.

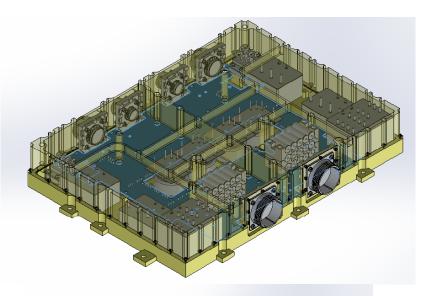
UC1846 specially extended on a socket to allow multiple evaluations

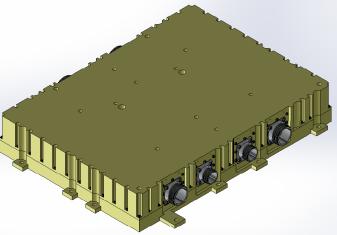
Radiation Test Results

Output Voltage at max load

Ch1: PWM- pin 1. Ch2: PWM output pulses Ch3: Output Voltage at max load Ch4: Input line voltage

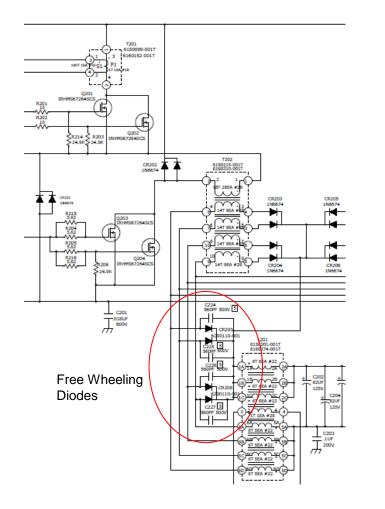
An Introduction of Silicon Carbide (SiC) Technology to Space

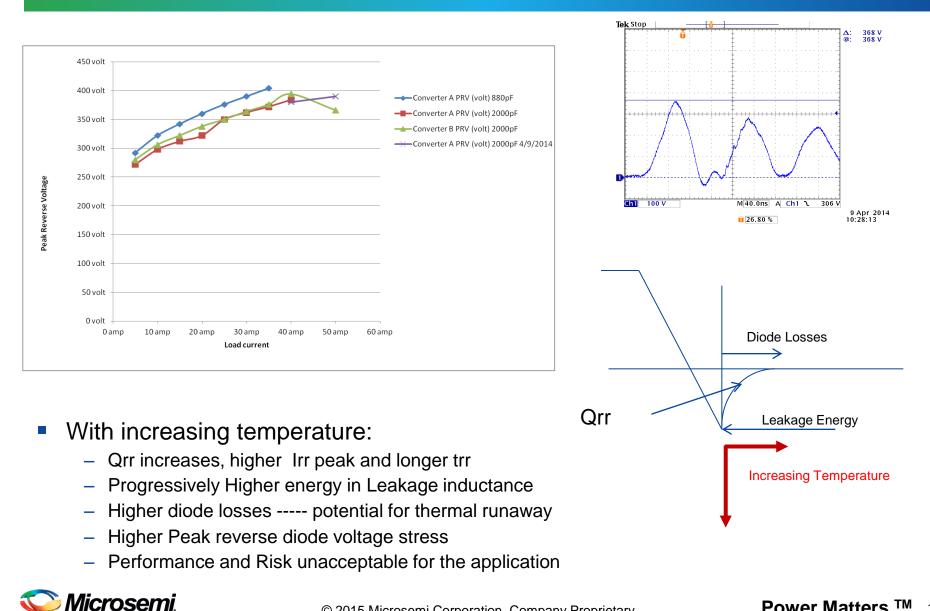


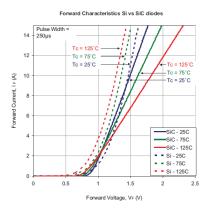

A Demanding System Requirement

- High efficiency essential
 - Mission duty
 - Heat Dissipation

Precision current management

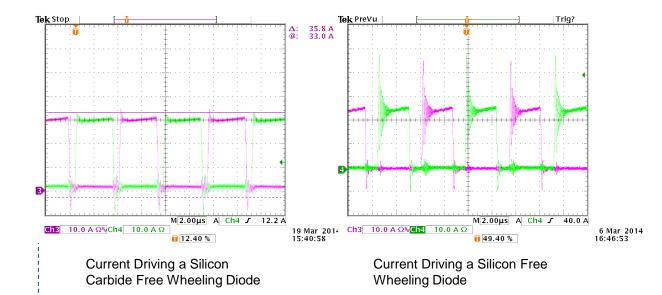

- Balanced inputs
- Individual & Joint Limit strategies
- Precision voltage output
 - Tight load transient response limits


Power Topology


- Efficiency is an overarching requirement
- Two Switch Forward Topology
- Multiple Secondary's to promote current sharing
 - However not for freewheel current
- IN6674 Space qualified silicon diodes for all positions initially
- Problems with freewheeling diodes prompted substitution of SiC Diodes
 - Promotes electrical reliability
 - Promotes high efficiency

Silicon Diode Reverse Recovery **Temperature Effect**

High Power DC-DC Converter benefits from SiC



Comparison of Silicon and Silicon Carbide Forward Voltage Drops

A Comparative Performance Study of an Interleaved Boost Converter Using Commercial Si and SiC Diodes for PV Applications

Carl Ngai-Man Ho, Senior Member, IEEE, Hannes Breuninger, Member, IEEE, Sami Pettersson, Member, IEEE, Gerardo Escobar, Senior Member, IEEE, and Francisco Canales, Member, IEEE

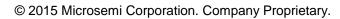
- Forward voltage drop favors Silicon
- However the dominant loss in the topology comes from reverse recovery
- Silicon Carbide a clear winner with close to zero Qrr!!

Microsemi responds with a strong Inter-Divisional solution

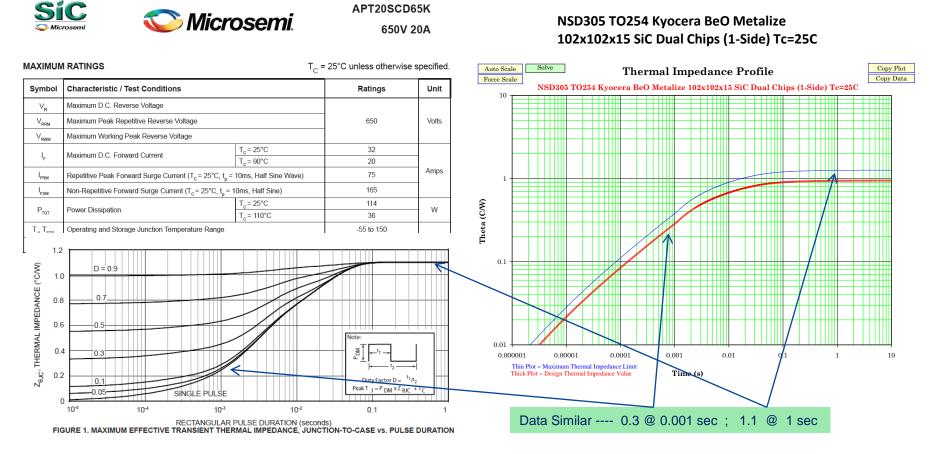
- Initial proof of concept from a Plastic Package SiC Diode
 - Switched out on Brass Board
 - Plastic not acceptable for Space
- SiC Die from Microsemi Bend Oregon (PPG) {now DPG}
- Hermetic Packaging capability from Lawerence Mass (HRG) {now also DPG}
- Microsemi builds & qualifies a new hermetic SiC diode part in very short order
 - Recovery plan supports critical program schedule
 - Recovery plan necessarily includes full ENVIRONMENTAL and RADIATION assessments of the new SiC diode

Efficiency at ambient temperature

Final efficiency of SiC version meets desired efficiency profile

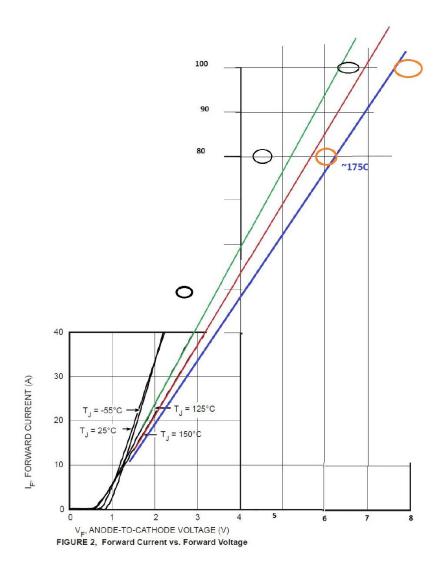

Power Matters.TM 17

Test Assets to support rapid evaluations



- Dedicated Test Station
 - Part Number 7500659
 - DC Source
 - Electronic Load
 - Data logger
 - Interface harness
 - Unique interface circuitry
- Standard equipment
 - Oscilloscope with probes
 - Thermal chamber
 - Thermal imaging
 - Spectrum analyzer

Early investment is paid back by test labor savings even in the first article


SiC Diode Chip from Plastic to Hermetic

- Early transient impedance plots indicate that ratings are very similar
- HOWEVER INITIAL TO254 Surge current screening @120A failed >50% devices
 - Suitable surge screening level an URGENT HOT TOPIC!!!

Revised Surge Current Test Requirements

- Forward current as a function of forward voltage from Plastic Datasheet
- Black circles represent measured Vf values
- Orange circles represent effective Vf values adjusted for dynamic temperature rise
- Orange points assume 50% additional energy input due to dT/dt

Revised Surge Current Test Requirements

Balanced risk principle

- Strong enough to stress the diode and expose defects, die & attach
- Not so strong as to weaken the diode reducing reliability & life
- Aim for a nominal Tj rise of 125°C (over 25°C ambient)
- Vf is a function of If and temperature
 - Die temperature rises during surge pulse
 - Need to account for dT/dt in total energy calculation
- Rational & assumptions developed in following slides
- Qualitative validation part of rational
 - Back off from point of failure

Revised Surge Current Test Requirements

	Vf=	<u>1.3017*exp</u>	(0.0181*lf)	(From Leas	Squares Fit Analysis)
If_Surge	Vf	Best Tj	Nom Tj	WC Tj	Tj = Power *θ JC + Tambient
10	1.56	28.72	29.46	30.20876	
20	1.87	33.92	35.70	37.48452	*The junction temperature calculation assumes 50% more
50	3.22	63.37	71.05	78.71973	power as a result of the continued increase in temperature rise
80	5.54	130.67	151.80	172.9366	that occurs after Vf and If have been measured, which also
81	5.64	133.94	155.73	177.5216	account for the exponential rise in VF as a function of current
82	5.74	137.30	159.76	182.2248	and temperature.
83	5.85	140.75	163.90	187.0489	
84	5.95	144.28	168.14	191.9967	
85	6.06	147.91	172.49	197.0712	
86	6.17	151.63	176.95	202.2754	Best Tj based on Best Theta_jc = 0.5°C/w @ 8.3mS
87	6.29	155.44	181.52	207.6123	Nom Tj based on Nominal Theta_jc = 0.6°C/w @ 8.3mS
88	6.40	159.35	186.22	213.085	WC Tj based on Worst Case Theta_jc = 0.7°C/W @ 8.3mS
89	6.52	163.35	191.03	218.6967	
90	6.64	167.46	195.96	224.4507	
95	7.27	189.62	222.55	255.4731	
100	7.95	214.70	252.64	290.583	

- 80 amps half sine @8.3ms recommended for surge test
- Nominal Tj matches test objective and Best / Worst spread OK

Surge Current Test to Failure

type: APT	200SCD65K			lot # A000	5776						
one 8.3 m	s surge plu	se at each	value, Ir re	ead after su	urge.						
equipmer	equipment: fec pls 1000 (ut 10491) ir done on curve tracer (ut 6418) socket 8070H-002.										
	IR	Surge	IR	Surge	IR	Surge	IR	Surge	IR		
	650V	50A	650V	80A	650V	100A	650V	120A	650V		
serial #	ua	V	ua	V	ua	V	ua	V	ma		
12 leg A	4.00	2.60	4.00	4.16	4.00	6.55	4.00	13.60	>300		
12 leg B	2.80	2.60	3.80	4.20	3.80	6.77	3.80	14.25	>300		
13 leg A	1.40	2.57	1.60	4.15	2.50	6.51	2.50	13.25	>300		
13 leg B	3.80	2.59	3.80	4.19	2.60	6.72	2.60	14.23	>300		
14 leg A	2.20	2.56	2.20	4.09	2.30	6.55	2.30	14.00	>300		
14 leg B	2.80	2.57	2.80	4.14	2.80	6.72	2.80	14.34	>300		

- Data taken in TO254 Package
- 1/2 Sine wave current pulses
- No degradation in post surge leakage up to 100 amp level
- Damage / failure high probability @ 120 amp level

Qualitative Evidence from Burn-in

Device Name	NSD305									
Lot Name	A0004027	8								
Comment	PRE HTRB									
Test		4	5	6		7	8	9 10	11	
Item		ICBO	BVCBO	VFBC	ICBO	IR	BVR	VF	IR	
Limit		200.0uA	652.0 V	1.800 V	200.0uA	200.0uA	652.0 V	1.800 V	200.0uA	
Limit Min Max		<	>	<	<	<	>	<	<	
Bias 1		VCB 522 V	IC 250 uA	IB 20.0 A	VCB 520 V	V VAK 522	V IC 250 u/	A IAK 20.0 A	VAK 520 V	/
Bias 2			VMAX 999	V			VMAX 99	99 V		
Time		2.500ms	2.500ms	380.0us	2.500ms	2.500ms	2.500ms	380.0us	2.500ms	
Wafer Data	No									
Serial	Bin									
16	i 1	293.0n	971.4	1.577	292.0n	1.196u	830.	.8 1.572	1.206u	No Surge (Eng Lot)
17	' 1	1.010u	9.990k	1.587	835.5n	1.142u	945.	2 1.58	1.071u	No Surge (Eng Lot)
18	1	1.162u	9.990k	1.578	1.028u	5.355u	936.	4 1.588	5.638u	No Surge (Eng Lot)
19) 1	235.1n	9.990k	1.571	230.0n	203.5n	976.	2 1.565	192.6n	No Surge (Eng Lot)
20) 1	2.642u	9.990k	1.563	2.559u	244.0n	9.990k	1.57	232.0n	No Surge (Eng Lot)
21	. 1	230.0n	9.990k	1.584	219.2n	549.0n	920.	5 1.593	523.0n	Post 10x 100A Surge (E
22	! 1	2.140u	784.2	1.571	2.115u	444.5n	942.	6 1.562	432.1n	Post 10x 100A Surge (E
23	1	179.3n	9.990k	1.566	177.5n	118.3n	9.990k	1.567	23.55n	Post 10x 100A Surge (E
25	5 1	4.815u	9.990k	1.549	5.061u	5.451u	9.990k	1.547	5.399u	Post 10X 120A Surge (F
29) 1	3.829u	9.990k	1.567	3.624u	8.596u	936.	6 1.556	8.501u	Post 10X 120A Surge (F
33	1	998.0n	9.990k	1.572	1.063u	8.194u	9.990k	1.569	7.673u	Post 10X 120A Surge (F
34	1	4.813u	9.990k	1.548	4.949u	2.217u	9.990k	1.547	2.059u	Post 10X 120A Surge (F

Device Name	NSD305													
Lot Name	A0004027	8												
Comment	POST HTR	В												
Test		4	5	6	7	8	9	10	11					
Item		ICBO	BVCBO	VFBC	ICBO	IR	BVR	VF	IR					
Limit		200.0uA	652.0 V	1.800 V	200.0uA	200.0uA	652.0 V	1.800 V	200.0uA					
Limit Min Max		<	>	<	<	<	>	<	<					
Bias 1		VCB 522 V	IC 250 uA	IB 20.0 A	VCB 520 V	VAK 522 V	IC 250 uA	IAK 20.0 A	VAK 520 V	/				
Bias 2			VMAX 999) V			VMAX 999	V						
Time		2.500ms	2.500ms	380.0us	2.500ms	2.500ms	2.500ms	380.0us	2.500ms					
Wafer Data	No													
Serial	Bin													
16	1	323.0n	971	1.581	311.2n	1.409u	808.8	1.577	1.455u		No Surge	(Eng Lot)		
17	1	518.8n	9.990k	1.59	471.2n	652.3n	939.5	1.585	652.1n		No Surge	(Eng Lot)		
18	1	1.446u	9.990k	1.579	1.095u	2.646u	947.6	1.589	3.206u		No Surge	(Eng Lot)		
19	1	225.3n	9.990k	1.57	225.5n	204.0n	973.3	1.564	194.5n		No Surge	(Eng Lot)		
20	1	1.119u	9.990k	1.564	1.123u	232.7n	9.990k	1.571	229.2n		No Surge	(Eng Lot)		
21	1	208.0n	9.990k	1.577	198.2n	476.0n	900.9	1.585	465.1n		Post 10x 1	00A Surge	(Eng Lot)	
22	1	2.363u	765.1	1.572	2.368u	396.3n	943.8	1.563	395.0n		Post 10x 1	00A Surge	(Eng Lot)	
23	1	194.6n	9.990k	1.566	186.5n	138.9n	9.990k	1.569	136.0n		Post 10x 1	00A Surge	(Eng Lot)	
25	1	1.488u	9.990k	1.549	1.485u	4.479u	9.990k	1.548	4.429u		Post 10X 1	20A Surge	(Productio	n Lot)
29	1	1.353u	9.990k	1.561	1.314u	8.309u	939.9	1.553	8.270u		Post 10X 1	20A Surge	(Productio	n Lot)
33	1	304.1n	9.990k	1.569	279.1n	3.079u	9.990k	1.568	2.302u		Post 10X 1	20A Surge	(Productio	n Lot)
34	1	1.311u	9.990k	1.546	1.287u	625.5n	9.990k	1.546	615.5n		Post 10X 1	20A Surge	(Productio	n Lot)

Pre Burn In

Engineering and production surge test survivors were subjected to HTRB Burn in. All samples passed.

Post Burn In

Eng Lot)

Eng Lot) Eng Lot) Production Lot) Production Lot)

Production Lot) Production Lot)

Screening Requirements on the SiC Diode

Screening Requirements

		MIL-STD-750					
Inspection/Test 1/	Method	Conditions					
	4011	V_{F1} at 25°C, $I_F = 20A$ (pk) pulsed, $V_{F1} = 1.8V$ max					
Initial Electrical Measurements	4016 I_{RM} at 25°C, DC Method $V_R = 520V$, $I_{RM} = 200uA$ max						
Initial Electrical Measurements	4021	V_{BR} at 25°C, $I_R = 200 \text{uA}$, $V_{BR} = 650 \text{V}$ min					
	4001	C_T at 25°C, $V_R = 0Vdc$, $f = 1MHz$, $Vsig = 50mV(p-p)$, $C_T = 2000pF$ max					
Temperature Cycling	1051	20 cycles: -55°C to +175°C					
Surge Current	<mark>4066</mark>	Condition A: 10 surges, 1 per/min, 7mS min., 80A					
Constant Acceleration		20,000 g's Y1 direction,					
	2006	10,000 g's for Power rating > 10 Watts.					
		1 min, Hold time not required					
PIND	2052	Condition A					
	4011	V_{Fl} at 25°C, I_F = 20A (pk) pulsed, V_{Fl} = 1.8V max					
Mid Electrical Measurements	4016 I_{RM} at 25°C, DC Method $V_R = 520V$, $I_{RM} = 200uA$ max						
Wild Electrical Weasurements	4021	V_{BR} at 25°C, $I_R = 200 \mu A$, $V_{BR} = 650 V min$					
	4001	C_T at 25°C, $V_R = 0Vdc$, $f = 1MHz$, $Vsig = 50mV(p-p)$, $C_T = 2000pF$ max					
Burn-In	1038	Condition A, $V_R = 520V$, $T_J > 150^{\circ}C$, Duration 160 hrs					
	4011	V_{F1} at 25°C, $I_F = 20A$ (pk) pulsed, $V_{F1} = 1.8V$ max					
	-	V_{F2} at 175°C, $I_F = 20A$ (pk) pulsed, $V_{F1} = 2.5V$ max					
	4016	I_{RM} at 25°C, DC Method $V_R = 520V$, $I_{RM} = 200uA$ max					
Final Electrical Measurements	4021	V_{BR} at 25°C, $I_R = 200 uA$, $V_{BR} = 650 V$ min					
	4001	C_T at 25°C, $V_R = 0Vdc$, $f = 1MHz$, $Vsig = 50mV(p-p)$, $C_T = 2000pF$ max					
	3101 or	ThetaJX, See MIL-PRF-19500					
	4081						
Delta Calculations	4011	ΔV_{F1} at 25°C, I _F = 10A (pk) pulsed, +/- 100mV from initial value					
	4016	I_{RM} at 25°C, DC Method $V_R = 520V$, $\Delta I_{RM} = +/-100\%$ of Initial Value					
Hermetic Seal:							
Fine	1071	G2					
Gross		B & D					
Radiographic	2076						

1/ Requirements are in accordance with EEE-INST-002

Radiation Evaluation

Single Event Effects Radiation Testing at Texas A&M K500 Cyclotron Facility Dates of Activity: April 28 & 29, 2014 Date of Report: Monday, May 12, 2014

1.1.1 Beam Condition 1: LET 41.4 MeVcm²/mg, range 21.6 um, Kr ion

Beam_energy	Beam_energy	Nominal_LET	Nominal_range	Selected fluence	Typical Dose	Typical Averflux
(MeV/amu)	(MeV)	(MeVcm2/mg)	(um)	(ions/cm2)	(rad)	(ions/(cm2s))
1.8	151	41.4	21.6	2.9E+5	1.9E+2	

1.1.2 Beam Condition 2: LET 20.2 MeVcm²/mg, range 125.5 um, Cu ion

					1 0/	0
Beam_energy (MeV/amu)	Beam_energy (MeV)	Nominal_LET (MeVcm2/mg)	Nominal_range (um)	Selected fluence (ions/cm2)	Typical Dose (rad)	Typical Averflux {ions/(cm2s)}
11.7	738	20.2	125.5	9.9E+5	3.2E+2	1.14E+4

- One Sample tested to 260Vr under Kr beam
- Three samples tested to 250Vr under Cu beam
- All samples passed without evidence of breakdown
- Test equipment limited to 300Vr.

Summary and Conclusion for SiC Diodes

- SiC diodes can greatly enhance efficiency and reliability of high power space DC-DC converters
- SiC diodes require a deep derating of Vrr to reliably withstand SEE.
 - 650V diode was derated to 250V in this case (38% of rated)
 - Derating ratio does not necessarily apply to other Vrr ratings
- We are early in characterizing SiC diodes for Space but the potential benefits certainly indicate a priority to proceed
- Surge current screening of SiC diodes should carefully account for the positive Vf characteristic and dynamic heating of the SiC die during the pulse

- This effect is much less important in Si Diodes

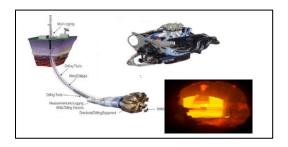
 Overall a great example of Microsemi's ability to solve serious technical issues in real time by drawing on vertical resources across divisions

The Roadmap for Microsemi SPM

More SMT??!

Real Control of the second sec

AEROSPACE



SPACE

- Intelligent Power
- Higher System Integration

MILITARY & DEFENSE

EXTREME ENVIRONMENT

 Complementary developments in Aviation

© 2015 Microsemi Corporation. Company Proprietary.

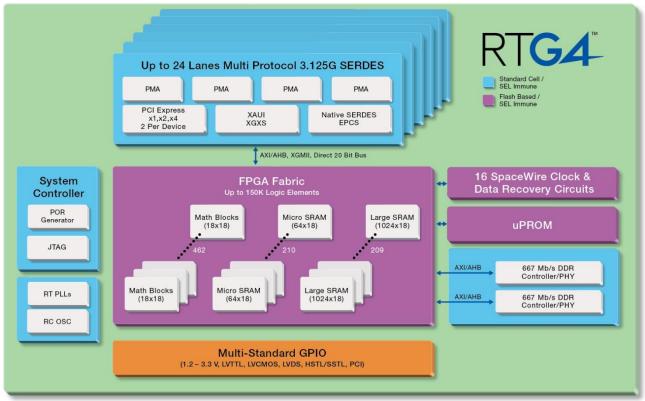
Power Matters.TM 28

PWA Surface Mount vs. Hybrid Technology

PWA Standard Modules are constructed with Heritage SMT processes

	SMT	HYBRID
Assembly Process	Automated	Manual
Device Attachment	Solder	Eutectic / Epoxy
Connections	Solder	Wire Bond
Components	Package pre-screened	Basic Die

SMT Process Yields High Product Consistency and Quality



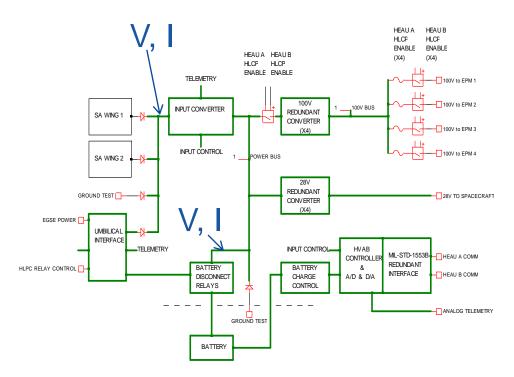
Following the launch of our highly successful SA50 DC-DC Converter product line, we see a rising demand to replace Hybrid DC- DC Converters with the SMT alternative.

- Faster lead times
- · Ability to customize and add value
- Lower risk of LOT Qualification issues with disastrous reach back

Intelligent Power - RTG4

- Total-dose hardening of Flash cells
- Single-event hardening of registers, SRAM, multipliers, PLLs

Comprehensive radiation-mitigated architecture for signal processing applications

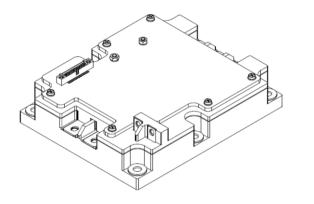

🍋 Microsemi.

Radiation Tolerant Power Supplies

- Microsemi provides many Radiation-Tolerant components that can be used to supply power to RTG4 FPGAs
- Engineers should consider the following when selecting power supply components
 - Calculate required power of the RTG4 device
 - PowerCalc spreadsheet, SmartPower tool in Libero design software
 - Select an appropriate Radiation-Tolerant regulator that can supply the required power and meet all power requirements of RTG4
 - Radiation-Tolerant Linear-Regulator (Microsemi)
 - Radiation-Tolerant Switching regulator (Microsemi)

Solar Array Conversion – PDU Concept

REGULATION STATES


CONSTANT BATTERY CURRENT CONSTANT BATTERY VOLTAGE PEAK ARRAY POWER

- RTG4 FPGA manages full Solar Array conversion controls
 - Generates PWM Drives
- Data Acquisition
 - SA Voltage & Current
 - Battery Voltage & Current
- Battery at End Of Charge Voltage
 - SA Converter regulates Constant Voltage
- Battery Charging
 - SA available power > load
 - SA Converter regulates constant current
 - Current level driven to match commanded battery charge current
- Peak Power Mode
 - SA available power < load
 - SA Converter reflected input voltage adjusted to maximum power point

Aviation – A Complementary Sector

POWER CORE MODULE MAICMMC40X120A SiC based flight critical actuation motor drive

- Leading the way for future space applications
 - Serial Bus Control
 - Embedded FPGA Controller
 - 2 year SiC proof of life program
 - SEE radiation requirement

Features

- SiC MOSFET and SiC Schottky diode for power conversion
 - Low RDS(on) for MOSFET
 - Zero Reverse Recovery for SiC SBD
 - High Power Efficiency
- Integrated Gate drive circuitry with isolation and shoot through detection
- 5kVA / 25Amp drive capability
- Integrated control card with embedded FPGA for H-bridge control
- High speed LVDS communication bus for data exchange
- Internal three phase current sense, DC bus voltage sense circuitry and temperature monitoring
- AlSiC base plate for extended reliability and reduced weight
- Si3N4 substrate for improved thermal performance
- Direct mounting to Heatsink (Isolated Package)
- Custom Variants are available. Please contact factory

Microsemi

SPACE FORUM

Thank You

Power Matters."

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 email: sales.support@microsemi.com Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

©2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Power Matters.TM 34