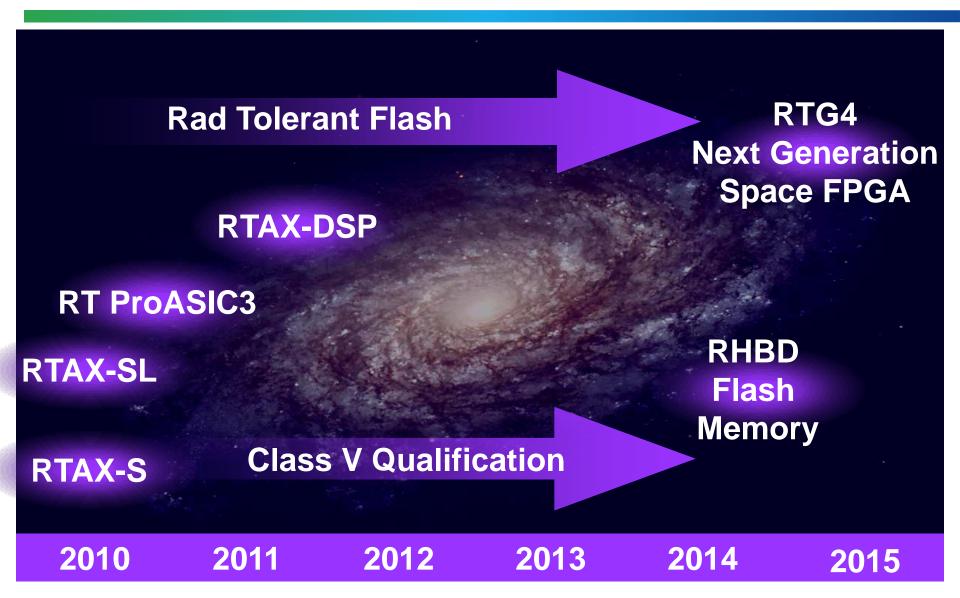
Power Matters


Technology Roadmap for Digital Space Flight Products

Microsemi Space Forum Russia – November 2013

Ken O'Neill Director of Marketing, Space and Aviation, SoC Products Group

Roadmap for Space-Flight FPGAs

Agenda

- RTG4 Next Generation FPGAs for Space Flight
- RHBD Flash Memory for Space
- Space System Managers

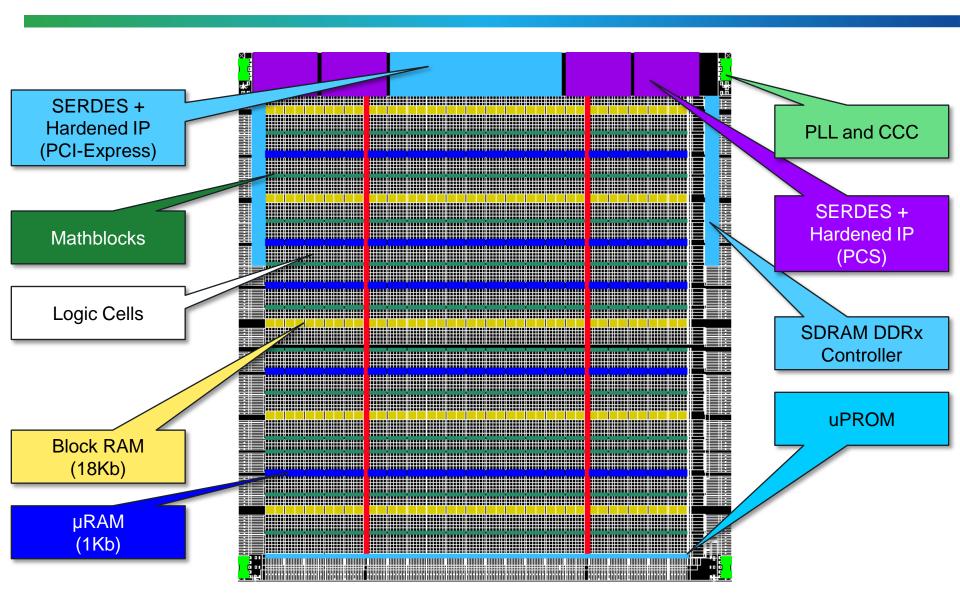
Next Generation Space FPGAs

- Designed for high-bandwidth data processing in payload applications
 - Abundant high-performance programmable logic fabric
 - Embedded high speed multiply-accumulate blocks
 - Ample on-board memory with fast access time, two block sizes
 - High performance I/Os SERDES, LVDS, DDR2, ...
- Based on 65nm Flash low power process
 - Naturally resistant to configuration upsets
 - Non-volatile configuration live at power-up, no external boot memory needed
 - Low static power
- RTG4 radiation enhanced for GEO and deep space
 - Total ionizing dose, Single event effects, Latch-up immunity

RTG4

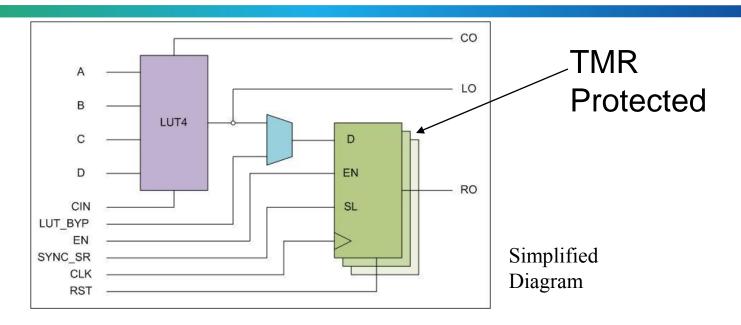
RTG4 Family Resources

	RT4G075	RT4G150	RT4G200
LUT4 + TMR/SET FF	77,616	151,728	203,400
User IO (non-SERDES)	528	720	816
RAM18K Blocks	111	209	269
uRAM1K Blocks	112	210	270
RAM Mbits	2.1	3.9	5.0
UPROM Kbits	254	381	417
18x18 Multiply-Accumulate Blocks	224	462	594
SERDES lanes	16	24	32
DDR2/3 SDRAM Controller (with ECC)	2x32	2x32	2x32
Globals	24	24	24
PLLs (Rad Tolerant)	8	8	8
Spacewire Interfaces	16	16	16
PCI Express Endpoints	2	2	2
Packages			
CG1432	✓		
CG1657	✓	✓	
CG2092		✓	✓

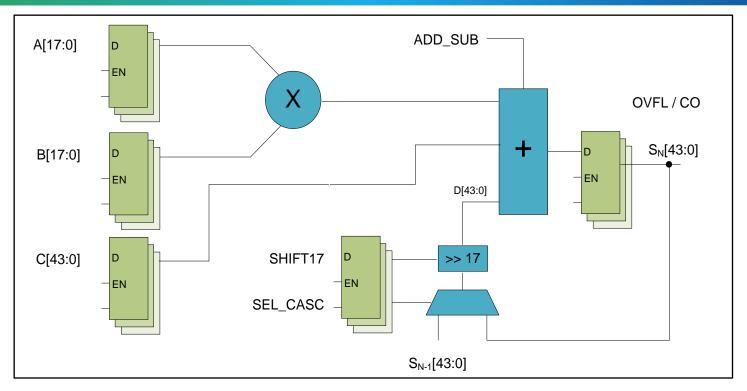


Radiation Specifications

- Total Dose
 - > 100 KRad TID
- Single Event Effects
 - No configuration failures (to be tested to > 110 MeV-cm²/mg)
 - No single event latch-up (to be tested to > 110 MeV-cm²/mg)
 - Mitigation for single event upsets
 - Flip-flops with TMR and asynchronous self-correction (LET_{TH} > 37 MeV-cm²/mg)
 - Flip-flops in the logic fabric
 - Flip-flops in embedded features Mathblocks etc
 - On-chip SRAM (RAM18K and uRAM1K)
 - Built-in EDAC
 - 1E-10 errors/bit-day, GEO solar min
 - Mitigation of single event transients
 - Logic cells hardened with SET filter
 - SET filter can be individually enabled / disabled for higher performance
 - Target 1E-8 errors/bit-day, GEO solar min

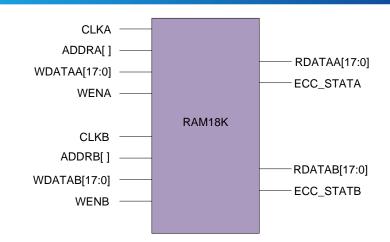


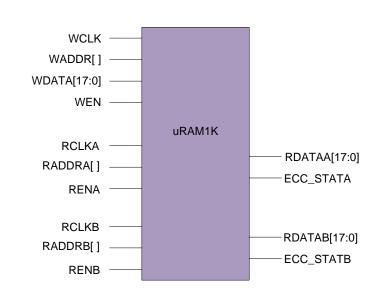
Flexible Chip Architecture (RT4G150)


RTG4 Logic Module

- Dedicated Flip-flop to enable efficient TMR hardening
 - With enable, global asynchronous set/reset, and local synchronous set/reset
- Fast carry chain to complement Mathblock performance
 - Arithmetic functions (add/subtract)
 - Target 300 MHz for 32-bit functions (no SET filter)
 - Target 250 MHz for 32-bit function (SET filter deployed)
- Industry standard LUT4 for efficient synthesis
- High utilization
 - LUT4 and flip-flop in same module can be used independently
 - Hierarchical routing architecture enables >95% module utilization

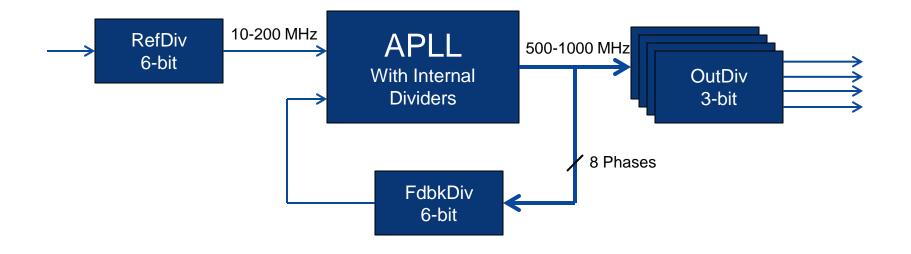
RTG4 Mathblock




- 18 x 18 multiplier with advanced accumulate
 - New 3-input adder function: (C + D) +/- (A * B)
- High performance for signal processing throughput
 - 250 MHz with SET mitigation
 - 300 MHz without SET mitigation
- Optional SEU-protected registers on inputs and outputs (including C input)

RTG4 Memory Blocks

- Radiation Tolerant
 - Resistant to multi-bit upset
 - Built-in EDAC (SECDED)
- LSRAM18K
 - Dual-port and two-port options
 - High performance synchronous operation
 - Example usage
 - Large FFT memory
- uRAM1K
 - Three Port Memory
 - Synchronous Write Port
 - Two Asynchronous or Synchronous Read Ports
 - Example usage
 - Folded FIR filters and FFT twiddle factors
- Mixed port sizes
 - Write and read port sizes can be different
- 300 MHz performance


RTG4 Memory Organization

- 18-bits data + 6-bits EDAC
- LSRAM Configuration Options
 - 512 x 36-bits (Optional EDAC)
 - 1024 x 18-bits (Optional EDAC)
 - 2048 x 12-bits (No EDAC)
 - 2048 x 9-bits (No EDAC)
- uRAM1K Configuration Options
 - 64 x 18-bits (Optional EDAC)
 - 128 x 12-bits (No EDAC)
 - 128 x 9-bits (No EDAC)
- Block enables permit concatenation of multiple blocks
 - Deeper and wider configurations

RTG4 APLL / CCC

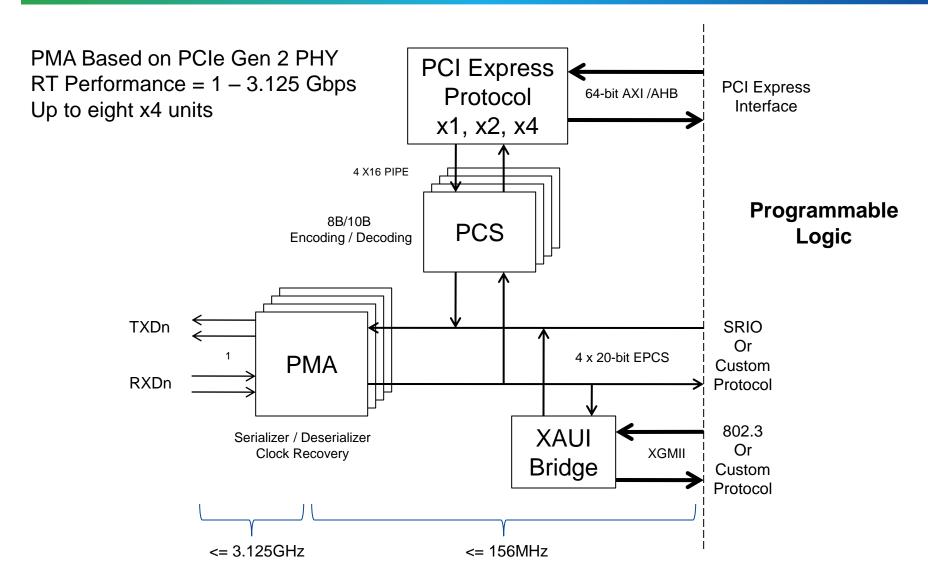
8 PLL's Per Device

Global Clock Network

- 24 per device
- Frequency range: 0 400 MHz

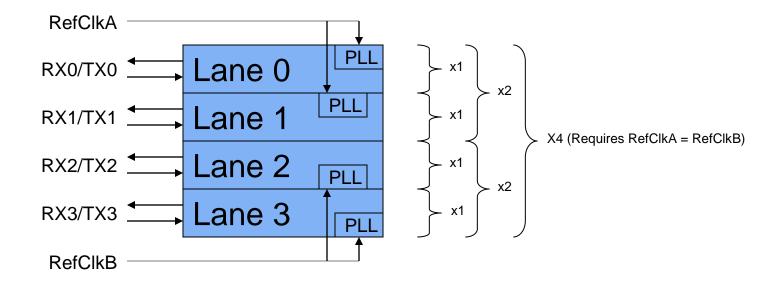
uPROM Non-volatile Memory

- Non-volatile memory based on FPGA configuration cell
 - Configuration upset immune
 - TID >= 100 Krad
- 254 Kbits to 417 Kbits storage for DSP coefficients
- Initialize RAMs and embedded IP from uPROM
 - Power-on initialization
 - Modification of coefficients during normal operation
- Read performance of 25 MHz x 32-bits



General Purpose IO

- Single ended standards
 - LVCMOS from 1.2V to 3.3V
 - I V/TTI
 - PCI
- Voltage reference standards (600+ Mbps)
 - Includes on-chip termination
 - SSTL2, SSTL18 and SSTL15
 - For DDR2/DDR3 SDRAM memories
 - HSTL18 and HSTL15
 - For SRAM memories
- Differential I/O standards
 - Includes on-chip termination
 - True LVDS (600+ Mbps)
 - Mini-LVDS, M-LVDS, RSDS, LVPECL



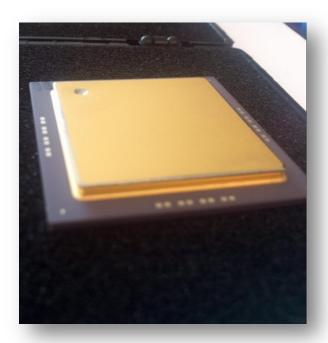
3.125Gbps SERDES

SERDES Ganging Options

DDRx Controller

- **Built-in DDR Controller**
- 8/16/32-bit External Data Bus
- High Performance
 - Operation speed to 667 Mbps (333 MHz Clock)
 - Support for DDR2 and DDR3
- ECC Options
 - X16 and X32 widths

Performance Summary


- General purpose logic
 - 250 MHz system performance with SET mitigation deployed
 - 300 MHz system performance without SET mitigation
 - 300 MHz DSP support performance (adders, delays, etc.)
- Mathblock
 - 250 MHz pipelined performance with SET mitigation deployed
 - 300 MHz pipelined performance without SET mitigation
- RAM18K and uRAM1K
 - > 300 MHz
- IO
 - > 600 Mbps LVDS and 667 Mbps DDRx SDRAM data
 - SERDES to 3.125 Gbps
- Overall
 - 250 MHz general system performance with SET mitigation deployed
 - 300 MHz signal processing performance without SET mitigation

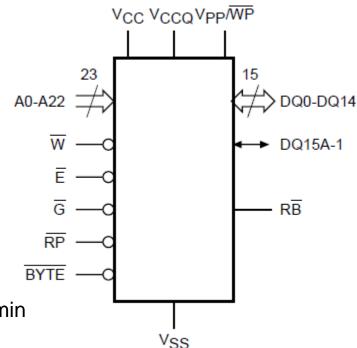
RTG4 Packaging Summary

- Flip chip assembly
- Hermetically sealed cavity
- Internally-mounted BME decoupling capacitors
- Expect that this is qualifiable as Class V
 - Pending any spec changes in Mil Prf 38535 rev K

Thermal adhesive between die and seal lid (passed RGA <5000ppm, passed NASA outgas data) Decoupling Capacitors Kovar Lid (BME) placed inside RTG4 Die Under fill -passed RGA (<500PPM) (passed outgas to NASA spec)

RTG4 Product Availability

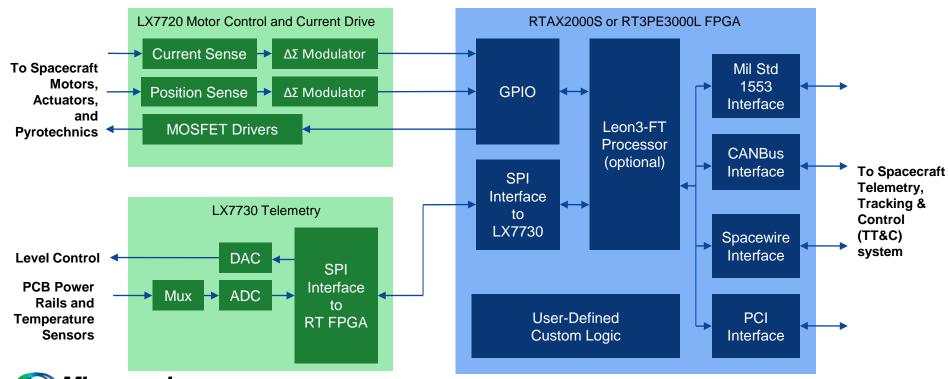
- Non-RT SmartFusion2 and Igloo2 for emulation and development
 - Not footprint compatible with RTG4, no SEU hardening, timing differences
 - Software general availability: NOW
 - Commercial device availability: NOW
- RT devices for space flight applications
 - Initial device: RT4G150
 - Early SW access: End 2013
 - Sample RT4G150 silicon: 2015
 - 883B flight units: 2016
 - QML qualification: 2016



Rad Hard By Design Flash Memory for Space

RHBD Non-Volatile Memory for Space

- 128 Mbit Flash memory
 - NOR-flash architecture
 - Parallel user interface address bus, data bus
 - JTAG user interface for read and write
 - 30 nsec read / write access time
- Radiation hardened by design
 - TID hard to 300Krad
 - SEL immune
 - SEU protected to LET_{TH} > 37 MeV-cm²/mg
 - Orbital error rate <1E-10 errors/bit-day, GEO solar min
 - This is NOT upscreened commercial product
- Space-grade manufacturing and packaging
 - Mil Std 883 Class B, QML class Q, QML class V
 - Hermetic packaging, planning for 100-pin CQFP
- Availability of flight-qualified parts expected 2015



Space System Managers

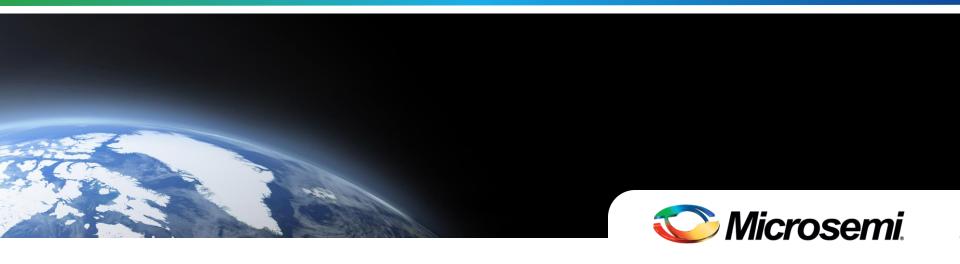
Space System Managers

- Standard off-the-shelf solutions for telemetry and motor control in space
- Microsemi mixed signal standard ASICs
 - LX7720 current sense, rotary position sense and MOSFET drivers
 - LX7730 voltage, current and temperature telemetry
- Microsemi RT FPGAs implement digital interface with satellite control bus

Space System Manager Concept

- Space System Manager (SSM) is a combination of an FPGA with a special purpose analog or power companion IC
- The Companion IC integrates circuits that control or monitor typical application oriented interfaces but has minimal hard coded internal logic
- Using HDL modules the FPGA can be configured to customize the SSM for specific applications
- The Companion IC is a standard part that is space qualified and immediately available
- The SSM solution is scalable by selecting one or more companion ICs for an application and selecting an FPGA model number with a sufficient number of gates

Summary



Summary

- Microsemi is dedicated, focused, and investing in space products and capabilities
- Microsemi has been in the space business as a partner with our customers for more than 55 years
- Microsemi has the system, circuit, and production experience in space to be a long term supplier of state-ofthe-art products for long life cycles
- Microsemi uses a system view of applications, and a broad range of technology and design experience to build the bestin-class products for space

Power Matters

Thank You