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Purpose
This application note highlights the design guidelines and different implementation methods to achieve
better performance results while implementing wide-multipliers, 9-bit×9-bit multiplications, and extended
addition with the IGLOO®2 field programmable gate array (FPGA)/SmartFusion®2 system-on-chip (SoC)
FPGA mathblock (MACC). The 9-bit×9-bit multiplications, wide-multiplier, and extended addition are
ideal for applications with high-performance and computationally intensive signal processing operations.
Some of them are finite impulse response (FIR) filtering, fast fourier transforms (FFTs), and digital
up/down conversion. These functions are widely used in video processing, 2D/3D image processing,
wireless, industrial applications, and other digital signal processing (DSP) applications.
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Introduction
Introduction
The IGLOO2/SmartFusion2 mathblock architecture has been optimized to implement various common
DSP functions with maximum performance and minimum logic resource utilization. The dedicated routing
region around the mathblock and the feedback paths provided in each mathblock result in routing
improvements. The IGLOO2/SmartFusion2 mathblock has a variety of features for fast and easy
implementation of many basic math functions. The high speed multiplier (9×9, 18×18), adder/subtractor,
and accumulator in mathblock delivers high speed math functions. For more information on
IGLOO2/SmartFusion2 mathblock, refer to IGLOO2 FPGA Fabric User Guide/SmartFusion2 FPGA
Fabric User Guide and for usage of mathblock refer to the Inferring Microsemi SmartFusion2 MACC
Blocks Application Note.

This application note explains the design considerations and different methods for implementing the
following:

• Using 9x9 Multiplier Mode

• Wide-Multiplier

• Extended Addition

References
The following documents are referenced in this document.

• IGLOO2 FPGA Fabric User Guide 

• SmartFusion2 FPGA Fabric User Guide 

• Inferring Microsemi SmartFusion2 MACC Blocks Application Note 

• IGLOO2/SmartFusion2 Hard Multiplier AddSub Configuration User Guide 

• IGLOO2/SmartFusion2 Hard Multiplier Accumulator Configuration User Guide 

• IGLOO2/SmartFusion2 Hard Multiplier Configuration User Guide 
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Design Requirements
Table 1 shows the design requirements. 

Using 9x9 Multiplier Mode

Overview
The 9-bit×9-bit multipliers are extensively used in low precision video processing applications. In video
applications, the color conversion formats such as YUV to RGB, RGB to YUV, and RGB to YCbCr,
NTSC, PAL etc., 9-bit×9-bit multipliers are used. In image processing, the operations involving 8-bit RGB
such as 3×3, 5×5, 7×7 matrix multiplications, image enhancement techniques, scaling, resizing etc., 9-
bit×9-bit multipliers are used. The IGLOO2/SmartFusion2 device addresses these applications by using
mathblock in dot product (DOTP) mode. 

The following sections explain the DOTP configurations and capabilities, guidelines, different
implementation methods with design examples, and their performance and simulation results.

The mathblock when configured in DOTP mode has two independent 9-bit×9-bit multipliers followed by
adder. The sum of the dual independent 9×9 multiplier (DOTP) result is stored in upper 35 bits of 44-bit
register. In DOTP mode, mathblock implements the following equation: 

Multiplier result = (A[8:0] x B[17:9] + A 17:9] x B[8:0]) x 29

EQ 1

Configuration
The IGLOO2/SmartFusion2 mathblock in DOTP mode can be used in three different configurations.
These configurations are available in the Libero software, Catalog > Arithmetic as given below:

• Multiplier

• Multiplier accumulator

• Multiplier addsub

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

Host PC Any 64-bit Windows Operating System 

Software Requirements

Libero® System-on-Chip (SoC) v11.4

Modelsim® v10.3
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Using 9x9 Multiplier Mode
 Figure 1 shows the dot product multiplier adder with the IGLOO2/SmartFusion2 mathblock. 

Figure 1 • Dot Product Multiplier Adder

A0[8:0] SF2/GL2 MACC

CARRYOUT/OVERFLOW
B0[8:0]

A1[8:0]

B1[8:0]

C[43:0]
Carryin

C[43:0]

CDOUT[43:0]

PN = PN-1 + (A0*B0 + A1*B1) + Carryin + C[43:0]
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Figure 2 shows the dot product multiplier accumulator with mathblock.

Figure 3 shows the implemented DOTP multiplier.

Figure 2 • Dot Product Multiplier Accumulator

PN = (A0*B0 + A1*B1) + Carryin + C[43:0] + CDIN

Carryin

B0[8:0]
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B1[8:0]

C[43:0]

Figure 3 • Dot Product Multiplier

A0[8:0]
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Using 9x9 Multiplier Mode
Math Functions with DOTP
When DOTP is enabled, several mathematical functions can be implemented. Some of them are listed in
Table 2.

Single Mathblock (DOTP Enabled)

In this method, several 9-bit mathematical functions can be implemented using DOTP mode with a single
mathblock.

Guidelines
Microsemi recommends to use the following when designing with DOTP multiplier:

• To perform Y = A×B + C×D equation, instantiate Arithmetic IP cores with DOTP enabled for 9×9
multiplications. This avoids inferring two 18×18 multipliers. 

• Register the inputs and outputs, when using Arithmetic IP cores (Mathblock).

• The registered inputs and outputs must use the same clock.

• Use the cascaded feature to connect the multiple mathblocks. This is achieved by connecting the
cascade output (CDOUT) of one MACC block to the cascade input (CDIN) of another mathblock.

For more information on VHDL/Verilog coding styles for inferring mathblocks, refer to the Inferring
Microsemi SmartFusion2 MACC Blocks Application Note.

Design Examples 
This section illustrates the 9×9 Multiplier mode usage with the following design examples:

• Example 1: 6-tap FIR Filter Using Multiple Mathblocks

• Example 2: 6-tap FIR Filter Using Single Mathblock

• Example 3: Alpha Blending

Example 1: 6-tap FIR Filter Using Multiple Mathblocks
This design example (Figure 4 on page 7) shows the 6-tap FIR filter (systolic FIR filter) implementation
with multiple mathblocks and also shows the performance results of the implementation.

Design Description
The 6-tap FIR filter design with multiple mathblocks is a systolic architecture implementation, refer
Figure 4 on page 7. This architecture utilizes a single IGLOO2/SmartFusion2 mathblock to perform two
independent 9×9 multiplications followed by an addition, instead of using two mathblocks that have a
single multiplication unit. With this architecture implementation, only three mathblocks are required to
design a 6-tap FIR filter. The 6-tap FIR design uses cascaded chains (CDOUT to CDIN) for propagating
the sum to achieve the best performance and reducing fabric resources. In this implementation
technique, the mathblock is configured as DOTP multiplier Adder. Eight Pipeline registers are added in
fabric only at the input.

Table 2 • Math Functions with DOTP

Conditions Implemented Equations

P = A[8:0] = B[17:9]; M = A[17:9]; N = B[8:0] Y = P² + M×N

P = A[8:0] = B[17:9]; Q = A[17:9] = B[8:0] Y = P² + Q²

A[8:0] = B[17:9] = 1; B = A[17:9]; Q = B[8:0] Y = 1 + Q²

A[8:0] = B[17:9] = 1; P = A[17:9]; Q = B[8:0] Y = 1 + P×Q

P = A[8:0] = A[17:9]; Q = B[17:9] = B[8:0] Y = P×Q + P×Q = 2×P×Q
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
When designing n-tap systolic FIR filters with IGLOO2/SmartFusion2 mathblock for 9-bit input data and
9-bit coefficient, only n/2 mathblocks are utilized, saving n/2 mathblock resources.

In this design, the FIR filter generates outputs for every clock cycle after an initial latency of 10 clock
cycles. 

Total initial latency = 8 clock cycles for 6 input samples + 2 clock cycles (MACC block input and output
are registered).

= 10 clock cycles

Design Files

For information on the implementation of the 6-tap FIR filter design, refer to the FIR_6_tap.vhd design
file provided in <Design files 'FIR_6_TAP>.

Figure 4 • 6-tap Systolic FIR Filter

reset_n

Xin[8:0]

clk

C0 [8:0] C1 [8:0] C2 [8:0] C5 [8:0]

CDIN CDIN CDIN

SF2/GL2 MACC SF2/GL2 MACC SF2/GL2 MACC

Yn_out

Zeros

C4 [8:0]C3 [8:0]

6 - tap FIR (9-bit x 9-bit)
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Using 9x9 Multiplier Mode
Hardware Configuration
For 6-tap systolic FIR filter, mathblock is configured as DOTP multiplier adder with inputs and outputs
registered, refer to Figure 5.

Synthesis and Place-and-Route Results
Figure 6 on page 9 shows the 6-tap systolic FIR filter resource utilization that uses multiple mathblocks. 

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Figure 5 • DOTP Multiplier Adder for 6-tap Systolic FIRSup
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Resource Utilization

Place-and-Route Results 

The frequency of operation is achieved with this implementation after place-and-route, refer to Figure 7.

Simulation Results
Figure 8 shows the post synthesis simulation results. The coefficient values (c0-c5) are configured in
design as C0 = 5, C1 = 3, C2 = 7, C3 = -4, C4 = 1, C5 = -2. The simulation results show that the 6-tap FIR
filter outputs on every clock cycle. It has an initial latency of 10 clock cycles.

Figure 6 • Resource Utilization for a 6-tap Systolic FIR Filter 

Figure 7 • Place-and-Route Results for 6-tap Systolic FIR Filter 

Figure 8 • 6-tap FIR Filter Post Synthesis Simulation
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Using 9x9 Multiplier Mode
Example 2: 6-tap FIR Filter Using Single Mathblock
This design example shows the 6-tap FIR filter implementation with single-mathblock (MAC FIR filter)
and also shows the performance result of the implementations, refer to Figure 9.

Design Description
The 6-tap FIR filter can also be implemented with a single mathblock as shown in Figure 9. This design
uses coefficient memory where coefficients are stored and input memory that stores input samples. The
control logic reads two consecutive coefficients from the coefficient memory and two consecutive input
samples from the input memory and provides it to mathblock. Due to dual independent 9-bit×9-bit
multipliers, the filter result is calculated in four clock cycles instead of six clock cycles that has a single
multiplier and accumulator.

If a single multiplier and accumulator is used for sum of the products, the number of cycles taken for
result is same as the number of coefficients or number of taps used in filter design. With this relationship,
the performance of a single multiplier and accumulator is given as follows:

Maximum input sample rate = System Clock / (Number of taps + 1)

With IGLOO2/SmartFusion2 mathblock, that is, for two products followed accumulator, the sample rate
= Clock /((1/2 × number of taps)+1)

For 6-tap FIR filter, sample rate = Clock/(6/2 + 1) = Clock/4 

Design Files
For information on the implementation of the 6-tap FIR filter design, refer to the MAC_FIR_6_tap.vhd
design file provided in <Design files' FIR_6_TAP_singleMACC>.

Hardware Configuration
In this implementation, the mathblock used is DOTP multiplier accumulator as shown in Figure 10 on
page 11.

Figure 9 • 6-tap FIR Filter With Single Mathblock

clk

Xin[8:0]

SF2/GL2 MACC

Single MAC 6-tap FIR (9-bit×9-bit) 

Yn_out

Coefficient 
memory

8×9
(depth×width)

Input samples
×9

(depth×width)

Control 
logic

Coef 1 [8:0]
Coef 2 [8:0]

Input 2 [8:0]
Input 1 [8:0]

Coef_addr

Data_addrreset_n
8

Coef_in[8:0]

Coef_valid

Xin_valid

Filter_en 

FiltOp_en

ready 
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
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Figure 10 • Dot Product Multiplier AccumulatorSup
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Using 9x9 Multiplier Mode
Synthesis and Place-and-Route Results
Figure 11 shows the resource utilization results for the 6-tap FIR filter with a single mathblock.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Resource Utilization

Place-and-Route Results

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 12.

Example 3: Alpha Blending
The following example shows the implementation of Alpha blending used in image processing as shown
in Figure 13 on page 13. Alpha blending is the process of combining a translucent foreground color with
a background color, thereby producing a new blended color. 

Figure 11 • Resource Utilization Results for a Single MAC FIR

Figure 12 • Place-and-Route Results for Single MAC FIRSup
ers

ed
ed
Revision 1 12



Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Design Description
The Alpha blending for each Rnew, Gnew, Bnew as shown in Figure 13 is implemented using the following
equations:

Rnew = (1-alpha) x R0 [7:0] + alpha x R1[7:0]

EQ 2

Gnew = (1-alpha) x G0 [7:0] + alpha x G1[7:0]

EQ 3

Bnew = (1-alpha) x B0 [7:0] + alpha x B1[7:0]

EQ 4

This implementation uses three mathblocks to output R', G', B' values simultaneously for blended image.
Each mathblock is configured as dot product multiplier for performing 9-bit×9-bit multiplications. 

Hardware Configuration
For Alpha blending, mathblock is configured as DOTP multiplier with inputs and outputs registered.

Synthesis and Place-and-Route Results
Figure 14 on page 14 shows the Alpha blending resource utilization using three mathblocks. 

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Figure 13 • Alpha Blending Implementation Using IGLOO2/SmartFusion2 Mathblocks

SF2/GL2 MACC SF2/GL2 MACC SF2/GL2 MACC

Alpha Alpha Alpha(1-Alpha) (1-Alpha) (1-Alpha)

Rnew Gnew Bnew

RGB0[23:0]
(Image1 Pixel)

RGB1[23:0]
(Image2 Pixel)

Sup
ers

ed
ed
13 Revision 1



Wide-Multiplier
Resource Utilization

Place-and-Route Results 

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 15.

Wide-Multiplier 

Overview
The wide-multipliers are extensively used in high precision (more than 18×18 multiplication) wireless and
medical applications. These applications require high precision at every stage when implementing
complex arithmetic functions used in FFT, filters etc. Military, test, and high-performance computing also
require performance and precision requirements, and sometimes require single-precision and double-
precision floating-point calculations for implementing complex matrix operations and signal transforms. 

To implement DSP functions that require high precision, the IGLOO2/SmartFusion2 device offers
implementing wide-multipliers (that is, operands width more than 18×18) with the IGLOO2/SmartFusion2
mathblock. The wide-multipliers are implemented by cascading multiple IGLOO2/SmartFusion2
mathblocks using CDOUT and CDIN to propagate the result and to achieve the best performance
results. 

Figure 14 • Resource Utilization Results for Alpha Blending

Figure 15 • Place-and-Route Results for Alpha Blending 
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
This section describes wide-multiplier guidelines and different implementation methods with design
example to achieve the best performance results. 

Configuration 
When implementing the wide-multipliers, the IGLOO2/SmartFusion2 mathblock is configured in Normal
mode to function as normal multiplier (18×18), normal multiplier accumulator, and normal multiplier
addsub.

Guidelines
It is recommended to use the following for implementing wide-multiplier to achieve the best results.

• The inputs and output are registered with the same clock.

• Add pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (Mathblock) are
used.

• CDOUT of one mathblock is connected to the CDIN of another mathblock.

Design Examples
This section shows the wide-multiplier with the following design examples:

• Multiplier 32×32 implementation using multiple mathblock

• Multiplier 32×32 implementation using single mathblock

The following section explains the 32×32 multiplier implementation with multiple mathblocks and with
single mathblock. It also shows the performance results for both the implementations.

Example1: Multiplier 32×32 Implementation Using Multiple Mathblocks
The following section explains the 32×32 multiplier implementation with multiple mathblocks and shows
the performance results.

Design Description
The 32×32 multiplier is implemented using the following algorithm:

A = (AH × 217) + AL;

B = (BH × 217) + BL;

A×B = (AH × 217 + AL) × (BH × 217 + BL)

     = ((AH×BH) × 234) + ((AH×BL +AL×BH) × 217) + AL×BL
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Wide-Multiplier
The 32×32 multiplier is implemented efficiently using four mathblocks without using fabric resources to
produce 64-bit result as shown in Figure 16 and Figure 17 on page 17. To achieve best performance
results, mathblock input and output registers are to be used. 

Figure 16 • 32x32 Multiplication
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
When implementing using HDL, to infer mathblock input and output registers by synthesis tool, pipeline
stages are added at output and input to achieve maximum throughput. In this design, two pipeline stages
are added at input and output. Refer to design files for information on implementation of 32x32 multiplier.

Design Files

For information on the implementation of the multiplier 32×32 design, refer to the
Mult32×32_multipleMACC.vhd design file provided in <Design files -> Mult32×32_multipleMACC>.

Hardware Configuration
For 32×32 multiplier using single mathblock, mathblock is configured to function as normal multiplier,
normal multiplier addsub with ARSHFT enabled, inputs and outputs registered.

Normal Multiplier Accumulator —> Pn = Pn-1 + CARRYIN + C +/- A0×B0 

        Normal Multiplier Addsub —> Pn = D + CARRYIN + C +/- A0×B0 (if ARSHFT is disabled)

 —> Pn = (D>>17)   + CARRYIN + C +/- A0×B0 (if ARSHFT is enabled)

Normal Multiplier —> P = A0×B0

Synthesis and Place-and-Route Results
Figure 18 on page 18 shows the 32×32 multiplier resource utilization when using multiple mathblocks. 

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Figure 17 • Implementation of 32x32 Multiplier
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Wide-Multiplier
Resource Utilization

Place-and-Route Results 

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 19.

Example 2: 32×32 Multiplier Implementation Using Single Mathblock
The following section explains the 32×32 multiplier implementation with a single mathblock and also
shows the performance results.

Design Description
The 32×32 multiplier is implemented using the same algorithm as shown in "Example 1: 6-tap FIR Filter
Using Multiple Mathblocks" section on page 6.

A×B = ((AH×BH) × 234) + ((AH×BL +AL×BH) × 217) + AL×BL

= ((AH×BH) × 234) + (AH×BL × 217) + (AL×BH × 217) + AL×BL

In this implementation, the four multiplications are computed using a single mathblock in sequential
manner. The control finite-state machine (FSM) in the design provides the inputs to the mathblock
sequentially in four successive states as shown in Figure 20 on page 19 and appropriately enables the
shift operation in the corresponding state. The mathblock used in this design is configured as normal
multiplier accumulator Arithmetic IP core. Refer to the Hard Multiplier Accumulator User Guide for
configuration. 

Figure 18 • Resource Utilization for Multiple Mathblocks

Figure 19 • Place-and-Route Results for 32×32 With Multiple Mathblock 
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
The time taken to generate output = 4 clock cycles for providing inputs

+ 2 clock cycles as the inputs and output is registered 

+ 2 clock cycles by mathblock at input and output.

= 8 clock cycles

Design Files 

For more information on the implementation of the multiplier 32×32 design, refer to the Mult32×32.vhd
design file provided in <Design files'Mult32×32>.

Hardware Configuration
For 32×32 multiplier using single mathblock, it is configured to function as normal multiplier accumulator
with inputs and outputs registered.

Synthesis and Place-and-Route results
Figure 21 on page 20 shows the 32×32 multiplier resource utilization when using a single mathblock. 

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Figure 20 • Multiplier 32×32 with One MACC Block
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Wide-Multiplier
Resource Utilization

Place-and-Route Results 

The frequency of operation is achieved with this implementation after place-and-route is shown in
Figure 22.

Simulation Results
Figure 23 shows the post synthesis simulation results. The simulation result shows that the multiplier
outputs on 8 clock cycles after input is provided. 

Figure 21 • Resource Utilization for a Single Mathblock

Figure 22 • Place-and-Route Results for 32×32 Multiplier with Single Mathblock 

Figure 23 • Multiplier 32×32 Post Synthesis Simulation Results
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Extended Addition

Overview
Mathblock has a 3-input adder and supports accumulation up to 44 bits. In some applications, such as
floating point multiplication, complex-FFT and filters, high precision data has to be maintained at every
stage. These DSP functions require more than 44-bit addition (extended addition) which can be realized
using the IGLOO2/SmartFusion2 mathblock (3-input adder) and fabric logic. The extended addition is
implemented by dividing the addition into two parts. The lower part (LSB) of addition is implemented
using IGLOO2/SmartFusion2 mathblock and upper part (MSB) of addition is implemented with minimal
fabric adder logic. 

For a 2-input addition, the inputs can be from any one of the following:

1. CDIN and C input 

2. Multiplier output and CDIN

3. Multiplier output and C input

For a 3-input addition, the inputs are from multiplier output, CDIN, and C-input. To perform arithmetic
additions, the IGLOO2/SmartFusion2 mathblock provides Carryin input and Carryout signal for
propagating the carry from one mathblock to another mathblock or from mathblock to fabric logic.

Configuration
When implementing the extended addition, the IGLOO2/SmartFusion2 mathblock is configured in
Normal mode to function as normal multiplier addsub.

Guidelines
• Mathblock must be configured to function as multiplier adder/subtractor to perform 2-input

extended signed addition.

• Add Pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (Mathblock) are
used.

• Make sure that the CDOUT of one mathblock is connected to the CDIN of another mathblock.

Design Examples
This section shows the extended addition with the following design examples:

• 2-input extended signed addition 

• 3-input extended signed addition

Example 1: 2-input Signed Extended Addition
The following section shows a 2-input extended signed addition—if one operand is more than 44-bit
wide. In this section, it is also shown that the 2-input extended signed addition implementation logic with
fabric resources are implemented with the multiplier adder.Sup
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Extended Addition
Design Description

2-Input Addition

For computing 2-input extended signed addition Z = U + V, with one operand width more than the
mathblock output width 44, the following logic must be implemented in fabric as shown in Figure 24.

Where U is an m-bit value (where m > 44), V is a sign-extended n-bit value (where n < 44). The 2-input
extended signed addition is divided in to two parts. The lower part is computed in the mathblock and the
upper part is computed in the fabric. 

Z = (Sumupper, Sumlower)

EQ 5

The lower part of the sum, Z = U + V, is calculated by providing the U[(n-1): 0], V[(n-1): 0] inputs to the
mathblock, where n = 44 is mathblock output width.

Sumlower = U[(n-1): 0] + V[(n-1): 0]

EQ 6

The Upper part of sum Z = U + V is calculated as shown below:

Sumupper = U[m: n] + V[m: n]    (where U[m: n], V[m: n] are the MSB bits)

EQ 7

V [m: n] = {S, S….S, X},

S = P[n-1] AND X 

Where,
P [n-1] is MSB of Sumlower

X is the overflow of the Sumlower (from the mathblock) 

(m-n-1) number of S's must be appended in MSB bits of the V[m: n]. 

Hardware Implementation
Figure 25 on page 23 shows the operand width of C as 52-bit wide and explains the implementation for
2-input extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in
Normal mode. The upper part and lower part of the sum are shown as follows:
For 52-bit, 2-input extended signed addition, 

Sumlower = C[43:0] + A[17:0]×B[17:0] 

Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}

Result [51:0] = {Sumupper, Sumlower}

Result [51:0] = {C[51:44] + {S, S, S, CARRYOUT}}, P[43:0]
Where,
S = P[43] AND CARRYOUT

Figure 24 • 2-input Extended Signed Addition
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Design Files
For information on the implementation of the 2-input extended addition, refer to the
Extended_adder_2_input.vhd design file provided in <Design files'Extended_adder_2_input>.

Synthesis and Place-and-Route Results
Figure 26 on page 24 shows the 2-input extended addition resource utilization when using the mathblock
and fabric logic.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Figure 25 • Fabric Logic for 2-input Extended Addition
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Extended Addition
Resource Utilization with Fabric Adder Logic

Place-and-Route Results with Fabric Adder Logic 

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 27.

Figure 26 • Resource Utilization for 2-input Extended Addition with Fabric Resources

Figure 27 • Place-and-Route Results for 2-input Extended Addition with Fabric Resources

Sup
ers

ed
ed
Revision 1 24



Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Simulation Results
Figure 28 show the post synthesis simulation results. The simulation result shows that the 2-input
addition outputs on the next clock cycle after the input is provided. 

Example 1: 3-input Signed Extended Addition
The following section explains the 3-input extended signed addition, if one or more operands are more
than 44-bit wide. In this section, it shows the 3-input extended signed addition implementation logic with
fabric resources.

Design Description

3-input Extended Addition

For performing 3-input extended addition, Z = T + U + V, with two operands width more than the
mathblock input width 44, the following logic must be implemented in fabric as shown in Figure 29. 

Where, T and U are m-bit values (where m > 44), V is a sign-extended n-bit value (where n < 44). The 
3-input extended signed addition is divided in two parts. The lower part is computed in the mathblock and
the upper part is computed in the fabric. 

Z = {Sumupper, Sumlower}

EQ 8

The lower part of the sum Z = T + U + V, is calculated by providing the {'0', T[(n-2): 0]}, 

{'0', U [(n-2}: 0]}, V [(n-1): 0] inputs to Mathblock, where n = 44 is mathblock output width.

Sumlower = {'0', T[(n-2): 0]} + {'0', U[(n-2): 0]} + V[(n-1): 0]

EQ 9

The upper part of sum Z = T + U + V is calculated as shown below

Sumupper = T[m: n-1] + U[m: n-1] + V[m: n]

EQ 10

Figure 28 • Post Synthesis Simulation Results for 2-Input Extended Addition with Fabric Adder

Figure 29 • 3-input Extended Signed Addition
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Extended Addition
(where T[m: n], U[m: n], V[m: n] are the MSB bits)

V [m: n] = {S, S….S, X, P [n-1]} 

           S = P[n-1] AND X

Where 'P [n-1]' is the MSB bit of the Sumlower

X is the overflow of the Sumlower (from the mathblock),

(m-n-2) number of S's should be appended in MSB bits of the V[m: n].

Hardware Implementation
Figure 30 shows the operand widths of C, D are 52-bit wide and explains implementation for 3-input
extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in Normal
mode. The lower part of the sum and upper part of the sum are shown as follows:

For 52-bit, 3-input extended signed addition,

Sumlower = P [43:0] = {'0', C [42:0]} + {'0', D [42:0]} + A[17:0]×B[17:0]

Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}

Result [51:0] = {Sumupper, Sumlower}

Result [51:0] = {C[51:43] + D[51:43] + {S, S, S, S, S, S, S, CARRYOUT, P[43]}}, P[42:0]

Where, S = P[43] AND CARRYOUT

Figure 30 • Fabric Logic for 3-input Extended Addition
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Design Files 
For more information on how to implement the 3-input extended addition, refer to the
Extended_adder_3_input.vhd design file provided in <Design files'Extended_adder_3_input>.

Synthesis and Place-and-Route Results
Figure 31 shows the 3-input extended addition resource utilization when using fabric logic.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Resource Utilization with Fabric Adder Logic Implemented with MACC Block

Place-and-Route Results with Fabric Adder Logic Implemented with MACC Block

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 32.

Figure 31 • Resource Utilization for 3-input Extended Addition with Fabric Resources

Figure 32 • Place-and-Route Results for 3-input Extended Addition with Fabric ResourcesSup
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Conclusion
Simulation Results
Figure 33 shows the post synthesis simulation results. The simulation result shows that the 3-input
addition outputs on the three clock cycles after the input is provided. 

Tools Required
The example designs for 9x9 Multiplier mode, wide-multiplier, and extended addition are developed,
synthesized, and simulated using the following software tools on the IGLOO2 M2GL050/SmartFusion2
M2S050 device: 

Software Tools
• 11.4.0.112

• Modelsim 10.3a

• Synplify pro I-2013.09M-SP1-1

IP Cores
• Arithmetic IP cores v 1.0.100

Conclusion
This application notes explains IGLOO2/SmartFusion2 mathblock features such as 9x9 Multiplier mode,
wide-multiplier, and extended addition. This document also provides implementation techniques and
guidelines along with the design examples for the 9x9 multiplication, wide-multiplier, and extended
addition for optimum performance.

Figure 33 • Post Synthesis Simulation Results for 3-input Extended Addition with Fabric Adder
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Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock 
Application Note 
Appendix A - Design Files
Download the design files (VHDL) from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac398_implementation_of_9x9_widemultiplier_ex
tended_addition_liberov11p4_an_df 

Refer to the Readme.txt file included in the design file for the directory structure and description.
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List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the chapter in the demo 
guide.

Date Changes Page

Revision 1
(September 2014)

Updated the document for Libero v11.4 software release (SAR 59686). NA

Revision 0
(June 2013)

Initial release. NA
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