@ Micr Osemi Application Note AC398

Implementation of 9x9 Multiplications,
Wide-Multiplier, and Extended Addition Using
IGLOO2/SmartFusion2 Mathblock - Libero SoC
vil.4

Table of Contents

Purpose L e e e 1
Introduction LA 2
References Ea A 2
Design Requirements e e A 3
Using 9x9 MultiplierMode A e 3
OVEeIVIEW L e e e e 3
Configuration L e 3
Guidelines LA e e 6
Design Examples L e 6
Wide-Multiplier 14
OVEIVIEW o o e e e e e 14
Configuration LA e 15
Guidelines L e 15
Design Examples LA e 15
Extended Addition Lo LAl e 21
OVEIVIEBW L e e 21
Configuration e e e e e e e e e e 21
Guidelines L e e e 21
Design Examplesl LA A e e 21
Conclusion L e e 28
Appendix A - Design Files .0 0w o0 e L e e 29
Listof Changes 4l . . . 0 o . e 30
Purpose

This application-note highlights the design guidelines and different implementation methods to achieve
better performance results while implementing wide-multipliers, 9-bitx9-bit multiplications, and extended
addition with the IGLOO®2 field programmable gate array (FPGA)/SmartFusion®2 system-on-chip (SoC)
FPGA mathblock (MACC). The 9-bitx9-bit multiplications, wide-multiplier, and extended addition are
ideal-for applications with high-performance and computationally intensive signal processing operations.
Some of them are finite impulse response (FIR) filtering, fast fourier transforms (FFTs), and digital
up/down conversion. These functions are widely used in video processing, 2D/3D image processing,
wireless, industrial applications, and other digital signal processing (DSP) applications.

September 2014 1
© 2014 Microsemi Corporation

& Microsemi

Introduction

Introduction

The IGLOO2/SmartFusion2 mathblock architecture has been optimized to implement various common
DSP functions with maximum performance and minimum logic resource utilization. The dedicated routing
region around the mathblock and the feedback paths provided in each mathblock result in routing
improvements. The IGLOO2/SmartFusion2 mathblock has a variety of features for fast and easy
implementation of many basic math functions. The high speed multiplier (9x9, 18x18), adder/subtractor,
and accumulator in mathblock delivers high speed math functions. For more information on
IGLOO2/SmartFusion2 mathblock, refer to IGLOO2 FPGA Fabric User Guide/SmartFusion2 FPGA
Fabric User Guide and for usage of mathblock refer to the Inferring Microsemi SmartFusion2 MACC
Blocks Application Note.

This application note explains the design considerations and different methods for implementing the
following:

* Using 9x9 Multiplier Mode
* Wide-Multiplier
+ Extended Addition

References

The following documents are referenced in this document.
+ IGLOO2 FPGA Fabric User Guide
» SmartFusion2 FPGA Fabric User Guide
* Inferring Microsemi SmartFusion2 MACC Blocks Application Note
* IGLOO2/SmartFusion2 Hard Multiplier AddSub Configuration User Guide
+ IGLOO2/SmartFusion2 Hard Multiplier Accumulator Configuration User Guide
+ IGLOO2/SmartFusion2 Hard Multiplier Configuration User Guide

Revision 1 2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT/sf2_hard_mult_config_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ADDSUB/sf2_hard_mult_addsub_config_ug_1.pdf

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

Design Requirements

Table 1 shows the design requirements.
Table 1+ Design Requirements

Design Requirements ‘ Description

Hardware Requirements

Host PC ‘Any 64-bit Windows Operating System
Software Requirements

Libero® System-on-Chip (SoC) vil.4

Modelsim® v10.3

Using 9x9 Multiplier Mode

Overview

The 9-bitx9-bit multipliers are extensively used in low precision video processing applications. In video
applications, the color conversion formats such as YUV to RGB, RGB to YUV, and RGB to YCbCr,
NTSC, PAL etc., 9-bitx9-bit multipliers are used. In image processing, the operations involving 8-bit RGB
such as 3x3, 5x5, 7x7 matrix multiplications, image enhancement techniques, scaling, resizing etc., 9-
bitx9-bit multipliers are used. The IGLOO2/SmartFusion2 device ‘addresses these applications by using
mathblock in dot product (DOTP) mode.

The following sections explain the DOTP configurations and capabilities, guidelines, different
implementation methods with design examples, and their performance and simulation results.

The mathblock when configured in DOTP mode has two independent 9-bitx9-bit multipliers followed by
adder. The sum of the dual independent 9x9 multiplier (DOTP) result is stored in upper 35 bits of 44-bit
register. In DOTP mode, mathblock implements the following equation:

Multiplier result = (A[8:0] xB[17:9] + A 17:9] x B[8:0]) x 2°
EQ 1

Configuration
The IGLOO2/SmartFusion2 mathblock in DOTP mode can be used in three different configurations.
These configurations are available in the Libero software, Catalog > Arithmetic as given below:

* Multiplier

» Multiplier accumulator

* _Multiplieraddsub

Revision 1

& Microsemi

Using 9x9 Multiplier Mode

Figure 1 shows the dot product multiplier adder with the IGLOO2/SmartFusion2 mathblock.

A0[8:0]

B0[8:0]

A1[8:0]

BA1[8:0]

C[43:0]
Carryin

| A4

A4

P |

-

SF2/GL2 MACC

>~ CARRYOUT/OVERFLOW
+ D ~C[43:0]

L CDOUT[43:0]

Pn=Pn-1+ (AO*BO + AT*B1) + Carryin 4 C[43:0]

Figure 1 » Dot Product Multiplier Adder

Revision 1 4

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

Figure 2 shows the dot product multiplier accumulator with mathblock.

AQ[8:0]] SF2/GL2 MACC
BO[8:0]—] |
| CARRYOUT/OVERFLOW
A1[8:0] Jr 4‘ ~P[43:0]
o L CDOUT[43:0]
B18:0— |
C43:0]—]
Carryin
oor1—] | X
]
0’s
CDIN
Pn = (A0*BO + A1*B1) + Carryin + C[43:0] + CDIN
Figure 2 » Dot Product Multiplier Accumulator
Figure 3 shows the implemented DOTP multiplier.
A0[8:0] SF2/GL2 MACC
BO[8:0]
> P[18:0]

A1[8:0]

B1[8:0]

0 oo 6

P = A0*B0 + A1*B1

Figure 3 » Dot Product Multiplier

5 Revision 1

& Microsemi

Using 9x9 Multiplier Mode

Math Functions with DOTP
When DOTP is enabled, several mathematical functions can be implemented. Some of them are listed in
Table 2.

Single Mathblock (DOTP Enabled)
Table 2 «+ Math Functions with DOTP

Conditions Implemented Equations
P = A[8:0] = B[17:9]; M = A[17:9]; N = B[8:0] Y = P2+ MxN
P = A[8:0] = B[17:9]; Q = A[17:9] = B[8:0] Y=P2+Q?
A[8:0] = B[17:9] = 1; B = A[17:9]; Q = B[8:0] Y=1+Q?
A[8:0] = B[17:9] = 1; P = A[17:9]; Q = B[8:0] Y =1+PxQ
P = A[8:0] = A[17:9]; Q = B[17:9] = B[8:0] Y = PxQ + PxQ = 2xPxQ
In this method, several 9-bit mathematical functions can be implemented using DOTP.mode with a single
mathblock.
Guidelines

Microsemi recommends to use the following when designing with DOTP multiplier:
+ To perform Y = AxB + CxD equation, instantiate Arithmetic IP cores with DOTP enabled for 9x9
multiplications. This avoids inferring two 18x18 multipliers:
* Register the inputs and outputs, when using Arithmetic IP cores (Mathblock).
* The registered inputs and outputs must use the same clock.
» Use the cascaded feature to connect the-multiple mathblocks. This is achieved by connecting the
cascade output (CDOUT) of one MACC block to the cascade input (CDIN) of another mathblock.

For more information on VHDL/Verilog coding “styles for inferring mathblocks, refer to the Inferring
Microsemi SmartFusion2 MACC-Blocks Application Note.

Design Examples

This section illustrates the 9%9 Multiplier mode usage with the following design examples:
« Example 1: 6-tap FIR Filter Using Multiple Mathblocks
+ Example 2: 6-tap FIR Filter Using Single Mathblock
+ Example 3: Alpha Blending

Example 1: 6-tap FIR Filter Using Multiple Mathblocks

This design example (Figure 4 on page 7) shows the 6-tap FIR filter (systolic FIR filter) implementation
with-multiple mathblocks and also shows the performance results of the implementation.

Design Description

The 6-tap FIR filter design with multiple mathblocks is a systolic architecture implementation, refer
Figure 4 on page 7. This architecture utilizes a single IGLOO2/SmartFusion2 mathblock to perform two
independent 9x9 multiplications followed by an addition, instead of using two mathblocks that have a
single multiplication unit. With this architecture implementation, only three mathblocks are required to
design a 6-tap FIR filter. The 6-tap FIR design uses cascaded chains (CDOUT to CDIN) for propagating
the sum to achieve the best performance and reducing fabric resources. In this implementation
technique, the mathblock is configured as DOTP multiplier Adder. Eight Pipeline registers are added in
fabric only at the input.

Revision 1 6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

When designing n-tap systolic FIR filters with IGLOO2/SmartFusion2 mathblock for 9-bit input data and
9-bit coefficient, only n/2 mathblocks are utilized, saving n/2 mathblock resources.

6-tap FIR (9-bitx 9-bit)

OO OUrg] OO

COo[8:0] C1[8:0] C2[8:0] C3[8:0] C4[8:0] C5[8:0]
reset n—» | | | | | |
clk—»
CDIN CDIN CDIN
Zeros
_l Y \
+ \ + / +
SF2/GL2MACC SF2/GL2 MACC SF2/GL2 MACC]

»>Yn_out

Figure 4 + 6-tap Systolic FIR Filter

In this design, the FIR filter generates outputs for every clock cycle after an initial latency of 10 clock
cycles.

Total initial latency = 8 clock cycles for 6 input samples + 2 clock cycles (MACC block input and output
are registered).

=10 clock cycles

Design Files

For information on the.implementation of the 6-tap FIR filter design, refer to the FIR 6 tap.vhd design
file provided in <Design files 'FIR_6_TAP>.

7 Revision 1

& Microsemi

Using 9x9 Multiplier Mode

Hardware Configuration

For 6-tap systolic FIR filter, mathblock is configured as DOTP multiplier adder with inputs and outputs
registered, refer to Figure 5.

[FL Configuring Dotmul_add_0 (HARD_MULT_ADDSUB - 1.0.100) " —— =R X

Configuration

Operation Mode
) Normal @ Dot Product
Multiplier Functions

Function |Multipier wit

AD and Al Inputs

Use Al Constant |:| Use Al Constant |:|
1 |
A0 Constant value (Hex) |0x1 Al Constant value (Hex) |0x1
AD Width 9 Al Width 9
Register Ports Al Register Ports A1

BO and B1 Inputs

B0 Width 9 B1Width 9

Register Ports BO Register Ports B 1

m

Input Port C to Adder

Use Constant Constant value (Hex) 0x0
Width 35 Carry In
Register Port

Input Port D to Adder

Function |CDIN farm previous math block

Input Port ARSHFT17
Right shift of cascade input Register Port
Input Port SUB
Register Paort
Output Port P
Register Port P Overflow/CarryOut 5

Help =~ [a]4 Cancel
[) [

Figure 5 « DOTP Multiplier Adder for 6-tap Systolic FIR

Synthesis and Place-and-Route Results
Figure 6 on page 9 shows the 6-tap systolic FIR filter resource utilization that uses multiple mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Revision 1 8

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Application Note

Resource Utilization

Resource Usage Report for FIR_é&tap
Mapping to part: m2gl0S0tfbga8f6std

Cell usage:
CLEINT 2 uses

Sequential Cells:

SLE 72 uses

Registers not packed on I/0 Pads: 72
D5SF Blocks: 3

MACC: 3 Mulcs

I/0 ports: 46

I/0 primitives: 46
INBUF 11 uses
OUTBUF 35 uses

Global Clock Buffers: 2

Total LUI=: 1]

Figure 6 » Resource Utilization for a 6-tap Systolic FIR Filter

Place-and-Route Results

The frequency of operation is achieved with this implementation after place-and-route, refer to Figure 7.

Summary

Min Max

Required | Required External External | Clock- Clock-

Clock Period | Frequency

Domain (ns) | (MHz) Perigg Frequency | Setup Hold (ns) To-Out To-Out
(ns) (MHz) (ns) (ns) (ns)
clk 2641 | 378644 2 857 350.018 1.534 0.384 4119 10720

Figure 7 * Place-and-Route Results for 6-tap Systolic FIR Filter

Simulation Results

Figure 8 shows the post synthesis simulation results. The coefficient values (c0-c5) are configured in
designas C0=5,C1=3,C2=7,C3=-4,C4 =1, C5=-2. The simulation results show that the 6-tap FIR

filter outputs.on every clock cycle. It has an initial latency of 10 clock cycles.

v - W - — -— I
File Edit View Add Format Tools Bookmarks Window Help
& Wave - Default A

828 -8 (wRLal AF [T ILRE] 2909)| CHAR| Bt ew [o syaEHNs Due | N admm
df & el @

“ /fir_testbenchfclk

“ Jfir_testbenchfreset_n
- /fir_testbench/Xn_in

-~ ffir_testbenchf¥n_out
~_ Jffir_testbench/stop

10 clock cycles

Figure 8 « 6-tap FIR Filter Post Synthesis Simulation

9 Revision 1

& Microsemi

Using 9x9 Multiplier Mode

Example 2: 6-tap FIR Filter Using Single Mathblock

This design example shows the 6-tap FIR filter implementation with single-mathblock (MAC FIR filter)
and also shows the performance result of the implementations, refer to Figure 9.

Design Description

The 6-tap FIR filter can also be implemented with a single mathblock as shown in Figure 9. This design
uses coefficient memory where coefficients are stored and input memory that stores input samples. The
control logic reads two consecutive coefficients from the coefficient memory and two consecutive input
samples from the input memory and provides it to mathblock. Due to dual independent 9-bitx9-bit
multipliers, the filter result is calculated in four clock cycles instead of six clock cycles that has a single
multiplier and accumulator.

If a single multiplier and accumulator is used for sum of the products, the number of cycles taken for
result is same as the number of coefficients or number of taps used in filter design. With this relationship,
the performance of a single multiplier and accumulator is given as follows:

Maximum input sample rate = System Clock / (Number of taps + 1)

With IGLOO2/SmartFusion2 mathblock, that is, for two products followed accumulator, the sample rate
= Clock /((1/2 x number of taps)+1)

For 6-tap FIR filter, sample rate = Clock/(6/2 + 1) = Clock/4

Single MAC 6-tap FIR (9-bitx9-bit)
Coefficient Coef2[8:0]
memory Coef1 [8:0
Coef_addg, 8 2 I I]n ut 2[8:0])
_ > (depthxwidth) el
FiltOp_en Input 1[8:0]
Control -
logic Y v ¥ M
clk — >
reset_n— Data_addr | Input'samples
w 8x9
depthxwidth
Xin[8:0] — =)
Xin_valid —
Coef_in[8:0] — Y
Coef_valid —{
Filter_en —»
ready <——
SF2/GL2 MACC
y
Yn_out

Figure 9 « 6-tap FIR Filter With Single Mathblock

Design Files

For information on the implementation of the 6-tap FIR filter design, refer to the MAC FIR 6 tap.vhd
design file provided in <Design files' FIR_6_TAP_singleMACC>.

Hardware Configuration

In this implementation, the mathblock used is DOTP multiplier accumulator as shown in Figure 10 on
page 11.

Revision 1 10

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

[[F, Configuring Dotmul_acc 0 (HARD_MULT ACC- 1.0.100))
Operation Mode i
() Mormal @ Dot Product I
Multiplier Functions
Function Multiplier Accumulator (Adder)
A0 and Al Inputs
Use AD Constant] Use Al Constant =
AD Constant value (Hex) |0x1 A1 Constant value {Hex) |x1
AD Width 9 A1 Width 9
Register Port AD Register Port Al
BO and B1 Inputs
BO Width 9 B1 Width 9 N |
Register Port B0 Register Port Bl E
Input Port C to Adder
Use Constant Constant value (Hex) ox0 y
Width 35 CarryIn
Register Port
Input Port ARSHFT17
Right shift of feedback input || Register Port
Input Port SUB
Register Port
Output Port P
Register Port P OverflowfCarryOut
e oe
h

Figure 10 * Dot Product Multiplier Accumulator

11 Revision 1

& Microsemi

Using 9x9 Multiplier Mode

Synthesis and Place-and-Route Results
Figure 11 shows the resource utilization results for the 6-tap FIR filter with a single mathblock.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Resource Utilization

Rescurce Usage Report for MAC FIR & TAP

Mapping to part: mZgl050tfbgaB8S6std

Cell usage:

CLEINT 2 uses
CFE1 3 uses
CFGZ 12 uses
CEFGE3 12 uses
CFG4 Z3 uses

Sequential Cells:

SLE 54 uses
DSP Blocksa: 1
MRCC: 1 Mult

I/0 ports: 49

I/0 primitives: 49
INBUF 13 uses
OUTBUF 38 uses

Global Clock Buffers: 2

BEAM/ROM usage summary

Block Rams (RAMe4xl8) : 2

Total LUTs: 51

Figure 11 » Resource Utilization Results for a Single MAC FIR

Place-and-Route Results

The frequency of operation <achieved with this implementation after place-and-route is shown in
Figure 12.

Summary

Min Max

Required Required External External | Clock- Clock-

Clock Period Frequency

Domain- (ns) - (MHz) Regod Frequency Setup Hold (ns) To-Out To-Out
(ns) (MHz) (ns)

(ns) (ns)

clk 4000, 250.000 4.000 250.000 1.040 0.799 4108 11524

Figure 12 + Place-and-Route Results for Single MAC FIR

Example 3: Alpha Blending

The following example shows the implementation of Alpha blending used in image processing as shown
in Figure 13 on page 13. Alpha blending is the process of combining a translucent foreground color with
a background color, thereby producing a new blended color.

Revision 1 12

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

Design Description

The Alpha blending for each Rpey, Gpews Bnew @s shown in Figure 13 is implemented using the following
equations:

Rnew = (1-alpha) x RO [7:0] + alpha x R1[7:0]

EQ2

Ghew = (1-alpha) x GO [7:0] + alpha x G1[7:0]
EQ3

Bnew = (1-alpha) x BO [7:0] + alpha x B1[7:0]
EQ4

This implementation uses three mathblocks to output R', G', B' values simultaneously for blended image.
Each mathblock is configured as dot product multiplier for performing 9-bitx9-bit multiplications.

RGB1[23:0]
(Image2 Pixel)
Alpha (1-Alpha) Alpha (1-Alpha) Alpha (1-Alpha)
SF2/GL2 MACC SF2/GL2MACC SF2/GL2MACC
Rnew Grew Brew

Figure 13 * Alpha Blending Implementation Using IGLOO2/SmartFusion2 Mathblocks

Hardware Configuration

For Alpha blending, mathblock is configured as DOTP multiplier with inputs and outputs registered.
Synthesis and Place-and-Route Results

Figure 14 on page 14 shows the Alpha blending resource utilization using three mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device: Refer to SmartFusion2 design files for more information.

13 Revision 1

& Microsemi

Wide-Multiplier

Resource Utilization

BEesource Usage Report for Alpheblending

Mapping to part: mZglld50tfbgaB83&std
Cell uszage:
CLEINT 2 uses

Carry primitives used for arithmetic functions:

BRI1 30 uses

Sequential Cells:
SLE 27 uses
DED Blocks:
MRCC:

I/0 ports: 77
I/0 primitives:
INBUF

OUTBUF

Elobal Clock Buffers:

Z

Total LUTa:

Figure 14 « Resource Utilization Results for Alpha Blending

Place-and-Route Results

The frequency of operation achieved with this.implementation after place-and-route is shown in
Figure 15.

Summary
. . Min Max
. Required |Required External
Clock Period | Frequency . External |Clock- Clock-
Domain (ns) (MHz) P Frequency Setup Hold (ns) To-Out To-Out
(ns) (MHz) (ns) (ns) (ns)
clk 2663 |375516 2 857 350.018 2352 0.376 4103 10.375

Figure 15 * Place-and-Route Results for Alpha Blending

Wide-Multiplier

Overview

The wide-multipliers are extensively used in high precision (more than 18x18 multiplication) wireless and
medical applications. These applications require high precision at every stage when implementing
complex arithmetic functions used in FFT, filters etc. Military, test, and high-performance computing also
require performance and precision requirements, and sometimes require single-precision and double-
precision floating-point calculations for implementing complex matrix operations and signal transforms.

To implement DSP functions that require high precision, the IGLOO2/SmartFusion2 device offers
implementing wide-multipliers (that is, operands width more than 18x18) with the IGLOO2/SmartFusion2
mathblock. The wide-multipliers are implemented by cascading multiple IGLOO2/SmartFusion2
mathblocks using CDOUT and CDIN to propagate the result and to achieve the best performance
results.

Revision 1 14

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

This section describes wide-multiplier guidelines and different implementation methods with design
example to achieve the best performance results.

Configuration

When implementing the wide-multipliers, the IGLOO2/SmartFusion2 mathblock is configured in Normal
mode to function as normal multiplier (18x18), normal multiplier accumulator, and normal multiplier
addsub.

Guidelines

It is recommended to use the following for implementing wide-multiplier to achieve the best results.
» The inputs and output are registered with the same clock.

» Add pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (Mathblock) are
used.

* CDOUT of one mathblock is connected to the CDIN of anoether mathblock.

Design Examples

This section shows the wide-multiplier with the following design examples:
* Multiplier 32x32 implementation using multiple mathblock
* Multiplier 32x32 implementation using single mathblock

The following section explains the 32x32 multiplier implementation with multiple mathblocks and with
single mathblock. It also shows the performance results for both the implementations.

Example1: Multiplier 32x32 Implementation Using Multiple Mathblocks

The following section explains the 32x32 multiplier implementation with multiple mathblocks and shows
the performance results.

Design Description
The 32x32 multiplier is implemented using the following algorithm:
A= (AH x 2'7) + AL;
B = (BH x 2'7).+ BL;
AxB = (AH % 217 + AL) x (BH x 217 + BL)
= ((AHxBH) x 23%) + (AHxBL +ALxBH) x 2'7) + ALxBL

15

Revision 1

& Microsemi

Wide-Multiplier

The 32x32 multiplier is implemented efficiently using four mathblocks without using fabric resources to
produce 64-bit result as shown in Figure 16 and Figure 17 on page 17. To achieve best performance
results, mathblock input and output registers are to be used.

AH = A[31],A[31],A[31], A[31:17] AL= ‘0", A[16:0]
A[31:0] x B[31:0] =
X BH=B[31],B[31], B[31], B[31:17] BL= ‘0", B[16:0]

43 33 AL x BL 0
Mathblockl —» SignExtend 10 bits ALBL[33:17] ALBL[16:0]
43 33 AH x BL 0
17 bit offset
Mathblock2 — | signExtend 12 bits AHBL[33:17] AfBL[16:0] | >
43 33 AL x BH 0
17 bit offset
Mathblock3 —> SignExtend 12 bits ALBH[33:17] ALBH[16:0] = | >
|
29 AH x BH 0
34 bit|offset
Mathblockd —» AHBH[31:17] AHBH[16:0]. | >
Y
P[63:34] P[33:17] P[16:0]

Figure 16 * 32x32 Multiplication

Revision 1 16

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock

Application Note
Multiplier 32x32
BL AL BL AH
| | | |
Zero’sf—
v Y
; + ; +
SF2/GL2 MACC SF2/GL2 MACC SF2/GL2 MACC
\ \ 4 \
P[16:0] P[33:17] P[63:34]

Figure 17 « Implementation of 32x32 Multiplier

When implementing using HDL, to infer mathblock input and-output registers by synthesis tool, pipeline
stages are added at output and input to achieve maximum throughput. In this design, two pipeline stages
are added at input and output. Refer to design files for information on implementation of 32x32 multiplier.

Design Files

For information on the implementation of the multiplier 32x32 design, refer to the
Mult32x32 multipleMAacC.vHhd design file provided in <Design files -> Mult32x32_multipleMACC>.
Hardware Configuration

For 32x32 multiplier using. single. mathblock, mathblock is configured to function as normal multiplier,
normal multiplier addsub with- ARSHFT enabled, inputs and outputs registered.

Normal Multiplier Accumulator —> Pn = Pn-1 + CARRYIN + C +/- AOxB0
Normal Multiplier Addsub —> Pn = D + CARRYIN + C +/- A0xBO (if ARSHFT is disabled)
—>Pn = (D>>17) + CARRYIN + C +/- AOxBO (if ARSHFT is enabled)
Normal Multiplier—> P = A0xBO
Synthesis and Place-and-Route Results
Figure 18 on page 18 shows the 32x32 multiplier resource utilization when using multiple mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

17

Revision 1

& Microsemi

Wide-Multiplier

Resource Utilization

Resource Usage Report for Mult3Zx3Z multipleMalC

Mapping to part: m2gl050tfbgadfastd
Cell usage:
CLEINT 2 usges

Sequential Cells:
SLE 146 usges

D5SF Blocks: 4
MRCC: 1 Mul
MRCC:

I/0 ports: 130

I/0 primitives: 130
INBUF 66 uges
OUIBUF 64 uszes

Global Clock Buffers: 2

Total LUTs: a

Figure 18 * Resource Utilization for Multiple Mathblocks

Place-and-Route Results

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 19.

Summary
. A Min Max
Clock Period | Frequency E:gl.;g’ed E::ul::i I:::zrnal External | Clock- Clock-
Domain | (ns) (MHz) quency P Hold (ns) To-Out To-Out
(ns) (MHz) (ns)
(ns) (ns)
clk 2.641 378.644 2857 350.018 5168 0.375 4 565 10.038

Figure 19 « Place-and-Route Results for 32x32 With Multiple Mathblock

Example 2: 32x32 Multiplier Implementation Using Single Mathblock

The following section explains the 32x32 multiplier implementation with a single mathblock and also
shows the performance results.

Design Description

The 32x32 multiplier is implemented using the same algorithm as shown in "Example 1: 6-tap FIR Filter
Using Multiple Mathblocks" section on page 6.

AxB= ((AHxBH) x 23%) + ((AHxBL +ALxBH) x 217) + ALxBL

= ((AHxBH) x 23%) + (AHxBL x 217) + (ALxBH x 2'7) + ALxBL

In this implementation, the four multiplications are computed using a single mathblock in sequential
manner. The control finite-state machine (FSM) in the design provides the inputs to the mathblock
sequentially in four successive states as shown in Figure 20 on page 19 and appropriately enables the
shift operation in the corresponding state. The mathblock used in this design is configured as normal

multiplier accumulator Arithmetic IP core. Refer to the Hard Multiplier Accumulator User Guide for
configuration.

Revision 1 18

http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note
The time taken to generate output = 4 clock cycles for providing inputs
+ 2 clock cycles as the inputs and output is registered
+ 2 clock cycles by mathblock at input and output.
= 8 clock cycles

SF2/GL2 MACC Block
reset_n—#~ AL[17:0] B, [17:0]
clk —»-]
A[17:0],B,[17:0] A —
B[31:0] A_[17:0],BY[17 :0] L \
A7 0], By 17:0]
A[31:0]

P
L —D » Result
Curr_State > +

C
mul_en—p- Zeros
D = mul_result_valid
Control FSM /

ARSHFT |— S

Multiplier 32 x 32

Figure 20 « Multiplier 32x32 with One MACC Block

Design Files

For more information on the implementation of the multiplier 32x32 design, refer to the Mu1t32x32.vhd
design file provided in <Design files'Mult32x32>.

Hardware Configuration

For 32x32 multiplier using single mathblock, it is configured to function as normal multiplier accumulator
with inputs and outputs registered.

Synthesis and Place-and-Route results

Figure 21 on page 20 shows the 32x32 multiplier resource utilization when using a single mathblock.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device: Refer to SmartFusion2 design files for more information.

19 Revision 1

& Microsemi

Wide-Multiplier

Resource Utilization

Resource Usage Report for Mult3Zx3Z_ SingleMRCC

Mapping to part: mZ2gl050tfbgaB96std

Cell usage:

CLEINT 2 uses
CFGE2 2 uses
CFE3 27 uses
CFEz4 38 uses

Sequentizl Cells:

SLE 110 uses
DSP Blocks: 1
MRCC: 1 Mult

I/0 ports: 132

I/0 primitives: 132
INBUF &7 uses
OUTBUF €5 uses

Global Clock Buffers: 2

Total LUTs: &7

Figure 21 « Resource Utilization for a Single Mathblock

Place-and-Route Results

The frequency of operation is achieved with this implementation after place-and-route is shown in
Figure 22.

Summary

Min Max

Required Required External External | Clock- Clock-

Clock Period | Frequency

Domain (ns) (MHz) Pelipd Frequency Setup Hold (ns) To-Out To-Out
(ns) (MHz) (ns)

(ns) (ns)

clk 2641 378644 31333 300.030 3.040 0.196 4741 10.166

Figure 22 + Place-and-Route Results for 32x32 Multiplier with Single Mathblock

Simulation Results
Figure 23 shows the post synthesis simulation results. The simulation result shows that the multiplier
outputs on 8 clock cycles after input is provided.

@] Wave - Default

Figure 23 « Multiplier 32x32 Post Synthesis Simulation Results

Revision 1 20

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

Extended Addition

Overview

Mathblock has a 3-input adder and supports accumulation up to 44 bits. In some applications, such as
floating point multiplication, complex-FFT and filters, high precision data has to be maintained at every
stage. These DSP functions require more than 44-bit addition (extended addition) which can be realized
using the IGLOO2/SmartFusion2 mathblock (3-input adder) and fabric logic. The extended addition is
implemented by dividing the addition into two parts. The lower part (LSB) of addition is implemented
using IGLOO2/SmartFusion2 mathblock and upper part (MSB) of addition is implemented with minimal
fabric adder logic.

For a 2-input addition, the inputs can be from any one of the following:
1. CDIN and C input
2. Multiplier output and CDIN
3. Multiplier output and C input

For a 3-input addition, the inputs are from multiplier output, CDIN, and C-input. To‘perform arithmetic
additions, the IGLOOZ2/SmartFusion2 mathblock provides Carryin input® and Carryout signal for
propagating the carry from one mathblock to another mathblock or.from mathblock to fabric logic.

Configuration

When implementing the extended addition, the IGLOO2/SmartFusion2 mathblock is configured in
Normal mode to function as normal multiplier addsub.

Guidelines
* Mathblock must be configured to function as multiplier adder/subtractor to perform 2-input
extended signed addition.

* Add Pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (Mathblock) are
used.

* Make sure that the CDOUT of one mathblock is connected to the CDIN of another mathblock.

Design Examples

This section shows the extended addition with the following design examples:
* 2-input extended signed addition
+ 3-input extended signed addition

Example 1: 2-input Signed Extended Addition

The following section shows a 2-input extended signed addition—if one operand is more than 44-bit
wide. In this section, it is also shown that the 2-input extended signed addition implementation logic with
fabric resources are implemented with the multiplier adder.

21

Revision 1

& Microsemi

Extended Addition

Design Description

2-Input Addition
For computing 2-input extended signed addition Z = U + V, with one operand width more than the
mathblock output width 44, the following logic must be implemented in fabric as shown in Figure 24.

Um-1 Um-2.. Un+¢2 Un+t Un Una Unz ... Uo
+ vnd Vo1 Vad Vi Vod Ved Ve2z .. Vo

Ll Ime2 ... Zn+2 el Ffn fnd In2 ... 0

Figure 24 « 2-input Extended Signed Addition

Where U is an m-bit value (where m > 44), V is a sign-extended n-bit value (where n < 44)..The 2-input
extended signed addition is divided in to two parts. The lower part is computed in the mathblock and the
upper part is computed in the fabric.

Z = (Sumupper, Sumlower)
EQ5

The lower part of the sum, Z = U +V, is calculated by providing the U[(n-1): 0], V[(n-1): 0] inputs to the
mathblock, where n = 44 is mathblock output width.

Sumlower = U[(n-1): 0] + V[(n-1): O]
EQ6
The Upper part of sum Z = U + V is calculated as shown below:
Sumupper = U[m: n] + V[m: n] (where U[m:n], V[m: n] are the MSB bits)
EQ7
VIm:n]={S,S....S, X},
S =P[n-1] AND X
Where,
P [n-1] is MSB of Sumlower
X is the overflow of the Sumlower (from the mathblock)
(m-n-1) number of S's must be appended in MSB bits of the V[m: n].

Hardware Implementation

Figure 25 on page 23 shows the operand width of C as 52-bit wide and explains the implementation for
2-input extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in
Normal mode. The upper part and lower part of the sum are shown as follows:

For 52-bit, 2-input extended signed addition,

Sumlower = C[43:0] + A[17:0]xB[17:0]
Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}
Result [51:0] = {Sumupper, Sumlower}

Result [51:0] = {C[51:44] + {S, S, S, CARRYOUT}}, P[43:0]
Where,
S = P[43] AND CARRYOUT

Revision 1 22

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

SF2/GL2 MACC Fabric Logic for 2-input Adder
A[17:0]
B[17:0] + _D P[43:0]/ D—
C[43:0]

LNOAAYVO
[evld

> Result [51:0]

T

u[8:0]={S.,S,S,8,8,8,X}

|
C[51:44] D—D —D—

Figure 25 « Fabric Logic for 2-input Extended Addition

Design Files
For information on the implementation of the 2-input extended addition, refer to the
Extended adder 2 input.vhd design file provided in <Design files'Extended_adder_2_input>.

Synthesis and Place-and-Route Results

Figure 26 on page 24 shows the 2-input'extended addition resource utilization when using the mathblock

and fabric logic.

Note: The results.shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

23

Revision 1

& Microsemi

Extended Addition

Resource Utilization with Fabric Adder Logic

Resource Usage Report for Extended adder 2 input
Mapping to part: m2gl0S0otfbga8f6std

Cell usage:

CLEINT 2 uses

Carry primitives used for arithmetic functions:

RRT1 & uses

Sequential Cells:

5LE 52 uses

Registers not packed on I/0 Pads: 52
D5F Blocks: 1

MACC: 1 Multc

I/0 ports: 142

I/0 primitives: 142
INBUF 30 uses
CUTBUF 52 uses

Global Clock Buffers: 2

Total LUT=: 1]

Figure 26 Resource Utilization for 2-input Extended Addition with Fabric Resources

Place-and-Route Results with Fabric Adder Logic

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 27.

Summary

Min Max

Required | Required External External Clock- Clock-

Clock Period | Frequency

Domain (ns) | (MHz) (F:fsr}' R ::h:lﬁ'z”}ency E’f:;"p Hold (ns) To-Out | To-Out
(ns) (ns)
clk 3555 | 281204 3.333 300.030 1.820 0.645 4435 10.143

Figure 27 + Place-and-Route Results for 2-input Extended Addition with Fabric Resources

Revision 1 24

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

Simulation Results
Figure 28 show the post synthesis simulation results. The simulation result shows that the 2-input
addition outputs on the next clock cycle after the input is provided.

wyee o AN TR TR e e T T

File Edit View Add Format Tools Bookmarks Window Help
8] Wave - Default

E|

[B-2E28 i mBLE - AE|| 1838|2296 3| SRR etes B o0 SHLEEEG W Yo || ok
ESEEs s I TR | 30wt s [vlam e

001 002 003 004 005 0 007 008 009 00A

Figure 28 « Post Synthesis Simulation Results for 2-Input Extended Addition with Fabric Adder
Example 1: 3-input Signed Extended Addition

The following section explains the 3-input extended signed-addition,. if one or more operands are more
than 44-bit wide. In this section, it shows the 3-input extended signed addition implementation logic with
fabric resources.

Design Description

3-input Extended Addition

For performing 3-input extended addition, Z'= T + U + V, with two operands width more than the
mathblock input width 44, the following logic must:be implemented in fabric as shown in Figure 29.

Tm1 Tm2 .. Tné2 Tn+1 Tn ETn-i Tnz .. To
Um-1 Um2... Un+2 Up+t Un EUn-i Un-2 .. Un

4 V0t QVnt . Wnd Vit Vot | Vnd W2z .. Vo

Eml. fmdil In+2 Env1t En EIna En2z L. f0

Figure 29« 3-input Extended Signed Addition

Where, T and U are m-bit values (where m > 44), V is a sign-extended n-bit value (where n < 44). The
3-input extended signed addition is divided in two parts. The lower part is computed in the mathblock and
the upper part is computed in the fabric.

Z = {Sumupper, Sumlower}

EQ8
The lower part of the sum Z =T + U +V, is calculated by providing the {'0', T[(n-2): 01},
{0, U [(n-2}: O]}, V [(n-1): O] inputs to Mathblock, where n = 44 is mathblock output width.
Sumlower = {0, T[(n-2): 0]} + {'0", U[(n-2): O]} + V[(n-1): 0]
EQ9
The upper part of sum Z =T + U + V is calculated as shown below
Sumupper = T[m: n-1] + U[m: n-1] + V[m: n]
EQ 10

25 Revision 1

& Microsemi

Extended Addition

(where T[m: n], U[m: n], V[m: n] are the MSB bits)
V[m:n]={S, S....S, X, P [n-1]}
S = P[n-1] AND X

Where 'P [n-1]" is the MSB bit of the Sumlower

X is the overflow of the Sumlower (from the mathblock),

(m-n-2) number of S's should be appended in MSB bits of the V[m: n].
Hardware Implementation
Figure 30 shows the operand widths of C, D are 52-bit wide and explains implementation for 3-input

extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in Normal
mode. The lower part of the sum and upper part of the sum are shown as follows:

For 52-bit, 3-input extended signed addition,
Sumlower = P [43:0] = {'0", C [42:0]} + {'0", D [42:0]} + A[17:0]xB[17:0]
Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}
Result [51:0] = {Sumupper, Sumlower}
Result [561:0] = {C[51:43] + D[51:43] + {S, S, S, S, S, S, S, CARRYOUT, P[43]}}, P[42:0]
Where, S = P[43] AND CARRYOUT

SF2 MACC
\ Fabric Logic for 3-input adder
A[17:0]—[
3 + / u
0, C[42:0] >
O
0, D[42:0] > > -
/ 3 E
o [}
c
_|
» Z[51:0]
/P
o
o (X E
SF2 MACC
0 (S,5.5,5,S,5,X,P[43]}
0 .
C[51:43]——i H >
c =+
0 i o,
D[51:43] b |

Figure 30 * Fabric Logic for 3-input Extended Addition

Revision 1 26

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

Design Files

For more information on how to implement the 3-input extended addition, refer to the
Extended adder 3 input.vhd design file provided in <Design files'Extended_adder_3_input>.
Synthesis and Place-and-Route Results

Figure 31 shows the 3-input extended addition resource utilization when using fabric logic.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device. Refer to SmartFusion2 design files for more information.

Resource Utilization with Fabric Adder Logic Implemented with MACC Block

Rescurce Usage Report for Extended_adder 3_input

Mapping to part: mZs050tfbgai3&std
Cell usage:

CLEINT Z uses

CFGZ 1 use

Carry primitives used for arithmetic functions:
ART1 18 uses
Sequential Cells:

SLE 48 uses

DSP Blocks: z
MACC: 2 Mulcs

I/0 ports: 194

I/0 primitives: 154
INBUF 142 uses
OUTEUF 52 uses

Global Clock Buffers: 2

Total LUTs: 15

Figure 31 » Resource Utilization for 3-input Extended Addition with Fabric Resources

Place-and-Route Results with Fabric. Adder Logic Implemented with MACC Block

The frequency of operation achieved: with this implementation after place-and-route is shown in
Figure 32.

Summary

Min Max

Required |Required External External Clock- Clock-

Clock Period | Frequency

Domain (ns) (MHz) Period Frequency Setup Hold (ns) | To-Out | To-Out
(ns) (MHz) (ns)

(ns) (ns)

clk 3.002 | 323.415 2.500 400.000 5.488 0.668 4322 | 11.321

Figure 32 + Place-and-Route Results for 3-input Extended Addition with Fabric Resources

27 Revision 1

& Microsemi

Conclusion

Simulation Results
Figure 33 shows the post synthesis simulation results. The simulation result shows that the 3-input

addition outputs on the three clock cycles after the input is provided.

ools Layout Bookmarks Window Help

EE T LI I T e o] oo rcorines (%4229
B EEEa s i o e e = H#ne | aRasan] L Um @i]

28] Wave - Default

3 clock cycles

Figure 33 * Post Synthesis Simulation Results for 3-input Extended Addition with Fabric Adder

Tools Required
The example designs for 9x9 Multiplier mode, wide-multiplier, and extended addition are developed,
synthesized, and simulated using the following software tools on the 1IGLO0O2 M2GL050/SmartFusion2

M2S050 device:
Software Tools

« 11.4.0.112

* Modelsim 10.3a

* Synplify pro 1-2013.09M-SP1-1
IP Cores

* Arithmetic IP cores v 1.0.100

Conclusion

This application notes explains IGLOO2/SmartFusion2 mathblock features such as 9x9 Multiplier mode,
wide-multiplier, and extended addition. This document also provides implementation techniques and
guidelines along with. the design examples for the 9x9 multiplication, wide-multiplier, and extended
addition for optimum performance.

Revision 1 28

& Microsemi
Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock
Application Note

Appendix A - Design Files

Download the design files (VHDL) from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac398_implementation_of 9x9_widemultiplier_ex
tended_addition_liberov11p4_an_df

Refer to the Readme.txt file included in the design file for the directory structure and description.

29 Revision 1

http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac398_implementation_of_9x9_widemultiplier_extended_addition_liberov11p4_an_df
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac398_implementation_of_9x9_widemultiplier_extended_addition_liberov11p4_an_df

& Microsemi

List of Changes

List of Changes

The following table lists critical changes that were made in each revision of the chapter in the demo

guide.
Date Changes Page
Revision 1 Updated the document for Libero v11.4 software release (SAR 59686). NA
(September 2014)
Revision 0 Initial release. NA
(June 2013)

Revision 1 30

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice

- -
Mlcmsem' processing devices; RF solutions; discrete components; security technologies and scalable
® anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
Microsemi Corporate Headquarters iliti n rvices. Microsemi is h r in Aliso Viej lif. and h
On Enterprise. Aliso Visjo CA 92656 USA capab.tes and services crose s headquartered _ SO _ejo, Calif. and has
Within the USA: +1 (800) 713-4113 approximately 3,400 employees globally. Learn more at www.microsemi.com.

Outside the USA: +1 (949) 380-6100

Sales: +1 (949) 380-6136]]]]]]]]
Fax: +1 (949) 215-4996 © 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of

E-mail: sales.support@microsemi.com Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

51900274-1/09.14

mailto:sales.support@microsemi.com
www.microsemi.com

	Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2/SmartFusion2 Mathblock - Libero SoC v11.4
	Purpose
	Introduction
	References
	Design Requirements
	Using 9x9 Multiplier Mode
	Overview
	Configuration
	Guidelines
	Design Examples

	Wide-Multiplier
	Overview
	Configuration
	Guidelines
	Design Examples

	Extended Addition
	Overview
	Configuration
	Guidelines
	Design Examples

	Conclusion
	Appendix A - Design Files
	List of Changes

