

SPI-DirectC v1.1

User’s Guide

2

SPI-DirectC v1.1 User’s Guide

Table of Contents

1 System Overview . 4

Systems with Direct Access to Memory . 4

Systems with Indirect Access to Memory . 5

2 Generating Data Files and Integrating SPI-DirectC . 6

SPI-DirectC v1.1 Code Integration . 6

3 Required Source Code Modifications . 8

Compiler Switches . 8

Hardware Interface Components . 8

4 Data File Format. 14

DAT File Description for M2GL and M2S Devices . 14

5 Source File Description . 16

DPUSER.H . 16

DPCOM.C and DPCOM.H . 16

DPG4ALG.C and DPG4ALG.H . 16

DPSPI.C and DPSPI.H . 16

DPUTIL.C and DPUTIL.H . 16

6 Data File Bit Orientation . 17

7 Error Messages and Troubleshooting Tips . 18

A Product Support . 20

Customer Service . 20

Customer Technical Support Center . 20

Technical Support . 20

Website . 20

Contacting the Customer Technical Support Center . 20

ITAR Technical Support . 21

3

Introduction

This document describes how to enable processor-based embedded ISP (In-System Programming) on

Microsemi IGLOO2™ and SmartFusion2™ devices using the SPI Slave programming method. In-

System Programming refers to an external processor on board programming one of the Microsemi

IGLOO2™ or SmartFusion2™ devices via SPI peripheral interface.

The document assumes that the target system contains a processor or a soft-core microprocessor with a

minimum 1200 bytes of RAM, a SPI interface to the target device from the processor, and access to the

programming data to be used for programming the device. Access to programming data can be

provided by a telecommunications link for most remote systems.

SPI-DirectC v1.1 is a set of C code designed to support embedded In-System Programming for the M2S

and M2GL families of devices. To use SPI-DirectC v1.1, you must make some minor modifications to

the source code, add the necessary API, and compile the source code and the API together to create a

binary executable. The binary executable is downloaded to the system along with the programming data

file.

The programming data file is a binary file that can be generated by Libero SOC version 11.1 or later. The

detailed specification of the programming file is included in "Data File Format" on page 14.

SPI-DirectC v1.1 supports systems with direct and indirect access to the memory space containing the

data file image. With paging support, it is possible to implement the embedded ISP using SPI-DirectC on

systems with no direct access to the entire memory space containing the data. Paging support is

accomplished by making modifications to the data communication functions defined in dpuser.h, dpcom.c

and dpcom.h.

4

1 – System Overview

To perform In-System Programming (ISP) for the SmartFusion2 or IGLOO2 target device, the system

must contain the following parameters:

• A microprocessor with at least 1200 bytes of RAM or a softcore processor implemented in

another FPGA

• SPI IP to interface to the target device

• Access to the data file containing the programming data

• Memory to store and run SPI-DirectC code

Note: See your device datasheet for information on power requirements for Vpump and other power

supplies.

Table 1-1 shows the memory requirements.

Text - This is the compiled code size memory requirements.

Data - This is the run time memory requirement, i.e. the free data memory space required to execute the

code.

BSS - This is the Block Started by Symbol allocation for variables that do not yet have values, i.e.

uninitialized data. It is part of the overall Data size.

Table 1-1 • Code Memory Requirements – SPI-DirectC Code Size on M3 16-Bit Mode

Text in Bytes Data in Bytes BSS in Bytes

6434 1169 60

Systems with Direct Access to Memory

Figure 1-1 shows the overview of a typical system with direct access to the memory space holding the

data file. See Table 1-2 for data storage memory requirements.

Internal/External

Memory Running

SPI-DirectC

Processor

Internal RAM

On Board

Memory

Device

.dat file

SPI Functions

SPI Bus

M2S/M2GL

Figure 1-1 • System with Direct Access to Memory

http://www.actel.com/techdocs/ds/default.aspx

5

Table 1-2 • Data Storage Memory Requirements - Data Image Size

 Data Image Size

Device Core/FPGA Array -

Encrypt (kB)
Embedded Flash

Memory Block -

Encrypt (kB)

Core/FPGA Array &
Security - Encrypt

(kB)

M2GL005 297 133 851

M2GL010 557 267 1639

M2GL025 1197 267 2918

M2GL050 2364 267 5253

M2GL090 3564 532 8178

M2GL150 5997 531 13046

M2S005 297 137 860

M2S010 557 272 1648

M2S025 1197 272 2926

M2S050 2364 272 5261

M2S090 3564 536 8186

M2S150 5997 535 13054

The total image size is the sum of all the corresponding enabled blocks for the specific target device.

Systems with Indirect Access to Memory

Figure 1-2 is an overview of a system with no direct access to the memory space holding the data file.

For example, the programming data may be received via a communication interface peripheral that

exists between the processor memory and the remote system holding the data file. dpcom.h and

dpcom.c must be modified to interface with the communication peripheral.

Internal/

External

Memory

Running

SPI-DirectC

Microprocessor

Internal

RAM

SPI Functions

Communication

Peripheral

Bidirectional

Link

External

Memory

Device

(Remote

Location)

DAT File

SPI Bus

M2S/M2GL

Figure 1-2 • System With Indirect Access to Memory

6

2 – Generating Data Files and Integrating SPI-
DirectC

This chapter describes the flows for data file generation and SPI-DirectC code integration.

To generate your data file:

1. Generate the DAT file using Libero SoC v11.1 or later. If programming security is required, use

Libero SoC v11.4 or later to generate the DAT file. See the latest Libero SoC online help for

information on generating a DAT file.

2. Program the DAT file into the storage memory.

SPI-DirectC v1.1 Code Integration

Figure 2-1 shows the SPI-DirectC integration use flow.

Start

Generate DAT file

Program the DAT file

into system memory

Identify and connect the processor SPI

port to the dedicated SPI port of the

target device

Integrate the processor SPI
driver into your application

Define memory interface

functions dp_get_data and

dp_get_page_data if

paging is required

Call the dp_top_g4m

function to initiate the

desired action

Compile source code

and download to the

microprocessor

Done

Figure 2-1 • Importing SPI-DirectC Files

7

To use SPI-DirectC v1.1 code integration:

1. Import the SPI-DirectC v1.1 files shown in Figure 2-2 into your development environment.

Figure 2-2 • SPI-DirectC v1.1 Files to import into your Development Environment

2. Modify the SPI-DirectC code.

– Add the SPI driver (available with the processor used to run SPI-DirectC).

– Modify the hardware interface functions (do_SPI_SCAN_in and do_SPI_SCAN_out) to use

the hardware API functions designed to control the SPI port.

– Modify memory access functions to access the data blocks within the image file programmed

into the system memory. See "Data File Bit Orientation" on page 17.

– Call Dp_top_g4m with the action code desired. See "DPG4ALG.C and DPG4ALG.H" on

page 13 for supported actions and their corresponding codes.

3. Compile the source code. This creates a binary executable that is downloaded to the system for

execution.

8

3 – Required Source Code Modifications

You must modify the dpuser.h, dpspi.c, dpcom.c and dputil.c files when using the SPI-DirectC source

code. "Source File Description" on page 16 contains a short description of SPI-DirectC source code and

their functions. Functions that must be modified are listed in Table 3-1.

Table 3-1 • Modified Functions

Function Source File Purpose

Do_SPI_SCAN_in Dpspi.c Hardware interface function used to scan data in using the SPI driver

Do_SPI_SCAN_out Dpspi.c Hardware interface function used to scan data out using the SPI driver

dp_get_page_data Dpcom.c Programming file interface function

dp_display_text Dpuser.c Function to display text to an output device

dp_display_value Dpuser.c Function to display value of a variable to an output device

Compiler Switches

The compiler switch is shown in Table 3-2.

Table 3-2 • Compiler Switches

Compiler Switch Source File Purpose

USE_PAGING dpuser.h Enables paging implementation for memory access

Hardware Interface Components

Hardware Interface Function (dpspi.c)

do_SPI_SCAN_in and do_SPI_SCAN_out functions are used to interface with the SPI port to clock data

into and out of the target device. These functions should use the SPI driver API available for the targeted

device processor.

Do_SPI_SCAN_in Function
This function takes three arguments:

• Command: 8-bit variable holding the command value

• Data_bits: The number of bits to clock into the device.

• input_buffer: pointer to the buffer which holds valid data to be clocked into the device.

Dp_SPI_SCAN_OUT Function
This function takes four arguments:

• Command bits: The number of bits to clock in for the command portion of the frame. This value

should be 8 as all SPI commands are 8 bit long.

• Command: 8-bit variable holding the command value

• Data_bits: The number of bits to read from the device.

• Ouput_buffer: pointer to the buffer to hold the data read from the target device.

9

Display Functions

Three functions, dp_display_array, dp_display_text and dp_display_value, are available to display text as

well as numeric values. You must modify these functions for proper operation.

Memory Interface Functions

All access to the memory blocks within the data file is done through the dp_get_data function within the

DirectC code. This is true for all system types.

This function returns an address pointer to the byte containing the first requested bit.

Dp_get_data function takes two arguments:

• var_ID: an integer variable which contains an identifier specifying which block within the data file

needs to be accessed.

• bit_index: The bit index addressing the bit to address within the data block specified in Var_ID.

Upon completion of the function, it is expected that return_bytes will indicate the total number of valid

bytes available for the client of the function.

See "Systems with Direct Access to the Memory Containing the Data File" and "Systems with Indirect

Access to the Data File" on page 10 for details.

Systems with Direct Access to the Memory Containing the Data File
Since the memory space holding the data file is accessible by the microprocessor, it can be treated as

an array of unsigned characters. In this case:

1. Disable the USE_PAGING compiler switch. See "Compiler Switches" on page 8.

2. Assign the physical address pointer to the first element of the data memory location

(image_buffer defined in dpcom.c). Image_buffer is used as the base memory for accessing the

information in the programming data in storage memory.

The Dp_get_data function calculates the address offset to the requested data and adds it to
image_buffer.

Return_bytes is the requested data.

An example of the dp_get_data function implementation is:

DPUCHAR* dp_get_data(DPUCHAR var_ID,DPULONG bit_index)

{

DPULONG image_requested_address;

if (var_ID == Header_ID)

current_block_address = 0;

else

dp_get_data_block_address(var_ID);

if ((current_block_address ==0) && (var_ID != Header_ID))

{

return_bytes = 0;

return NULL;

}

/* Calculating the relative address of the data block needed within the image */

image_requested_address = current_block_address + bit_index / 8;

return_bytes=image_size - image_requested_address;

return image_buffer+image_requested_address;

}

10

Systems with Indirect Access to the Data File
These systems access programming data indirectly via a paging mechanism. Paging is a method of

copying a certain range of data from the memory containing the data file and pasting it into a limited size

memory buffer that DirectC can access.

To implement paging:

1. Enable the USE_PAGING compiler option. See "Compiler Switches" on page 8.

2. Define Page_buffer_size. The minimum buffer size is 16 bytes.

3. Modify the dp_get_data function. For correct operation:

– The function must return a pointer to the byte which contains the first bit to be processed.

– The function must update the return_bytes variable which specifies the number of valid

bytes in the page buffer.

4. Modify the dp_get_page_data function. This function copies the requested data from the

external memory device into the page buffer. See "Data File Bit Orientation" on page 17 for

additional information. For correct operation:

– Fill the entire page unless the end of the image is reached. See "Data File Format" on page 14.

– Update return_bytes to reflect the number of valid bytes in the page.

SPI-DirectC programming functions call the dp_get_data function every time access to a data block

within the image data file is needed. The dp_get_data function calculates the relative address location

of the requested data and checks if it already exists in the current page data. The paging mechanism is

triggered if the requested data is not within the page buffer.

Example of dp_get_data Function Implementation
DPUCHAR* dp_get_data(DPUCHAR var_ID,DPULONG bit_index)

{

DPULONG image_requested_address;

DPULONG page_address_offset;

if (var_ID == Header_ID)

current_block_address = 0;

else

dp_get_data_block_address(var_ID);

if ((current_block_address ==0) && (var_ID != Header_ID))

{

return_bytes = 0;

return NULL;

}

/* Calculating the relative address of the data block needed within the image */

image_requested_address = current_block_address + bit_index / 8;

/* If the data is within the page, adjust the pointer to point to the particular

element requested */

if ((image_requested_address >= start_page_address) && (image_requested_address

<= end_page_address))

{

page_address_offset = image_requested_address - start_page_address;

return_bytes = end_page_address - image_requested_address + 1;

11

}

/* Otherwise, call dp_get_page_data which would fill the page with a new data

block */

else

{

dp_get_page_data(image_requested_address);

page_address_offset = 0;

}

return &page_global_buffer[page_address_offset];

}

Example of dp_get_page_data Function Implementation
Dp_get_page_data is the only function that must interface with the communication peripheral of the

image data file. Since the requested data blocks may not be contiguous, it must have random access to

the data blocks. Its purpose is to fill the page buffer with valid data.

In addition, this function must maintain start_page_address and end_page_address that contain the

range of data currently in the page.

dp_get_page_data takes two arguments:

• address_offset - Contains the relative address of the needed element within the data block of the

image file.

• preturn_bytes - Points to the return_bytes variable that should be updated with the number of

valid bytes available.

void dp_get_page_data(DPULONG image_requested_address)

{

DPULONG image_address_index;

start_page_address=0;

image_address_index=image_requested_address;

return_bytes = PAGE_BUFFER_SIZE;

if (image_requested_address + return_bytes > image_size)

return_bytes = image_size - image_requested_address;

while (image_address_index < image_requested_address + return_bytes)

{

page_global_buffer[start_page_address]=image_buffer[image_address_index];

start_page_address++;

image_address_index++;

}

start_page_address = image_requested_address;

end_page_address = image_requested_address + return_bytes - 1;

return;

}

Main Entry Function

The main entry function is dp_top_g4m defined in dpG4alg.c. It must be called to initiate the

programming operation. Prior to calling the function, a global variable Action_code must be assigned a

value as defined in dpuser.h. Action codes are listed below.

12

#define DP_DEVICE_INFO_ACTION_CODE 1

#define DP_READ_IDCODE_ACTION_CODE 2

#define DP_ERASE_ACTION_CODE 3

#define DP_PROGRAM_ACTION_CODE 5

#define DP_VERIFY_ACTION_CODE 6

#define DP_ENC_DATA_AUTHENTICATION_ACTION_CODE 7

Note: Programming of individual blocks, such as array only, eNVM only, or security only is not possible

with one data file because of how the data is constructed. If you wish to use such a feature you

must generate multiple data files.

Data Type Definitions

Microsemi uses DPUCHAR, DPUINT, DPULONG, DPBOOL, DPCHAR, DPINT, and DPLONG in the SPI-

DirectC source code. Change the corresponding variable definition if different data type names are used.

/***/

/* DPCHAR -- 8-bit Windows (ANSI) character */

/* i.e. 8-bit signed integer */

/* DPINT -- 16-bit signed integer */

/* DPLONG -- 32-bit signed integer */

/* DPBOOL -- boolean variable (0 or 1) */

/* DPUCHAR -- 8-bit unsigned integer */

/* DPUSHORT -- 16-bit unsigned integer */

/* DPUINT -- 16-bit unsigned integer */

/* DPULONG -- 32-bit unsigned integer */

\/***/

typedef unsigned char DPUCHAR;

typedef unsigned short DPUSHORT;

typedef unsigned int DPUINT;

typedef unsigned long DPULONG;

typedef unsigned char DPBOOL;

typedef char DPCHAR;

typedef int DPINT;

typedef long DPLONG;

13

Supported Actions

Action: DP_DEVICE_INFO_ACTION
Purpose: Displays device security settings and design and checksum information

Action: DP_READ_IDCODE_ACTION

Purpose: Reads and displays the content of the IDCODE register

Action: DP_ERASE_ACTION

Purpose: Erases the FPGA and security information, if supported in the data file

Action: DP_PROGRAM_ACTION

Purpose: Performs erase, program and verify operations of FPGA, eNVM and security if supported in

the data file

Action: DP_VERIFY_ACTION

Purpose: Performs verify operation for all the supported blocks in the data file

Action: DP_ENC_DATA_AUTHENTICATION_ACTION

Purpose: Performs data authentication to make sure the data was encrypted with the same

encryption key as the device

14

4 – Data File Format

DAT File Description for M2GL and M2S Devices

The M2GL and M2S data file contains the following sections:

• Header Block - Contains information identifying the type of the binary file and data size blocks.

• Constant Data Block - Includes device ID, silicon signature and other information needed for

programming.

• Data Lookup Table - Contains records identifying the starting relative location of all the different

data blocks used in the SPI-DirectC code and data size of each block. The format is described in

Table 4-1.

• Data Block - Contains the raw data for all the different variables specified in the lookup table.

Table 4-1 • DAT Image Description

Header Section of DAT File

Information # of Bytes

Designer Version Number 24

Header Size 1

Image Size 4

DAT File Version 1

Tools Version Number 2

Map Version Number 2

Feature Flag 2

Device Family 1

Constant Data Block

Device ID 4

Device ID Mask 4

Silicon Signature 4

Checksum 2

Number of BSR Bits 2

Number of Components 2

Data Size 2

Erase Data Size 2

Verify Data Size 2

ENVM Data Size 2

15

Table 4-1 • DAT Image Description (continued)

Header Section of DAT File

ENVM Verify Data Size 2

Number of Records 1

Look Up Table

Information # of Bytes

Data Identifier # 1 1

Pointer to data 1 memory location in the data block section 4

of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block section 4

of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block section 4

of bytes of data x 4

Data Block

Information # of Bytes

Binary Data Variable

CRC of the entire image 2

16

5 – Source File Description

DPUSER.H

File contains definitions of all Action codes as well as possible error codes that could be reported within

SPI-DirectC code.

DPCOM.C and DPCOM.H

These files contain memory interface functions.

DPG4ALG.C and DPG4ALG.H

These files contain the main entry function dp_top_g4 and all other functions common to M2S and MGL

families.

DPSPI.C and DPSPI.H

These files contain the SPI interface function declaration and definition to the target device.

DPUTIL.C and DPUTIL.H

These files contain utility functions needed in the SPI-DirectC code.

17

6 – Data File Bit Orientation

This chapter specifies the data orientation of the binary data file generated by the Libero software. The

SPI-DirectC implementation must be in sync with the specified data orientation. Table 6-1 illustrates

how the data is stored in the binary data file. See "Data File Format" on page 14 for additional

information on the data file.

Table 6-1 • Binary Data File Example

Byte O Byte 1 Byte 2 Byte 3 Byte N

Bit7..Bit0 Bit15..Bit8 Bit23..Bit16 Bit31..Bit24 Bit(8N+7)..Bit(8N)

Valid Data Valid Data Valid Data Valid Data o <-Valid Data

If the number of bits in a data block is not a multiple of eight, the rest of the most significant bits (msb) in

the last byte are filled with zeros. An example below shows a given 70 bit data to be shifted into the target

shift register from the least significant bit (lsb) to the most significant bit (msb). A binary representation of

the same data follows.

20E60A9AB06FAC78A6 tdi

10000011100110 00001010100110101011000001101111101011000111100010100110 tdi

Bit 69 Bit 0

This data is stored in the data block section. Table 6-2 shows how the data is stored in the data block.

Table 6-2 • Data Block Section Example

Byte O Byte 1 Byte 2 Byte 3 Byte 4 .. Byte 8

Bit7...Bit0 Bit15..Bit8 Bit23..Bit16 Bit31..Bit24 Bit43..Bit32 .. Bit71..Bit64

10100110 01111000 10101100 01101111 10110000 00100000

A6 78 AC 6F B0 20

18

7 – Error Messages and Troubleshooting Tips

The information in this chapter may help you solve or identify a problem when using SPI-DirectC code.

If you have a problem that you cannot solve, visit the Microsemi website at

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support or contact Microsemi

Customer Technical Support at tech@microsemi.com or call our hotline at 1-800-262-1060.

See Table 7-1 for a description of exit codes and their solutions.

Table 7-1 • Exit Codes

Exit Code Error Message Action/Solution

0 This code does not indicate an error. This message indicates success

2 Data processing failed. - Check the Vpump level.

- Try with a new device.

- Measure SPI pins and noise or reflection.

- Load the correct DAT file.

6 The IDCODE of the target device does not

match the expected value in the DAT file

image.

Possible Causes:

- The data file loaded was compiled for a different

device. Example: M2S010 DAT file loaded to

program M2S050 device.

- Noise or reflections on one or more of the SPI pins

causing incorrect read-back of the SDO Bits.

Solution:

- Choose the correct DAT file for the target device.

- Cut down the extra length of ground connection.

7 Device polling error. - Check the Vpump level

- Try with a new device

- Measure SPI pins and noise or reflection.

- Load the correct DAT file.

8 FPGA failed during the Erase operation. Possible Causes:

- The device is secured, and the corresponding data

file is not loaded. The device has been permanently

secured and cannot be unlocked.

Solution:

- Load the correct DAT file.

10 Failed to program device. - Check Vpump level.

- Try with new device.

- Measure SPI pins and noise or reflection.

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
mailto:tech@microsemi.com

19

Table 7-1 • Exit Codes (continued)

Exit Code Error Message Action/Solution

11 FPGA failed verify. Possible Cause:

- The device is secured, and the corresponding DAT

file is not loaded.

- The device is programmed with an incorrect

design.

Solution:

- Load the correct DAT file.

- Check Vpump level.

- Measure SPI pins and noise or reflection.

18 Failed to authenticate the encrypted data. - Make sure the AES key used to encrypt the data

matches the AES key programmed in the device.

25 Device initialization failure. - Check Vpump level.

- Try with new device.

- Measure SPI pins and noise or reflection.

100 CRC data error. Data file is corrupted or

programming on system board is not

successful.

- Regenerate data file.

- Reprogram data file into system memory.

150 Request action is not found. Check spelling.

151 Action is not supported because required data

block is missing from the data file.
Regenerate DAT file with the needed block/feature

support.

20

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer

Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.

This appendix contains information about contacting Microsemi SoC Products Group and using these

support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades,

update information, order status, and authorization.

From North America, call 800.262.1060

From the rest of the world, call 650.318.4460

Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled

engineers who can help answer your hardware, software, and design questions about Microsemi SoC

Products. The Customer Technical Support Center spends a great deal of time creating application

notes, answers to common design cycle questions, documentation of known issues, and various FAQs.

So, before you contact us, please visit our online resources. It is very likely we have already answered

your questions.

Technical Support

Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more

information and support. Many answers available on the searchable web resource include diagrams,

illustrations, and links to other resources on the website.

Website

You can browse a variety of technical and non-technical information on the SoC home page, at

www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be

contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email,

fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.

We constantly monitor the email account throughout the day. When sending your request to us, please

be sure to include your full name, company name, and your contact information for efficient processing of

your request.

The technical support email address is soc_tech@microsemi.com.

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My

Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email

(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at

www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations

(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR

drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor

solutions for: aerospace, defense and security; enterprise and communications; and industrial

and alternative energy markets. Products include high-performance, high-reliability analog

and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and

complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at

www.microsemi.com.

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of

Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

5-02-00523-0/12.13

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/
http://www.microsemi.com/

