

DirectC v3.2

User’s Guide

2 | P a g e

DirectC v3.2 User’s Guide

Table of Contents

1 System Overview . 5
Systems with Direct Access to Memory . 13
Systems with Indirect Access to Memory . 15

2 Generating Data Files and Integrating DirectC . 16

Data File Compatibility . 16
DirectC v3.2 Code Integration . 16

3 Required Source Code Modifications . 18

Compiler Switches . 18
Hardware Interface Components . 20

4 Chain Programming . 28

Pre/Post Data Variable Declaration . 28

5 Data File Format. 30
DAT File Description for AGL, AFS, A3PL, A3PEL, A3P/E, and A2F Devices . 30
DAT File Description for M2GL and M2S Devices . 32

6 Source File Description . 34

DPUSER.C and DPUSER.H . 34
DPCOM.C and DPCOM.H . 34
DPALG.C and DPALG.H . 34
DPG3ALG.C and DPG3ALG.H . 34
DPCORE.C and DPCORE.H . 34
DPFROM.C and DPFROM.H . 34
DPNVM.C and DPNVM.H . 34
DPSECURITY.C and DPSECURITY.H . 34
DPG4ALG.C and DPG4ALG.H . 34
DPJTAG.C and DPJTAG.H . 34
DPCHAIN.C and DPCHAIN.H . 35
DPUTIL.C and DPUTIL.H . 35

7 Disabled Features with ENABLE_CODE_SPACE_OPTIMIZATION . 36

DMK Verification for ARM Enabled Devices . 36
030/015 Device Check . 36

8 Data File Bit Orientation . 37

9 Error Messages & Troubleshooting Tips . 38

A Product Support . 41

Customer Service . 41
Customer Technical Support Center . 41
Technical Support . 41

3 | P a g e

DirectC v3.2 User’s Guide

Website . 41
Contacting the Customer Technical Support Center . 41
ITAR Technical Support . 42

4 | P a g e

Introduction

This document describes how to enable microprocessor-based embedded ISP (In-System
Programming) on Microsemi IGLOO2™, SmartFusion2™, ProASIC®3 (including ProASIC3 nano),
IGLOO™ (including IGLOO nano), SmartFusion™ and Fusion™ devices. In-System Programming refers
to an external processor on board programming a Microsemi device through general purpose IOs using
a JTAG interface.
The document assumes that the target system contains a microprocessor with a minimum 256 bytes of
RAM, a JTAG interface to the target device from the microprocessor, and access to the programming
data to be used for programming the FPGA. Access to programming data can be provided by a
telecommunications link for most remote systems.
DirectC v3.2 is a set of C code designed to support embedded In-System Programming for AGL, AFS,
A3PL, A3PEL, A3P/E, A2F, M2S and MGL families. To use DirectC v3.2, you must make some minor
modifications to the source code, add the necessary API, and compile the source code and the API
together to create a binary executable. The binary executable is downloaded to the system along with the
programming data file.
The programming data file is a binary file that can be generated by designer version v8.5 or later. The
detailed specification of the programming file is included in "Data File Format" on page 30.
DirectC v3.2 contains several compile options to reduce the code size as much as possible. The compile
options enable you to disable features that are not needed in the compile.
ENABLE_CODE_SPACE_OPTIMIZATION is a new option added in version v2.4 of the DirectC code to
reduce code size requirements to below 8500 bytes. See Table 1-3 on page 6 for details. This additional
compile option disables code needed to support certain features that are device or silicon revision
specific, such as discrete address shifting needed to support revision A of A3PE1500 silicon. In
addition, certain checking functions have been disabled or modified with this option enabled to reduce
the code size further. These functions do not impact programming; their purpose is to screen for user
errors in programming secured devices (such as devices secured with plain text files).
DirectC v3.2 supports systems with direct and indirect access to the memory space containing the data
file image. With paging support, it is possible to implement the embedded ISP using DirectC on systems
with no direct access to the entire memory space containing the data. Paging support is accomplished by
making modifications to the data communication functions defined in dpuser.h, dpuser.c, dpcom.c and
dpcom.h.

5 | P a g e

1 – System Overview

To perform In-System Programming (ISP) for the FPGA, the system must contain the following
parameters:

• Control logic (a microprocessor with at least 256 bytes RAM or a softcore microprocessor
implemented in another FPGA)

• JTAG interface to the target device
• Access to the data file containing the programming data
• Memory to store and run DirectC code

Note: See your device datasheet for information on power requirements for Vpump, Vjtag and other power
supplies.

Memory requirements depend on the options that are enabled. For example, Table 1-1, Table 1-2, Table
1-3, and Table 1-4 show memory requirements (last three columns) if certain options (X) are enabled.
Text - This is the compiled code size memory requirements.
Data - This is the run time memory requirement, i.e. the free data memory space required to execute the
code.
BSS - This is the Block Started by Symbol allocation for variables that do not yet have values, i.e.
uninitialized data. It is part of the overall Data size.
In Table 1-1, both ENABLED_G3_SUPPORT and ENABLE_G4_SUPPORT are enabled. Refer to
section 3 for more detailed description of available compiler switches.

Table 1-1 • Code Memory Requirements- DirectC Code Size on ARM7 32-Bit Mode

Core

FROM

Embedded Flash
Memory Block

Security

Text

Data

BSS

Plain Encrypt Plain Encrypt Plain Encrypt Units in Bytes
X X X X X X X 49724

1088 256

X 34104

1088 232
 X 34980

1088 232

 X 33192

1088 232
 X 32888

1088 232

 X 37536

1088 240
 X 35068

1088 240

 X 32992

1088 232
X X 36316

1088 232

 X X 33728

1088 232
 X X 39364

1088 256

X X X 41836

1088 256
X X X X 43312

1088 256

 X X X 39580

1088 256

Note: X = enabled, blank = disabled

http://www.actel.com/techdocs/ds/default.aspx

6 | P a g e

In Table 1-2, ENABLE_G3_SUPPORT is enabled, and ENABLE_G4_SUPPORT is disabled.

Table 1-2 • Code Memory Requirements - DirectC Code Size on ARM7 32-Bit Mode

Core

FROM

Embedded Flash
Memory Block

Security

Text

Data

BSS

Plain Encrypt Plain Encrypt Plain Encrypt Units in Bytes

X X X X X X X 41702 1088 176

X 26088 1088 160
 X 26964 1088 160
 X 25176 1088 152
 X 24872 1088 152
 X 29520 1088 168
 X 27052 1088 168
 X 24976 1088 152

X X 28300 1088 160
 X X 25712 1088 152
 X X 31348 1088 168

X X X 33820 1088 176

X X X X 35296 1088 176
 X X X 31564 1088 176

Note: X = enabled, blank = disabled
In Table 1-3, ENABLE_G3_SUPPORT is disabled, and ENABLE_G4_SUPPORT is enabled.

Table 1-3 • Code Memory Requirements - DirectC Code Size on ARM7 32-Bit Mode

Core

FROM

Embedded Flash
Memory Block

Security

Text

Data

BSS

Plain Encrypt Plain Encrypt Plain Encrypt Units in Bytes

N/A N/A N/A N/A N/A N/A N/A 20748 1088 200

Note: X = enabled, blank = disabled
For M2S and M2GL devices, programming the core and eNVM is data driven and has no impact on code
size.

7 | P a g e

In Table 1-4, ENABLE_G3_SUPPORT and ENABLE_G4_SUPPORT are enabled.

Table 1-4 • Code Memory Requirements - DirectC Code Size on Cortex M3 16-Bit Mode

Core

FROM

Embedded Flash
Memory Block

Security

Text

Data

BSS

Plain Encrypt Plain Encrypt Plain Encrypt Units in Bytes

X X X X X X X 19898

1218 64

X 12202

1193 64

 X 12622

1193 64

 X 11910

1195 64

 X 11846

1195 64

 X 14326

1204 64

 X 13070

1200 64

 X 12002

1187 64

X X 13066

1193 64

 X X 12250

1195 64

 X X 15366

1204 64

X X X 16006

1218 64

X X X X 16830

1218 64

 X X X 14778

1214 64

Note: X = enabled, blank = disabled

8 | P a g e

In Table 1-5, ENABLE_G3_SUPPORT is enabled and ENABLE_G4_SUPPORT is disabled.

Table 1-5 • Code Memory Requirements - DirectC Code Size on Cortex M3 16-Bit Mode

Core

FROM

Embedded Flash
Memory Block

Security

Text

Data

BSS

Plain Encrypt Plain Encrypt Plain Encrypt Units in Bytes

X X X X X X X 16448 1186 64

X 8752 1161 64
 X 9172 1161 64
 X 8460 1163 64
 X 8396 1163 64
 X 10876 1172 64
 X 9620 1168 64
 X 8552 1155 64

X X 9616 1161 64
 X X 8800 1163 64
 X X 11916 1172 64

X X X 12556 1186 64

X X X X 13380 1186 64
 X X X 11328 1186 64

Note: X = enabled, blank = disabled
In Table 1-6, ENABLE_G3_SUPPORT is disabled and ENABLE_G4_SUPPORT is enabled.

Table 1-6 • Code Memory Requirements - DirectC Code Size on Cortex M3 16-Bit Mode

Core

FROM

Embedded Flash
Memory Block

Security

Text

Data

BSS

Plain Encrypt Plain Encrypt Plain Encrypt Units in Bytes

N/A N/A N/A N/A N/A N/A N/A 5538 1162 60

Note: X = enabled, blank = disabled
For M2S and M2GL devices, programming the core and eNVM is data driven and has no impact on
code size.

9 | P a g e

In Table 1-7, ENABLE_G3_SUPPORT and ENABLE_G4_SUPPORT are enabled.

Table 1-7 • Code Memory Requirements - DirectC Code Size on C8051F120 8-Bit Mode - Optimization
Compile Switches OFF

CORE

FROM

Embedded Flash
Memory Blocks

Security

Code Size

RTM

PLAIN ENCRYPT PLAIN ENCRYPT PLAIN ENCRYPT Units in Bytes

X 13201 275
 X 13423 275

X X 13677 275
 X 12901 272
 X 12815 272
 X X 13092 272
 X 15547 286
 X 13971 265
 X X 16327 268
 X 12935 271

X X X X 17468 291
 X X X 15325 270

X X X X X X X 18902 273

Note: X = enabled; blank = disabled

10 | P a g e

In Table 1-8, ENABLE_G3_SUPPORT is enabled and ENABLE_G4_SUPPORT is disabled.

Table 1-8 • Code Memory Requirements - DirectC Code Size on C8051F120 8-Bit Mode -
Optimization Compile Switches OFF

CORE

FROM

Embedded Flash
Memory Blocks

Security

Code Size

RTM

PLAIN ENCRYPT PLAIN ENCRYPT PLAIN ENCRYPT Units in Bytes

X 9737 201
 X 9959 201

X X 10213 201
 X 9437 198
 X 9351 198
 X X 9628 198
 X 12083 213
 X 10507 192
 X X 12863 195
 X 9471 197

X X X X 14004 218
 X X X 11861 197

X X X X X X X 15438 200

Note: X = enabled; blank = disabled
In Table 1-9, ENABLE_G3_SUPPORT is disabled and ENABLE_G4_SUPPORT is enabled.

Table 1-9 • Code Memory Requirements - DirectC Code Size on C8051F120 8-Bit Mode -

Optimization Compile Switches OFF

CORE

FROM

Embedded Flash
Memory Blocks

Security

Code Size

RTM

PLAIN ENCRYPT PLAIN ENCRYPT PLAIN ENCRYPT Units in Bytes
 X X 7083 255

Note: X = enabled; blank = disabled

11 | P a g e

In Table 1-10, ENABLE_G3_SUPPORT and ENABLE_G4_SUPPORT are enabled.

Table 1-10 • Code Memory Requirements - DirectC Code Size on C8051F120 8-bit Mode -
Optimization Compile Switches ON

CORE

FROM

Embedded Flash
Memory Blocks

Security

Code Size

RTM

PLAIN ENCRYPT PLAIN ENCRYPT PLAIN ENCRYPT Units in Bytes

X 10105 274
 X 10286 274

X X 10529 274
 X 9879 271
 X 9793 271
 X X 10078 271
 X 12138 285
 X 10841 264
 X X 12862 267
 X 9955 270

X X X X 13704 290
 X X X 11823 269

X X X X X X X 15022 272

Note: X = enabled, blank = disabled

12 | P a g e

In Table 1-11, ENABLE_G3_SUPPORT is enabled and ENABLE_G4_SUPPORT is disabled.

Table 1-11 • Code Memory Requirements - DirectC Code Size on C8051F120 8-bit Mode -
Optimization Compile Switches ON

CORE

FROM

Embedded Flash
Memory Blocks

Security

Code Size

RTM

PLAIN ENCRYPT PLAIN ENCRYPT PLAIN ENCRYPT Units in Bytes

X 6641 200
 X 6822 200

X X 7065 200
 X 6415 197
 X 6329 197
 X X 6614 197
 X 8674 212
 X 7377 191
 X X 9398 194
 X 6491 196

X X X X 10240 217
 X X X 8359 196

X X X X X X X 11558 199

Note: X = enabled, blank = disabled
In Table 1-12, ENABLE_G3_SUPPORT is disabled and ENABLE_G4_SUPPORT is enabled.

Table 1-12 • Code Memory Requirements - DirectC Code Size on C8051F120 8-bit Mode -

Optimization Compile Switches ON

CORE

FROM

Embedded Flash
Memory Blocks

Security

Code Size

RTM

PLAIN ENCRYPT PLAIN ENCRYPT PLAIN ENCRYPT Units in Bytes

N/A N/A N/A N/A N/A N/A N/A 7083 255

Note: X = enabled, blank = disabled
For M2S and M2GL devices, programming the core and eNVM is data driven and has no impact on code
size.

13 | P a g e

Systems with Direct Access to Memory

Figure 1-1 shows the overview of a typical system with direct access to the memory space holding the
data file. See section 2 for generating DAT files and Table 1-13 for data storage memory
requirements.

Internal/External
Memory Running

DirectC

Microprocessor

Internal RAM

On Board
Memory
Device

.dat file

I/O Functions

JTAG Bus

A3P/AFS/M2S

Figure 1-1 • System with Direct Access to Memory

Systems with Indirect Access to Memory

Figure 1-2 is an overview of a system with no direct access to the memory space holding the data file.
For example, the programming data may be received via a communication interface peripheral that
exists between the processor memory, and the remote system holding the data file. dpcom.h and
dpcom.c must be modified to interface with the communication peripheral.

Internal/
External
Memory
Running
DirectC

Microprocessor

Internal

RAM

IO Functions

Communication

Peripheral

Bidirectional

Link

External
Memory
Device

(Remote
Location)

DAT File

JTAG Bus

A3P/AFS/M2S

Figure 1-2 • System With Indirect Access to Memory

14 | P a g e

Table 1-13 • Data Storage Memory Requirements - Data Image Size

 Data Image Size

Device

Core/FPGA Array

FROM

Embedded Flash
Memory Block

Security (kB)
Plain
(kB)

Encrypt
(kB)

Plain (kB)

Encrypt
(kB)

Plain
(kB)

Encrypt (kB)

A3PE600 526 647 1 1 N/A N/A 1
A3PE1500* 1434 1765 1 1 N/A N/A 1
A3PE3000 2790 3433 1 1 N/A N/A 1
A3P015 32 N/A 1 N/A N/A N/A 1
A3P030 32 N/A 1 N/A N/A N/A 1
A3P060 64 79 1 1 N/A N/A 1
A3P125 127 156 1 1 N/A N/A 1
A3P250 235 288 1 1 N/A N/A 1
A3P400 351 432 1 1 N/A N/A 1
A3P600 523 647 1 1 N/A N/A 1
A3P1000 915 1126 1 1 N/A N/A 1
AFS090 96 117 1 1 256 545 1
AFS250 234 288 1 1 256 545 1
AFS600 526 647 1 1 512 1090 1
AFS1500 1434 1765 1 1 2048 2180 1
A2F200M3F 181 222 1 1 256 545 1
A2F500M3G 455 560 1 1 512 1090 1
M2GL010 N/A 557 N/A N/A N/A 267 N/S
M2GL025 N/A 1197 N/A N/A N/A 267 N/S
M2GL050 N/A 2364 N/A N/A N/A 267 N/S
M2S005 N/A 297 N/A N/A N/A 137 N/S
M2S010 N/A 557 N/A N/A N/A 272 N/S
M2S025 N/A 1197 N/A N/A N/A 272 N/S
M2S050 N/A 2364 N/A N/A N/A 272 N/S
A3PE1500 is not supported with an 8-bit processor.
INA - Information not available at this time.
N/A - Not applicable
N/S - Not supported
All data in the table for base FPGA devices applies equally to the M1, M7, P1 and U1 encrypted versions of the
devices, e.g. data for AFS1500 is equally applicable to M1AFS1500, P1AFS1500 and U1AFS1500. Not all
combinations of M1, M7, P1 and U1 are available for all devices. Refer to the product datasheets for available
devices.
The total image size is the sum of all the corresponding enabled blocks for the specific target device.

15 | P a g e

2 – Generating Data Files and Integrating DirectC

This chapter describes the flows for data file generation and DirectC code integration.

To generate your data file:
1. Generate the DAT file using Designer v8.5 or later. See the latest Libero SoC online help for

information on generating a DAT file.
2. Program the DAT file into the storage memory.

Data File Compatibility

DirectC data files can be generated from Designer v8.5 and above. Data files generated from Designer
v8.5 are identical to the files generated by the original datgen tool with the exception of the file title.
However, data files generated by Designer version v8.6 are enhanced to support nano devices. DirectC
v3.2 can detect which version of the file is being used and handle it accordingly.

DirectC v3.2 Code Integration

Figure 2-1 shows the DirectC integration use flow.

Start

Define JTAG bit position in
the I/O register; discrete

toggling is required

Generate DAT file

Define JTAG interface
functions JTAG_INP and

JTAG_OUTP

Program the DAT file into
the system memory

Define delay function
dp_delay

Define memory interface
functions dp_get_data

and dp_get_page_data if
paging is required

Call dp_top function to
initiate desired action

Compile source code
and download to
microprocessor

Done

Figure 2-1 • Importing DirectC Files

16 | P a g e

To use DirectC v3.2 code integration:
1. Import the DirectC v3.2 files shown in Figure 2-2 into your development environment.

Figure 2-2 • DirectC v3.2 Files to import into your Development Environment

2. Modify the DirectC code. Refer to flow chart in figure 2-1.
– Define JTAG pin bit locations in the I/O register.
– Add API to support discrete toggling of the individual JTAG pins.
– Modify the hardware interface functions (inp_jtag and outp_jtag) to use the hardware API

functions designed to control the JTAG port.
– Modify the delay function (dp_delay).
– Modify memory access functions to access the data blocks within the image file programmed

into the system memory. See "Data File Bit Orientation" on page 37.
– Call dp_top function with the action code desired. See "DPG3ALG.C and DPG3ALG.H" on

page 34 for supported actions and their corresponding codes.
3. Compile the source code. This creates a binary executable that is downloaded to the system for

execution.

17 | P a g e

3 – Required Source Code Modifications

You must modify the dpuser.h and dpuser.c files when using the DirectC source code. "Source File
Description" on page 34 contains a short description of DirectC source code and their functions.
Functions that must be modified are listed in Table 3-2.

Table 3-1 • Compiler Switches

Function Source File Purpose

Jtag_inp Dpuser.c Hardware interface function used to set JTAG pins and read TDO

Jtag_outp Dpuser.c Hardware interface function used to set JTAG pins

dp_get_page_data Dpcom.c Programming file interface function

dp_delay Dpuser.c Delay function

dp_display_text Dpuser.c Function to display text to an output device

dp_display_value Dpuser.c Function to display value of a variable to an output device

Compiler Switches

The compiler switches in Table 3-2 are designed to allow you to easily adjust the compiled code size by
enabling or disabling specific support in DirectC. For example, to enable FPGA Array (Core) plain text
programming, CORE_SUPPORT and CORE_PLAIN must be defined. Table 3-2 lists the available
compiler switches in the project.

Table 3-2 • Compiler Switches

Compiler Switch Source File Purpose

CORE_SUPPORT dpG3alg.h Enables FPGA Array Programming support

CORE_ENCRYPT dpG3alg.h Specify to include FPGA Array Encrypted
programming support

CORE_PLAIN dpG3alg.h Specify to include FPGA Array Plain Text
programming support

FROM_SUPPORT dpG3alg.h Enables FlashROM Programming support

FROM_ENCRYPT dpG3alg.h Specify to include FlashROM Encrypted
programming support

FROM_PLAIN dpG3alg.h Specify to include FlashROM Plain Text
programming support

NVM_SUPPORT dpG3alg.h Enables eNVM Programming support

NVM_ENCRYPT dpG3alg.h Specify to include eNVM Encrypted programming
support

NVM_PLAIN dpG3alg.h Specify to include eNVM Plain Text programming
support

18 | P a g e

Table 3-2 • Compiler Switches

Compiler Switch Source File Purpose

SECURITY_SUPPORT dpG3alg.h Enables Security Programming support

SILSIG_SUPPORT dpG3alg.h Enables SILSIG Programming support

ENABLE_DAS_SUPPORT dpG3alg.h Enables support for A3PE1500 rev A devices;
support for this feature is not available on some 8-
bit microcontrollers due to Run Time Memory
requirements

ENABLE_GPIO_SUPPORT dpuser.h This switch must be defined to enable external
device programming

ENABLE_G3_SUPPORT dpuser.h Enables support for AGL, AFS, A3PL, A3PEL,
A3P/E, and A2F devices

ENABLE_G4_SUPPORT dpuser.h Enables support for M2S and MGL devices

ENABLE_DISPLAY dpuser.h Enables display functions

USE_PAGING dpuser.h Used to enable paging implementation for memory
access

CHAIN_SUPPORT dpuser.h Used to enable support for chain programming as
described in Table 4-2 on page 29.

BSR_SAMPLE dpuser.h Enable this option to maintain the last known IO
states during programming.
BSR loading and BSR_SAMPLE are not
supported for IAP.

ENABLE_CODE_SPACE_OPTIMIZATION dpG3alg.h See "Disabled Features with
ENABLE_CODE_SPACE_OPTIMIZATION" on
page 36

DISABLE_CORE_SPECIFIC_ACTIONS dpG3alg.h For code size reduction. This option will disable
array specific actions such as erase, program and
verify array actions.

DISABLE_FROM_SPECIFIC_ACTIONS dpG3alg.h For code size reduction. This option will disable
FROM specific actions such as erase, program and
verify FROM actions.

DISABLE_NVM_SPECIFIC_ACTIONS dpG3alg.h For code size reduction. This option will disable
NVM specific actions such as program and verify
NVM actions.

DISABLE_SEC_SPECIFIC_ACTIONS dpG3alg.h For code size reduction. This option will disable
security specific actions such as erase and
program security actions.

Note: Make sure that the appropriate compiler options are enabled to support all features available in the
STAPL/ Dat file. Otherwise, DirectC may report an error depending on the requested action. Avoid
using source files that have all options enabled. The number of options selected incrementally
increases the number of variables that need to be maintained and the amount of memory that is
used.

Compiler options defined in dpG3alg.h are specific to the AGL, AFS, A3PL, A3PEL, A3P/E and A2F
families of devices, whereas compiler switches defined in dpuser.h are common to all devices.

19 | P a g e

Hardware Interface Components

Define JTAG Hardware Bit Assignments (dpuser.h)

Define the JTAG bits corresponding to each JTAG pin. This is usually the bit location of the I/O register
controlling the JTAG port of the target device.
#define TCK 0x1 /* ... user code goes here ... */
#define TDI 0x2 /* ... user code goes here ... */
#define TMS 0x4 /*... user code goes here ... */
#define TRST 0x0 /* ... user code goes here ... set to zero if does not exist !!!*/
#define TDO 0x80 /*.. user code goes here ... */

Hardware Interface Function (dpuser.c)

jtag_inp and jtag_outp functions are used to interface with the JTAG port. A register jtag_port_reg is an 8
bit register already defined in DirectC. DirectC uses it to track the logical states of all the JTAG pins.

jtag_inp Function
This function returns the logical state of the TDO pin. If it is logic level zero, this function must return
zero. If the logical state is 1, it must return 0x80.

jag_outp Function
This function takes one argument that is the value of the JTAG port register containing the states of all
the JTAG pins. It sets the JTAG pins to the values in this argument.

Delay Function

dp_delay function, defined in dpuser.c, takes one argument which is the amount of time in
microseconds. Its purpose is to pause for a minimum of time passed in its argument.
Longer delay time does not impact programming other than programming time.

Display Functions

Display functions are only enabled if the ENABLE_DISPLAY compiler switch is enabled. Three functions,
dp_display_array, dp_display_text and dp_display_value, are available to display text as well as numeric
values. You must modify these functions for proper operation.

Memory Interface Functions

All access to the memory blocks within the data file is done through the dp_get_data function within
the
DirectC code. This is true for all system types.
This function returns an address pointer to the byte containing the first requested bit.
The dp_get_data function takes two arguments as
follows:

• var_ID: an integer variable that contains an identifier specifying which block within the data file
needs to be accessed.

• bit_index: The bit index addressing the bit to address within the data block specified in Var_ID.
Upon completion of this function, return_bytes variable must hold the total number of valid bytes
available for the calling function.
See "Systems with Direct Access to the Memory Containing the Data File" and "Systems with Indirect
Access to the Data File" on page 21 for details.

Systems with Direct Access to the Memory Containing the Data File
Since the memory space holding the data file is accessible by the microprocessor, it can be treated as
an array of unsigned characters. In this case, complete these steps:

1. Disable the USE_PAGING compiler switch. See "Compiler Switches" on page 18.

20 | P a g e

2. Assign the physical address pointer to the first element of the data memory location (image_buffer
defined in dpcom.c). Image_buffer is used as the base memory for accessing the information in the
programming data in storage memory.

The dp_get_data function calculates the address offset to the requested data and adds it to image_buffer.
Return_bytes is the requested data.
An example of the dp_get_data function implementation follows.
DPUCHAR* dp_get_data(DPUCHAR var_ID,DPULONG bit_index)

{

DPULONG image_requested_address;

if (var_ID == Header_ID)

current_block_address = 0;

else

dp_get_data_block_address(var_ID);

if ((current_block_address ==0) && (var_ID != Header_ID))

{

return_bytes = 0;

return NULL;

}

/* Calculating the relative address of the data block needed within the image */

image_requested_address = current_block_address + bit_index / 8;

return_bytes=image_size - image_requested_address;

return image_buffer+image_requested_address;

}

Systems with Indirect Access to the Data File
These systems access programming data indirectly via a paging mechanism. Paging is a method of copying
a certain range of data from the memory containing the data file and pasting it into a limited size memory
buffer that DirectC can access.

To implement paging:
1. Enable the USE_PAGING compiler option. See "Compiler Switches" on page 18.
2. Define Page_buffer_size. The recommended minimum buffer size is 16 bytes for efficiency

purposes. If eNVM encrypted programming support is required on SmartFusion or Fusion devices,
two buffers are needed of Page_buffer_size. Therefore, the run time memory required must be
able to hold 2 x Page_buffer_size.

3. Modify the dp_get_data function. Follow these rules for correct operation:
a. The function must return a pointer to the byte which contains the first bit to be processed.
b. The function must update return_bytes variable which specifies the number of valid bytes in the

page buffer.
4. Modify the dp_get_page_data function. This function copies the requested data from the external

memory device into the page buffer. See "Data File Bit Orientation" on page 37 for additional
information. Follow these rules for correct operation:
– Fill the entire page unless the end of the image is reached. See "Data File Format" on page 30.
– Update return_bytes to reflect the number of valid bytes in the page.

DirectC programming functions call dp_get_data function every time access to a data block within the
image data file is needed. The dp_get_data function calculates the relative address location of the
requested data and checks if it already exists in the current page data. The paging mechanism is
triggered if the requested data is not within the page buffer.

21 | P a g e

Example of dp_get_data Function Implementation
DPUCHAR* dp_get_data(DPUCHAR var_ID,DPULONG bit_index)

{

DPULONG image_requested_address;

DPULONG page_address_offset;

if (var_ID == Header_ID)

current_block_address = 0;

else

dp_get_data_block_address(var_ID);

if ((current_block_address ==0) && (var_ID != Header_ID))

{

return_bytes = 0;

return NULL;

}

/* Calculating the relative address of the data block needed within the image */

image_requested_address = current_block_address + bit_index / 8;

/* If the data is within the page, adjust the pointer to point to the particular
element requested */

if ((image_requested_address >= start_page_address) && (image_requested_address
<= end_page_address))

{

page_address_offset = image_requested_address - start_page_address;

return_bytes = end_page_address - image_requested_address + 1;

}

/* Otherwise, call dp_get_page_data which would fill the page with a new data
block */

else

{

dp_get_page_data(image_requested_address);

page_address_offset = 0;

}

return &page_global_buffer[page_address_offset];

}

Example of dp_get_page_data Function Implementation
dp_get_page_data is the only function that must interface with the communication peripheral of the
image data file. Since the requested data blocks may not be contiguous, it must have random access to
the data blocks. Its purpose is to fill the page buffer with valid data.
In addition, this function must maintain start_page_address and end_page_address that contain the
range of data currently in the page.
dp_get_page_data takes two arguments:

• address_offset - Contains the relative address of the needed element within the data block of the
image file.

22 | P a g e

#define DP_DEVICE_INFO_ACTION_CODE 1
#define DP_READ_IDCODE_ACTION_CODE 2
#define DP_ERASE_ACTION_CODE 3
#define DP_PROGRAM_ACTION_CODE 5
#define DP_VERIFY_ACTION_CODE 6
#define DP_ENC_DATA_AUTHENTICATION_ACTION_CODE 7
#define DP_ERASE_ARRAY_ACTION_CODE 8
#define DP_PROGRAM_ARRAY_ACTION_CODE 9
#define DP_VERIFY_ARRAY_ACTION_CODE 10
#define DP_ERASE_FROM_ACTION_CODE 11
#define DP_PROGRAM_FROM_ACTION_CODE 12
#define DP_VERIFY_FROM_ACTION_CODE 13
#define DP_ERASE_SECURITY_ACTION_CODE 14
#define DP_PROGRAM_SECURITY_ACTION_CODE 15
#define DP_PROGRAM_NVM_ACTION_CODE 16
#define DP_VERIFY_NVM_ACTION_CODE 17
#define DP_VERIFY_DEVICE_INFO_CODE 18
#define DP_READ_USERCODE_ACTION_CODE 19
#define DP_PROGRAM_NVM_ACTIVE_ARRAY_CODE 20
#define DP_VERIFY_NVM_ACTIVE_ARRAY_CODE 21
#define DP_IS_CORE_CONFIGURED_ACTION_CODE 22

• return_bytes - Points to the return_bytes variable that should be updated with the number of
valid bytes available.

void dp_get_page_data(DPULONG image_requested_address)

{

DPULONG image_address_index;

start_page_address=0;

image_address_index=image_requested_address;

return_bytes = PAGE_BUFFER_SIZE;

if (image_requested_address + return_bytes > image_size)

return_bytes = image_size - image_requested_address;

while (image_address_index < image_requested_address + return_bytes)

{

page_global_buffer[start_page_address]=image_buffer[image_address_index];

start_page_address++;

image_address_index++;

}

start_page_address = image_requested_address;

end_page_address = image_requested_address + return_bytes - 1;

return;

}

Main Entry Function

The main entry function is dp_top defined in dpalg.c. It must be called to initiate the programming
operation. Prior to calling the dp_top function, a global variable Action_code must be assigned a value as
defined in dpalg.h. Action codes are listed below.

/* Smart Fusion specific actions */
#define DP_PROGRAM_PRIVATE_CLIENTS_ACTION_CODE 23u
#define DP_VERIFY_PRIVATE_CLIENTS_ACTION_CODE 24u
#define DP_PROGRAM_PRIVATE_CLIENTS_ACTIVE_ARRAY_ACTION_CODE 25u

23 | P a g e

#define DP_VERIFY_PRIVATE_CLIENTS_ACTIVE_ARRAY_ACTION_CODE 26u

The following are the only actions supported on the SmartFusion2 and IGLOO2 families of devices.
#define DP_DEVICE_INFO_ACTION_CODE 1
#define DP_READ_IDCODE_ACTION_CODE 2
#define DP_ERASE_ACTION_CODE 3
#define DP_PROGRAM_ACTION_CODE 5
#define DP_VERIFY_ACTION_CODE 6
#define DP_ENC_DATA_AUTHENTICATION_ACTION_CODE 7

Note: Programming of individual blocks, such as array only or eNVM only, is not possible with one data

file because of how the data is constructed. If you wish to use such a feature you must generate
multiple data files.

24 | P a g e

Data Type Definitions

Microsemi uses DPUCHAR, DPUINT, DPULONG, DPBOOL, DPCHAR, DPINT, and DPLONG in the
DirectC source code. Change the corresponding variable definition if different data type names are used.
/***/
/* DPCHAR -- 8-bit Windows (ANSI) character */
/* i.e. 8-bit signed integer */
/* DPINT -- 16-bit signed integer */
/* DPLONG -- 32-bit signed integer */
/* DPBOOL -- boolean variable (0 or 1) */
/* DPUCHAR -- 8-bit unsigned integer */
/* DPUSHORT -- 16-bit unsigned integer */
/* DPUINT -- 16-bit unsigned integer */
/* DPULONG -- 32-bit unsigned integer */
\/***/
typedef unsigned char DPUCHAR;
typedef unsigned short DPUSHORT;
typedef unsigned int DPUINT;
typedef unsigned long DPULONG;
typedef unsigned char DPBOOL;
typedef char DPCHAR;
typedef int DPINT;
typedef long DPLONG;

25 | P a g e

Supported Actions

Action: DP_DEVICE_INFO_ACTION
Purpose: Displays device security settings and the content of the FROM if note encrypted.

Action: DP_READ_IDCODE_ACTION
Purpose: Reads and displays the content of the IDCODE register.

Action: DP_ERASE_ACTION
Purpose: Erases all supported blocks in the data file.

Action: DP_PROGRAM_ACTION
Purpose: Performs erase, program and verify operations for all the supported blocks in the
data file including SmartFusion MSS private clients.

Action: DP_VERIFY_ACTION
Purpose: Performs verify operation for all the supported blocks in the data file including SmartFusion
MSS private clients.

Action: DP_ENC_DATA_AUTHENTICATION_ACTION
Purpose: Valid for encrypted array devices and files only. Performs data authentication for the array to
make sure the data was encrypted with the same encryption key as the device.

Action: DP_ERASE_ARRAY_ACTION
Purpose: Performs erase operation on the array blocks.

Action: DP_PROGRAM_ARRAY_ACTION
Purpose: Performs erase, program and verify operations on the array block and SmartFusion MSS
private clients.

Action: DP_VERIFY_ARRAY_ACTION
Purpose: Performs verify operation on the array block and SmartFusion MSS private clients.

Action: DP_ERASE_FROM_ACTION
Purpose: Performs erase operation on the FROM block.

Action: DP_PROGRAM_FROM_ACTION
Purpose: Performs erase, program and verify operations on the FROM block.

Action: DP_VERIFY_FROM_ACTION
Purpose: Performs verify operation on the FROM block.

Action: DP_ERASE_SECURITY_ACTION
Purpose: Performs erase operation on the security registers.

Action: DP_PROGRAM_FROM_ACTION
Purpose: Performs erase and program operations on the security registers.

Action: DP_PROGRAM_NVM_ACTION
Purpose: Performs program and verify operations on all supported NVM blocks in the data file including
SmartFusion MSS private clients.

Action: DP_VERIFY_NVM_ACTION
Purpose: Performs verify operation on all supported NVM blocks in the data file including SmartFusion
MSS private clients.

Action: DP_VERIFY_DEVICE_INFO_ACTION
Purpose: Performs verification of the security settings of the device against the data file security setting.

Action: DP_READ_USERCODE_ACTION
Purpose: Reads and displays the device usercode while the FPGA Array remains active.

26 | P a g e

Action: DP_PROGRAM_NVM_ACTIVE_ARRAY
Purpose: Programs the targeted EFMBs while the FPGA Array remains active including
SmartFusion MSS private clients.

Action: DP_VERIFY_NVM_ACTIVE_ARRAY
Purpose: Verifies the targeted EFMBs while the FPGA Array remains active including
SmartFusion MSS private clients.

Action: DP_PROGRAM_SECURITY_ACTION
Purpose: Performs erase, and program operation of the security registers.

Action: DP_IS_CORE_CONFIGURED_ACTION_CODE
Purpose: Performs a quick check on the array to determine if the core is programmed and
enabled.

Action: DP_PROGRAM_PRIVATE_CLIENTS_ACTION_CODE
Purpose: SmartFusion specific action. This action programs the system boot code as well as
initialization clients in smart fusion used by the MSS.

Action: DP_VERIFY_PRIVATE_CLIENTS_ACTION_CODE
Purpose: SmartFusion specific action. This action verifies the system boot code as well as
initialization clients in smart fusion used by the MSS.

Action: DP_PROGRAM_PRIVATE_CLIENTS_ACTIVE_ARRAY_ACTION_CODE
Purpose: SmartFusion specific action. This action updates the system boot code as well as
initialization clients in smart fusion used by the MSS while the FPGA array remains active.

Action: DP_VERIFY_PRIVATE_CLIENTS_ACTIVE_ARRAY_ACTION_CODE
Purpose: SmartFusion specific action. This action updates the system boot code as well as
initialization clients in smart fusion used by the MSS while the FPGA array remains active.

27 | P a g e

4 – Chain Programming

Chain programming refers to a chain of devices (from various vendors) connected together serially
through a JTAG port. When devices are joined together in a JTAG chain, all of their Instruction Registers
(IR) and Data Registers (DR) are put in a long shift register from TDI to TDO. The IR length differs from
device to device and the DR length depends on the instruction that shifts into the instruction register.

Pre/Post Data Variable Declaration

The pre/post data variable declaration variables are initialized and used in the dpchain.c file. Their
default values are 0s. You do not need to change these values if you are programming a standalone
device. However, you must correctly set these variables if you are programming Microsemi devices in a
daisy chain.
The variables that must be set are defined in dpchain.c and are listed below.
DPUINT dp_preir_length = PREIR_LENGTH_VALUE;
DPUINT dp_predr_length = PREDR_LENGTH_VALUE;
DPUINT dp_postir_length = POSTIR_LENGTH_VALUE;
DPUINT dp_postdr_length = POSTDR_LENGTH_VALUE;

These variables are used to hold the pre and post IR and DR data. DPUCHAR

dp_preir_data[PREIR_DATA_SIZE];
DPUCHAR dp_predr_data[PREDR_DATA_SIZE];
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE];
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE];

PREIR_DATA_SIZE = (dp_preir_length + 7) / 8;
PREDR_DATA_SIZE = (dp_predr_length + 7) / 8;
POSTIR_DATA_SIZE = (dp_postir_length + 7) / 8;
POSTDR_DATA_SIZE = (dp_postdr_length + 7) / 8;

In the example below, the devices sitting in a chain between the need-programming A3P device and the
TDO of the programming header are called pre-devices. The devices between the need-programming
A3P device and the TDI of the programming header are called post-devices. In Figure 4-1, devices one
and two are pre-devices, devices four, five and six are post-devices, and the A3P 3 is the device that is
programmed.

TDI 6 5 4 A3P3 2 1 TDO

Figure 4-1 • Devices in the Chain

If there are N1 pre-devices and N2 post-devices in a chain, L1 is the sum of IR lengths of all the pre-
devices. L2 is the sum of IR lengths of all the post-devices. Table 4-2 is an example of how to set the
values for the dpchain.c file using the variables assuming the values shown in Table 4-1.

Table 4-1 • Device IR Length

Device IR Length

Dev 1 5

Dev 2 8

28 | P a g e

Table 4-1 • Device IR Length
(continued)

Device IR Length

Dev 3 8

Dev 4 3

Dev 5 12

Dev 6 5

L1 = 5 + 8 = 13
L2 = 3 + 12 + 5 = 20

Table 4-2 • Example Variable Values for dpchain.c File

Pre/Post Data Values Comments

#define PREIR_LENGTH_VALUE 13 L1

#define PREDR_LENGTH_VALUE 2 N1

#define POSTIR_LENGTH_VALUE 20 L2

#define POSTDR_LENGTH_VALUE 3 N2

#define PREIR_DATA_SIZE 2 Number of bytes needed to hold L1

#define PREDR_DATA_SIZE 1 Number of bytes needed to hold N1

#define POSTIR_DATA_SIZE 3 Number of bytes needed to hold L2

#define POSTDR_DATA_SIZE 1 Number of bytes needed to hold N2

Initialize the following arrays as follows for this particular example:
DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff,0x1f};
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x3};
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff,0xff,0xf};
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x1f};

Note: Chain programming does not support programming multiple devices simultaneously. Instead, it is a

method to communicate with one device to perform programming. All other devices must be placed
in bypass mode, as implemented in the above example.

29 | P a g e

5 – Data File Format

DAT File Description for AGL, AFS, A3PL, A3PEL, A3P/E, and
A2F Devices

The AGL / AFS / A3PL / A3PEL / A3P/3 A2F data file contains the following sections:
• Header Block - Contains information identifying the type of the binary file, data size blocks, target

device ID and different flags needed in the DirectC code to identify which block is supported and
its associated options.

• Data Lookup Table - Contains records identifying the starting relative location of all the different
data blocks used in the DirectC code and data size of each block. The format is described in
Table 5-1.

• Data Block - Contains the raw data for all the variables specified in the lookup table.

Table 5-1 • DAT Image Description

Header Section of DAT File

Information # of Bytes

Designer Version Number 24

Header Size 1

Image Size 4

Data Compression Flag 1

M1/P1/M7 Flag 1

Target Device ID 4

Tools Version Number 2

Map Version Number 2

Core Support Flag 1

FORM Support Flag 1

NVM Support Flag 1

NVM Block 0 Support Flag 1

NVM Block 1 Support Flag 1

NVM Block 2 Support Flag 1

NVM Block 3 Support Flag 1

NVM Verify Support Flag 1

PASS Key Support Flag 1

AES Key Support Flag 1

30 | P a g e

Table 5-1 • DAT Image Description (continued)

Header Section of DAT File

Core Encryption Flag 1

FROM Encryption Flag 1

NVM Block 0 Encryption Flag 1

NVM Block 1 Encryption Flag 1

NVM Block 2 Encryption Flag 1

NVM Block 3 Encryption Flag 1

Device Exception Flag 2

ID Mask 4

SD Tiles 1

Mapped rows 2

BSR Length 2

SE Wait 1

Dual Key Support Flag 1

Number of DirectC data blocks in file 1
Look Up Table

Information # of Bytes

Data Identifier # 1 1

Pointer to data 1 memory location in the data block
section

4

of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block
section

4

of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block
section

4

of bytes of data x 4

Data Block

Information # of Bytes

Binary Data Variable

CRC of the entire image 2

31 | P a g e

DAT File Description for M2GL and M2S Devices

The MGL and M2S data file contains the following sections:
• Header Block - Contains information identifying the type of the binary file and data size blocks.
• Constant Data Block - Includes device ID, silicon signature and other information needed for

programming.
• Data Lookup Table - Contains records identifying the starting relative location of all the different

data blocks used in the DirectC code and data size of each block. The format is described in
Table 5-2.

• Data Block - Contains the raw data for all the different variables specified in the lookup table.

Table 5-2 • DAT Image Description

Header Section of DAT File

Information # of Bytes

Designer Version Number 24

Header Size 1

Image Size 4

DAT File Version 1

Tools Version Number 2

Map Version Number 2

Feature Flag 2

Device Family 1

Constant Data Block

Device ID 4

Device ID Mask 4

Silicon Signature 4

Checksum 2

Number of BSR Bits 2

Number of Components 2

Data Size 2

Erase Data Size 2

Verify Data Size 2

ENVM Data Size 2

ENVM Verify Data Size 2

Number of Records 1

Look Up Table

Information # of Bytes

32 | P a g e

Table 5-2 • DAT Image Description (continued)

Header Section of DAT File

Data Identifier # 1 1

Pointer to data 1 memory location in the data block
section

4

of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block
section

4

of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block
section

4

of bytes of data x 4
Data Block

Information # of Bytes

Binary Data Variable

CRC of the entire image 2

33 | P a g e

6 – Source File Description

DPUSER.C and DPUSER.H

These files contain hardware interface functions and require user modification.

DPCOM.C and DPCOM.H

These files contain memory interface functions.

DPALG.C and DPALG.H

dpalg.c contains the main entry function dp_top.
dpalg.h contains definitions of all the STAPL actions and their corresponding codes.

DPG3ALG.C and DPG3ALG.H

dpG3alg.c contains the main entry function dp_top_g3 and all other functions common to AGL, AFS,
A3PL, A3PEL, A3P/E, and A2F families.
dpG3alg.h contains compile options specific to AGL, AFS, A3PL, A3PEL, A3P/E, and A2F families.

DPCORE.C and DPCORE.H

Files that contain the specific functions to support array erase, program and verify actions of AGL, AFS,
A3PL, A3PEL, A3P/E and A2F families.

DPFROM.C and DPFROM.H

Files that contain the specific functions to support FROM erase, program and verify actions of AGL, AFS,
A3PL, A3PEL, A3P/E and A2F families.

DPNVM.C and DPNVM.H

Files that contain the specific functions to support NVM program and verify actions of AFS and A2F
families.

DPSECURITY.C and DPSECURITY.H

Files that contain the specific functions to support security erase, program actions of AGL, AFS, A3PL,
A3PEL, A3P/E, and A2F families.

DPG4ALG.C and DPG4ALG.H

dpG4alg.c contains the main entry function dp_top_g4 and all other functions common to M2S and MGL
families.

DPJTAG.C and DPJTAG.H

The JTAG related functions are declared in dpjtag.h and implemented in dpjtag.c.

34 | P a g e

DPCHAIN.C and DPCHAIN.H

Files that contain the specific functions to support chain programming.
dpchain.c contains pre- and post-IR/DR data definition to support chain programming.

DPUTIL.C and DPUTIL.H

These files contain utility functions needed in the DirectC code.

35 | P a g e

7 – Disabled Features with
ENABLE_CODE_SPACE_OPTIMIZATION

DMK Verification for ARM Enabled Devices

This feature identifies whether the target device is an M1, M7, or P1
device. Affected devices: ARM enabled devices
Impact if removed - DirectC will be unable to identify if the device is standard Fusion or ARM enabled
device. DirectC still support programming; however, it relies on the data file processing the target device
as an ARM enabled device.

030/015 Device Check

This feature identifies if the target device is a 015 or 030 device; needed to prevent the wrong design
from being programmed into the device.
Affected devices: A3P and AGL 015 / 030 device
Impact if removed: If the design does not match the target device, programming may pass, but the device
may not function

36 | P a g e

8 – Data File Bit Orientation

This chapter specifies the data orientation of the binary data file generated by the Libero software.
DirectC implementation must be in sync with the specified data orientation. Table 8-1 illustrates how
the data is stored in the binary data file. See "Data File Format" on page 30 for additional information
on the data file.

Table 8-1 • Binary Data File Example

Byte O Byte 1 Byte 2 Byte 3 Byte N

Bit7..Bit0 Bit15..Bit8 Bit23..Bit16 Bit35..Bit24 Bit(8N+7)..Bit(8N)

Valid Data Valid Data Valid Data Valid Data o <-Valid Data

If the number of bits in a data block is not a multiple of eight, the rest of the most significant bits (msb) in
the last byte are filled with zeros. The example below shows a given 70-bit data to be shifted into the
target shift register from the least significant bit (lsb) to the most significant bit (msb). A binary
representation of the same data follows.

20E60A9AB06FAC78A6 tdi

10000011100110 00001010100110101011000001101111101011000111100010100110 tdi

Bit 69 Bit 0

This data is stored in the data block section. Table 8-2 shows how the data is stored in the data block.

Table 8-2 • Data Block Section Example

Byte O Byte 1 Byte 2 Byte 3 Byte 4 .. Byte 8

Bit7...Bit0 Bit15..Bit8 Bit23..Bit16 Bit35..Bit24 Bit43..Bit36 .. Bit71..Bit64

10100110 01111000 10101100 01101111 10110000 00100000

A6 78 AC 6F B0 20

37 | P a g e

9 – Error Messages & Troubleshooting Tips

The information in this chapter may help you solve or identify a problem when using DirectC code. If you
have a problem that you cannot solve, visit the Microsemi website at
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support or contact Microsemi
Customer Technical Support at tech@microsemi.com or call our hotline at 1-800-262-1060.
See Table 9-1 for a description of exit codes and their solutions.

Table 9-1 • Exit Codes

Exit Code Error Message Action/Solution

0 This code does not indicate an error. This message indicates success.
6 JEDEC standard message. The IDCODE of

the target device does not match the expected
value in the DAT file image.

Possible Causes:
- The data file loaded was compiled for a different
device. Example AFS250 DAT file loaded to
program AFS600 device.
- Device TRST pin is grounded.
- Noise or reflections on one or more of the JTAG
pins causing incorrect read-back of the IR Bits.
Solution:
- Choose the correct DAT file for the target device.
- Measure JTAG pins and noise or reflection. TRST
should be floating or tied high.
- Cut down the extra length of ground connection.

8 This message occurs when the FPGA failed
during the Erase operation.

Possible Causes:
- The device is secured, and the corresponding data
file is not loaded. The device has been permanently
secured and cannot be unlocked.
Solution:
- Load the correct DAT file.

10 Failed to program FlashROM. - Check Vpump level.
- Try with new device.
- Measure JTAG pins and noise or reflection.

11 The message occurs when the FPGA failed
verify.

Possible Cause:
- The device is secured, and the corresponding DAT
file is not loaded.
- The device is programmed with an incorrect
design.
Solution:
- Load the correct DAT file.
- Check Vpump level.
- Measure JTAG pins and noise or reflection.

14 Failed to program Silicon Signature. - Check Vpump level.
- Try with new device.
- Measure JTAG pins and noise or reflection.

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
mailto:tech@microsemi.com

38

Table 9-1 • Exit Codes (continued)

Exit Code Error Message Action/Solution
18 Failed to authenticate the encrypted data. - Make sure the AES key used to encrypt the data

matches the AES key programmed in the device.
20 Failed to verify FlashROM at row ###. - Check Vpump level.

- Try with new device.
- Measure JTAG pins and noise or reflection.
-Make sure the device is programmed with the
correct design.

22 Failed to program pass key. - Check Vpump level.
- Try with new device.
- Measure JTAG pins and noise or reflection.

23 Failed to program AES key. - Check Vpump level.
- Try with new device.
- Measure JTAG pins and noise or reflection.

24 Failed to program UROW. - Check Vpump level.
- Try with new device.
- Measure JTAG pins and noise or reflection.
- Make sure you mounted 0.01uF and 0.33ufF caps
on Vpump (close to the pin).

25 Failed to enter programming mode. - Try programming with a new device.
- Measure JTAG pins and noise or reflection.

27 FlashROM Write/Erase is protected by the
pass key. A valid pass key needs to be
provided.

- Provide a data file with a pass key.

30 FPGA Array verification is protected by a pass
key. A valid pass key needs to be provided.

- Provide a data file with a valid pass key.

31 Failed to program DMK. - Check Vpump level.
- Try with new device.
- Measure JTAG pins and noise or reflection.

33 FPGA Array encryption is enforced. Plain text
programming is prohibited.

Provide a data file with an encrypted FPGA Array.

34 FlashROM encryption is enforced. Plain text
programming is prohibited.

- Provide a data file with an encrypted FlashROM.

35 Pass key match failure. - Provide a data file with correct pass key.
36 FlashROM Encryption is not enforced. AES

key may not be present in the target device.
Unable to proceed with Encrypted FlashROM
programming.

- Make sure the device is properly secured with AES
encryption protection turned on.
- Provide correct DAT file for programming.

37 FPGA Array Encryption is not enforced.
Cannot guarantee valid AES key present in
target device.
Unable to proceed with Encrypted FPGA
Array programming.

- Make sure the device is properly secured with the
AES encryption protection turned on for FPGA
Array.
- Provide the correct data file for programming.

39

Table 9-1 • Exit Codes (continued)

Exit Code Error Message Action/Solution
38 Failed to program pass key. - Check that the device is not already secured with a

different pass key.
- Check Vpump level.
- Try with new device.
- Measure JTAG pins and noise or reflection.

39 Failed the Embedded Flash Block verification. - Check that the device is not read secured already
with a different pass key.
- Measure JTAG pins and noise or reflection.

41 Failed to program Embedded Flash Block. - Check Vpump level.
- Try with new device.
- Measure JTAG pins and noise or reflection.

42 User lock bits do not match the lock bits in the
data file.

Provide a data file with the correct lock bits data.

43 User urow information does not match the
urow information in the data file.

Provide a data file with the correct urow information
data.

47 NVM encryption is enforced. Plain text
programming is prohibited.

Provide a data file with an encrypted NVM.

49 NVM encryption is not enforced. Cannot
guarantee valid AES key present in target
device.
Unable to proceed with encrypted NVM
programming.

- Make sure the device is properly secured with the
AES encryption protection turned on for NVM.
- Provide the correct data file for programming.

100 CRC data error. Data file is corrupted or
programming on system board is not
successful.

- Regenerate data file.
- Reprogram data file into system memory.

150 Request action is not found. Check spelling.
151 Action is not supported because required data

block is missing from the data file.
Regenerate STAPL/DAT file with the needed block/
feature support.

152 Compiled code does not support the
requested action.

Compile DirectC code with the appropriate compile
options enabled.

153 Data file contains data for the protected
portion of NVM0 block.

Regenerate the data file from the latest Designer
software.

154 Device security settings do not match with the
data file.

Regenerate the data file with the correct device
security settings.

40

 A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Microsemi SoC Products Group and using these support
services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 650.318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers
who can help answer your hardware, software, and design questions about Microsemi SoC Products. The
Customer Technical Support Center spends a great deal of time creating application notes, answers to
common design cycle questions, documentation of known issues and various FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-
support/fpga-soc-support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group
home page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted
by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We
constantly monitor the email account throughout the day. When sending your request to us, please be sure
to include your full name, company name, and your contact information for efficient processing of your
request.
The technical support email address is soc_tech@microsemi.com.

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/

41

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and
corporate contacts.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
mailto:tech@microsemi.com
http://www.microsemi.com/soc/ITAR/

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-499 6

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights
reserved. Microsemi and the Microsemi
logo are trademarks of Microsemi
Corporation. All other trademarks and
service marks are the property of their
respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of
semiconductor and system solutions for communications, defense & security,
aerospace and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and
ASICs; power management products; timing and synchronization devices and
precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans;
as well as custom design capabilities and services. Microsemi is headquartered
in Aliso Viejo, Calif. and has approximately 3,600 employees globally. Learn more
at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information
contained herein or the suitability of its products and services for any particular purpose, nor
does Microsemi assume any liability whatsoever arising out of the application or use of any
product or circuit. The products sold hereunder and any other products sold by Microsemi
have been subject to limited testing and should not be used in conjunction with mission-
critical equipment or applications. Any performance specifications are believed to be reliable
but are not verified, and Buyer must conduct and complete all performance and other
testing of the products, alone and together with, or installed in, any end-products. Buyer
shall not rely on any data and performance specifications or parameters provided by
Microsemi. It is the Buyer's responsibility to independently determine suitability of any
products and to test and verify the same. The information provided by Microsemi hereunder
is provided "as is, where is" and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any
party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any
changes to the information in this document or to any products and services at any time
without notice.

5-13-00109-1/10.15

mailto:sales.support@microsemi.com
http://www.microsemi.com/

	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

