
Application Note AC400

SmartFusion2 Flash*Freeze Entry and Exit - With
SoftConsole - Libero SoC v11.4

Table of Contents

Purpose
This application note describes how to set different user defined settings during the design time using the
Libero® System-on-Chip (SoC) software. It also describes in detail how to enter Flash*Freeze (F*F)
mode using the System Services through ARM® Cortex®-M3 firmware, using SoftConsole, and exiting
from F*F mode using different mechanisms, such as external I/Os events and/or RTC time-out event.

Introduction
SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) devices provide an ultra-
low static power solution through F*F technology. Entry into F*F mode retains all the static random-
access memory (SRAM) and registers information and F*F exit mode achieves rapid recovery to Active
mode.

One of the System Controller’s functions in the SmartFusion2 device is to handle the System Services
requests through the communication block (COMM_BLK). The System Services are grouped into
different services. Refer to the SmartFusion2 System Controller User Guide for more details. The
SmartFusion2 device enters into F*F mode by using the F*F services request that the System Controller
provides. Some of these options need to be set by the user during the design time, such as the clock
source to be used as the standby clock source for the microcontroller subsystem (MSS) during F*F
mode. Furthermore, the fabric SRAM state can also be defined during F*F mode.

The fabric SRAM state during F*F can either be "Sleep" or "Suspend". In Suspend mode, the large
SRAM (LSRAM) and micro SRAM (uSRAM) contents are retained. It means, when the device exits F*F
mode, the content of the SRAMs is not lost. In Sleep mode, the LSRAM and uSRAM contents are not
retained. The standby clock source for the MSS during F*F and the state are configured in the F*F
hardware settings in Libero SoC.

Purpose . 1
Introduction . 1
References . 2
Design Requirements . 2

Design Description . 3
Entering into F*F Mode . 4
Exiting from F*F Mode . 4

Hardware Implementation . 6

Software Implementation . 10
Running the Design . 11

Host PC to Board Connections . .11
USB Driver Installation . 12
Run the Design Steps . 12

Conclusion . 19

Appendix A – Design Files . 20

List of Changes . 21

Sup
ers

ed
ed
September 2014 1

© 2014 Microsemi Corporation

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130927

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
There are different ways to exit from F*F mode. Exit from F*F mode can be initiated by internal timed
events, such as a real-time counter (RTC) event or external I/O events (either transitions or pattern
matching on I/Os). The state and the role that I/Os play during F*F mode must be specified during the
design time using the Libero SoC. There are three different settings available. These settings are
categorized as the I/O state in F*F mode, I/O availability in F*F mode, and I/O role in exiting from F*F
mode. Depending on the type of the I/O, some or all of those options may not be available. Refer to the
SmartFusion2 Low Power Design User's Guide for more details.

Managing the MDDR, FDDR, or SERDES before and after F*F mode, power measurements, or using
fabric master option to enter into F*F mode are not discussed in this document.

References
The following list of references was used in this document. The references complement and help in
understanding the relevant Microsemi® SmartFusion2 SoC FPGA device features and flows that are
demonstrated in this document.

• SmartFusion2 System Controller User Guide

• SmartFusion2 Low Power Design User Guide

• SmartFusion2 eNVM Initialization Application Note

• SmartFusion2 Evaluation Kit Board

Design Requirements
Table 1 shows the design requirements.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Evaluation Kit Rev C

Host PC Any 64-bit Windows Operating System

Software Requirements

Libero SoC v11.4

SoftConsole v3.4 SP1

FlashPro programming software v11.4

Host PC Drivers USB to UART drivers

One of the following serial terminal emulation
programs:

• HyperTerminal

• TeraTerm

• PuTTY

–

Sup
ers

ed
ed
2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130923
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130927
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130923
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129977
http://www.microsemi.com/index.php?option=com_content&view=article&id=2355&catid=1663&Itemid=3402
http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip
http://www.microsemi.com/index.php?option=com_content&view=article&id=2355&catid=1663&Itemid=3402

Design Description
Design Description
The design example consists of the MSS, a counter, SRAM wrapper logic, IP cores (CoreAHBLite,
CoreAHBToAPB3, CoreResetP, and CoreAPB3), and fabric CCC (FCCC). The IP cores along with the
SRAM wrapper are used to initialize the fabric SRAM by moving data from the embedded nonvolatile
memory (eNVM) to the fabric SRAM through FIC_0 AHB master interface. A Data Storage client is
defined in the eNVM with the data to be written to the SRAM. This is used to demonstrate the state of the
fabric SRAM content after exiting from F*F mode. Refer to the SmartFusion2 eNVM Initialization
Application Note for more details on how to use eNVM to initialize fabric SRAMs. The CoreResetP
handles the sequencing of reset signals in the device. Refer to the CoreResetP Handbook for more
details on this core.

Using the System Builder, the MSS is configured to use one UART interface (MMUART_1), MSS clock
condition circuit (MSS_CCC), the RTC to generate the RTC interrupt event to wake up the device, and
one instance of the fabric interface (FIC_0). The FIC_0 interface is configured to use the master interface
with AHB-Lite (AHBL) interface type. The MMUART_1 is used as an interface for reading and writing to
the HyperTerminal and is clocked by PCLK1 on the APB bus1 (APB_1). PCLK1 is derived from the
Cortex-M3 processor and MSS main clock (M3_CLK). Refer to the top-level block diagram in Figure 1 on
page 4. The M3_CLK, FIC_0_CLK, and APB_1_CLK are configured as 100 MHz clocks generated from
the MSS_CCC.

In Active mode (non F*F), the MSS_CCC is configured to be sourced from the FPGA fabric through the
CLK_BASE port. The FCCC is configured to provide the 100 MHz CLK_BASE reference. The on-chip
50 MHz oscillator is the reference clock source for the FCCC. The output of a counter is connected to a
set of light-emitting diodes (LEDs) to monitor the state of the fabric while entering and exiting F*F mode.
The LEDs ports assignments are shown in Table 2.

Table 2 • LED to Pins Assignments (SmartFusion2 Evaluation Kit Board)

Counter Output Package Pin

LED_1 H5

LED_2 H6

LED_3 J6

LED_4 H7

Sup
ers

ed
ed
3

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129977
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129977

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
The top-level block diagram shows the main blocks used in the design, as shown in Figure 1.

Entering into F*F Mode
Entering into F*F mode is done through the System Services using software drivers. System Services
are requested, through firmware drivers, by sending a command byte describing the function to be
performed followed by command specific sub-commands and/or data. The F*F service requests the
System Controller to execute the F*F entry sequence. When the F*F service begins execution, the
System Controller informs the MSS by sending a command byte E0H that F*F shutdown is imminent.
The service is stalled until this command byte can be accepted by the COMM_BLK FIFO. If a new
service request is received while servicing another request, the new service request is immediately
aborted. Refer to the "Flash*Freeze Service" section in the SmartFusion2 System Controller User's
Guide for more details.

As the F*F system service command is initiated, the System Controller disables the fabric, each eNVM
block, or the MSS PLL circuit. All these options are available as part of the firmware System Services
driver function MSS_SYS_flash_freeze(), which is part of the mss_sys_services driver. Refer to the
"Software Implementation" section on page 10 for more details.

Exiting from F*F Mode
Exiting from F*F mode can be initiated by external I/Os events or by an RTC event. User I/Os (MSIO,
MSIOD, or DDRIO) that are single-ended inputs can participate in the F*F exit in two ways.

• I/O Activity: Force F*F exit up on an activity (Wake_On_Change)

• I/O Signature: Force F*F exit up on a signature (Wake_On_1/Wake_On_0) match in which the I/O
participates with other I/Os to trigger F*F exit. This is a logical AND behavior where all I/Os must
meet the Low Power Exit settings.

Figure 1 • Top-Level Block Diagram of the Design

S
ys

te
m

 C
on

tro
lle

r

Oscillators

Microcontroller Subsystem

Fabric

LEDs

Cortex-M3
Processor

50 MHz
RC Osc

APB_1

AHB Bus Matrix

Oscillator
Control

COMM_BLKCOMM_BLK

eNVM

MMUART_1

RTC

Host PC

Counter

MSS_CCC

FCCC

APB_1_CLK

FIC_0_CLK

FIC_0_CLK
M

3_
C

LK

Fabric RAM
Initialization
Subsystem

FIC_0

Sup
ers

ed
ed
4

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130927
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130927

Design Description
The external I/O events are specified during the design time using the I/O Editor in the Libero SoC
software. Only input I/Os participate in the F*F exit event.

Note: The Wake_On_Change is a logical OR behavior with I/Os that are set as Wake_ON_1
/Wake_ON_0. This means that to wake from F*F, it must be {(All Wake-on-0 ANDed) ANDed with
(All Wake-on-1 ANDed)} ORed with (All Wake-on-Change ORed).

I/O Activity
In I/O Activity mode, an input I/O can be selected to be part of a transition. The value at the pin of the
activity I/O is latched before going to Low Power mode. When a change happens on the configured I/O,
the device wakes up from F*F mode. The change can either be 1-to-0 or 0-to-1. This option is equivalent
to the "Wake_On_Change" option in the I/O Editor. This can be set on more than one I/O. The
Wake_On_Change is a logical OR behavior with other I/Os that are set as Wake_On_Change.

I/O Signature
Any input I/O can be selected to be a part of a signature match value that is used to wake-up the device
from F*F mode. All the selected I/Os have to match a static predetermined value at the same time. If the
configured signature values match the values at I/Os, then the device exits from F*F mode. I/Os can be a
mixture of different signature settings. An I/O can be configured to participate in the F*F exit upon a
0-to-1 or it can be configured to participate in the F*F exit upon a 1-to-0 transition. These options are
equivalent to Wake_On_1 (transition from 0-to-1) and Wake_On_0 (transition from 1-to-0) settings in the
I/O Editor in the Libero SoC software.

All other I/Os that are not participating in the F*F exit mechanism are tristated or held to the previous
state (LAST_VALUE) before entering F*F mode. The selection is set using I/O state in Flash*Freeze
mode column options in the I/O Editor using the Libero SoC, as shown in Figure 8 on page 9.

SW5 (four different dual in-line package (DIP) switches) on the Evaluation Kit board is used to
demonstrate the pattern matching wake-up mechanism. Four different inputs are created in the top-level
design where each input is assigned to a DIP switch, as shown in Figure 2. SW1 on the Evaluation Kit
board is used to demonstrate the transition (Wake_On_Change) wake-up event mechanism, as shown in
Figure 2.

To demonstrate the RTC wake-up event mechanism, the RTC is configured in Binary mode. Refer to the
"Software Implementation" section on page 10 for more information. The timeout value should be set per
the application needs and should also ensure that one of the on-chip clock resources is driving the RTC.
Exit from F*F mode can also be achieved by the Cortex-M3 processor by setting the "Wakeup_set" bit in
the RTC control register that results in assertion of the RTC wakeup interrupt. The RTC wakeup interrupt
is routed to the System Controller, fabric, and Cortex-M3 processor nested vectored interrupt controller
(NVIC). Refer to the "Hardware Implementation" section on page 6 for more information.

Figure 2 • DIP Switches and the SW1 Connectivity in SmartDesign

Sup
ers

ed
ed
5

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
Hardware Implementation
The hardware implementation involves configuring the MSS and the necessary F*F settings. The FIC_0,
MMUART_1, and RTC are enabled using the MSS configurator. The design example consists of MSS, a
counter, SRAM wrapper logic, IP cores (CoreAHBLite, CoreAHBToAPB3, CoreAPB3), and FCCC, as
shown in Figure 3. The IP cores along with the SRAM wrapper are used to initialize the fabric SRAM by
moving data from the eNVM to the fabric SRAM through FIC_0 AHB master interface. A Data Storage
client is defined in the eNVM with the data to be written to the SRAM. This is used to demonstrate the
state of the fabric SRAM content after exiting from F*F. Refer to the SmartFusion2 eNVM Initialization
Application Note for more information on how to use the eNVM to initialize fabric SRAMs.

Figure 3 • Top-Level Hardware DesignSup
ers

ed
ed
6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129977
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129977

Hardware Implementation
The FIC_0 interface is configured part of the System Builder as AHBL master interface, as shown in
Figure 4.

The RTC block is enabled and is clocked from the internal 1 MHz RC oscillator. This option is selected in
the Libero SoC during the hardware design flow. Enable WakeUp interrupt to Cortex-M3 is selected, as
shown in Figure 5.

Figure 4 • FIC_0 AHBL Master Interface Configuration

Figure 5 • RTC Configuration

Sup
ers

ed
ed
7

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
The MSS_CCC clock source is sourced from the FCCC through the CLK_BASE port. The FCCC is
configured to provide the 100 MHz clock using GL0. The FCCC reference clock is sourced from the
On-chip 25/50 MHz RC Oscillator. Figure 6 shows the system clocks configurations for the M3_CLK,
APB_1_CLK, and FIC_0_CLK clock settings.

The standby clock source for the MSS in F*F mode and the state of the SRAMs (uRAM and LSRAM)
during F*F mode are configured using the Flash*Freeze Hardware Settings dialog in the Libero SoC
software, as shown in Figure 7. For some peripherals that can remain active (such as SPI or MMUART),
a higher MSS clock frequency (for example, MMUART to meet the baud rate) might be required.
Following are the MSS clock source options that are available to be used during F*F mode:

• On-chip 1 MHz RC oscillator

• On-chip 50 MHz RC oscillator

Figure 6 • MSS CCC System Builder System Clocks Configurations

Sup
ers

ed
ed
8

Hardware Implementation
The I/Os F*F exit mechanism is specified using the Low Power Exit setting in the I/O Constraints Editor in
the Libero SoC, as shown in Figure 8.

Note:

• The I/O available in F*F option applies only to I/Os allocated to the MSS peripherals.

• When I/Os are set to be available during F*F mode, the I/O state in F*F option does not apply.

• Only inputs or bidirectional I/Os participate in signature/activity F*F exit. This means that the Low
Power Exit options are available to be set on inputs and/or bidirectional I/Os only.

The F*F exit behavior of input I/Os (DIP1-4) and SW1 are configured using the I/O Editor in the Libero
SoC, as shown in Figure 8. The DIP switches to package pin assignments are shown in Table 3.

The MMUART_1 is used to read and write to the HyperTerminal window and the RXD and TXD ports are
configured using the I/O Constraints Editor to be available during F*F mode, as shown in Figure 9 on
page 10.

Note: The "I/O available in F*F mode" is available only on the I/Os allocated to the MSS peripherals.

Figure 7 • Flash*Freeze Hardware Settings Dialog

Figure 8 • Specifying I/O State and Functionality Options Using I/O Editor

Table 3 • DIP Switches to Package Pins Assignments

Input DIP Switch and SW1 Package Pin

DIP1 L19

DIP2 L18

DIP3 K21

DIP4 K20

SW1 L20

Sup
ers

ed
ed
9

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
Software Implementation
The SmartFusion2 MSS System Services software driver provides a set of functions to access different
System Services that the System Controller performs in conjunction with the communication block
(COMM_BLK) that is part of the MSS. One of these services is to request the SmartFusion2 device to
enter F*F mode. Figure 10 shows the System Services driver. Refer to the SmartFusion2 MSS System
Services Driver User Guide for more information. Right-click
SmartFusion2_MSS_System_Services_Driver to access the user guide, as shown in Figure 10.

The following drivers and APIs are used in the example design to configure different aspects of the
design.

MSS_SYS_init(sys_services_event_handler);

The System Services driver is initialized through a call to the MSS_SYS_init() function. The
MSS_SYS_init() function must be called before any other System Service driver functions are called.

MSS_SYS_flash_freeze(options);

Figure 9 • Configuring MMUART_1 Ports to be Available During F*F

Figure 10 • System Services Firmware Driver

Sup
ers

ed
ed
10

Running the Design
The function requests the SmartFusion2 device to enter F*F mode. The options parameter can be used
to power-down different parts of SmartFusion2, as shown in Table 4.

MSS_RTC_init(MSS_RTC_BINARY_MODE, RTC_PRESCALER);
MSS_RTC_set_binary_count_alarm(FLASH_FREEZE_TIMEOUT, MSS_RTC_SINGLE_SHOT_ALARM);

Using firmware drivers, the RTC is configured as Binary Counter mode. The RTC prescaler value that is
passed to the RTC driver initialization function needs to be modified to match the RTC clock source
selected in the Libero SoC flow. This is done by modifying the value of the RTC_PRESCALER defined at
the top of "main.c".

/* RTC_PRESCALER value for 1 MHz clock.

* In this demo, the RTC clock source is set to be 1 MHz. For different clock source settings, adjust the
RTC_PRESCALER accordingly */

#define RTC_PRESCALER (1000000u - 1u)

nvm_access ();

The fabric SRAM is initialized through a call to the nvm_access() function. Before entering F*F mode, the
nvm_access() function is called to initialize the fabric SRAM based on data client that was specified into
the eNVM.

SRAM_read ();

Checking the fabric SRAM content after exiting from F*F is done through a call to the SRAM_read()
function.

Running the Design
The design example demonstrates the following options:

• Entering into F*F mode

• Initializing the SRAM from eNVM

• Checking the content of the SRAM post F*F based on whether the SRAM was put into Sleep or
Suspend modes

• Exiting from F*F by the means of RTC, I/O activity, or I/Os signature.

The design example is designed to run on the SmartFusion2 Evaluation Kit board. Refer to
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/smartfusion2-
development-kit for more detailed board information.

Host PC to Board Connections
1. Connect the FlashPro4 programmer to the PROG HEADER J5 connector of the SmartFusion2

Evaluation Kit board.

2. Connect one end of the USB mini-B (FTDI interface) cable to the J18 connector provided on the
SmartFusion2 Evaluation Kit board. Connect the other end of the USB cable to the host PC.

Table 4 • F*F Request Function Options Descriptions

Options Description

MSS_SYS_FPGA_POWER_DOWN MSS_SYS_flash_freeze() function should request the
FPGA fabric to enter Flash*Freeze mode.

MSS_SYS_ENVM0_POWER_DOWN MSS_SYS_flash_freeze() function should request
eNVM0 to enter Flash*Freeze mode.

MSS_SYS_ENVM1_POWER_DOWN MSS_SYS_flash_freeze() function should request
eNVM1 to enter Flash*Freeze mode.

MSS_SYS_MPLL_POWER_DOWN MSS_SYS_flash_freeze() function should request the
MSS PLL to enter Flash*Freeze mode.

Sup
ers

ed
ed
11

http://www.microsemi.com/index.php?option=com_content&view=article&id=2355&catid=1663&Itemid=3402
http://www.microsemi.com/index.php?option=com_content&view=article&id=2355&catid=1663&Itemid=3402

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
USB Driver Installation
For serial terminal communication through FTDI mini USB cable, install the FTDI D2XX driver. The
drivers and installation guide can be downloaded from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

Make sure that the USB to UART bridge drivers are detected (can be verified in Device Manager in the
system).

Run the Design Steps
1. Connect the power supply to the J6 connector and connect the FlashPro Programmer.

2. Change the power supply SW7 switch to ON.

3. Program the SmartFusion2 Evaluation Kit Board with the generated or provided *.stp file (refer to
"Appendix A – Design Files" on page 20) using FlashPro.

4. Invoke the SoftConsole v3.4 SP1 Integrated Design Environment (IDE).

5. Launch the SoftConsole v3.4 SP1 and specify the Workspace to point to the SoftConsole folder
project where the Libero project is located, refer to Figure 11.

6. Click OK.

7. In SoftConsole, click the Project Explorer tab and click the FlashFreeze_SB_MSS_CM3_app
folder.

Figure 11 • Specify the SoftConsole Workspace Location

Sup
ers

ed
ed
12

http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

Running the Design
8. Verify the main code by double-clicking the main.c file as shown in Figure 12.

9. Select Project > Clean to perform a clean build as shown in Figure 13.

10. Accept the default settings in the Clean dialog box and click OK.

Note: Ensure that no errors are displayed throughout the design configuration and build flow

11. Launch the Debugger.

12. Start HyperTerminal program with the baud rate set to 57600, 8 data bits, 1 stop bit, no parity, and
no flow control. If the PC does not have HyperTerminal, use any free serial terminal emulation
program, such as PuTTY or Tera Term. Refer to the Configuring Serial Terminal Emulation
Programs tutorial for configuring HyperTerminal, Tera Term, and PuTTY.

Figure 12 • Provided main.c Code

Figure 13 • Clean Project BuildSup
ers

ed
ed
13

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
When the debugger is run in SoftConsole, HyperTerminal window displays a message followed by a
menu to enter a choice, as shown in Figure 14.

Table 5 shows a description summary of the results of each choice.

Figure 14 • Message with Menu Options

Table 5 • Menu Options Descriptions

Options Description

1 When selecting this option, the SmartFusion2 device is put into F*F mode by powering down the FPGA
fabric and MPLL.

2 This option is to demonstrate the state of the SRAM after exiting from F*F mode depending on whether
the "Sleep" or "Suspend" option was selected as the SRAM state during F*F. When selecting this option,
the fabric SRAM is initialized from the eNVM.

3 This option reads back from the fabric SRAM after the SmartFusion2 device exits from F*F mode. If the
SRAM state was selected as "Suspend" during F*F mode, then the content before entering into F*F
persists. If the state of the SRAM was selected as "Sleep", then the content of the SRAM is not retained
during F*F.

4 Use this option to exit from F*F by generating an RTC interrupt.Sup
ers

ed
ed
14

Running the Design
Entering F*F Mode and Using RTC to exit F*F
1. Select 1 (Flash*Freeze). This will put the device state into F*F mode, as shown in Figure 15.

Note that the LEDs on the board stop toggling, which indicates that the SmartFusion2 has
entered into F*F mode.

2. Select 4 (RTC Wake-Up). The RTC is initialized with an RTC_PRESCALER value. The RTC
counter is reset then the RTC is configured as Single Shot Alarm mode. The counter is then
started. When the counter reaches its set value, an interrupt is triggered and the device wakes up
from F*F mode, as shown in Figure 16 on page 16.

Figure 15 • Flash*Freeze Shutdown

Sup
ers

ed
ed
15

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
Note that the LEDs on the board start toggling, which indicates that the SmartFusion2 exited from
F*F mode.

Entering F*F Mode and Using External I/O Activity (Wake_On_Change) to
Exit F*F Mode
The following steps demonstrate how to exit from F*F using external I/O activity. The activity could be a
change from 1-to-0 or a 0-to-1. This is set on per I/O basis in the I/O Editor by setting the
Wake_On_Change attribute. For the purpose of this demo, SW1 (package pin W6) is used.

1. Select 1 (Flash*Freeze). This puts the device into F*F mode, as shown in Figure 15 on page 15.
Note that the LEDs on the board stop toggling, which indicates that the SmartFusion2 device
entered into F*F mode.

Figure 16 • RTC F*F Exit Event

Sup
ers

ed
ed
16

Running the Design
2. To wake up the device from F*F mode, press SW1 switch on the board. This indicates a change
on L20 package pin I/O and wakes up the device from F*F, as shown in Figure 17.

Entering F*F Mode and Using External I/O Signature
(Wake_On_1/Wake_On_0) to Exit F*F Mode
The following steps demonstrate how to exit from F*F using signature I/O matching. One or more I/Os
can be configured to wake-up the device based on a change from 0- to-1 or 1- to-0 or a combination of
both.

When more than one I/O is configured to participate in the signature wake-up, it is a logical AND of all
I/Os. For the purpose of this demo, a set of DIP switches are used. Two DIP switches are configured as
Wake_On_1 and two are configured as Wake_On_0. All four switches must meet the criteria for the
device to exit F*F mode.

1. Select 1 (Flash*Freeze). This puts the device into F*F mode, as shown in Figure 15 on page 15.
Note that the LEDs on the board stop toggling, which indicates that the SmartFusion2 entered
into F*F mode.

2. To wake-up the device from F*F mode, toggle DIP switches 1 and 2 to 0 position (ON) AND
toggle DIP switches 3 and 4 to 1 position (OFF). Up on this setting, the device exits from F*F
mode.

Note: The DIP switches combination setting in step 2 constantly keeps the device in active mode, since
that combination is configured to wake-up the device. Before proceeding to the next step, ensure
that the combination setting of the DIP switches is different than what is described in step 2.

Figure 17 • I/O Activity F*F Exit Event

Sup
ers

ed
ed
17

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
SRAM Content After Entering into F*F Mode
This step demonstrates that the SRAM content is retained and not lost while the device is in F*F mode.
The SRAM was set to be in "Suspend" mode during F*F. Refer to "Hardware Implementation" section on
page 6 for more information.

1. Select 2 (Write to SRAM). This step reads from the eNVM and writes to the SRAM, as shown in
Figure 18.

2. Select 1 (Flash*Freeze). This puts the device into F*F mode, as shown in Figure 15 on page 15.
Note that the LEDs on the board stop toggling, which indicates that the SmartFusion2 entered
into F*F mode.

3. Select 4 (RTC Wake-Up) to exit from F*F mode.

4. Select 3 (Read from SRAM) to read the SRAM content after the device exits from F*F mode. In
this design, the SRAM is set for "Suspend" mode during F*F mode so the content of the SRAM is
retained. Thus when reading the SRAM content after F*F exit, it is the same data that was stored
into the SRAM before entering into F*F mode, as shown in Figure 19 on page 19.

Figure 18 • Reading from eNVM and Writing to SRAMSup
ers

ed
ed
18

Conclusion
The data read from the SRAM at a particular address is the same data that was written into the SRAM
before entering into F*F mode.

Conclusion
This application note describes how to put the SmartFusion2 device into F*F mode using System
Services and demonstrates the different options that can be used to wake-up the SmartFusion2 device
from F*F mode. In addition, the application note also shows how to set different hardware behavior
during F*F at design time, and demonstrates the effect of the F*F on the fabric SRAM content depending
on the user defined F*F hardware settings in the Libero SoC.

Figure 19 • Reading SRAM Content After F*F

Sup
ers

ed
ed
19

SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
Appendix A – Design Files
The design files can be downloaded from the Microsemi SoC Products Group website:

http://soc.microsemi.com/download/rsc/?f=m2s_ac400_flashfreeze_entry_exit_with_softconsole_liberov
11p4_an_df

The design file consists of Libero SoC Verilog project, SoftConsole software project, and programming
files (*.stp) for SmartFusion2 Evaluation Kit board. Refer to the Readme.txt file included in the design file
for the directory structure and description.

Sup
ers

ed
ed
20

http://soc.microsemi.com/download/rsc/?f=m2s_ac400_flashfreeze_entry_exit_with_softconsole_liberov11p4_an_df
http://soc.microsemi.com/download/rsc/?f=m2s_ac400_flashfreeze_entry_exit_with_softconsole_liberov11p4_an_df

List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 2
(September 2014)

Updated the document for Libero SoC v11.4 software release and targeting the
SmartFusion2 Evaluation Board (SAR 59063).

NA

Revision 1
(January 2014)

Updated the document for Libero SoC v 11.2 software release (SAR 53247). NA

Revision 0
(May 2013)

Initial Release. NA

Sup
ers

ed
ed
21

51900268-2/09.14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

Sup
ers

ed
ed

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 Flash*Freeze Entry and Exit - With SoftConsole - Libero SoC v11.4
	Purpose
	Introduction
	References
	Design Requirements
	Design Description
	Entering into F*F Mode
	Exiting from F*F Mode
	I/O Activity
	I/O Signature

	Hardware Implementation
	Software Implementation
	Running the Design
	Host PC to Board Connections
	USB Driver Installation
	Run the Design Steps
	Entering F*F Mode and Using RTC to exit F*F
	Entering F*F Mode and Using External I/O Activity (Wake_On_Change) to Exit F*F Mode
	Entering F*F Mode and Using External I/O Signature (Wake_On_1/Wake_On_0) to Exit F*F Mode
	SRAM Content After Entering into F*F Mode

	Conclusion
	Appendix A – Design Files
	List of Changes

