@ Micr Osemi Application Note AC392

SmartFusion2 SoC FPGA SRAM Initialization from
eNVM - Libero SoC vi1.4

Table of Contents

Purpose . . . . . e e 1
Introduction . . . . . . . L e 1
References . . . . . . . 2
Design Requirements . . . . . . . . . L e 2
Embedded SRAM Blocks in SmartFusion2 SoOCFPGAs . . . . . . . . . . .. ... 2
SRAM Initialization Reference Designs . . . . . . . . . . . . 6
Initialize SRAM using Cortex-M3 ProcessorastheMaster . . . . . . .. .. .. ... ... ..... 10
Initializing the SRAM using Fabric Master . . . . . . . . . . . . . . . . o 18
Customizing the Wrapper Interface . . . . . . . . . . . . . . . . . . 25
Conclusion . . . . . . e 26
Appendix A - Design and Programming Files . . . . . . . . . . .. .. ... ... o 26
Listof Changes . . . . . . . . . . e e 27
Purpose

This application note describes the two different methods of initializing the LSRAM and uSRAM using
design examples where ARM® Cortex® - M3 processor or fabric logic is used as the master. The design
examples describe initializing the fabric SRAM blocks after power-up with the initialization data from the
embedded non-volatile memory (eNVM) block.

Introduction

SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) devices have embedded
static random access memory (SRAM) blocks in fabric. There are two types of SRAM blocks in
SmartFusion2 FPGA fabric: Large SRAMs (LSRAMs) and Micro SRAMs (USRAMs). The LSRAMs are
used for storing large data or for creating big FIFOs. The LSRAM and uSRAM blocks are volatile memory
types, the stored data disappears in the absence of power. After the device is powered-up, the content of
SRAM is unknown. There are some applications which require the SRAM data to be initialized and
validated after power-up.

There are several methods of initializing the LSRAM and uSRAM. This document offers two solutions for
implementing this initialization method, and also provides the design examples. The design examples
describe initializing the fabric SRAM blocks after power-up with the initialization data from the embedded
non-volatile memory (eNVM) block using the ARM Cortex-M3 processor or fabric logic as the master.
The Cortex-M3 processor or the fabric master transfers the data from eNVM to the SRAM blocks after
power-up.

Figure 4 and Figure 5 show block diagrams of the design examples. The reference designs use the
SRAM block configured as a two-port memory, but this initialization approach can be used for all the
variations of LSRAM and uSRAM in the SmartFusion2 SoC FPGA device. The reference design is
simulated and tested on silicon using SmartFusion2 Evaluation Kit board.

December 2014 1
© 2014 Microsemi Corporation



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

References

The list of references are:
*  SmartFusion2 Microcontroller Subsystem User Guide
» SmartDebug — Hardware Design Debug Tools Tutorial
*  SmartFusion2 Evaluation Kit
*  SmartFusion2 MSS Embedded Nonvolatile Memory (eNVM) Simulation
* SmartFusion2 SoC FPGA Fabric User Guide

Design Requirements

Table 1 lists the design requirements.
Table 1« Design Requirements

Design Requirements ‘ Description
Hardware Requirements

SmartFusion2 Evaluation Kit ‘ Rev.C
Software Requirements

Libero® System-on-Chip (SoC) vi1.4
FlashPro programming software vi1.4
SoftConsole v3.4SP1

One of the following serial terminal emulation programs:
* HyperTerminal

»  TeraTerm

e PUuTTY

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

This section describes the fabric SRAM blocks in various SmartFusion2 devices and clarifies their
differences.

Table 2 lists the types of fabric SRAM blocks in various SmartFusion2 SoC FPGA devices.
Table 2+ SRAM Blocks in Various SmartFusion2 SoC FPGA Devices

Features M2S005 M2S010 M2S025 M2S050 | M2S090 | M2S150
LSRAM 18K Blocks 10 21 31 69 109 236
uSRAM 1K Blocks 1 22 34 72 112 240
Total RAM (KBits) 191 400 592 1,314 2074 4488

The LSRAM blocks can be configured as a dual-port SRAM or two-port SRAM. LSRAM configured as
dual-port SRAM provides two independent access ports: Port A and Port B. In dual-port mode, data can
be transferred through these ports independently based on various parameters. Each port has its own
address, data in, data out, clock, clock enable, and write enable. LSRAM configured as two-port SRAM
has Port A dedicated to read operations, and Port B dedicated to write operations. The read and write
operations in LSRAM are synchronous and require a clock edge.

The uSRAM has two read ports (Port A and Port B) and one write port (Port C). The read ports operate

either in synchronous or asynchronous modes. The write operation is performed only in synchronous
mode.

2 Revision 7


http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133136
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_mss_envm_sim_ug_1.pdf
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit

& Microsemi

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

The SRAM blocks support rich variations in size and features of memory blocks for SmartFusion2 SoC
FPGA devices. Although these variations require changes for a specific implementation of initializing the
SRAM blocks, the changes are not significant enough to affect the fundamentals of the reference design.
Therefore, the two reference designs target only the LSRAM block. The effects of feature and size
variations on the reference designs are discussed in the "Customizing the Wrapper Interface" section on
page 25.

SmartFusion2 SoC FPGA eNVM Controller for Data Storage

The design example uses the eNVM array in microcontroller subsystem (MSS) as the source of the
SRAM initialization. The flash memory block in the eNVM is used to store the SRAM initialization data,
and it is loaded to SRAM after power-up. The eNVM controller is an advanced high-performance bus
(AHB) slave that provides access to eNVM. It converts the logical AHB addresses to physical eNVM
addresses, and allows to command the eNVM to perform specific tasks such as read, and write
operations. For more information, refer to Embedded eNVM Controller section in the SmariFusion2
Microcontroller Subsystem User Guide.

In the design examples, the data is defined first to be programmed into eNVM, which is used for the
SRAM initialization. The user can define an eNVM "Data Client", which is configured as 64x8 using the
eNVM configurator. Figure 1 shows the eNVM configurator graphical user interface (GUI) in Libero SoC
that is accessed through the System Builder tools.

> Device Features » ) Memories » » _Peripherals ) y Clocks ) > Microcontroller » ) SECDED ) ) Security ) » Interrupts ) .

Configure your external and embedded memories

ENVM '\ o S y |
Available Client types User Clients in eNVM
| Data Storage
Serialization Client Type Client Name DepthxWidth Start Address(Hex) Page Start Page End Initialization Order Lock
sram_data 64x8 800 16 16 N/A
- - "H
" Modify Data Storage Cliel 8 o
Client name: sram_data
eNvM
Content:
Add to System...
Q) Memory file: AM_INIT/constraint/sram_envm.mem :]
Usage Statistics
Format:
Available Pages: 2032
Used Pages: a [] use absolute addressing €
Free Pages: 2031 Content filled with 0s
No Content (Client is a placeholder)
Start address: 0x 800 <
Size of word: bits
Number of Words: 64 (decimal)
[[JuseasroM @
["] use Content for Simulation

Figure 1 » Data Storage eNVM Client (System Builder)

Revision 7 3


http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

Page 16 (start address 0x800) is used here for demonstration purposes. Figure 2 shows an excerpt of
the data storage client content using Microsemi binary scheme (sram_envm.mem) that is defined in the
eNVM. The sram_envm.mem file is included in the Libero project under the constraint folder.

=l sram_envm.mem l

1 00000001 -
00000010
00000011
00000100
00000101 —
00000110
01010011
11111111
01010011
10 11111111
11 01010101
12 11100010
13 10101010
14 11110000
15 01010011
l1é 11111111
17 01010011 N

m

=] o Lnod W Da

oo

Dos\W ANSI INS .

Figure 2 « Memory file Content Saved into the eNVM

4 Revision 7



& Microsemi

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

SRAM to APB3 Wrapper

The section describes connecting the SRAM block to the advanced microcontroller bus architecture
(AMBA®) APB3 bus system. To move the data from eNVM to SRAM using the Cortex-M3 processor as
the master or a fabric master, the user needs to create a wrapper logic around the SRAM block. The
wrapper generates the write enable and read enable for SRAM using the APB3 bus signals. Figure 3
shows the state diagram for the APB3 bus specification.

No Transfer

IDLE
PSELx=0
PENABLE=0

Transfer

PREADY=1
and No
Transfer

SETUP
PSELx=1
PENABLE=0

PREADY=1
and Transfer

PREADY=0

ACCESS
PSELx=1
PENABLE=1

Figure 3 + APB3 State Diagram

Following are the three states:
« IDLE: This is the default state for the peripheral bus.

+ SETUP: When a transfer is required, the bus moves to this state where the appropriate select
signal PSELx is asserted. The bus remains in this state for one clock cycle only and always
moves to the ACCESS state on the next rising edge of the clock.

* ACCESS: In this state, the enable signal PENABLE is asserted. The address, write, and select
signals should be stable during the transition from SETUP to ACCESS state. The transition from
the ACCESS state is controlled by the PREADY signal from the slave.

— |f PREADY is held low by the slave, then the peripheral bus remains in the ACCESS state.

— If PREADY is held high by the slave and no more transfers are required, the bus transitions
from the ACCESS state to the IDLE state. Alternatively, if another transfer follows, the bus
moves directly to the SETUP state.

In this design example, the wrapper logic generates the write enable and read enable for SRAM using
the PSEL, PWRITE, and PENABLE signals. The PREADY signal is used to insert the wait state.

Revision 7 5



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

SRAM Initialization Reference Designs

This document discusses two methods of initializing the fabric SRAM. The first method uses the Cortex-
M3 processor as the master that transfers the data from eNVM to SRAM. The second method uses a
master in the fabric to transfer the data from eNVM to SRAM. The two reference designs are described
and analyzed in the following sections:

» Cortex-M3 Processor as the Master: This section describes the method of initializing SRAM using
the Cortex-M3 processor as the master.

» Fabric Master: This section describes the method of initializing SRAM using a fabric master.

Cortex-M3 Processor as the Master

The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. This design
implements an advanced peripheral bus 3 (APB3) slave wrapper interface on Port A and Port B of the
SRAM block, and the APB3 wrapper is memory mapped to the MSS. The user can also implement the
AHBLite wrapper instead of APB3 wrapper on the SRAM block and connect to the MSS. However, the
APBS3 interface is much simpler than the AHBLite interface, and it is easy to create this interface with the
SRAM ports. This APB3 slave wrapper interface is connected to the MSS through the CoreAPB3,
CoreAHBTOAPB3, CoreAHBLite and fabric interface controller (FIC_0) interface as shown in Figure 4.
FIC_0 and FIC_1 enable the connectivity between the fabric and the MSS. The FIC_0 is part of the MSS,
and performs a bridging functionality between MSS and FPGA fabric. The FIC can be configured either
in the AHBLite mode or in the APB3 mode. In this design example, the FIC_0 is configured in the
AHBLite, so that the other AHBLite blocks in the fabric can be connected to MSS through FIC. Figure 4
shows a top level block diagram of the design example using the Cortex-M3 processor as the master.

The muxing arbiter block in the APB3 slave wrapper allows switching the SRAM ports as user-ports after
the initialization is done. The Cortex-M3 processor in MSS acts as a master to read data from eNVM after
powering-up and initializing the fabric SRAM block. After the initialization is done, the APB3 wrapper
interface asserts a SEL signal for muxing arbiter to switch the SRAM ports as user-ports. After the
initialization in done, the user reads/writes from/to SRAM block can be started. Figure 4 shows the
design example block diagram using the Cortex-M3 processor as the master.

Cortex-M3 eNVM
Processor

FICO MSS
A

Fabric
CoreAHBLite 4—“—>

i J

CoreAHBLITETOAPB3

4
Y

CoreAPB3 & -
A
Y
SRAM to APB3 | _ . Lo User RAM
Slave Wrapper [ = Muxing Arbiter ~—m |nterface
SEL A

SRAM
RAM with_wrapper Block

Figure 4 » Design Example Block Diagram

6 Revision 7



Interface Description

& Microsemi

SRAM Initialization Reference Designs

Table 3 shows the top-level Cortex-M3 processor as the master interface signal descriptions.
Refer to SmartFusion2 SoC FPGA Fabric User Guide for more details on the LSRAM and uSRAM

functionalities and features.

Table 3 « Top-level Cortex-M3 Processor as the Master Interface Signals

Signal Direction Description
raddr_user[5:0] Input User read address

rclk_user Input User read clock
rd_enable_user Input User read enable
waddr_user[5:0] Input User write address

wclk_user Input User write clock
wdata_user[7:0] Input User write data
wr_enable_user Input User write enable
rdata_user{7:0] Output User read data

INIT_DONE OQutput Initialization complete
DEVRST_N Input Active low reset
MMUART_1_RXD Input Uart RX input (for debug only)
MMUART_1_TXD Output Uart TX output (for debug only)
SEL Output Selection for RAM muxing logic (for

debug only)

Status Output

The INIT_DONE output of the reference design indicates the sequence of initialization done. At power-
up, it is asserted as low to indicate the start of initialization process. It remains low until the Cortex-M3
processor or a fabric master finishes reading the data from eNVM and writing it to SRAM. Once
INIT_DONE output is asserted, the asserted state indicates the end of initialization process. The Port A
and Port B of SRAM interface are available to the user for read and write access operations.

Revision 7


http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

Fabric Master

The design is similar to the design that is implemented using the Cortex-M3 processor as the master.
The fabric acts as a master to read data from eNVM after powering-up and initializing the SRAM block.
After the initialization is done, the APB3 wrapper interface asserts a SEL signal for muxing arbiter to
switch the SRAM ports as user-ports. After the initialization is done, the write and read data to/from the
SRAM block can be started. The INIT_DONE output of the reference design indicates the sequence of
initialization done. Figure 5 shows a top level block diagram of the design example.

MSS eNVM
CoreAHBLite
CoreAHBLITETOAPB3 Fabric Master
CoreAPB3
SRAM to APB3 Musxing Arbiter User RAM
Slave wrapper Interface
SEL T
RAM_with_wrapper SRAM block

Figure 5 » Design Example Block Diagram using Fabric Master

The Fabric Master block shown in Figure 5 acts as an AHB_lite master logic to read data from eNVM and
write it to SRAM. The AHB-Lite master drives the address and controls the signals onto the bus after the
rising edge of HCLK. If HREADY is in low state, the Fabric Master waits. If HREADY is in high state, the
logic moves to the data phase. During the data phase, if HREADY is in low state, the AHB-Lite master
holds the data stable throughout the extended cycle for a write operation, or read the data only after
HREADY is in high state. Figure 6 shows the state diagram for the fabric master.

8 Revision 7



& Microsemi

SRAM Initialization Reference Designs

Figure 6 « Fabric Master State Diagram

Revision 7 9



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

Interface Description for Fabric Master Design

Table 4 shows the top-level interface signal descriptions.

Table 4 « Top-level Interface Signals

Signal Direction Description

raddr_user[5:0] Input User read address

rclk_user Input User read clock

rd_enable_user Input User read enable

waddr_user[5:0] Input User write address

rdata_user[7:0] Output User read data

wclk_user Input User write clock

wdata_user[7:0] Input User write data

wr_enable_user Input User write enable

INIT_DONE Output Initialization complete

DEVRST_N Input Active Low reset

MMUART_1_RXD Input Uart RX input (for debug only)

MMUART_1_TXD Output Uart TX output (for debug only)

RESP_err[1:0] Output Ahb error response

ram_init_done Output Initialization complete

SEL Output Selection for RAM muxing logic (for
debug only)

ahb_busy Output Ahb busy indication

Initialize SRAM using Cortex-M3 Processor as the Master

This section explains the following topics:

* Hardware Implementation
* Firmware and Application Code Software Implementation

+ Simulating Reference Design with the Cortex-M3 Processor as the Master
* Running the Design with the Cortex-M3 Processor as the Master

10

Revision 7




& Microsemi

Initialize SRAM using Cortex-M3 Processor as the Master

Hardware Implementation

The hardware implementation involves configuring the MSS along with the SRAM block configuration.
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. The MSS along
with FIC_0, MMUART, and the eNVM are configured using System Builder. Through the System Builder,
the design is configured to use a 50 Mhz RC oscillator as a reference clock for the fabric phase-locked
loop (PLL). The fabric PLL then generates a 100 Mhz clock that is used as the main system clock. The
design example consists of MSS, SRAM wrapper logic, and IP cores (CoreAHBToAPB3, CoreAPB3) as

shown in Figure 7.

my_mss top 0

DBE/RST_N FIC 0 CLK
4P LB _RESET N FIC_0_LOCK

MSS_READY
INIT_PINS [
MMUART_1_PADSE

——fegn A HMMUART 1 PACS

A HBs Iatre.-‘
WAMBA SLAVE O

COREAHETOAPB3_0

—: HCLK
HRESETN

e

CoreAPBS 0
iP

M Q——&d APBrraster

BF 1 3—3s0

RAM with wrapper 0

wr_enable_user INT_OUT IT_COME
rclk_user 1= SH.
rd_enable_user rdata_user[7:0] rdata user[7:0
wClk_user
PRESETN

PCLK
raddr_user{5:0]
wdata_user[7:0]
waddr_user[5:0]

[Craddr_user[5:
[_wdata user[7:0
[_waddr user[5:0

(=1 (=3 3

Figure 7 » Top-Level Hardware Design for Cortex-M3 Processor as the Master

Revision 7 1



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

CoreAHBLite IP is generated and used automatically inside the System Builder block. The IP cores along
with the SRAM wrapper are used to initialize the fabric SRAM by moving the data from eNVM to the
fabric SRAM through the FIC_0 AHB master interface. A Data Storage client is defined in the eNVM with
the data to be written to the SRAM.

Firmware and Application Code Software Implementation

Firmware and application code is required only while using the Cortex-M3 processor as the master. This
design example includes the MSS MMUART_1 block. The MMUART_1 block is used so that the
initialization sequence and the debug of SRAM block can be viewed through HyperTerminal. The
software design includes an initialization function (nvm_access()) that reads the eNVM content and
writes it to the SRAM block.

nvm_access ()

This function reads the eNVM content which is loaded during SmartFusion2 SoC FPGA device
programming. Each read output is 64-bit data. It converts the 64-bit data to four sets of 8-bit data, and
then writes each set of 8-bit data to four SRAM locations. This process (read, convert, and write)
continues until the last SRAM address is initialized. It also reads back the SRAM content to check the
data.

Note: Once the last address location is written, the SEL signal is generated and the SRAM interface is
switched to User mode, so the last address read back should be seen as zeros.

Simulating Reference Design with the Cortex-M3 Processor as the
Master

The design file includes the test bench files to run simulation in the Libero SoC. The simulation uses the
bus functional model (BFM) command to exercise data transfer between the MSS and the fabric.

Note: After system reset, the BFM has several commands to load the eNVM content, which is not needed
for software implementation.

The BFM has the following sequence:
1. Setting access privileges to eNVM
2. Writing the initialization data to eNVM (for simulation only)

3. Reading from eNVM and then write to SRAM Reading SRAM through the MSS and check the
data

12

Revision 7



& Microsemi

Initialize SRAM using Cortex-M3 Processor as the Master

Figure 8 shows the BFM simulation transcript results and Figure 9 shows the Modelism presynthesis
simulation waveform results.

| 4 Transcript
# BE‘}-’ EE
FHEFF SIS SIS A S S SRS
BFM:Write to last data to finish the initilizaticon

# BFM:32868:write w 300000£0 000000aa at 17580 ns

# S5FM: Data Read 30000022 00000000 at 17640.010000ns3

# BFM:32869:write w 300000£4 000000bk at 17650 ns

# S5FM: Data Read 300000ec 0O00000£f at 17710.010000ns3

# BFM:32870:write w 300000£8 000000cc at 17720 ns

# BFM: Data Write 300000£0 000000aa

# BFM:32871:write w 300000£c 0000004dd ac 17750 ns

#

#

#

#

#

#

H o

N

BFM: Data Write 300000£4 000000kE ’
BFM:32&874:recurn
BFM:24:return
BFM: Data Write 300000£8 000000cc ‘
BFM: Data Write 300000£fc 00000044
#4444 A A4 AR A A A4 A AR S A A4 A
#

# BFM Simalaticn Complete — 4028 Instructicns — NO ERRORS ’

#
#4444 A4 A4 A A A A A AR S A4 E S
#

|Now: FOus Delta: 10 |sim:fmy_tesﬂ3end1

i

Figure 8 - BFM Transcript Simulation Results

‘Wave - Default

EH S tBBO O M*‘ tat Lot oa-; 100 za

@Jﬂ B EE AL b ][ -B] or] ] mm @,@A@@am
e ]

I S -
5mwmmmm:ommmmm € BALKEEROEOUDREEVENR SR TARRVTRERRININO IR

. |poooogaa Y MO N MMDo0000FJooodooos | T
00000000 I AL Y R EEICEMA TR ECERY

: |
|
|

0

o m— V0 NN = — A SOV O RO T Y o

biaster_O/RAM_with_wrapper_OPENABLE I

. Master_0JRAM with_wrapper_0/PWRITE !

DDA RN
OO IMCIOmC
Master_0JRAM_with_wrapper_QPSLVERR,
| Master_0/RAM_with_wraj
IS I )30 N L
B B 8 )
L NG b i

O HOHCATAMOUCHCADOMCHCHHO0F

l

[ 48693750 ps to 56726017012 fs | smi/my_testbench/Top_M3_Master_0jmy_mss_top_0/my_mss_0jmy_mss_MSS_0JFIC_0_AHB_M_HREADY Y

Figure 9 » MSS Master Design Example Waveform

Revision 7 13



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

Running the Design with the Cortex-M3 Processor as the Master

This section describes running the Cortex-M3 processor as the master design example in SmartFusion2
Evaluation Kit.

1. Program the SmartFusion2 SoC FPGA device Evaluation Kit board with the provided Cortex-M3
processor as the master STAPL file (refer to "Appendix A - Design and Programming Files" on
page 26) using FlashPro4.

2. Connect the USB to PC.

3. Launch the SoftConsole v3.4SP1 and browse to the location of SoftConsole folder project where
the Libero project is created as shown in Figure 10.

5C Workspace Launcher [

Select a workspace

Micraosemi SoftConsole IDE v3.4 stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session.

Workspace: E\Microsemi_prhRAM_INIT_FROM_MSS\MSS_MSTR_RAM_INIT\SoftConsol: « Browse...

[7] Use this as the default and do not ask again

OK ] [ Cancel

Figure 10 « Specify the SoftConsole Workspace Location

4. Click OK.
Note: The specified SoftConsole Workspace should be the path where the SoftConsole folder is created.

14 Revision 7



& Microsemi

Initialize SRAM using Cortex-M3 Processor as the Master

5. Choose File > Import in the SoftConsole window as shown in Figure 11. The Import dialog box
is displayed.

SC C/C++ - Welcome to Microsemi SoftConscle IDE v3,
B —)

Edit Source Refactor Mavigate Search P
Il New AltShift+N b
| Open File...

: Close Ctrl+W
1 Close All Ctrl+Shift+W
Save Ctrl+5
Save As...
Save All Ctrl+Shift+5
Revert
Move...
Rename... F2
Refresh F5
Convert Line Delimiters To 3
Print... Ctrl+P
Switch Workspace »
Restart
£y Import..
£ Export...
Properties Alt+Enter
Exit

Figure 11 « Import Files

6. Double-click the Existing Projects into Workspace under General folder as shown in Figure 12.

Create new projects from an archive file or directory.

Select an import source:

type filter text

4 [= General

| [ Existing Projects into Workspace I

T, FIIE System
E, Preferences
s = CfC++
> (= CVS
s = Run/Debua

@ Finish

Figure 12 « Import the Existing Projects

Revision 7 15



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

7. Browse to the root directory where the SoftConsole folder is created as shown in Figure 13. The

application and hardware platform check boxes (my_mss_MSS_CM3_app and
my_mss_MSS_CM3_hw_platform) are automatically detected and selected under Projects.

the

SC Import e =)
Import Projects -
Select a directory to search for existing Eclipse projects. ; ;
-

@) Select root directory: | E\Microsemi_pri\ RAM_INIT_FROM_MSS\MS55_MSTR_RAM_INIT\SoftConsole Browse...

() Select archive file: Browse

Prajact
ny_mss_MS5_CM3_app (E:\Microsemi_prj\RAM_INlT_FROM_MSS\MSS_MSTR_RAM_INlT\SoftCons:| I Select All
my_mss_M55_CM3_hw_platform (E\Microsemi_pr\ RAM_INIT_FROM_MSS\MSS_MSTR_RAM_IMITVE — —
T Top_M32_Master_my_mss_top_0_app (E\Microsemi_prj\RAM_INIT_FROM_MSS\MSS_M STR_RAM_INZ‘ Deselect All
7] Top_M3_Master_my_mss_top_0_hw_platform (E:\Microsemi_prj\ RAM_INIT_FROM_MSS\MSS_MSTR, @

|
] T ;

=]

[7] Copy projects into workspace
Working sets
[] Add project to working sets

Select...

@ < Back Next > Finish | [ Cancel

Figure 13 « Import and Select the Existing Projects

8. Click Finish. The SoftConsole window is displayed.

9. In SoftConsole, click the Project Explorer tab on the right pane and click the
my_mss_MSS_CM3_app folder on the left pane.

10. Inspect the main code by double-clicking the main.c file
11. Choose Project > Clean to perform a clean build of the code.
12. Retain the default settings in the Clean dialog box and click OK.
Note: Ensure that errors are not displayed throughout the design configuration and build flow.

16

Revision 7



& Microsemi

Initialize SRAM using Cortex-M3 Processor as the Master

13. Choose Run > Debug Configurations > Debug option. The Debugger window is displayed as
shown in Figure 14.

(sc Debug Configurations

Create, manage, and run configurations

¥ 2 o e -
= *| i Name:  my_mss_M55_CM3_app Debug

[£] Main %5 Debugger| Bl Commands| & Source| 5| Common
= Launch Group
SC Microsemi CoreB051s Target Project (optional):
SC Microsemi CoreMPT Target my_mss_MSS_CM3_app Browse...
SC Microsemi Cortex-M1 Target - 5
SC Microsemi Cortex-M3 Target
SC my_mss_M55_CM3_app Debug Debugimy_mss_M55_CM32_app Search Project... | [ Browse... ]

C/C++ Application:

[] Application console

pph Revert
Filter matched 6 of 9 items

@:‘ Debug ] [ Close

Figure 14  Launch the Debugger

14. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If the computer does not have the HyperTerminal program, any free serial terminal
emulation program such as PuTTY or Tera Term can be used. Refer to Configuring Serial
Terminal Emulation Programs tutorial for configuring HyperTerminal, Tera Term, or PuTTY.

15. Run the debugger by pressing the F8 (function key) on the keyboard or double-click the Resume
icon as shown in Figure 15.

Figure 15 « Resume Icon

Revision 7 17



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

The HyperTerminal window shows the initialization sequence by reading eNVM and writing to
SRAM. Figure 16 shows the screenshot of HyperTerminal.

(== — =

¥ COM19:57600baud - Tera Term VT G=NEE X
File Edit Setup Control Window Help

pewxsxSmartFusion2: Start SRAM Initialization®exse -

ioaaanan g

Reading from eNUM...
68006808 4836201

i 2 3 4

Writing to SRAM...
3 A0B000 1
Reading SRAM. ..
3 AaRaAA i
Writing to SRAM...
3000064 2
Reading SRAM. ..
3 A0an004 2
Writing to SRAM...
300000 3
| Reading SRAM. ..
30000008 3 |
| Writing to SRAM...
3000000 4
| Reading SRAM. ..
3808806 C 4
| Reading from eNUM...
6 0BPB8B4FF530605

| 5 6 53 FF
|

! Writing to SRAM...
3AABAA1A 5
| Reading SRAM...
36000016 5
| Weiting to SRAM...
3A0ARA14 6
| Reading SRAM...
36000014 6
| Writing to SRAM...
3ABBAA1 53
| Reading SRAM...
36000018 53
[ l\l»iting to SRAM...
3ABBAA1 FF
| Reading SRAM. ..

1

Figure 16 * Screenshot of HyperTerminal Showing the Design Example

Initializing the SRAM using Fabric Master

The fabric master design implementation is similar to the Cortex-M3 processor master design except that
the master is responsible for moving the initialization data from the eNVM to SRAM master in the fabric.

The following section details the hardware implementation using a fabric master. In addition, it also

details how to simulate the provided design along with the steps on how to run the design on the
SmartFusion2 Evaluation Kit board:

18 Revision 7



Hardware Implementation

The hardware implementation involves configuring the MSS along with the SRAM block configuration.
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. Through the
System Builder, the design is configured to use a 50 Mhz RC oscillator as a reference clock for the fabric
phase-locked loop (PLL). The fabric PLL then generates a 100 Mhz clock that is used as the main

system clock. The design example consists of MSS, SRAM wrapper logic,

(AHBMASTER_FIC_0) as shown in Figure 17.

& Microsemi

Initializing the SRAM using Fabric Master

fabric master

DEVRST N

HCLK
HRESETn
4B sTART

AHBMASTER _FIC 0
ahb_busy E
. I

ram_init_done
RESP_err(1:0]

ram_int_done

Fi

Fabric Master

AMEA_MASTER_D.-‘
$lEF_1

my mss top 0

DEVRST_N
FAB_RESET_N
M3_RESET_N

e

MSS_READY
POWER_ON_RESET_N
INIT_PINSTE

A
o
o ]
I_1
)
=
LN
m

FIC_

0_CLK

FIC_0_LOCK
MMUART 1_PADSHE

1
RAM_with_wrapper_0
wr_enable_user INT_OUT
rd_enable_user SEL
wclk_user rdata_user{7:0]
rclk_user
PRESETN
L@ PCLK
[Lwaddr_user5.0 — waddr_user]5:0]
| wdata_user[7.0 1 wdata_user{7:0]
|_raddr_user[5.0 — raddr_user]5:0]

BIF_1 3l——30 AMBA_SLAVE N0

ENWUART 1 PADS

INT_DONE

Figure 17 * Top-Level Hardware Design for Fabric Master

Revision 7

19



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

The SRAM wrapper along with the fabric master is used to initialize the fabric SRAM by moving data from
the eNVM to the fabric SRAM through the FIC_0 AHB master interface. The System Builder is mainly
used to configure the MSS, eNVM Data Storage client, and FIC interface. A Data Storage client is
defined in the eNVM with the data to write to SRAM. Refer to Figure 1 and Figure 2 for more details.

At power-up or at power-on reset, the Cortex-M3 processor fetches the initial stack pointer from
0x00000000 (eNVM address 0x60000000) and address of the reset handler from 0x00000004 (eNVM
address 0x60000004). If the execution control goes to the default reset handler, the boot up sequence is
executed and the execution control moves to the user boot code. The Cortex-M3 processor is not used
for this particular design since there is no user boot code implemented for it. The user can expose the
reset signal M3_RESET_N and tie it LOW to keep the Cortex-M3 in reset as shown in Figure 17.

Note: To expose the M3_RESET_N signal, the System Builder block is re-opened as SmartDesign block.
Refer to "Modifying/Inspecting Your System Builder Design" section in SmartFusion2 System
Builder User' s Guide for more details.

Simulating Reference Design with a Fabric as Master

This section describes the detail of simulating the fabric master design using the top-level test bench,
which is automatically generated by SmartDesign for Top_Fabric_Master component using the “Use
Content for Simulation” option in the Data Storage Client Configurator as shown in Figure 18.

i - ™
( Modify Data Storage Client \ [P

Client name: my_envM

elVM
Content:

@ Memory file: “AB_MST_RAM_INIT/constraint/sram_snvm_orig.mem :]

Format: |Microsemi-Binary -

[7] Use absolute addressing e

() Content filed with 0s

() Mo Content (Client is & placeholder)

Start address: Ox 800
Size of word: 8 = | hits
Mumber of Words: 54 (decimal)

] UseasroM D

Use Content for Simulation

Help [ Ok ] [ Cancel

Figure 18 » Use Content for Simulation Data Storage for Client Option

By using “User Content for Simulation” option, the Data Client mem file content is automatically used
by the simulation model and the user do not have to emulate the process of writing into eNVM.

20

Revision 7


http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf

& Microsemi

Initializing the SRAM using Fabric Master

Figure 19 shows the simulation transcript waveform results showing the eNVM read data at the
equivalent eNVM address.

et x|

*% ENVM init.mem. -
ok |jI

* 32768.

NVM 0: Write intc CMD Reg Addr: 1£c : CMD: 00 : Page#: 00 : Sector#: 00
NVM _0: User Bead Data: 32'h0000000& : Mem Rddress: 1fc : Time: 2850 na
NVM 0: User Read Data: 32'h00003001 : Mem RAddress: 120 : Time: 23920 ns
NVM 0: User Read Data: : |Mem LZddress: 200| : Time: 30680 ns
NVM 0: User Bead Data: 32'h00003001 : Mem Address: 120 : Time: 3240 ns
WM _0: User Read Data:[32'hfI530605| : [Mem Rddress: 804] : Time: 3310 ns
NVM_0: User Bead Data: 32'h00003001 : Mem Rddress: 120 : Time: 3430 ns
NVM 0: User Bead Data: 32'hed55f£53 : Mem Rddress: 808 : Time: 3630 ns
NVM 0: User Read Data: 32'h00003001 : Mem Rddress: 120 : Time: 3810 ns
HVM _0: User Bead Data: 32'hff53f0aa : Mem RAddress: 80c : Time: 3880 ns
NVM _0: User Bead Data: 32'h00003001 : Mem Rddress: 120 : Time: 4060 ns
NVM_0: User Read Data: 32'he255f£f53 : Mem Rddress: 810 : Time: 4200 ns
HVM _0: User Bead Data: 32'h00003001 : Mem ARddress: 120 : Time: 4380 ns
NVM 0: User Read Data: 32'hif33fl0aa : Mem Rddress: 814 : Time: 4450 ns
NVM _0: User Bead Data: 32'h00003001 : Mem Rddress: 120 : Time: 4630 ns
: User Bead Data: 32'hed55f£53 : Mem RAddress: 818 : Time: 4770 ns
NVM 0: User Read Data: 32'h00003001 : Mem Rddress: 120 : Time: 4350 ns
NVM _0: User Bead Data: 32'hff53f0aa : Mem Rddress: 8lc : Time: 5020 ns
NVM _0: User Bead Data: 32'h00003001 : Mem Rddress: 120 : Time: 5200 ns
NVM_0: User Bead Data: 32'hed55IL53 : Mem Rddress: &2 Time: 5340 ns
HVM_0: User Bead Data: 32'h00003001 : Mem RAddress: Time: 5520 ns3
NVM 0: User Read Data: 32'hff53ifl0aa : Mem Rddress: Time: 5580 ns
HVM_0: User Bead Data: 32'h00003001 : Mem RAddress: Time: S5T70 ns
NVM_0: User Bead Data: 32'h0201ff53 : Mem RAddress: Time: 5810 ns
NVM_0: User Read Data: 32'h00003001 : Mem Rddress: Time: 6090 na
HVM_0: User Bead Data: 32'h06050403 : Mem Address: Time: 6160 ns
NVM 0: User Read Data: 32'h00003001 : Mem Address: Time: @340 ns
NVM_0: User Read Data: 32'he255ff53 : Mem Rddress: Time: 6480 ns
NVM_0: User Bead Data: 32'h00003001 : Mem RAddress: Time: 6660 ns
NVM 0: User Read Data: 32'"hff53f0aa : Mem RAddress: Time: 6730 ns
HNVM_0: User Bead Data: 32'h00003001 : Mem Rddress: Time: 6910 ns
NVM_0: User Bead Data: 32'h0201f£53 : Mem Rddress: Time: 7050 ns
NVM_0: User Read Data: 32'h00003001 : Mem Rddress: Time: 7230 na
HVM_0: User Bead Data: 32'h06050403 : Mem RAddress: Time: 7300 ns

T T T R R EE EE T ED
3
=
[}
P
=1

CO = 00 4 0 00 b5 00 b 00 0 0

L3 R L0 RS G0 R D0 BRI R R PRI R R PO

L T e Y e e e R e N SN

Figure 19 » Transcript eNVM Data and Address Results

Revision 7 21



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

Figure 20 shows the ModelSim presynthesis simulation waveform results.

g8 Wave - Default

|B-sHe @ s0RBOL 0-0F || 3T 4R B-B-TE D) SLEHRH|| 3w 0| o s
ERene e e e N e e R L Y L I T

& ftestbench/CLK_GEN_0/CLK
& ftestbench/RESET_GEN_0/RESET

£ ftestbench/Top_Fabric_Master_0/AHEMASTER _FIC_0/HCLK

4 frestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HRESETn
. ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HADDR
.. ftestbench/Top_Fabric_Master_0/AHEMASTER_FIC_O/HTRANS

4. testbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HWRITE
.. ftestbench/Top_Fabric_Master_0/AHBMASTER _FIC_O/HSIZE
E“s ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HBURST
. ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HPROT
.. ftestbench/Top_Fabric_Master_0/AHEMASTER_FIC_0/HWDATA
B¢ ftestbench/Top_Fabric_Master_0/AHBMASTER _FIC_O/HRDATA

4 ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HREADY

- Master_0/AHBMASTER _FIC_D/RESP_err
4. testbench/Top_Fabric_Master_0/AHBMASTER _FIC_0/ahb_busy
#. ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0jram_init_done
— SRAM_SIGNALS
[-£ ftestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RADDR
2 Jeestbench/Top. I abric.Master J0/RAM Swith rapper0/SrAMSE B 0JROUC S IS /1110 U .o oo A e
£ festbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_54x8_0/REN
Jtestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/WADDR
Jtestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_54x8_0WCLK
ftestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/WD
ftestbench/Top_Fabric_Master_0/RAM _with_wrapper_0/SRAM_64x8_D/WEN
s ftestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RD

poooooo fs
Cursor 1 3812846 fs

O O T

H ] %]

IENSIATEEN fo tn WEINRASTF | fracthanchiCl i GEN NCTK

Figure 20 * Fabric Master Design Example Simulation Waveform (1)

Figure 21 shows the HRDATA is 04030201 at the eNVM address 800 which matches with the SRAM

read data on WD.

4, Jtestbench/CLK_GEN_0/CLK
“u [testhench/RESET_GEM_0/RESET
— AHBMASTER _FIC_SIGNALS
£ Jtestbench/Top_Fabric_Master_0/AHBMASTER _FIC_O/HCLK
£ Jtesthench/Top_Fabric_Master_0/AHBMASTER _FIC_0/HRESETn
] Jtestbench/Top_Fabric_Master_0/AHBMASTER _FIC_0/HADCR 60000800 fc [FODB0I20 60000800 |
B [testbench/Top_Fabric_ Master_0/AHBMASTER_FIC_O/HTRANS RN i I 6 N N I
4., [testhench/Top_Fabric_Master_0/AHBMASTER _FIC_0/HWRITE
I’ ftestbench/Top_Fabric_Master_0/AHBMASTER _FIC_0/HSIZE
B jtestbench/Top_Fabric_Master 0/AHBMASTER _FIC_O/HBURST
B-“. jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HPROT
B~ ftestbench/Top_Fabric_Master_0/AHBMASTER._FIC_O/HWDATA 00000001
+) 2 Jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HRDATA
£ Jtesthench/Top_Fabric_Master_0/AHBMASTER _FIC_D/HREADY 1
<L [testbench/Top_Fabric_Master_0/AHBMASTER _FIC_0/HRESP
£ Jtestbench/Top Fabric_Master_0/AHBMASTER _FIC_0/START
B-“. Jtesthench/Top_Fabric_Master_0/AHEMASTER_FIC_0/RESP_err
“u [testbench/Top_Fabric_Master_0/AHEMASTER _FIC_0/ahb_busy
4, Jtestbench/Top_Fabric_Master 0fAHBMASTER_FIC_0/ram_init_done
— SRAM_SIGNALS
B-<£ [testbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_54x8_0/RADDR.
4 jtestbench/Top_Fabric_Master 0/RAM_with_wrapper_0/SRAM_64x8_0/RCLK
4 [testhench/Top_Fabric_Master_0fRAM_with_wrapper_0/SRAM_G4x8_0/REN 0
m<L [testbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_§4x8_0/WADDR |00
4 [testbench/Top_Fabric Master 0/RAM_with_wrapper_0/SRAM_54x8_0,WCLK 0
[+) 29 ftestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_g4x8_0,WD 00
£ [testbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_&4x8_0/WEN
-“. Jjtestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_54x8_0/RD

Po0000D fs
Cursor 1 7571643 fs

| Kl DEEEE 1

Figure 21 « Fabric Master Design Example Simulation Waveform (2)

22 Revision 7




& Microsemi

Initializing the SRAM using Fabric Master

Running the Design with a Fabric Master

This section describes running the design example in SmartFusion2 Evaluation Kit board where SRAM is
initialized using a master in the fabric instead of the Cortex-M3 processor. The content of eNVM and
SRAM is checked with real-time data using the SmartDebug tools as shown in the following steps:

1. Program the SmartFusion2 SoC FPGA device Evaluation Kit Board with the provided fabric
master version of STAPL file (refer to "Appendix A - Design and Programming Files" on page 26)
using FlashPro4.

2. Launch SmartDebug by selecting the SmartDebug Design option from the Design Flow
window as shown in Figure 22.The SmartDebug window is displayed.

Design Flow =)
Top_Fabric_Master & o @'
Tool I

> Edit Design Hardware Configuration
» ¥ Configure Security and Programming Opti...
v 4 » Program Design
@‘ Configure Bitstream
v @f Generate Bitstream
74 B2 Run PROGRAM Action
4 » Debug Design

| &) SmartDebug Design I

» ¥ Handoff Design for Production

m

» ¥ Handoff Design for Firmware Development _

< 1 F

Diesig... Design Hier... | stimulus Hie... | Catalog | Files |

Figure 22 » SmartDebug Window Debug Options

3. Click View Flash Memory Content to retrieve the eNVM content from the device using the
SmartDebug window as shown in Figure 23. The Flash Memory window is displayed.

4. Enter the Start Page and End Page as 16 because the data storage client is stored in page16.
Page 16 is used for demonstration purposes.

Revision 7 23



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

5. Click Read from Device as shown in Figure 23.

= Flash Memory | =
Retrieve Flash Memory Content from Device:
From block no efc> ~
Select [0*W> - 3) Read from Device *
StartPage: 16 (address Ox800)
EndPage: 16 (1 page, 128 bytes)
Latest Content Retrieved from Device: Toe Mar 04 18:23:54 2014

Retrieved Content: at Page 16, 128 bytes starting from address 0x800

to Address (hex)
Content

Page Number | Addr

s ! o J1 ] 2]3]s|slesl7z]ls]s|afelclolelFr
% | ooe00jor 02 03 04 05 06 53 FF  S3 FF S5 E2 AA FO 53 FF /.
6 | O8|s3 FF SS E2 A FO 53 FF 53 FF S5 £ AA PO 3B ||
,5mms:#sssznmsawsawoxozo:o«as@
s | 0080|s3 FF S5 E2 AL FO S3 FF S3 FF 01 02 03 04 05 06

7mb‘ Close

Figure 23 * Flash Memory (eNVM) Content Read from the Device

6. Click Debug FPGA Array as shown in Figure 22 to open the Debug FGPA Array window as
shown in Figure 24.

Debug File:  2_SRAM_Init/RAM_INIT_FROM_FAB/FAB_MSTR_RAM_INIT/designer/Top_Fabric_Master/Top_Fabric_Master_debug.bt

1. Browse and select the Debug File from
FREL LD 2. Click the Memory Blocks tab ﬁ

the local system
] Live Probes I Active Probes I Memory Blocks I<}:

[RAM_with_wrapper_O/ SRAM_64x8_0/SRAM_64x8_0/SRAM_64x8_SRAM_64x8_0_TPSRAM_ROCO/INST_RAI '] Read Block | | Write Block
Memory Block Data ﬁ

-~ .
0000 001 002 003 004 005 053 OFF 053 OFF OFF 3. Click Read Block to

0010 053 OFF 055 OE2 OAA 053 OFF 053 OFF OFF ) read the SRAM
content from the

0020 053 OFF 055 O0E2 O0AA 053 OFF 053 OFF 006 device

0030 053 OFF 055 O0E2 O0AA 053 OFF 053 OFF m

022 0ED 0CO0 102 121 1A2 OF0

Figure 24 + SRAM Content Read from the Device

a.Browse to select the Top Fabric Master debug.txt file. The Debug File must be specified
before starting the FPGA Array Debug as shown in Figure 24. For example, the Debug File =
<project root>/designer/Top/Top_Fabric_Master_debug.txt

24 Revision 7



& Microsemi

Customizing the Wrapper Interface

Libero SoC generates the Debug File, <projectName> debug.txt, during Place and Route and
stores the file into the <project path>\designer folder. The Debug File contains information used
by SmartDebug mainly for mapping the user design names to their respective physical addresses
on the device. It also contains other information used during the debug process.

b.Select the Memory Blocks tab.

c.Click Read Block to read the SRAM content in real-time from the device. The content of the
SRAM is displayed as shown in Figure 24. The SRAM data that is stored into eNVM which is
used to initialize the SRAM block.

Customizing the Wrapper Interface

This section describes how to customize SRAM initialization block.

The RAM_with_wrapper block presented in the design example can be modified based on the user
SRAM configuration. In addition, the software code needs to be modified based on the user SRAM
setting. Figure 25 shows the RAM_with_wrapper block. It has three blocks as mentioned below:

*  SRAM64x8_0: Two-port SRAM block with depth 64 and width 8.
*+  mem_apb_wrp_0: Creates APB3 wrapper on SRAM port.
* mux_blk_0: Creates the Muxing arbiter.

Depending on the user SRAM block configuration, the SRAM64x8_0 setting needs to be updated. In
addition, the DATA_WIDTH and ADDR_WIDTH parameter in mem_apb_wrp, and mux_blk file should be
modified according to their design requirement and the blocks should be re-connected, if needed.

Note: The wrapper interface used in the design example, supports up to 32-bit DATA_WIDTH.

mux bk_0
rd_en
W _endle_user wlen
wlk_user wek
relk_user, rd
rdata user(7:0 rdata use 7:0]
mem data_out_ink|7:0] B—!
raddr(5:0| B——
waddr(S:0] Bb—
wdaxal7:0] B
[raddr user5:07]
[addr_user5:07]
[wdata used 7:0}
FR)
1l SRAM_64x8_0
WEN RO{7:0] -
REN
ARST N
mem_apb_wrp_0 wour
PAK rd_encble P Ll Brak
PREETN w_enzbl 7:0]
— 1_data_out[7:0] /! 5:0]
CEE_1H BIF_I Il L RADOR(S:0] #
I =l %

Figure 25 - RAM_with_wrapper Block

Revision 7 25



& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4

Conclusion

This design example shows how the SRAM blocks in SmartFusion2 SoC FPGA fabric can be initialized
after power-up either by using the Cortex-M3 processor as the master or by using a master in the fabric.
This example application uses an eNVM to initialize the SRAM after power-up. The eNVM can also be
updated using programming, or flash loader, or by writing to eNVM, if needed. This application note
presents an interface that can be instantiated into the user's design, performing the initialization at
power-up. The reference design utilizes a very small portion of the FPGA logic for implementation, and
does not affect the performance of the main design. The design in this document initializes a 64x8 SRAM
block, but can be easily modified to support memory organizations of different width and depth.

Appendix A - Design and Programming Files

The user can download the design files from the Microsemi SoC Products Group website:
www.microsemi.com/soc/download/rsc/?f=m2s_ac392_sram_init_from_envm_liberov11p4_an_df

The design file consists of Libero Verilog projects, SoftConsole software project, and programming files
(*.stp) for SmartFusion2 SoC FPGA Evaluation Kit.Two programming files are included: the Cortex-M3
processor as the master (Top_M3_Master.stp), and the fabric master (Top_Fabric_Master.stp) files.
Refer to the Readme.txt file included in the design file for the directory structure and description.

26

Revision 7


www.microsemi.com/soc/download/rsc/?f=m2s_ac392_sram_init_from_envm_liberov11p4_an_df

& Microsemi

List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the document.
Revision* Changes Page
Revision 7 Removed all instances of and references to M2S100 device from Table 2 2
(December 2014) (SAR 62858).
Revision 6 Updated the document for Libero v11.4 software release (SAR 59071). NA
2014 - . . -
(September 2014) Updated the document for SmartFusion2 Evaluation Kit details (SAR 59071). NA
Revision 5 Added "Purpose" section (SAR 51324) 1
(March 2014) Updated Figure 1, Figure 2, Figure 5, Figure 6, and Figure 8 (SAR 51324) 3, 4, 8,0,
and 13
Updated "SRAM Initialization Reference Designs" section (SAR 51324) 6
Added "Cortex-M3 Processor as the Master" section (SAR 51324) 6
Updated "Running the Design with the Cortex-M3 Processor as the Master" section | 14
(SAR 51324)
Added "Initializing the SRAM using Fabric Master" section (SAR 51324) 18
Added "Simulating Reference Design with a Fabric as Master" section (SAR 51324) |20
Added "Running the Design with a Fabric Master" section (SAR 51324) 23
Updated "Appendix A - Design and Programming Files" section (SAR 51324) 26
Revision 4 Updated Figure 1 and Figure 8 (SAR 51324). 3,13
(December 2013)
Revision 3 Modified "Introduction” section (SAR 48177). 1
(June 2013) Modified "SmartFusion2 SoC FPGA eNVM Controller for Data Storage” section 3
(SAR 48177).
Modified "SRAM Initialization Reference Designs" section (SAR 48177). 6
Modified "Fabric Master" section (SAR 48177). 8
Modified "Appendix A - Design and Programming Files" section (SAR 48177). 26
Modified Table 2 (SAR 48177). 2
Added Figure 5, Figure 6 and Figure 8 (SAR 48177). 8,9,13
Revision 2 Updated the document for Libero SoC v11.0 beta SP1 release and made required NA
(March 2013) changes for better usage of the term 'SEL’ (SAR 45591).
Revision 1 Updated "Introduction" section. (SAR 42893) 1
(November 2012) | ypdated "Appendix A - Design and Programming Files" section (SAR 42893) 26
Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

Revision 7

27



s

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

51900260-7/12.14


mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.4
	Purpose
	Introduction
	References
	Design Requirements
	Embedded SRAM Blocks in SmartFusion2 SoC FPGAs
	SmartFusion2 SoC FPGA eNVM Controller for Data Storage
	SRAM to APB3 Wrapper

	SRAM Initialization Reference Designs
	Cortex-M3 Processor as the Master
	Fabric Master

	Initialize SRAM using Cortex-M3 Processor as the Master
	Hardware Implementation
	Firmware and Application Code Software Implementation
	Simulating Reference Design with the Cortex-M3 Processor as the Master
	Running the Design with the Cortex-M3 Processor as the Master

	Initializing the SRAM using Fabric Master
	Hardware Implementation
	Simulating Reference Design with a Fabric as Master
	Running the Design with a Fabric Master

	Customizing the Wrapper Interface
	Conclusion
	Appendix A - Design and Programming Files
	List of Changes




