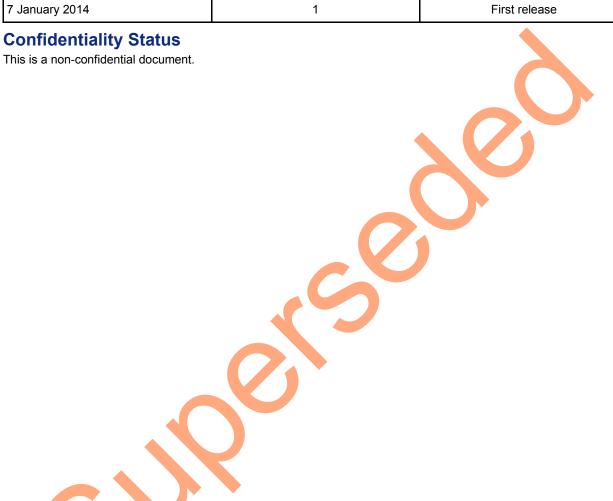
IGLOO2 FPGA DSP FIR Filter - Libero SoC v11.4

Demo Guide


August 2014

Revision History

Date	Revision	Change
8 August 2014	3	Third release
6 June 2014	2	Second release
7 January 2014	1	First release

Table of Contents

Pr	eface	4
	About this document	4
	Intended Audience	
	References	
	Microsemi Publications	
IG	LOO2 FPGA DSP FIR Filter	5
	Introduction	5
	Design Requirements	6
	Demo Design	6
	Introduction	6
	Demo Design Description	
	Setting Up the Demo Design	
	Programming the Demo Design	
	Setting Up the Device	
	Programming the Device	
	Running the Demo Design	
	Conclusion	
Δn	pendix 1: SmartDesign Implementation	20
Αn	pendix 2: Resource Usage Summary	. 30
Αp	pendix 3: Coefficient Text File Format	. 31
Α	List of Changes	32
В	Product Support	33
	Customer Service	33
	Customer Technical Support Center	33
	Technical Support	
	Website	
	Contacting the Customer Technical Support Center	
	Email	
	My Cases	
	Outside the U.S.	34
	ITAR Technical Support	34

Preface

About this document

This demo is for IGLOO®2 field programmable gate array (FPGA) devices. It provides instructions on how to use the corresponding reference design.

Intended Audience

The following designers using the IGLOO2 devices:

- · FPGA designers
- · System-level designers

References

Microsemi Publications

- IGLOO2 FPGA Programming User Guide
- IGLOO2 FPGA System Controller User Guide
- IGLOO2 FPGA High Performance Memory Subsystem User Guide

Refer to the following web page for a complete and up-to-date listing of IGLOO2 device documentation: http://www.microsemi.com/products/fpga-soc/fpga/igloo2docs

IGLOO2 FPGA DSP FIR Filter

Introduction

The IGLOO2 FPGA devices integrate a fourth generation flash-based FPGA fabric architecture, which includes embedded mathblocks optimized specifically for digital signal processing (DSP) applications such as, finite impulse response (FIR) filters, infinite impulse response (IIR) filters, and fast fourier transform (FFT) functions.

This demo shows a DSP FIR filter application using the IGLOO2 device. In this DSP FIR filter application, the Host interface and the FIR filter are implemented in the fabric for Low-pass, High-pass, Band-pass, and Band-reject filtering operations. A user-friendly graphical user interface (GUI) generates the filter coefficients, input signals (Pass-band frequency and Stop-band frequency), and also plots the input/output waveforms, and the required spectrum. Microsemi[®] CoreFIR filter IP is used to suppress the unwanted frequency components, and CoreFFT IP is used to generate the output spectrum to verify the filtering operation.

Figure 1 shows the top-level diagram for the DSP FIR filter demo.

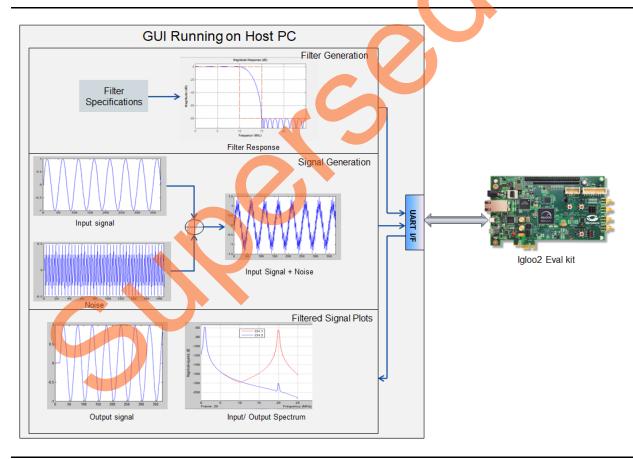


Figure 1 • Top-Level Diagram of DSP FIR Filter Demo

Design Requirements

Table 1 • Design Requirements

Design Requirements	Description
Hardware Requirements	
IGLOO2 Evaluation Kit FlashPro4 programmer USB A to Mini-B cable	Rev C or later
Host PC or Laptop	Windows 7 64-bit Operating System
Software Requirements	
Libero® System-on-Chip (SoC) for viewing the design files	v11.4
FlashPro Programming Software	v11.4
Host PC Drivers	USB to UART drivers
Framework	Microsoft .NET Framework 4 Client for launching demo GUI

Demo Design

Introduction

The design files are available for download from the following path in the Microsemi website: http://soc.microsemi.com/download/rsc/?f=IGL2_FIR_FILTER_11p4_DF

The design files include:

- · Design files
- · Programming file
- · GUI executable
- · Readme.txt file

Figure 2 shows the top level structure of the design files. Refer to the Readme.txt file provided in the demo file folder for the complete directory structure.

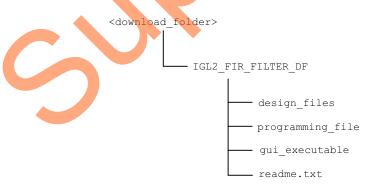


Figure 2 • Demo Design Files Top-Level Structure

Demo Design Description

This demo design uses the following blocks:

- "Data Handle" (user RTL)
- "Filter Control" (user RTL)
- "TPSRAM IP" (IPcore)
- "CoreUART"(IPcore)
- "CoreFIR" (IPcore)
- "CoreFFT" (IPcore)
- "SYSRESET" (IPcore)
- "OSC" (IPcore)
- "CCC" (IPcore)

Figure 3 shows the detailed block diagram of the demo design.

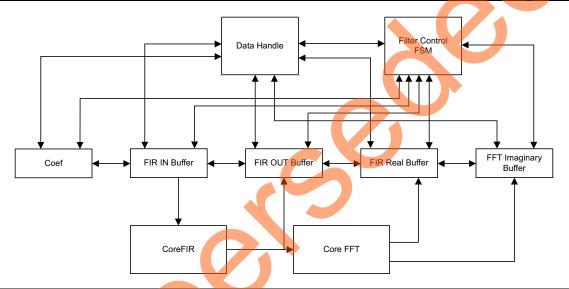


Figure 3 • DSP FIR Filter Demo Design Block Diagram

Data Handle

Data handle consists of the Core UART IP and the UART interface finite state machine handling the control operations between the Host PC (GUI interface) and the fabric logic. Control operations include the loading of filter coefficients, filter input data to the corresponding input data buffer, coefficient buffers and send and receive data from the Host PC GUI.

Filter Control

Controls the FIR filter and the FFT operations. It loads the filtered data to the corresponding output buffer and moves the FFT output data to the corresponding output data buffer.

TPSRAM IP

TPSRAM IP uses the following configurations:

- · Filter coefficient buffer
- · Input signal data buffer
- Output signal buffer
- · Output signal FFT real data buffer

· Output signal FFT imaginary data buffer

Table 2 • TPSRAM Configuration for Data Buffers

Buffer	Wr	ite Port	Read Port		
	Depth	Width	Depth	Width	
Filter Coefficients	64	8	32	16	
FIR Input <u>S</u> ignal	2048	8	1024	16	
FIR Output Signal	1024	16	1024	16	
FFT Output Real <u>S</u> ignal	256	16	256	16	
FFT Output Imaginary Signal	256	16	256	16	

CoreUART

The Core UART IP is used to transfer the data between the Host PC (GUI) and IGLOO2. The Core UART Configuration is as follows:

Version: 5.3.135

TxFIFO: Disable TxFIFORxFIFO: Disable RxFIFORxLegacyMode: Disable

Baud rate: 115200Number of bits: 8Stop bits: 1

Parity: None

CoreFIR

The Core FIR IP is used in the Reloadable coefficient mode to support Low-pass, High-pass, Band-pass, and Band-reject filters. The Core FIR IP configuration is as follows:

Version: 8.5.104

· Filter Type: Single rate fully enumerated

• Number of Taps: 31

Coefficients Type: Reloadable

Coefficients Bit Width: 16 (signed)

Data Bit Width: 16 (signed)

Filter Structure: Transposed with symmetry

CoreFFT

The Core FFT IP is used for generating the frequency spectrum of the filtered data. Core FFT IP Configuration is as follows:

Version: 6.4.6

FFT Architecture: In place

FFT Type: ForwardFFT Scaling: ConditionalFFT Transform Size: 256

• Width: 16

SYSRESET

The SYSRESET IP provides the power on reset signal.

OSC

The OSC IP is configured as an RC oscillator to provide the 50 MHz signal to the clock conditioning circuit (CCC).

CCC

The CCC IP is configured to provide a 150 MHz clock signal. For detailed smart design implementation and resource usage summary, refer to "Appendix 1: SmartDesign Implementation" on page 29 Demo Flow.

Setting Up the Demo Design

The following steps describe how to setup the hardware demo:

1. Connect the jumpers on the IGLOO2 Evaluation Kit board as shown in Table 3.

Table 3 • IGLOO2 FPGA Evaluation Kit Jumper Settings

Jumper	Pin (From)	Pin (To)	Comments
J22	1	2	Default
J23	1	2	Default
J24	1	2	Default
J8	1	2	Default
J3	1	2	Default

CAUTION: While making the jumper connections, the power supply switch **SW7** must be switched off.

- 2. Connect the Power supply to the J6 connector, switch on the power supply switch, SW7.
- 3. Connect the FlashPro4 programmer to the J5 connector of the IGLOO2 Evaluation Kit board.
- 4. Connect the Host PC USB port to the J18 USB connector on the IGLOO2 Evaluation Kit board using the USB Mini-B cable.

Figure 4 shows the board setup for running the DSP FIR Filter demo on the IGLOO2 Evaluation Kit

Figure 4 • IGLOO2 FPGA Evaluation Kit DSP FIR Filter Demo Setup

5. Ensure that the USB to UART bridge drivers are automatically detected. This can be verified in the **Device Manager** of the Host PC. The FTDI USB to UART converter enumerates four COM ports. For USB 2.0, note down the USB Serial Converter D COM port number to use it in the IGL2_FIR_Filter.exe. Figure 5 shows the USB 2.0 Serial port properties and the connected COM10 and USB Serial Converter D.

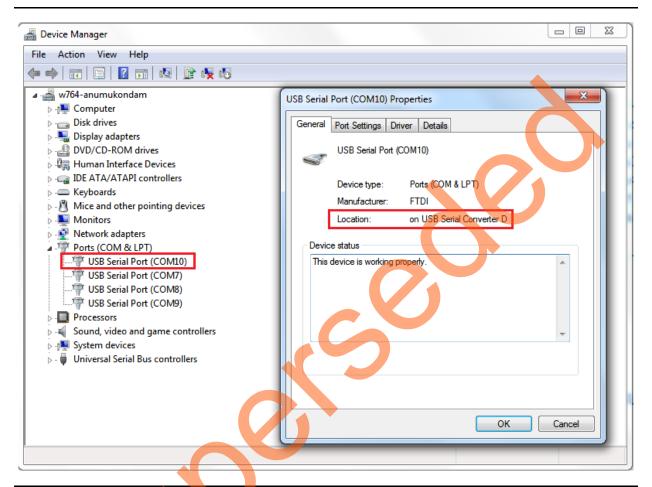


Figure 5 • USB to UART Bridge Drivers

6. If the USB to UART bridge drivers are not installed, download and install the drivers from www.microsemi.com//documents/CDM_2.08.24_WHQL_Certified.zip.

Programming the Demo Design

The following steps describe how to program the demo design:

- Download the demo design from: http://soc.microsemi.com/download/rsc/?f=IGL2_FIR_FILTER_11p4_DF
- 2. Switch **ON** the SW7 power supply switch.
- 3. Launch the FlashPro software.
- 4. Click New Project.

5. In the New Project window, type the project name as IGL2 FIR FILTER.

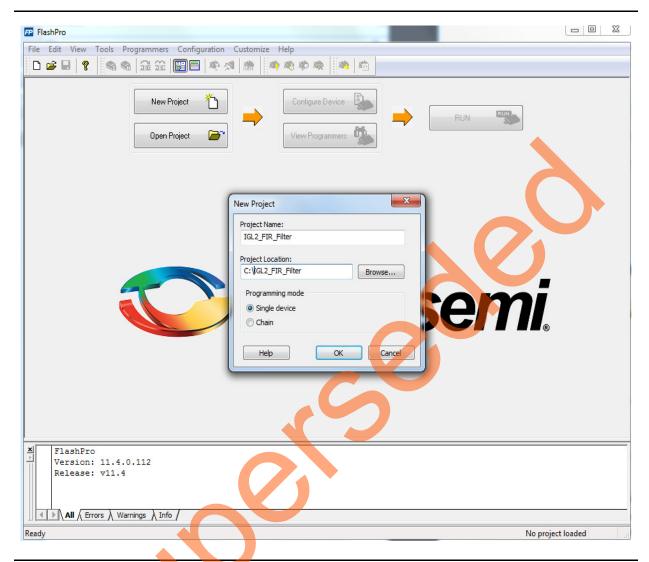


Figure 6 • FlashPro - New Project

- 6. Click Browse and navigate to the location where you want to save the project.
- 7. Select Single device as the Programming mode.
- 8. Click OK to save the project.

Setting Up the Device

The following steps describe how to configure the device:

- 1. Click Configure Device on the FlashPro GUI.
- 2. Click **Browse** and navigate to the location where the <code>igl2_Fir_Filter.stp</code> file is located and select the file. The default location is: <download_folder>\IGL2_FIR_FILTER_DF\ProgrammingFiles\IGL2_FIR_FILTER.stp.
- Click Open. The required programming file is selected and is ready to be programmed in the device.

Programming the Device

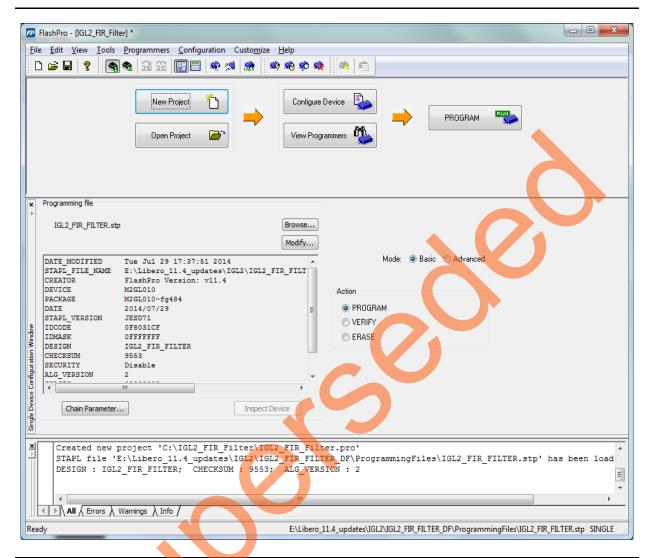


Figure 7 • FlashPro Project Configured

The following steps describe how to program the device:

 Click PROGRAM to start programming the device. Wait until you get a message indicating that the RUN PASSED.

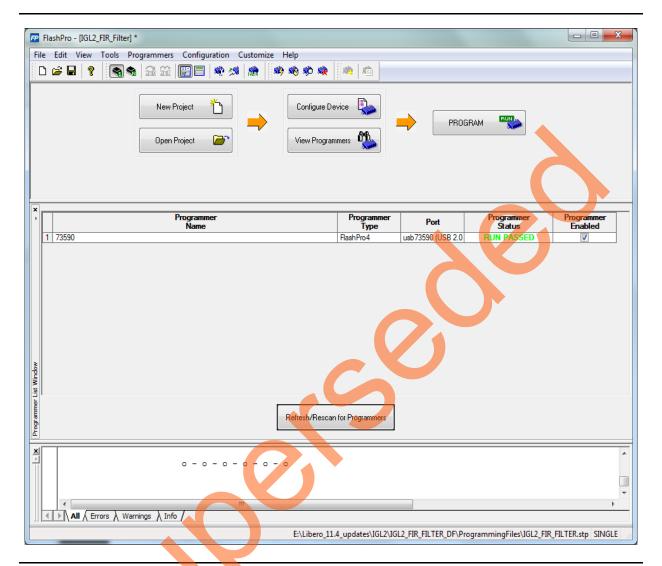


Figure 8 • FlashPro Project RUN Passed

DSP FIR Demo GUI

The DSP FIR demo is provided with a user-friendly GUI that runs on the Host PC which communicates with the IGLOO2 Evaluation Kit. The UART is used as the underlying communication protocol between the Host PC and the IGLOO2 Evaluation Kit. Figure 9 shows the DSP FIR demo GUI.

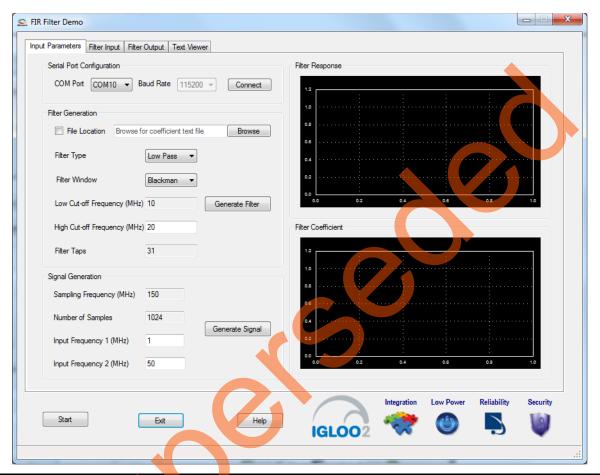


Figure 9 • DSP FIR Demo Window

The DSP FIR demo window consists of the following tabs:

- Input Parameters: Configures the serial COM port, filter generation, and signal generation.
- · Filter Input: Plots the input signal and its frequency spectrum
- Filter Output: Plots the output signal and its frequency spectrum
- Text Viewer: Shows the coefficients, input signal, output signal, and FFT data values Click Help for more information on the GUI.

Running the Demo Design

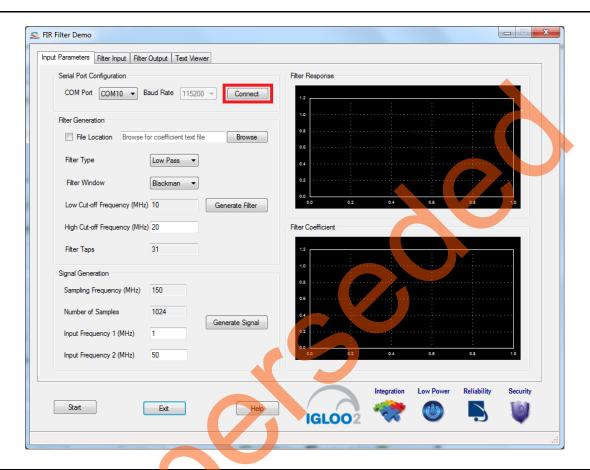


Figure 10 • Serial Port Configuration

- 2. **Serial Port Configuration**: The COM port number is automatically detected and the baud rate is fixed at 115200. Press Connect. Refer to Figure 10.
- 3. Filter Generation: Two options are provided for generating the filter coefficients:

 Generate the coefficients using MATLAB or any similar tool and save it as a text file (Refer to "Appendix 3: Coefficient Text File Format" on page 31 for the format of the text file). The GUI can be used to browse and load this file. Refer to Figure 11.

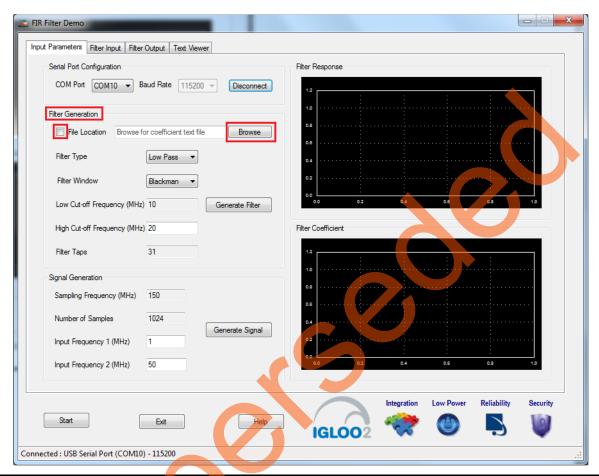


Figure 11 • Filter Generation 41

- Generate the Filter coefficients using the GUI as given below:
 The following parameters are required to generate filter coefficients. Refer to Figure 12 on page 18.
 - Filter Type: Low-pass (Low-pass/High-pass/Band-pass/Band-reject filter)
 - Filter Window: Blackman (Blackman/Hamming window)
 - Low Cut-off Frequency: Disabled for Low_pass filter required (High cut-off frequency is disabled for High_pass filter)
 - High Cut-off Frequency: 20 MHz
 - Filter Taps: 31 (Fixed)
 - Press **Generate Filter** to generate the filter coefficients.

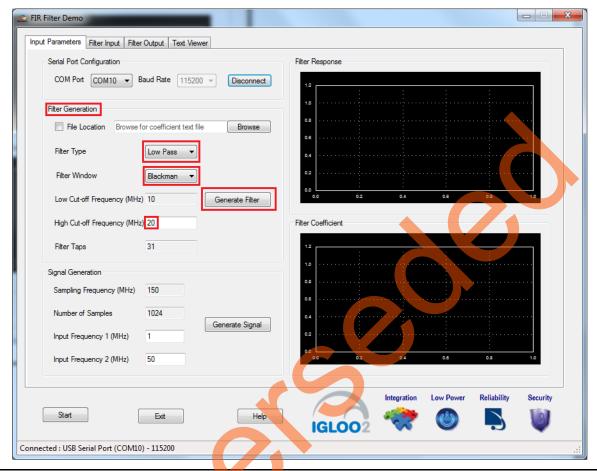


Figure 12 • Filter Generation - 2

4. The successful after-generation graphs of the filter coefficients, filter response, and the filter coefficient plots, are displayed. Refer to Figure 13 on page 19.

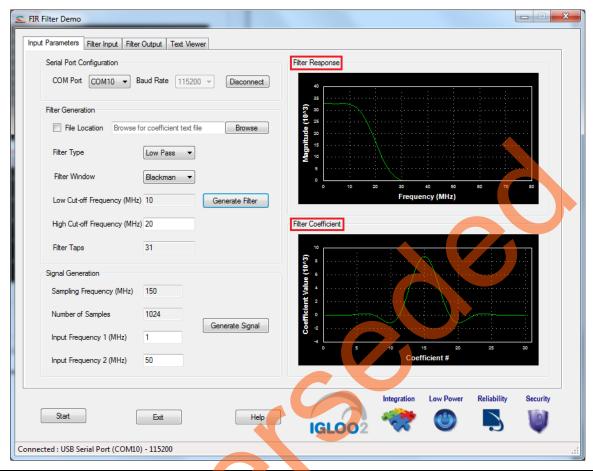


Figure 13 • Filter Response and Filter Coefficient Plot

5. Signal Generation:

• Sampling Frequency: 150 MHz (Fixed)

• Number of Samples: 1024 (Fixed)

- Input Frequency 1: Enter the signal frequency in the Pass-band region. For example, 1 MHz to High cut-off frequency
- **Input Frequency 2**: Enter the signal frequency in the Stop-band region. For example, High cut-off frequency to Sampling frequency/2

Click Generate Signal. Refer to Figure 14.

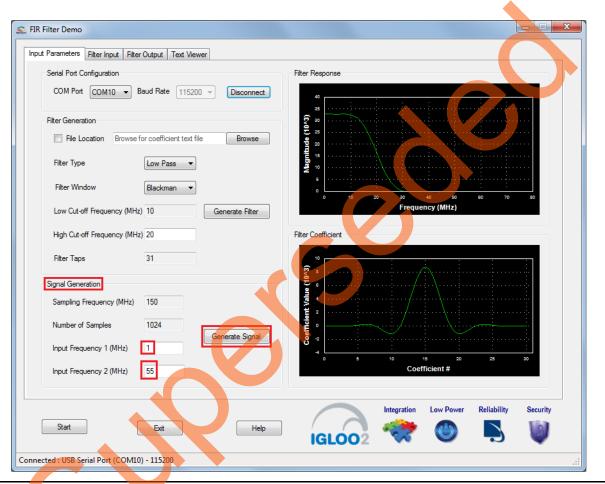


Figure 14 • Signal Generation

6. Input signal and frequency spectrum of the specified signal are displayed, as shown in Figure 15 on page 21.



Figure 15 • Input Signal and Input Signal FFT Plot

7. To configure the input frequencies and coefficients click **Start**. Refer to Figure 16. It sends the input data (1K samples) and filter coefficients to the IGLOO2 device for processing the filtering operation.

Figure 16 • DSP FIR Filter Demo Start

8. After completing the filter operation by the IGLOO2 device, the GUI plots the filtered data and the FFT data on the filter output window, refer to Figure 17. Since Low-pass filter option was selected, the High frequency component is suppressed while the Low frequency signal is preserved. This can be observed in the frequency spectrum of the output signal.

Figure 17 • Filtered Signal: Time and Frequency Plot

9. Right-click on the window, it shows different options. Refer to Figure 18. The data can be copied, saved, and exported to the CSV plot for analysis purpose. Page setup, print, show point values, zoom, and set scale are set to default.

Figure 18 • Filtered Signal: GUI Options

10. The filter coefficients, input signal, output signal, and FFT output data values can be viewed in the Text viewer. Click on the Text Viewer and click on the corresponding View, as shown in Figure 19.

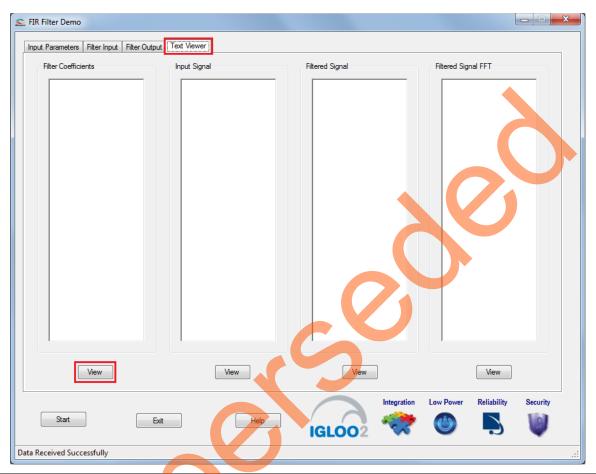


Figure 19 • Text Viewer

11. The values can be observed as shown in Figure 20.

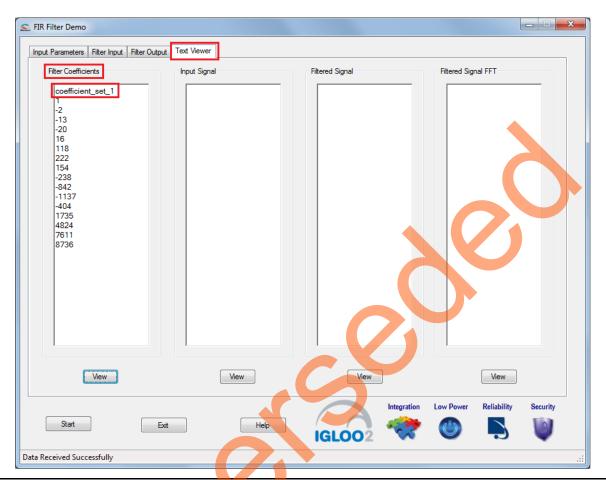


Figure 20 • Text Viewer: Filter Coefficient Values

12. To save the coefficients as a text file, right-click on the **Filter Coefficients** window, it shows different options, as shown in Figure 21. Now click **Save**. Select **OK** to save the text file.

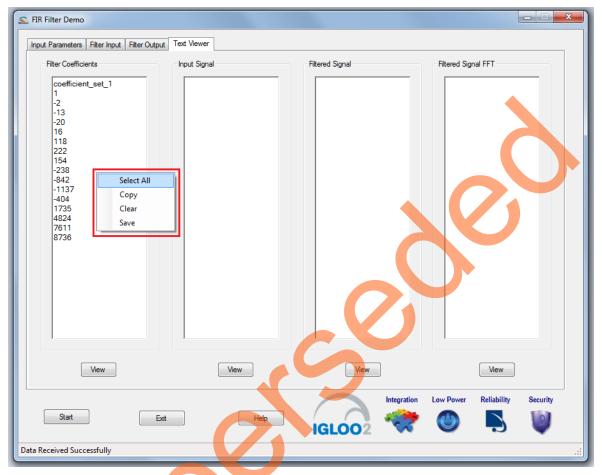


Figure 21 • Text Viewer: Coefficients Save Options

13. Click Exit to stop the demo. Refer to Figure 22.

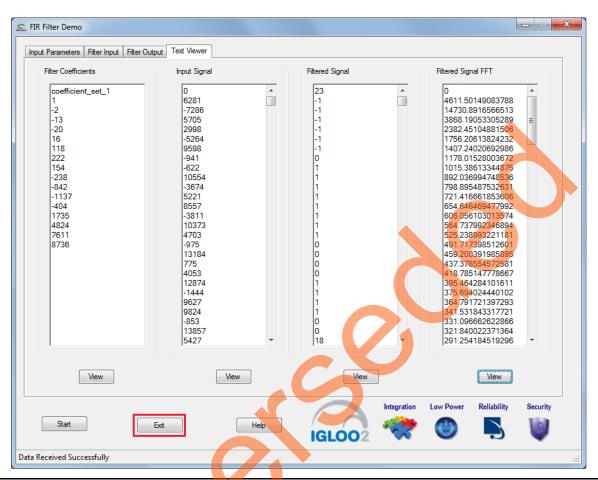


Figure 22 • FIR Filter Demo: Exit

Conclusion

This demo shows the features of the IGLOO2 device including mathblocks, and LSRAMS for DSP specific applications. Also provides information about how to use the Microsemi DSP IP cores (CoreFIR, and CoreFFT). This FIR Filter GUI-based demo is very easy to use and provides many options to understand and implement the DSP filters on the IGLOO2 device.

Appendix 1: SmartDesign Implementation

DSP FIR filter SmartDesign is shown in Figure 1.

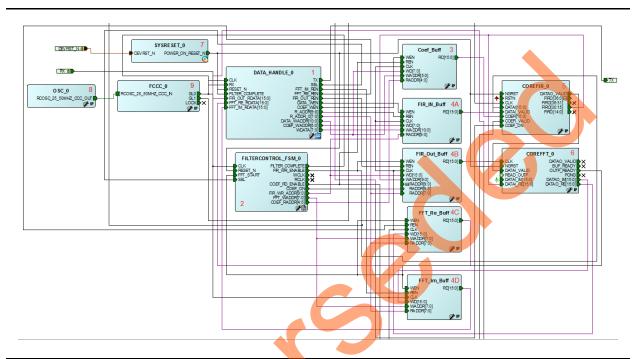


Figure 1 • DSP FIR Filter SmartDesign

Table 1 describes SmartDesign blocks in DSP FIR Filter.

Table 1 • DSP FIR Filter Demo SmartDesign Blocks and Description

S.No	Block Name	Description
1	DATA_HANDLE_0	Handles the communication between the Host PC and the IGLOO2 Evaluation Kit board.
2	FILTERCONTROL_FSM_0	Control logic to generate the control signals for the FIR and FFT operations.
3	Coef_Buff	IP for the filter coefficient buffer.
4	FIR_IN_Buff	IP for the FIR input signal data buffer.
	FIR_Out_Buff	IP for the FIR output signal buffer.
	FFT_Re_Buff	IP for the FFT output imaginary data buffer.
	FFT_Im_Buff	IP for the FFT output real data buffer.
5	COREFIR_0	COREFIR IP.
6	COREFFT_0	COREFFT IP.
7	SYSRESET_0	Reset IP.
8	OSC_0	Oscillator IP.
9	FCCC_0	Clock Conditioning circuit IP.

Appendix 2: Resource Usage Summary

Table 1 shows DSP FIR filter resource usage summary.

Device: IGLOO2 device

Die: M2GL010 **Package**: 484 FBGA

Table 1 • DSP FIR Filter Demo Resource Usage Summary

Туре	Used	Total	Percentage		
4LUT	2859	12084	23.58		
DFF	3653	12084	30.23		
RAM64x18	0	22	0.00		
RAM1Kx18	12	21	57.14		
MACC	20	22	90.91		

Table 2 shows MACC blocks usage summary.


Table 2 • MACC Blocks Usage Summary

CoreFIR	CoreFFT		45	Total
16	04	1		20

Table 3 shows RAM1Kx18 blocks usage summary.

Table 3 • RAM1Kx18 Blocks Usage Summary

CoreFIR	CoreFFT		Fabric Buffers	Total	
0	7		5	12	

Appendix 3: Coefficient Text File Format

The FIR filter coefficients can be loaded from an ASCII text file (* .txt). Create the coefficient file using a text editor. The format of the text file should be as shown in Figure 1. The coefficient values must be entered as integer numbers. For a symmetric or anti-symmetric filter, only half of the coefficients must be listed in the file (this applies to the Fully Enumerated type only). Only one coefficient value per line is permitted. An extra empty line must be placed after the last coefficient of the last set.

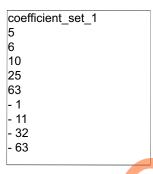


Figure 1 • Coefficient File Example – 9 Taps, Decimal Values

A – List of Changes

The following table lists critical changes that were made in each revision of the chapter in the demo guide.

Date	Changes			
Revision 3 (August 2014)	Updated the document for Libero v11.4 software release (SAR 59681).			
Revision 2	Updated the document for Libero v11.3 software release (SAR 56265).	NA		
(June 2014)	Figure 3 was updated.	7		
Revision 1 (January 2014)	Initial release	NA		

B – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call 800.262.1060 From the rest of the world, call 650.318.4460 Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more information and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the website.

Website

You can browse a variety of technical and non-technical information on the SoC home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select **Yes** in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.